JP2019089306A - Shape memory composite - Google Patents

Shape memory composite Download PDF

Info

Publication number
JP2019089306A
JP2019089306A JP2017232943A JP2017232943A JP2019089306A JP 2019089306 A JP2019089306 A JP 2019089306A JP 2017232943 A JP2017232943 A JP 2017232943A JP 2017232943 A JP2017232943 A JP 2017232943A JP 2019089306 A JP2019089306 A JP 2019089306A
Authority
JP
Japan
Prior art keywords
shape memory
shape
temperature
memory alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017232943A
Other languages
Japanese (ja)
Inventor
一浩 北村
Kazuhiro Kitamura
一浩 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017232943A priority Critical patent/JP2019089306A/en
Publication of JP2019089306A publication Critical patent/JP2019089306A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a shape memory composite comprising a shape memory polymer and a shape memory alloy, which performs actions in two directions when heated.SOLUTION: The shape memory composite comprises: a shape memory polymer in which a certain shape recovery action is memorized; and a shape memory alloy in which a shape recovery action is memorized, the recovery action being in a direction different from the recovery action of the shape memory polymer, where (1) a shape recovery temperature (glass transition temperature, Tg) of the shape memory polymer is higher than room temperature, (2) a shape recovery temperature (reverse martensitic transformation temperature, Af) of the shape memory alloy is higher than the Tg temperature, and (3) the Mf point or Rf point of the shape memory alloy is equal to or higher than room temperature and, when heating is performed to a temperature just below the Tg temperature, the shape of the shape memory composite changes gradually from a shape memorized by the shape memory polymer to a different shape memorized by the shape memory alloy and, when heating is performed to a temperature equal to or higher than the Tg temperature, the shape of the shape memory composite recovers once the shape memorized by the shape memory polymer and, thereafter, recovers the shape memorized by the shape memory alloy.SELECTED DRAWING: Figure 1

Description

本発明は、形状記憶複合体に対し、加熱のみを行うことで2方向の動作を行う形状記憶複合体に関する。      The present invention relates to a shape memory complex that performs two-direction operations by heating only the shape memory complex.

形状記憶効果を持つポリマや合金は数多く知られている。中でも形状記憶ポリマ(以下「SMP」という)としては、ポリウレタン、ポリイソプレン、スチレン・ブタジエン共重合体、ポリエチレン、ポリノルボルネンが、形状記憶合金(以下「SMA」)としては、Ti−Ni系、Tiフリー系、銅系、鉄系のものが、実用に供せられている。SMPとSMAからなる複合体(特許文献1参照)は、加熱と冷却により、加熱時にSMAの記憶形状に変化し、冷却時にSMPの記憶形状に変化する形状記憶複合体を開示する。      Many polymers and alloys having a shape memory effect are known. Among them, as a shape memory polymer (hereinafter referred to as "SMP"), polyurethane, polyisoprene, styrene butadiene copolymer, polyethylene, polynorbornene, and as a shape memory alloy (hereinafter "SMA"), Ti-Ni based, Ti Free-type, copper-type and iron-type are put to practical use. A composite consisting of SMP and SMA (see Patent Document 1) discloses a shape memory composite which changes to a memory shape of SMA upon heating and cooling and changes to a memory shape of SMP upon cooling.

特開平8−199080号公報JP-A-8-199080

形状記憶効果を持つポリマや合金は数多く知られている。中でも形状記憶ポリマ(以下「SMP」という)としては、ポリウレタン、ポリイソプレン、スチレン・ブタジエン共重合体、ポリエチレン、ポリノルボルネンが、形状記憶合金(以下「SMA」)としては、Ti−Ni系、Tiフリー系、銅系、鉄系のものが、実用に供せられている。SMPとSMAからなる複合体(特開平8−199080)では、加熱と冷却により、加熱時にSMAの記憶形状に変化し、冷却時にSMPの記憶形状に動作する形状記憶複合体が開示されている。この形状記憶複合体は、冷却と加熱により2方向の形状回復を行う内容であり、本発明の加熱のみで2方向の形状回復を行うものではない。特許文献1で示される形状記憶複合体では、効率的に冷却できないために冷却速度が遅く、冷却時の応答性が悪い欠点がある。    Many polymers and alloys having a shape memory effect are known. Among them, as a shape memory polymer (hereinafter referred to as "SMP"), polyurethane, polyisoprene, styrene butadiene copolymer, polyethylene, polynorbornene, and as a shape memory alloy (hereinafter "SMA"), Ti-Ni based, Ti Free-type, copper-type and iron-type are put to practical use. In a composite composed of SMP and SMA (Japanese Patent Application Laid-Open No. 8-199080), a shape memory composite is disclosed, which changes to a memory shape of SMA upon heating and cooling and operates to a memory shape of SMP upon cooling. This shape memory composite is a content that performs shape recovery in two directions by cooling and heating, and does not perform shape recovery in two directions only by heating of the present invention. The shape memory composite shown in Patent Document 1 has a disadvantage that the cooling rate is slow because cooling can not be performed efficiently, and the response at the time of cooling is poor.

したがって本発明は、形状記憶複合体を加熱のみで異なる方向に動作させるようにするものである。      Thus, the present invention is to operate the shape memory complex in different directions by heating alone.

本発明は、ある形状回復動作を記憶した形状記憶ポリマと、形状記憶ポリマの回復動作と別の方向の形状回復動作を記憶した形状記憶合金とからなり、▲1▼形状記憶ポリマの形状回復温度(ガラス転移温度、Tg)が室温より高く、▲2▼形状記憶合金の形状回復温度(マルテンサイト逆変態温度、Af)がTg温度より高く、▲3▼形状記憶合金のMf点またはRf点が室温より高く、室温以上でTg温度直前まで加熱を行うと形状記憶ポリマが記憶した形状から形状記憶合金が記憶した別の形状に徐々に変化し、さらにTg温度以上まで加熱を行うと、いったん形状記憶ポリマの記憶した形状に回復しその後形状記憶合金が記憶した形状に回復することを特徴とする。      The present invention comprises a shape memory polymer storing a certain shape recovery operation and a shape memory alloy storing a shape recovery operation in a direction different from that of the shape memory polymer recovery operation. (1) Shape recovery temperature of shape memory polymer (Glass transition temperature, Tg) is higher than room temperature, (2) shape recovery temperature of shape memory alloy (martensitic reverse transformation temperature, Af) is higher than Tg temperature, and (3) shape memory alloy has Mf point or Rf point When heating to a temperature just above room temperature to just before the Tg temperature, the shape memory polymer gradually changes from a memorized shape to another memorized shape memory alloy, and when it is heated to a temperature above Tg, the shape once It is characterized in that it recovers to the memorized shape of the memory polymer and then the shape memory alloy recovers to the memorized shape.

本発明により、冷却速度が遅いために冷却時の応答性が悪い形状記憶複合体の欠点が改善できる。      According to the present invention, it is possible to improve the disadvantages of shape memory composites that have poor responsiveness during cooling due to slow cooling rates.

本発明の形状記憶複合体をロボットハンドに応用すれば、加熱のみでロボットハンドで物を掴み、移動させた物を離すことができるため、ロボットハンドの小型化が可能となる。      If the shape memory complex of the present invention is applied to a robot hand, the robot hand can be grasped with only heating and the moved object can be released, so that the robot hand can be miniaturized.

本発明で使用されるSMPは、現在SMPとして使用されている物であれば、特別の限定なく使用できる。例えば、ポリウレタン、ポリイソプレン、スチレン・ブタジエン共重合体、ポリエチレン、ポリノルボルネンなどが挙げられる。中でも、構成成分の組み合わせを変化させることにより、ガラス転移温度(以下「Tg」という)を任意に設定できる点からポリウレタンが望ましい。      The SMP used in the present invention can be used without particular limitation as long as it is currently used as an SMP. For example, polyurethane, polyisoprene, styrene butadiene copolymer, polyethylene, polynorbornene and the like can be mentioned. Above all, polyurethane is desirable from the viewpoint of being able to arbitrarily set the glass transition temperature (hereinafter referred to as "Tg") by changing the combination of the constituent components.

形状記憶ポリウレタンは、主成分としてソフトセグメントを構成するポリオール、ハードセグメントを構成する鎖延長剤及びジイソシアメートとを含むブロック共重合体である。ポリウレタンは、構成成分のモル比により、自由に形状回復温度Tgを−30℃から60℃まで自由に変えられる。      Shape memory polyurethane is a block copolymer containing, as a main component, a polyol constituting a soft segment, a chain extender constituting a hard segment and a diisocyanate. The polyurethane is free to change the shape recovery temperature Tg from -30.degree. C. to 60.degree. C. according to the molar ratio of the components.

本発明で使用されるSMAは、SMPの整形温度以下であれば、特別に制限なしで使用できる。例えば、SMAの形状回復温度がSMPの整形温度よりかなり低い、Ti−Ni系SMAおよび銅系SMAが好ましい。      The SMA used in the present invention can be used without particular limitation as long as it is equal to or less than the shaping temperature of the SMP. For example, Ti-Ni based SMA and copper based SMA are preferred, where the shape recovery temperature of the SMA is much lower than the shaping temperature of the SMP.

Ti−Ni系SMAとして、Ti−Ni2元系、Ti−Ni−Cu合金、Ti−Ni−Nb合金、Ti−Ni−Fe合金、Ti−Ni−Pd合金、Ti−Ni−Hf合金、Ti−Ni−Zr合金等が挙げられる。Ti−Ni2元合金の形状回復温度は、−10℃〜100℃である。      As Ti—Ni-based SMA, Ti—Ni binary system, Ti—Ni—Cu alloy, Ti—Ni—Nb alloy, Ti—Ni—Fe alloy, Ti—Ni—Pd alloy, Ti—Ni—Hf alloy, Ti— Ni-Zr alloy etc. are mentioned. The shape recovery temperature of the Ti—Ni binary alloy is −10 ° C. to 100 ° C.

Ti−Ni系SMAは、低温ではマルテンサイト相(以下「M相」という)やR相の構造であり、ある温度以上で母相(オーステナイト相)の構造に相変態する材料である。形状回復効果は、この相変態を利用する。M相やR相のTi−Ni系SMAを加熱していくと、徐々に母相への変態(マルテンサイト逆変態)が発生し、やがて完全なる母相になる。一般に、この母相変態の開始する温度をAs点、終了する温度をAf点と呼ぶ。通常Af点が形状記憶合金の形状回復温度とされる。逆に母相となっている温度域から冷却していくと、徐々にマルテンサイト変態が発生し、やがて完全なM相になる。母相変態と同様、マルテンサイト変態の開始温度をMs点、終了温度をMf点と呼ぶ。Ti−Ni2元合金では、このMf点がAf点に比べ30℃程度低いという性質がある。これは、温度システリシスと呼ばれるが、温度変化によりTi−Niを動作させる場合には、この温度ヒステリシスを考慮する必要がある。なお、Ti−Niを特定の条件で加工熱処理した場合、M相と母相の間にR相(菱面体構造)と呼ばれる相が出現する。R相は、通常のM相−母相間での形状回復量が最高6%であるのに対して、温度ヒステリシスが3℃程度と小さいため、温度変化に対する応答性が要求される場合に、母相−R相変態がよく利用される。Ti−Ni−Cu系SMAは、この温度ヒステリシスが12℃程度とTi−Ni2元合金に比べて小さく、一方、Ti−Ni−Nb系SMAでは150℃程度とTi−Ni2元合金より大きい。従って、それぞれの用途に応じて使い分けることができる。      The Ti-Ni-based SMA is a material having a structure of martensite phase (hereinafter referred to as "M phase") or R phase at a low temperature, and is phase-transformed to a structure of a matrix phase (austenite phase) above a certain temperature. The shape recovery effect utilizes this phase transformation. When the Ti-Ni-based SMA of M phase or R phase is heated, transformation to the parent phase (martensitic reverse transformation) occurs gradually, and eventually becomes the complete parent phase. Generally, the temperature at which this matrix transformation starts is referred to as the As point, and the temperature at which it ends is referred to as the Af point. Usually, point Af is taken as the shape recovery temperature of the shape memory alloy. Conversely, when cooling from the temperature range which is the parent phase, martensitic transformation occurs gradually and eventually becomes the complete M phase. Similar to the matrix transformation, the start temperature of martensitic transformation is called Ms point, and the end temperature is called Mf point. The Ti-Ni binary alloy has such a property that this Mf point is lower by about 30 ° C. than the Af point. This is called temperature systemization, but when operating Ti—Ni by temperature change, it is necessary to consider this temperature hysteresis. When Ti-Ni is thermomechanically treated under specific conditions, a phase called R phase (rhombohedral structure) appears between the M phase and the matrix phase. While the R phase has a small temperature hysteresis of about 3 ° C. while the amount of shape recovery between normal M phase and the parent phase is 6% at maximum, when response to a temperature change is required, The phase-R phase transformation is often utilized. The temperature hysteresis of the Ti—Ni—Cu-based SMA is about 12 ° C., which is smaller than that of the Ti—Ni binary alloy, while that of the Ti—Ni—Nb SMA is about 150 ° C., which is larger than that of the Ti—Ni binary alloy. Therefore, it can be used properly according to each use.

銅系SMAとして、Cu−Zn−Al合金、Cu−Al−Ni合金、Cu−Al−Mn合金等が挙げられる。銅系のマルテンサイト逆変態温度は、−100℃から150℃である。銅系SMAの形状記憶機構は、Ti−Ni系とほぼ同じである。強度、耐食性や信頼性の面でTi−Ni系SMAの方が優れているが、加工性や経済性の点では銅系SMAの方が優れている。      Examples of copper-based SMA include a Cu-Zn-Al alloy, a Cu-Al-Ni alloy, and a Cu-Al-Mn alloy. The martensitic reverse transformation temperature of copper system is -100 ° C to 150 ° C. The shape memory mechanism of the copper-based SMA is almost the same as that of the Ti-Ni system. The Ti-Ni-based SMA is superior in terms of strength, corrosion resistance and reliability, but the copper-based SMA is superior in terms of processability and economical efficiency.

本発明の複合体は、上記したSMPとSMAから任意に選んで組み合わせることができる。ただし、加熱によりSMPの記憶形状に回復する必要があるため、Tg温度は室温より高くなければならない。また、Tg温度付近で、SMPの回復力がSMAの回復力を上回らなければいけないため、SMAのAf点が、SMPのTgよりも高い必要がある。さらに、SMAは室温で形状回復力を小さくしSMPの変形を妨げない必要があるため、Mf点及びRf点が、室温より高くなければならない。      The complex of the present invention can be arbitrarily selected and combined from the above-mentioned SMP and SMA. However, the Tg temperature has to be higher than room temperature because it is necessary to recover the memory shape of SMP by heating. In addition, the Af point of SMA needs to be higher than the Tg of SMP since the SMP must have a higher resiliency than the SMA at around the Tg temperature. Furthermore, since the SMA needs to reduce the shape recovery at room temperature and does not prevent the deformation of the SMP, the Mf point and the Rf point must be higher than the room temperature.

SMPとSMAの形状回復温度の差は特に制限はないが、実用性を考慮することTgがMsより10℃以上高い、好ましくは20℃以上高いものがよい。      The difference between the shape recovery temperatures of SMP and SMA is not particularly limited, but in consideration of practicality, it is preferable that Tg is 10 ° C. or more higher than Ms, preferably 20 ° C. or more higher.

好ましいSMPとSMAの組み合わせは、Tgが40℃〜60℃の形状記憶ポリウレタンとAfが80℃〜100℃のTI−Ni2元SMAが挙げられる。      Preferred SMP and SMA combinations include shape memory polyurethanes having a Tg of 40 ° C. to 60 ° C. and TI-Ni binary SMAs having an Af of 80 ° C. to 100 ° C.

上記したように、本発明の複合体は、室温からTg温度直下までの加熱による温度上昇により、SMPの形状固定性効果が弱まることで、SMPの発生力が下がり、反対にSMAの回復力が増加することで、徐々にSMAの記憶形状へと変形する。SMPは、Tg温度を超えると急激にSMPが記憶している形状に形状回復する。複合体の温度がSMAのAf温度を超えると、SMAが記憶している形状に急激に変形する。      As described above, in the composite of the present invention, the shape-fixing effect of the SMP is weakened by the temperature rise due to heating from room temperature to just below the Tg temperature, so that the generation force of the SMP decreases and conversely, the recovery force of the SMA is The increase gradually transforms to the SMA memory shape. When the temperature exceeds the Tg temperature, the shape of the SMP rapidly recovers to the shape stored by the SMP. When the temperature of the complex exceeds the Af temperature of the SMA, it deforms rapidly into the shape stored by the SMA.

具体的なSMPとSMAの組み合わせ方に特別の制限はない。SMPはあらかじめ形状を記憶させておく必要がある。例えば、図1に示すように、SMA1にSMP2を直接被覆してもよい。SMA1を曲がった形状に記憶させ、これを伸ばして直線状とし、その上にSMP2を被覆してもよい。      There is no particular limitation on the specific combination of SMP and SMA. The SMP needs to store the shape in advance. For example, as shown in FIG. 1, SMA 1 may be coated directly with SMP2. The SMA 1 may be stored in a bent shape, stretched and straightened, and the SMP 2 may be coated thereon.

以上のように本発明によれば、加熱のみで2方向の動作を行う形状記憶複合体が作れ、形状記憶複合体の、冷却時の応答速度が遅い問題を改善し、従来の形状記憶複合体では応答速度の問題で応用できなかった分野への用途が広がり、かつ省スペースと低コスト化にもなる。      As described above, according to the present invention, it is possible to form a shape memory complex that operates in two directions only by heating, and to solve the problem of slow response speed at the time of cooling of the shape memory complex. In this case, the application to the field which could not be applied due to the problem of response speed is expanded, and also space saving and cost reduction are realized.

本発明の形状記憶複合体の一実施容態を示す図である。It is a figure which shows one embodiment of the shape memory complex of this invention. 本発明の形状記憶複合体を用いたロボットハンドの機構を説明する図である。It is a figure explaining the mechanism of the robot hand using the shape memory complex of this invention.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明は下記実施例に限定されるものではない。
実施例1
直径0.3mmのTi−Ni2元合金のSMA線材に(Af点:74℃、Rf点:42℃)を直線形状に記憶させた。そのSMAを伸長して直線状態にし、その上にポリウレタン系SMP(Tg:55℃)を、3Dプリンタを用いて短冊形状に造形(縦:60mm、幅:10mm、厚さ:0.25mm)したSMPに対し、渦巻き形状に形状記憶処理を施した。2枚のSMPの間に、直線記憶させた直径0.3mmのSMAを挟み、130℃でホットプレスを行うことで被覆した。複合体の高さは、室温で1.1mmであった。この複合体を加熱したところ、複合体の高さが40℃で0.8mm、50℃で、0.75mm、60℃で0.5mm、70℃で0.75mm、80℃でほぼ直線形状(0mm)、すなわちSMAの記憶した形状になった。10回繰り返したが、変形量の低下は見られなかった。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples.
Example 1
(Af point: 74 ° C., Rf point: 42 ° C.) was memorized in a linear shape in the SMA wire rod of a 0.3 mm diameter Ti-Ni binary alloy. The SMA was elongated into a linear state, and polyurethane-based SMP (Tg: 55 ° C.) was formed into a strip shape (longitudinal: 60 mm, width: 10 mm, thickness: 0.25 mm) using a 3D printer. Shape memory processing was applied to the SMP in a spiral shape. A linear memorized 0.3 mm diameter SMA was sandwiched between two SMPs and coated by hot pressing at 130 ° C. The height of the complex was 1.1 mm at room temperature. When this composite is heated, the height of the composite is approximately linear shape at 40 ° C. 0.8 mm, 50 ° C., 0.75 mm, 0.5 mm at 60 ° C., 0.75 mm at 70 ° C., 80 ° C. 0 mm), i.e. the stored shape of the SMA. Although it repeated 10 times, the fall of deformation was not seen.

湾曲形状の形状記憶複合体1対を用いて、図2のようにロボットハンドを作成する。このロボットハンドは、加熱に従い一旦開き、さらに加熱を行うことでロボットハンドは閉じる。さらに加熱を続けると、ロボットハンドが開く。この動作を行うことで、形状記憶複合体を加熱し続けるだけで、ロボットハンドで物を掴み、掴んだまま移動させ、物を離す動作を行うことでき、ロボットハンドにより物を運ぶことができる。      A robot hand is created as shown in FIG. 2 using a pair of curved shape shape memory complexes. The robot hand opens once in accordance with heating, and the robot hand is closed by further heating. If heating is continued further, the robot hand opens. By performing this operation, it is possible to hold an object with the robot hand, move it while holding it, move it away, and carry the object by the robot hand only by continuing to heat the shape memory complex.

1 SMA
2 SMP
3 ロボットハンド固定具
1 SMA
2 SMP
3 Robot hand fixing tool

Claims (5)

ある形状回復動作を記憶した形状記憶ポリマと、形状記憶ポリマの回復動作と別の方向の形状回復動作を記憶した形状記憶合金とからなり、▲1▼形状記憶ポリマの形状回復温度(ガラス転移温度、Tg)が室温より高く、▲2▼形状記憶合金の形状回復温度(マルテンサイト逆変態温度、Af)がTg温度より高く、▲3▼形状記憶合金のMf点またはRf点が室温より高く、Tg温度直前まで加熱を行うと、形状記憶ポリマが記憶した形状から形状記憶合金が記憶した別の形状に徐々に変化し、さらにTg温度以上まで加熱を行うと、いったん形状記憶ポリマの記憶した形状に回復しその後形状記憶合金が記憶した形状に回復することを特徴とする形状記憶複合体。    The shape recovery temperature of the shape memory polymer (glass transition temperature) (glass transition temperature) comprising a shape memory polymer storing a certain shape recovery operation and a shape memory alloy storing a shape recovery operation of the shape memory polymer and a shape recovery operation in another direction. , Tg) is higher than room temperature, (2) shape recovery temperature (martensitic reverse transformation temperature, Af) of shape memory alloy is higher than Tg temperature, and Mf point or Rf point of shape memory alloy is higher than room temperature, When heated to just before the Tg temperature, the shape of the shape memory polymer gradually changes from the memorized shape of the shape memory polymer to another shape memorized by the shape memory alloy. A shape memory composite characterized in that the shape memory alloy recovers to the shape memorized thereafter. 形状記憶ポリマが、ポリウレタン、ポリイソプレン、スチレン・ブタジエン共重合体、ポリエチレン、ポリノルボルネンから選ばれるポリマである請求項1記載の形状記憶複合体。    The shape memory composite according to claim 1, wherein the shape memory polymer is a polymer selected from polyurethane, polyisoprene, styrene butadiene copolymer, polyethylene and polynorbornene. 形状記憶合金が、Ti−Ni系形状記憶合金、Ti−Nb系形状記憶合金、Ti−Mo系形状記憶合金、銅系形状記憶合金である請求項1記載の形状記憶複合体。    The shape memory composite according to claim 1, wherein the shape memory alloy is a Ti-Ni based shape memory alloy, a Ti-Nb based shape memory alloy, a Ti-Mo based shape memory alloy, or a copper based shape memory alloy. 形状記憶合金の周りに、あらかじめ形状を記憶している形状記憶ポリマを被覆してなる請求項1記載の形状記憶複合体。    The shape memory composite according to claim 1, wherein the shape memory alloy is coated with a shape memory polymer of which shape is stored in advance. 形状記憶合金に、あらかじめ形状を記憶している形状記憶ポリマをホットプレスすることを特徴とする形状記憶複合体の製造方法。    A method for producing a shape memory composite, comprising hot pressing a shape memory polymer having a shape stored in advance in a shape memory alloy.
JP2017232943A 2017-11-14 2017-11-14 Shape memory composite Pending JP2019089306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017232943A JP2019089306A (en) 2017-11-14 2017-11-14 Shape memory composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017232943A JP2019089306A (en) 2017-11-14 2017-11-14 Shape memory composite

Publications (1)

Publication Number Publication Date
JP2019089306A true JP2019089306A (en) 2019-06-13

Family

ID=66835620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017232943A Pending JP2019089306A (en) 2017-11-14 2017-11-14 Shape memory composite

Country Status (1)

Country Link
JP (1) JP2019089306A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337033A (en) * 2021-06-29 2021-09-03 哈尔滨工业大学 Preparation of thermally-deformed support arm and method for regulating and controlling unfolding state of space reflector by using thermally-deformed support arm
CN113597180A (en) * 2021-07-02 2021-11-02 浙江工业大学 Multipurpose buffering and releasing device combined with shape memory polymer characteristics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113337033A (en) * 2021-06-29 2021-09-03 哈尔滨工业大学 Preparation of thermally-deformed support arm and method for regulating and controlling unfolding state of space reflector by using thermally-deformed support arm
CN113337033B (en) * 2021-06-29 2022-01-18 哈尔滨工业大学 Preparation of thermally-deformed support arm and method for regulating and controlling unfolding state of space reflector by using thermally-deformed support arm
CN113597180A (en) * 2021-07-02 2021-11-02 浙江工业大学 Multipurpose buffering and releasing device combined with shape memory polymer characteristics

Similar Documents

Publication Publication Date Title
US20070200656A1 (en) Two way composite nitinol actuator
Stöckel The shape memory effect-phenomenon, alloys and applications
US6451052B1 (en) Tissue supporting devices
CN106687687B (en) Heat-sensitive actuator device
JPS60128252A (en) Shape memory alloy
Duerig Applications of shape memory
JP2019089306A (en) Shape memory composite
Duerig Some unsolved aspects of Nitinol
KR101183650B1 (en) Fabrication method of unique two way shape memory coil spring and unique two way shape memory coil spring fabricated by using the same
EP3191710B1 (en) Heat sensitive actuator device
WO2008088197A1 (en) Coil spring having two-way shape memory effect and the fabrication method thereof, and adiabatic product using the same
Parvizi et al. NiTi shape memory alloys: properties
US6371463B1 (en) Constant-force pseudoelastic springs and applications thereof
Avery et al. Reverse Engineering of Nitinol Vena Cava Filters
JPH08199080A (en) Shape-memory composite
JPS6210291B2 (en)
JP2795463B2 (en) Manufacturing method of two-way shape memory coil spring
JPH09109320A (en) Shape recovery device
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME
CN114196896B (en) Nickel-titanium alloy, preparation method and application thereof, and nickel-titanium alloy component
Baker et al. Nitinol
JP2801310B2 (en) Manufacturing method of two-way shape memory coil spring
Rahimatpure Smart memory alloys
JPH09123330A (en) Shape-recovery device
Huang et al. Simulation of novel microassembly using shape memory alloy