JP2795463B2 - Manufacturing method of two-way shape memory coil spring - Google Patents

Manufacturing method of two-way shape memory coil spring

Info

Publication number
JP2795463B2
JP2795463B2 JP14577089A JP14577089A JP2795463B2 JP 2795463 B2 JP2795463 B2 JP 2795463B2 JP 14577089 A JP14577089 A JP 14577089A JP 14577089 A JP14577089 A JP 14577089A JP 2795463 B2 JP2795463 B2 JP 2795463B2
Authority
JP
Japan
Prior art keywords
coil spring
shape memory
temperature
spring
way
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14577089A
Other languages
Japanese (ja)
Other versions
JPH0313551A (en
Inventor
秀和 都築
宏 堀川
和男 松原
雄一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14577089A priority Critical patent/JP2795463B2/en
Publication of JPH0313551A publication Critical patent/JPH0313551A/en
Application granted granted Critical
Publication of JP2795463B2 publication Critical patent/JP2795463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Wire Processing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、形状記憶合金からなり、自発形状変化量の
大きい二方向形状記憶コイルばねが得られる製造方法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a method of manufacturing a two-way shape memory coil spring made of a shape memory alloy and having a large spontaneous shape change amount.

〔従来の技術とその課題〕[Conventional technology and its problems]

形状記憶合金は産業分野に広く用いられており、その
材料形状は多種にわたるが、形状回復の際の変化量を大
きくできる形状という観点から効果的なコイルばねとし
て一般に利用されている。
Shape memory alloys are widely used in the industrial field, and there are many types of material shapes, but they are generally used as effective coil springs from the viewpoint of a shape capable of increasing the amount of change upon shape recovery.

このコイルばねは、第10図に示すように通常高温相で
ある母相の形状のみを記憶する一方向形状記憶のコイル
ばね(1)とバイアスばね(2)とを組合せて用いるも
のであるが、バイアスばねを必要とするため材料コスト
の点や、アクチュエーター等の設計において、その寸法
を小型化できないなどの難点がある。
As shown in FIG. 10, this coil spring uses a combination of a one-way shape memory coil spring (1) that stores only the shape of a parent phase, which is usually a high-temperature phase, and a bias spring (2). Since a bias spring is required, there are disadvantages in that the material cost is low, and the dimensions of the actuator and the like cannot be reduced.

そこで高温相に加え、低温相であるマルテンサイト相
の形状も記憶する二方向形状記憶を利用したコイルばね
が開発され、上記の問題を解決する試みがなされた。こ
の二方向形状記憶コイルばねは、温度の上下に対して可
逆的に繰り返し変形動作するものであり、第11図に示す
ように(a)の低温において伸びているものが(b)の
高温において縮み、また(c)の低温において伸び、
(d)の高温において縮む形状を可逆的に繰り返すもの
である。また上記とは逆に低温で縮んでいるものが高温
で伸び、低温で縮み、さらに高温で伸びる形状を可逆的
に繰り返すものもある。
Therefore, a coil spring using two-way shape memory that stores the shape of the martensite phase, which is a low-temperature phase, in addition to the high-temperature phase, has been developed, and attempts have been made to solve the above problems. The two-way shape memory coil spring repeatedly and reversibly deforms with respect to the rise and fall of the temperature. As shown in FIG. 11, the two-way shape memory coil spring expands at a low temperature of (a) and expands at a high temperature of (b). Shrinkage and elongation at the low temperature of (c),
The shape of (d) shrinking at high temperature is reversibly repeated. Conversely, there is a type that shrinks at a low temperature, elongates at a high temperature, shrinks at a low temperature, and expands at a high temperature reversibly.

これらの二方向形状記憶は、強度に変形したり拘束状
態で熱処理を行なうと現れることが知られている。
It is known that these two-way shape memories appear when they are strongly deformed or heat-treated in a constrained state.

しかしながらこのような方法では、二方向形状記憶コ
イルばねの高温側と低温側の両方の形状を正確に記憶さ
せることおよび発生力や温度ヒステリシスの制御が困難
であり、またコイルばねの場合、強加工を施すことが難
しく、高温側と低温側の形状の差である自発形状変化量
が小さいために適用範囲が狭く、産業上用いられること
が少なかった。特に高温で伸び、低温で縮む二方向形状
記憶効果の自発形状変化量が小さく問題とされていた。
However, with such a method, it is difficult to accurately memorize the shapes on both the high-temperature side and the low-temperature side of the two-way shape memory coil spring, and it is difficult to control the generated force and the temperature hysteresis. It is difficult to perform the method, and the spontaneous shape change amount, which is the difference between the shape on the high-temperature side and the low-temperature side, is small. In particular, the spontaneous shape change amount of the two-way shape memory effect, which expands at a high temperature and shrinks at a low temperature, has been regarded as a problem.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

発明は上記の問題について検討の結果、比較的簡単な
方法により形状記憶コイルばねに自発形状変化量が大き
く、かつ記憶特性の優れた二方向形状記憶コイルばねが
得られる製造方法を開発したものである。
As a result of examining the above problems, the present invention has developed a manufacturing method that can obtain a two-way shape memory coil spring having a large spontaneous shape change amount and excellent memory characteristics by a relatively simple method. is there.

〔課題を解決するための手段および作用〕[Means and actions for solving the problem]

本発明は、形状記憶合金線をコイルばねに成形し、形
状記憶熱処理を行なった後、該コイルばねを軸方向に逆
転する方向に巻替え、次いで該コイルばねにトレーニン
グを施して、高温で縮み低温で伸びる二方向のばね性を
付与することを特徴とする二方向形状記憶コイルばねの
製造方法であり、また形状記憶合金線をコイルばねに成
形し、形状記憶熱処理を行なった後、該コイルばねを軸
方向に逆転する方向に巻替え、次いで該コイルばねにト
レーニングを施した後、さらに該コイルばねを軸方向に
逆転する方向に再巻替えを行ない、高温で伸び低温で縮
む二方向のばね性を付与することを特徴とする二方向形
状記憶コイルばねの製造方法である。
The present invention forms a shape memory alloy wire into a coil spring, performs a shape memory heat treatment, rewinds the coil spring in a direction in which the coil spring is reversed in the axial direction, and then trains the coil spring to shrink at a high temperature. A method for producing a two-way shape memory coil spring characterized by imparting a two-way spring property extending at a low temperature, and further comprising forming a shape memory alloy wire into a coil spring, performing a shape memory heat treatment, and then forming the coil. After rewinding the spring in the direction of reversing in the axial direction, and then training the coil spring, rewind the coil spring in the direction of reversing in the axial direction. A method for manufacturing a two-way shape memory coil spring, which is characterized by imparting spring properties.

すなわち本発明は、第1図に製造工程の概略を示すよ
うに、先ずNi−Ti合金などの形状記憶合金線からなるコ
イルばね(1)を図(a)に示すように例えば伸びた状
態にして所定の形状記憶熱処理を行なった後、このコイ
ルばねを図(b)に示すように軸方向に対して逆転する
方向に巻替えを行なって歪を与えるものである。この巻
替えを詳しく説明すると、第2図に示すように伸びた状
態のコイルばね(1)をそのまま心棒(3)に通し、そ
の一端を固定端子(4)により固定し、別の一端を心棒
(3′)の固定端子(4′)に固定し、心棒(3′)を
矢印方向に回転して心棒(3)のコイルばね(1)を心
棒(3′)に密着状態のコイルばね(1′)に巻替えを
行なうものである。この際コイルばね(1)は、第3図
(a)に示すように最初のコイルばねが右巻であれば、
巻替えにより(b)図のように左巻となり、コイルの巻
き畳み順序は(a)図のの左端に位置するものが巻替
えにより(b)図ののように右端に位置するようにそ
れぞれ逆転する。上記の巻き畳み順序を逆転させる巻替
えを行なうことにより、コイルばねに与えた剪断歪量
は、第4図に示すように巻替え前のコイルばね(1)の
自由長(ε)と巻替え後のコイルばね(1′)の自由
長(ε)とをプラスした大きい剪断歪量をコイルばね
に加えたことになる。この結果、高温で元の記憶形状に
戻ろうとするので密着力の強い密着ばねが得られるもの
である。
That is, according to the present invention, as shown in FIG. 1, the coil spring (1) made of a shape memory alloy wire such as a Ni—Ti alloy is first extended, for example, as shown in FIG. After performing a predetermined shape memory heat treatment, the coil spring is wound in a direction reverse to the axial direction as shown in FIG. The rewinding will be described in detail. As shown in FIG. 2, a coil spring (1) in an extended state is passed through a mandrel (3) as it is, one end of which is fixed by a fixing terminal (4), and the other end is mandrel. (3 ') is fixed to the fixed terminal (4'), the mandrel (3 ') is rotated in the direction of the arrow, and the coil spring (1) of the mandrel (3) is brought into close contact with the mandrel (3'). 1 '). At this time, if the first coil spring is a right-handed coil as shown in FIG.
As shown in FIG. 2B, the coils are wound to the left as shown in FIG. 2B, and the winding order of the coils is such that the coil located at the left end in FIG. 2A is located at the right end as shown in FIG. Reverse. By performing the rewinding to reverse the above-mentioned winding order, the amount of shear strain given to the coil spring becomes equal to the free length (ε 0 ) of the coil spring (1) before the rewinding as shown in FIG. This means that a large amount of shear strain, which is obtained by adding the free length (ε 1 ) of the replaced coil spring (1 ′), is added to the coil spring. As a result, it is attempted to return to the original memory shape at a high temperature, so that a close contact spring having a strong contact force can be obtained.

さて、上記のように密着状態に巻替えたコイルばね
は、この後第1図(c)に示すように引張り加工を行な
って一定の形状に固定したまま加熱、冷却を繰返すトレ
ーニングを施すものである。この様子を詳しく説明する
と第5図に示すように心棒(3)にコイルばね(1)を
巻付け一端を固定端子(4)により固定してコイルばね
の別の一端を矢印方向に引張って一定の形状に固定した
コイルばねに加熱、冷却を繰り返すトレーニングを施す
ものである。このトレーニングの条件は、後述する実施
例より明らかなように低温で形状記憶合金のMf点(マル
テンサイト変態終了温度)以下、高温でAf点(マルテン
サイト逆変態終了温度)以上の温度で加熱、冷却の繰返
しが5〜100サイクルの範囲で行なうことが望ましく、
この温度およびサイクル未満では自発形状変化歪量の改
善は望めず、またこの温度およびサイクルを越えても自
発形状変化歪量は飽和する。因みにNi50.3at%、Ti49.7
at%のAf点は51℃、Mf点は24.5℃である。
By the way, the coil spring which has been wound into the close contact state as described above is subjected to a training process in which heating and cooling are repeatedly performed while being stretched and fixed in a fixed shape as shown in FIG. 1 (c). is there. This situation will be described in detail. As shown in FIG. 5, a coil spring (1) is wound around a mandrel (3), one end is fixed by a fixed terminal (4), and another end of the coil spring is pulled in the direction of the arrow to be constant. The training that repeats heating and cooling is applied to the coil spring fixed in the shape of. The training conditions are heating at a temperature below the Mf point (martensite transformation end temperature) of the shape memory alloy at a low temperature and above the Af point (martensite reverse transformation end temperature) at a high temperature, as is clear from the examples described later. It is desirable that the repetition of cooling be performed in the range of 5 to 100 cycles,
Below this temperature and cycle, no improvement in the spontaneous shape change strain can be expected, and beyond this temperature and cycle, the spontaneous shape change strain is saturated. By the way, Ni50.3at%, Ti49.7
The at% Af point is 51 ° C and the Mf point is 24.5 ° C.

以上の工程を経て製造されたコイルばねは、第1図
(d)および(e)に示すように高温で縮み、低温で伸
びる二方向の可逆的な動作を自発形状変化歪量が1%程
度と極めて大きい範囲で繰返すことが可能である。
As shown in FIGS. 1 (d) and 1 (e), the coil spring manufactured through the above steps shrinks at a high temperature and expands at a low temperature in two directions. The spontaneous shape change strain is about 1%. Can be repeated in an extremely large range.

また上記のコイルばねは、低温と高温の繰返しサイク
ルにおいても、低温と高温の形状を正確に記憶している
ことが確認されている。
In addition, it has been confirmed that the above-described coil spring correctly stores the low-temperature and high-temperature shapes even in a low-temperature and high-temperature repeated cycle.

なお上記のトレーニングを適宜付与することにより自
発形状変化歪量を種々の値に設定したコイルばねが得ら
れる。
A coil spring in which the spontaneous shape change distortion amount is set to various values can be obtained by appropriately applying the above training.

次に上記の高温で縮むように成形された第1図(f)
のようなコイルばねを(g)に示すように密着するよう
に再度巻替えを行なうことにより、(h)、(i)に示
すように高温で伸び低温で縮むコイルばねが得られる。
すなわち第6図に示すように伸びた状態のコイルばね
(1)を心棒(3)に通して一端を固定端子(4)によ
り固定し、別の一端を心棒(3′)の固定端子(4′)
に固定し心棒(3′)を矢印方向に回転して心棒(3)
のコイルばね(1)を心棒(3′)に密着状態にしたコ
イルばね(1′)に巻替えを行なうものである。この際
のコイルばねは巻き畳み順序が前記の第3図に示したよ
うな逆転したコイルばねが得られる。
Next, FIG. 1 (f) formed to shrink at the above high temperature
By rewinding such a coil spring as shown in (g) so as to make close contact as shown in (g), a coil spring which expands at a high temperature and contracts at a low temperature as shown in (h) and (i) is obtained.
That is, as shown in FIG. 6, the extended coil spring (1) is passed through the mandrel (3), one end is fixed by the fixed terminal (4), and the other end is fixed to the fixed terminal (4) of the mandrel (3 '). ′)
And rotate the mandrel (3 ') in the direction of the arrow to make the mandrel (3)
The coil spring (1) is re-wound to a coil spring (1 ') in close contact with the mandrel (3'). In this case, a coil spring in which the winding order is reversed as shown in FIG. 3 is obtained.

このようにして得られた高温で伸び、低温で縮む二方
向ばねも、高温および低温においてそれぞれ正確な形状
を記憶させることができる。
The thus obtained two-way spring that expands at a high temperature and contracts at a low temperature can also memorize accurate shapes at high and low temperatures, respectively.

しかして本発明において用いられる形状記憶合金線
は、Ni−TiおよびNi−Ti系合金、或いはCu−Zn−Al、Cu
−Zn−Au、Cu−Al−NiなどのCu系合金、その他公知の形
状記憶合金が適用できる。このうち耐食性などの点から
Ni−TiおよびNi−Ti合金系の線が特に好ましい。
Thus, the shape memory alloy wire used in the present invention, Ni-Ti and Ni-Ti alloy, or Cu-Zn-Al, Cu
Cu-based alloys such as -Zn-Au, Cu-Al-Ni, and other known shape memory alloys can be applied. From the viewpoint of corrosion resistance etc.
Ni-Ti and Ni-Ti alloy based wires are particularly preferred.

またコイルばねと同様な形状、機能を有する各種のば
ねにも適用が可能であり、線の形状も丸線、角線、異形
線など種々のものが適用できる。
Further, the present invention can be applied to various springs having the same shape and function as the coil spring, and various wire shapes such as a round wire, a square wire, and a deformed wire can be applied.

〔実施例〕〔Example〕

以下に本発明の一実施例について説明する。 Hereinafter, an embodiment of the present invention will be described.

実施例1 Niが50.3at%、Tiが49.7at%の組成のNi−Ti合金線を
D/d=9、ピッチ間隔1mm、n=8として、第1図(a)
に示す形状に成形した後、この形状で450℃に1時間保
持して形状記憶熱処理を行なった。これを第1図(b)
および第2図に示すようにコイルばね(1)を心棒
(3)に固定し、矢印方向に回転させた同径の心棒
(3′)にコイルばね(1′)を巻替え、前記の第3図
に示すように巻畳み順序が逆転するような密着コイルば
ねを作製した。次いでこのコイルばねを第1図(c)お
よび詳しくは第5図に示すように、密着ばねのばね径を
保ちながらコイルばねを引張りこの形状に固定したまま
トレーニングを施して第1図(d)および(e)に示す
高温で縮み、低温で伸びるコイルばねを作製した。次に
コイルばねに4.7%の剪断歪を与えたまま、95℃、20℃
の熱サイクルトレーニングを施したときの繰返しサイク
ル数と自発形状変化歪量の関係を第7図に示す。この図
からサイクル5付近より自発形状変化歪量が増加し、40
付近より飽和することが判る。したがってサイクルとし
ては5〜100の範囲であれば、自発形状変化歪量の大き
いものが得られることが明らかである。
Example 1 A Ni—Ti alloy wire having a composition of 50.3 at% Ni and 49.7 at% Ti
Assuming that D / d = 9, pitch interval is 1 mm, and n = 8, FIG.
Then, the shape was held at 450 ° C. for 1 hour to carry out shape memory heat treatment. This is shown in FIG.
As shown in FIG. 2, the coil spring (1 ') is fixed to the mandrel (3), and the mandrel (1') is wound around the mandrel (3 ') having the same diameter rotated in the direction of the arrow. As shown in FIG. 3, a close contact coil spring in which the winding order was reversed was manufactured. Next, as shown in FIG. 1 (c) and more specifically, FIG. 5, the coil spring is stretched while maintaining the spring diameter of the close contact spring, and training is performed while fixing the coil spring in this shape, and FIG. 1 (d). And (e) a coil spring which contracts at a high temperature and expands at a low temperature. Next, 95 ° C, 20 ° C with 4.7% shear strain applied to the coil spring
FIG. 7 shows the relationship between the number of repetition cycles and the amount of spontaneous shape change strain when the heat cycle training was performed. From this figure, the spontaneous shape change distortion increased from around cycle 5, and increased by 40%.
It turns out that it is saturated from the vicinity. Therefore, if the cycle is in the range of 5 to 100, it is clear that a large spontaneous shape change strain can be obtained.

次に上記の50サイクルのトレーニングを行なった後の
コイルばねの95℃と20℃における自然長変化を測定し
た。この結果を第8図に示す。この図から本発明による
ものは高温と低温のばね長さの変化量すなわち自発形状
変化歪量が極めて大きく、しかも、高温と低温の繰返し
サイクルにおいてもその形状を正確に記憶していること
が認められる。なお従来のものはばね長さの変化量が小
さい。
Next, natural length changes at 95 ° C. and 20 ° C. of the coil spring after the above-mentioned 50 cycles of training were measured. The result is shown in FIG. From this figure, it can be seen that the spring according to the present invention has a very large change in the spring length at high and low temperatures, that is, a spontaneous shape change strain, and that the shape is accurately stored even in a repeated cycle at high and low temperatures. Can be Note that the conventional one has a small amount of change in the spring length.

実施例2 実施例1において作製した第1図(f)に示すコイル
ばねを再度逆転巻替えを行なって(g)のような密着ば
ねを作製した。このコイルばね(h)および(i)に示
すような高温で伸び、低温で縮むものである。すなわち
第6図に示すように伸びた状態のコイルばね(1)を心
棒(3)を通して固定端子(4)によりその一端を固定
し、別の一端を心棒(3′)の固定端子(4′)に固定
し、心棒(3′)を矢印方向に回転して心棒(3)のコ
イルばね(1)を心棒(3′)に密着状態にしたコイル
ばね(1′)を作製した。このコイルばねの95℃と20℃
の自然長変化を測定した結果を第9図に示す。図から明
らかなように本発明によるコイルばねは、ばね長さの変
化量が従来のものに比べ著しく大きいことが判る。また
高温と低温の繰返しサイクルにおいても、その形状を正
確に記憶していることが確認された。
Example 2 The coil spring shown in FIG. 1 (f) produced in Example 1 was reversely wound again to produce a close contact spring as shown in FIG. 1 (g). The coil springs expand at a high temperature and contract at a low temperature as shown in (h) and (i). That is, as shown in FIG. 6, the extended coil spring (1) is fixed at one end by a fixed terminal (4) through a mandrel (3), and another end is fixed to a fixed terminal (4 ') of the mandrel (3'). ), And the mandrel (3 ') was rotated in the direction of the arrow to produce a coil spring (1') in which the coil spring (1) of the mandrel (3) was brought into close contact with the mandrel (3 '). 95 ℃ and 20 ℃ of this coil spring
FIG. 9 shows the results of measuring the change in natural length of. As is clear from the figure, the coil spring according to the present invention has a significantly larger change in the spring length than the conventional one. In addition, it was confirmed that the shape was correctly memorized even in a repeated cycle of high and low temperatures.

〔効果〕〔effect〕

以上に説明したように本発明によれば比較的簡単な方
法により自然形状変化歪量が大きく、かつ高温と低温の
繰返しサイクルにおける形状を正確に記憶した二方向形
状記憶コイルばねが得られるもので工業上顕著な効果を
奏するものである。
As described above, according to the present invention, it is possible to obtain a two-way shape memory coil spring having a large amount of natural shape change strain and accurately storing a shape in a high-temperature and low-temperature repetition cycle by a relatively simple method. It has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る二方向形状記憶コイル
ばねの製造工程を示す概略図、第2図は本発明の製造工
程中のコイルばねの巻替え工程を示す側面図、第3図は
第2図の巻替え工程によるコイルばねの巻き畳み順序を
示す概略図、第4図はコイルばね巻替えによる剪断歪量
を表す説明図、第5図は本発明の製造工程中のコイルば
ね引張り加工方法を示す側面図、第6図は本発明の製造
工程中のコイルばね再巻替え方法を示す側面図、第7図
は本発明の製造方法によるコイルばねの加熱、冷却サイ
クル数と自発形状変化歪量の関係を示す線図、第8図お
よび第9図は本発明の製造方法によるコイルばねの温度
サイクルとばね長さとの関係を示す線図、第10図は従来
のバイアスばねを用いた一方向形状記憶コイルばねの利
用例を示す図、第11図は二方向形状記憶コイルばねの動
作を説明する図である。 1,1′……コイルばね、2……バイアスばね、3,3′……
心棒、4,4′……固定端子。
FIG. 1 is a schematic view showing a manufacturing process of a two-way shape memory coil spring according to one embodiment of the present invention, FIG. 2 is a side view showing a coil spring rewinding process in the manufacturing process of the present invention, and FIG. FIG. 4 is a schematic diagram showing the order of winding the coil springs in the rewinding step of FIG. 2, FIG. 4 is an explanatory view showing the amount of shear strain caused by rewinding the coil springs, and FIG. FIG. 6 is a side view showing a spring tensioning method, FIG. 6 is a side view showing a coil spring rewinding method during the manufacturing process of the present invention, and FIG. 7 is a diagram showing the number of heating and cooling cycles of the coil spring by the manufacturing method of the present invention. 8 and 9 are diagrams showing the relationship between the temperature cycle of the coil spring and the spring length according to the manufacturing method of the present invention, and FIG. 10 is a diagram showing a conventional bias spring. FIG. 11 shows an example of using a one-way shape memory coil spring using The figure illustrates the operation of the two-way shape memory coil spring. 1,1 '... Coil spring, 2 ... Bias spring, 3,3' ...
Mandrel, 4,4 '…… Fixed terminal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 631 C22F 1/00 631A 685 685Z 686 686Z (56)参考文献 特開 昭59−162262(JP,A) 石川昇治 「図解・特許にみる形状記 憶合金応用アイデア集」 (昭62−12− 1) 工業調査会 PP.21−22 E.Hornbogen編 「Mar tensitic Transform Sci Technology」 (1989) INFORMATIONGE SELLSCHAFT PP.39−52 矢沢彬編 「東北大学選鉱製錬研究 所」 (昭60−9−30) 41[1] P P.35−44 (58)調査した分野(Int.Cl.6,DB名) C22F 1/08 C22F 1/10 C22F 1/18 F16F 1/02 B21F 35/00──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 631 C22F 1/00 631A 685 685Z 686 686Z (56) References JP-A-59-162262 (JP, A) Shoji Ishikawa "Illustrations of Shape Memory Alloys Applied in Illustrations and Patents" (1987-12-1) Industrial Research Council PP. 21-22 E. Hornbogen, ed., "Martensitic Transform Sci Technology" (1989) INFORMATION SELLSCHAFT PP. 39-52 Akira Yazawa “Tohoku University Mineral Processing and Smelting Laboratory” (Showa 60-9-30) 41 [1] P.P. 35-44 (58) Field surveyed (Int.Cl. 6 , DB name) C22F 1/08 C22F 1/10 C22F 1/18 F16F 1/02 B21F 35/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】形状記憶合金線をコイルばねに成形し、形
状記憶熱処理を行なった後、該コイルばねを軸方向に逆
転する方向に巻替え、次いで該コイルばねにトレーニン
グを施して、高温で縮み低温で伸びる二方向のばね性を
付与することを特徴とする二方向形状記憶コイルばねの
製造方法。
1. A shape memory alloy wire is formed into a coil spring, and after performing shape memory heat treatment, the coil spring is wound in a direction in which the coil spring is reversed in the axial direction. A method for producing a two-way shape memory coil spring, which comprises providing a two-way spring property that contracts and expands at a low temperature.
【請求項2】形状記憶合金線をコイルばねに成形し、形
状記憶熱処理を行なった後、該コイルばねを軸方向に逆
転する方向に巻替え、次いで該コイルばねにトレーニン
グを施した後、さらに該コイルばねを軸方向に逆転する
方向に再巻替えを行ない、高温で伸び低温で縮む二方向
のばね性を付与することを特徴とする二方向形状記憶コ
イルばねの製造方法。
2. Forming a shape memory alloy wire into a coil spring, performing shape memory heat treatment, rewinding the coil spring in a direction in which the coil spring is reversed in the axial direction, and then training the coil spring. A method of manufacturing a two-way shape memory coil spring, comprising: rewinding the coil spring in a direction in which the coil spring is reversed in the axial direction to impart a two-way spring property of expanding at a high temperature and contracting at a low temperature.
【請求項3】トレーニングは低温でMf点(マルテンサイ
ト変態終了温度)以下、高温でAf点(マルテンサイト逆
変態終了温度以上の温度で、加熱、冷却の繰返しが5〜
100サイクルの範囲で行なうことを特徴とする請求項1
または2記載の二方向形状記憶コイルばねの製造方法。
The training is performed at a temperature lower than the Mf point (martensite transformation end temperature) at a low temperature and at a temperature higher than the Af point (martensite reverse transformation end temperature) at a high temperature.
2. The method according to claim 1, wherein the operation is performed within a range of 100 cycles.
Or a method for manufacturing a two-way shape memory coil spring according to item 2.
JP14577089A 1989-06-08 1989-06-08 Manufacturing method of two-way shape memory coil spring Expired - Fee Related JP2795463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14577089A JP2795463B2 (en) 1989-06-08 1989-06-08 Manufacturing method of two-way shape memory coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14577089A JP2795463B2 (en) 1989-06-08 1989-06-08 Manufacturing method of two-way shape memory coil spring

Publications (2)

Publication Number Publication Date
JPH0313551A JPH0313551A (en) 1991-01-22
JP2795463B2 true JP2795463B2 (en) 1998-09-10

Family

ID=15392765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14577089A Expired - Fee Related JP2795463B2 (en) 1989-06-08 1989-06-08 Manufacturing method of two-way shape memory coil spring

Country Status (1)

Country Link
JP (1) JP2795463B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106238631A (en) * 2016-08-25 2016-12-21 永嘉县三和弹簧有限公司 A kind of spiral disk spring and technique
JP6554248B1 (en) * 2019-04-17 2019-07-31 湘三 安井 Mount with solar tracking function and solar power generator
JP6621958B1 (en) * 2019-08-01 2019-12-18 湘三 安井 Solar tracking device
CN115821733B (en) * 2022-11-17 2023-10-20 四川九州城轨环境科技有限公司 Shock-absorbing and isolating bridge support

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.Hornbogen編 「Martensitic Transform Sci Technology」 (1989) INFORMATIONGESELLSCHAFT PP.39−52
矢沢彬編 「東北大学選鉱製錬研究所」 (昭60−9−30) 41[1] PP.35−44
石川昇治 「図解・特許にみる形状記憶合金応用アイデア集」 (昭62−12−1) 工業調査会 PP.21−22

Also Published As

Publication number Publication date
JPH0313551A (en) 1991-01-22

Similar Documents

Publication Publication Date Title
US4533411A (en) Method of processing nickel-titanium-base shape-memory alloys and structure
US6149742A (en) Process for conditioning shape memory alloys
US4654092A (en) Nickel-titanium-base shape-memory alloy composite structure
KR100922814B1 (en) Method for restoring coil spring and accuator having initial tension coil spring
US5624508A (en) Manufacture of a two-way shape memory alloy and device
JPH02142627A (en) Instrument for composite joint
US20110083325A1 (en) Method of Manufacturing a Nickel Titanium Coil Actuator
KR101183650B1 (en) Fabrication method of unique two way shape memory coil spring and unique two way shape memory coil spring fabricated by using the same
JP2851086B2 (en) Manufacturing method of two-way shape memory coil spring
JP2795463B2 (en) Manufacturing method of two-way shape memory coil spring
JP2795465B2 (en) Manufacturing method of two-way shape memory coil spring
JP2795464B2 (en) Manufacturing method of two-way shape memory coil spring
JPH0251976B2 (en)
JP2801310B2 (en) Manufacturing method of two-way shape memory coil spring
JP2801311B2 (en) Manufacturing method of two-way shape memory deformed coil spring
DE2933337A1 (en) Pulse generator with two-layer ferromagnetic wire - having specified composition with change in magnetisation producing electric pulses
JPH0665740B2 (en) Method for manufacturing NiTi-based shape memory material
JP2019089306A (en) Shape memory composite
US3086280A (en) Processing of soft magnetic materials
JPH07150314A (en) Manufacture of coil spring having bidirectional shape memory effect
JPS59162262A (en) Production of spring having two-way shape memory effect
JPH0128252B2 (en)
JPS59179767A (en) Production of reversible shape memory element
JP2002105566A (en) Coil spring having shape memory effect and its production method
JP3755032B2 (en) SHAPE MEMORY ALLOY WIRE FOR USE IN DIRECTION REQUIRED AND METHOD FOR MANUFACTURING THE SAME

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees