JPH0356702Y2 - - Google Patents
Info
- Publication number
- JPH0356702Y2 JPH0356702Y2 JP352090U JP352090U JPH0356702Y2 JP H0356702 Y2 JPH0356702 Y2 JP H0356702Y2 JP 352090 U JP352090 U JP 352090U JP 352090 U JP352090 U JP 352090U JP H0356702 Y2 JPH0356702 Y2 JP H0356702Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- valve
- sensing element
- shape memory
- temperature sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 16
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 230000004044 response Effects 0.000 claims description 2
- 230000004913 activation Effects 0.000 claims 1
- 230000009466 transformation Effects 0.000 description 10
- 229910000734 martensite Inorganic materials 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008602 contraction Effects 0.000 description 2
- 230000009347 mechanical transmission Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017535 Cu-Al-Ni Inorganic materials 0.000 description 1
- 229910017773 Cu-Zn-Al Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000006903 response to temperature Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Landscapes
- Temperature-Responsive Valves (AREA)
Description
【考案の詳細な説明】
本考案は、互いに離れた位置にある感温素子と
温度に感心した信号により作動するバルブを機械
的な伝達手段によつて伝達し作動する感温バルブ
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-sensitive valve that operates by transmitting a signal from temperature-sensing elements to temperature-sensing elements located apart from each other through a mechanical transmission means.
従来、温度を検知し検知した温度により作動機
構を作動する場合には、温度を検知した検知信号
が電気信号に変換し、伝送は電線を用い、作動部
は電気磁気的な力を用いてバルブを開閉している
ものがほとんどである。温度を検知し検知信号を
電気信号に変換する方法は、距離の長い伝送を必
要とする場合には有用であるが、温度の検知、作
動装置共に電源を必要とすること、使用環境によ
つては電気絶縁特性、防火対策等の種々の問題が
生ずる。 Conventionally, when detecting temperature and operating an operating mechanism based on the detected temperature, the temperature detection signal is converted into an electrical signal, transmission is performed using electric wire, and the operating part uses electromagnetic force to operate the valve. Most of them open and close. The method of detecting temperature and converting the detection signal into an electrical signal is useful when long-distance transmission is required, but it requires a power source for both the temperature detection and actuating device, and it is difficult to use depending on the usage environment. This causes various problems such as electrical insulation properties and fire prevention measures.
本考案はかかる点に鑑み、温度の検知、信号の
伝達、作動装置に電源を必要とせず、機械的な伝
達のみで作動装置を動作させることができ、また
感温素子に形状記憶合金を用いた新規な感温バル
ブを提案することを主たる目的とする。 In view of these points, the present invention does not require temperature detection, signal transmission, or power supply for the actuating device, and can operate the actuating device only by mechanical transmission, and also uses a shape memory alloy for the temperature sensing element. The main purpose is to propose a new temperature-sensitive valve.
まず本考案に使用される形状記憶合金について
説明する。形状記憶合金は温度の上昇下降に伴つ
て生ずる母相・マルテンサイト変態を行なう相変
態の間で、母相で成形した形状を記憶している特
性を持ち、また形状を変える場合に機械的な変位
も大きく変形力も大きいので、新しい感温素子と
して注目されている。 First, the shape memory alloy used in the present invention will be explained. Shape memory alloys have the property of remembering the shape formed by the matrix during the phase transformation of matrix-martensitic transformation that occurs as the temperature rises and falls. Because it has large displacement and deformation force, it is attracting attention as a new temperature-sensitive element.
形状記憶合金には、Ni−Ti合金、Cu−Al−Ni
合金、Cu−Zn−Al合金等種々あるが、これらの
合金はある合金組成範囲において、室温近くの温
度でマルテンサイト変態を生じ、この合金組成範
囲では、マルテンサイト変態以上の温度の母相で
成形した形状は、マルテンサイト変態温度以下で
変形し、再び母相の温度に戻すと、予め母相で成
形した形状に復帰するという特性をもち、またマ
ルテンサイト変態にあるときと母相変態にあると
きの同じひずみ量に対する抗張力は、マルテンサ
イト変態時の3倍以上になる。従つて、機械的な
ばねと組合せることにより、母相のときは形状記
憶合金で作られた感温素子の変形力が大きく、温
度が低く形状記憶合金がマルテンサイト変態のと
きは、ばねの力が強く、ばねの力で形状記憶合金
を変形させることができ、従つて温度の上昇下降
により伸長収縮を繰返す感温機構を構成すること
ができる。 Shape memory alloys include Ni-Ti alloy, Cu-Al-Ni
There are various alloys such as alloys, Cu-Zn-Al alloys, etc., but in a certain alloy composition range, these alloys undergo martensitic transformation at a temperature near room temperature, and in this alloy composition range, the parent phase at a temperature above martensitic transformation occurs. The formed shape has the characteristic that it deforms below the martensitic transformation temperature and returns to the shape previously formed in the matrix when the temperature is returned to the matrix temperature. The tensile strength for the same amount of strain at a certain time is more than three times that at the time of martensitic transformation. Therefore, by combining it with a mechanical spring, the deformation force of the temperature sensing element made of the shape memory alloy is large when it is in the matrix state, and when the temperature is low and the shape memory alloy is undergoing martensitic transformation, the deformation force of the spring is large. The spring force is strong, and the shape memory alloy can be deformed by the force of the spring. Therefore, it is possible to construct a temperature-sensitive mechanism that repeats expansion and contraction as the temperature rises and falls.
以下本考案の一例について図面を参照しながら
説明する。第1図は感温バルブの一例を示す平面
図、第2図は同じく側面図である。Aは感温素子
を示し、これは形状記憶合金1とこの両端に接続
した集熱のための金属体2と感温素子Aを固定す
る保持部3とより構成される。金属体2は銅又は
銅合金が用いられる。Bはバルブを示し、これは
感温素子Aが温度に感応して機械的変位を生じた
とき、流体の流れを停止するためのバルブであ
る。Cは、感温素子Aが感応して変位したとき感
温素子Aの変位を伝達するための線を示し、これ
は弛みがあつてはならず、硬い棒である必要がな
く、機械的な張力により変形しない線であればよ
い。また変位の伝達のため一直線に引く必要もな
い。従つて、感温素子Aと作動バルブBとの間
は、線Cの弛みがなく、感温素子Aの変位により
容易に動くときは数〜数十m離れていてもよい。 An example of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing an example of a temperature-sensitive valve, and FIG. 2 is a side view of the same. A indicates a temperature sensing element, which is composed of a shape memory alloy 1, a metal body 2 connected to both ends of the metal body 2 for collecting heat, and a holding part 3 for fixing the temperature sensing element A. The metal body 2 is made of copper or a copper alloy. B indicates a valve, which is a valve for stopping the flow of fluid when the temperature sensing element A generates mechanical displacement in response to temperature. C indicates a line for transmitting the displacement of temperature-sensitive element A when temperature-sensitive element A is displaced in response to the displacement. Any wire that does not deform due to tension may be used. Furthermore, it is not necessary to draw the lines in a straight line for the purpose of transmitting displacement. Therefore, when there is no slack in the line C and the temperature sensing element A and the operating valve B move easily due to the displacement of the temperature sensing element A, the distance between the temperature sensing element A and the operating valve B may be several to several tens of meters.
第3図は、マルテンサイト変態温度の異なる2
種の形状記憶合金11a,11bを用いた感温素
子による本案の他の例を示す図である。この場合
は、全部の形状記憶合金が変形したときの変位長
さがバルブの作動軸の変位長と同一になるように
構成している。従つて、第4図に示す如く、マル
テンサイト変態温度の低い形状記憶合金11aか
ら順次変形して作動軸も変位する。感温素子Aの
温度が更に高くなると、第6図に示す如く、形状
記憶合金11bも変形し、結局、温度の変化に対
して流量を比例的に変化せしめ得る感温バルブを
構成することができる。 Figure 3 shows two different martensitic transformation temperatures.
FIG. 3 is a diagram showing another example of the present invention using a temperature-sensitive element using different shape memory alloys 11a and 11b. In this case, the configuration is such that the displacement length when all the shape memory alloys are deformed is the same as the displacement length of the operating shaft of the valve. Therefore, as shown in FIG. 4, the shape memory alloy 11a having a low martensitic transformation temperature is deformed in sequence, and the operating shaft is also displaced. When the temperature of the temperature sensing element A becomes higher still, the shape memory alloy 11b also deforms as shown in FIG. can.
第7図は本考案のバルブの例を示す要部の断面
図であり、感温素子がある設定温度以上に温度が
上昇したときに作動部が直ちに作動し、流体の流
れを止め、かつ止めた流れを簡易に復旧し得るバ
ルブである。第8図は同じく右側面図である。
今、通常の状態では第7図の状態にあり、ピン2
1は作動軸10により係止された状態にあり、か
つピン21はばね12により下側に押圧されてい
る。感温素子が第3図に示す状態になると、作動
軸10は伝達線Cを経由した変位によつて、第9
図に示す如き状態となり、作動軸10が図中左側
に引かれる。作動軸10の先端はピン21に形成
した凹部17から外れ、ばね12の力によりピン
21が押下げられ、ピン21の先端が弁座13に
係合して流体の流れを遮断することになる。 Figure 7 is a cross-sectional view of the main parts of an example of the valve of the present invention, in which when the temperature of the temperature sensing element rises above a certain set temperature, the actuating part immediately operates to stop and stop the flow of fluid. This is a valve that can easily restore the flow. FIG. 8 is a right side view as well.
Now, under normal conditions, it is in the state shown in Figure 7, and pin 2
1 is in a locked state by the operating shaft 10, and the pin 21 is pressed downward by the spring 12. When the temperature sensing element is in the state shown in FIG.
The state shown in the figure is reached, and the operating shaft 10 is pulled to the left in the figure. The tip of the actuating shaft 10 comes off the recess 17 formed in the pin 21, the pin 21 is pushed down by the force of the spring 12, and the tip of the pin 21 engages with the valve seat 13, blocking the flow of fluid. .
感温素子Aの温度が下がり、マルテンサイト変
態の状態になると、形状記憶合金の変位力は弱く
なり、ばね5の変位力が大きくなるため、作動軸
10の先端はピン21に接するようになる。その
ため、ピン21の上端に設けた輪16を手で引上
げることにより、作動軸10の先端がピン21の
凹部17に再び嵌合し、作動待機状態となる。 When the temperature of the temperature sensing element A decreases and enters the state of martensitic transformation, the displacement force of the shape memory alloy becomes weaker and the displacement force of the spring 5 increases, so that the tip of the operating shaft 10 comes into contact with the pin 21. . Therefore, by manually pulling up the ring 16 provided at the upper end of the pin 21, the tip of the operating shaft 10 fits again into the recess 17 of the pin 21, and the operating standby state is established.
尚、上述の説明では、感温素子で感知した変位
の機械的伝達方法として伝達線Cを用いる趣旨で
あるが、これに代えてレリーズ類似の機械的伝達
手段とすることができる。また伝達線の緊張の度
合は伝達手段のいずれかの位置で、ねじにより緊
張度を調整する機構を設けることにより、作動軸
10のねじ9が作動部本体からの浮き具合をみて
引張り状態の調整を行なうことができる。 In the above description, the transmission line C is used as a method for mechanically transmitting the displacement sensed by the temperature sensing element, but a mechanical transmitting means similar to a release may be used instead. In addition, the tension of the transmission line can be adjusted by providing a mechanism for adjusting the tension using a screw at any position of the transmission means. can be done.
また上述例においては、感温素子の温度が上昇
して収縮したとき、バルブのばねを圧縮する構成
としているが、感温素子と伝達部との間にレバー
を組入れることにより、感温素子の温度が上昇し
たとき収縮する力を伸長する力に変換し、伝達部
にレリーズを用い、感温素子が作動するときの変
位をバルブに対し押込むような力によりバルブが
作動するように構成することができる。 Furthermore, in the above example, when the temperature of the temperature sensing element rises and contracts, the spring of the valve is compressed, but by incorporating a lever between the temperature sensing element and the transmission part, the temperature sensing element The system converts the force of contraction when the temperature rises into the force of expansion, uses a release in the transmission part, and configures the valve so that the displacement when the temperature sensing element is activated causes the force to push against the valve, causing the valve to operate. be able to.
以上述べた如く本考案によれば、形状記憶合金
と集熱板とを作動方向に直列に形成した感温素子
と、感温素子の機械的変位に応じて作動する作動
軸と、感温素子が温度の変化によつて変形する変
形圧力に平衡する力を発するばねと、弁部が先端
に形成されたピンとよりなり、該ばねを介した作
動軸先端とピンの側部とが係合するように構成
し、感温素子の作動により作動軸がピンとの係合
を離脱して弁部の偏倚により流路を閉塞するよう
にしたので、
雰囲気温度が経時的に変化する箇所に上記感温
素子を設置することにより、電源を用いることな
く感温素子の設定した温度に達すると弁部の閉塞
をすることができる効果を有する。 As described above, according to the present invention, there is provided a temperature sensing element in which a shape memory alloy and a heat collecting plate are formed in series in the operating direction, an operating shaft that operates according to mechanical displacement of the temperature sensing element, and It consists of a spring that generates a force that balances the deformation pressure that deforms due to temperature changes, and a pin with a valve portion formed at the tip, and the tip of the operating shaft and the side of the pin engage through the spring. The actuating shaft disengages from the pin due to the operation of the temperature sensing element, and the flow path is closed due to the deflection of the valve part. By installing the element, it is possible to close the valve portion when the temperature set by the temperature sensing element is reached without using a power source.
したがつて、環境条件の悪い場所あるいは可燃
性ガス、油等の使用されている場所での温度監視
及び保護装置として、或いは暖房・スチーム設備
の温度制御・温度異常検知等に有用である。 Therefore, it is useful as a temperature monitoring and protection device in places with poor environmental conditions or places where flammable gas, oil, etc. are used, or in temperature control and temperature abnormality detection of heating and steam equipment.
第1図は本考案の一例を示す平面図、第2図は
同じく側面図、第3図は第2図例の動作の説明に
供する図、第4図は本考案の他の例を示す平面
図、第5図及び第6図は動作図、第7図は本考案
の要部の断面図、第8図は側面図、第9図は動作
図である。
1,11a,11b……形状記憶合金、5……
ばね、10……作動軸、21……ピン、A……感
温素子、B……バルブ、C……伝達線。
FIG. 1 is a plan view showing an example of the present invention, FIG. 2 is a side view, FIG. 3 is a diagram for explaining the operation of the example in FIG. 2, and FIG. 4 is a plan view showing another example of the invention. 5 and 6 are operational diagrams, FIG. 7 is a sectional view of the main parts of the present invention, FIG. 8 is a side view, and FIG. 9 is an operational diagram. 1, 11a, 11b... Shape memory alloy, 5...
Spring, 10... Operating shaft, 21... Pin, A... Temperature sensing element, B... Valve, C... Transmission line.
Claims (1)
成した感温素子と、感温素子の機械的変位に応じ
て作動する作動軸と、感温素子が温度の変化によ
つて変形する変形圧力に平衡する力を発するばね
と、弁部が先端に形成されたピンとよりなり、該
ばねを介した作動軸先端とピンの側部とが係合す
るように構成し、 感温素子の作動により作動軸がピンとの係合を
離脱して弁部の偏倚により流路を閉塞するように
したことを特徴とする感温バルブ。[Claims for Utility Model Registration] A temperature-sensitive element in which a shape memory alloy and a heat collecting plate are formed in series in the operating direction, an operating shaft that operates in response to mechanical displacement of the temperature-sensitive element, and a temperature-sensitive element that It consists of a spring that generates a force that balances the deformation pressure that deforms due to changes in What is claimed is: 1. A temperature-sensitive valve comprising: an operating shaft disengaged from a pin upon activation of a temperature-sensitive element, and a flow path being closed by deflection of a valve portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP352090U JPH0356702Y2 (en) | 1990-01-20 | 1990-01-20 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP352090U JPH0356702Y2 (en) | 1990-01-20 | 1990-01-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02135780U JPH02135780U (en) | 1990-11-13 |
JPH0356702Y2 true JPH0356702Y2 (en) | 1991-12-20 |
Family
ID=31507336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP352090U Expired JPH0356702Y2 (en) | 1990-01-20 | 1990-01-20 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0356702Y2 (en) |
-
1990
- 1990-01-20 JP JP352090U patent/JPH0356702Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPH02135780U (en) | 1990-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4544988A (en) | Bistable shape memory effect thermal transducers | |
US4549717A (en) | Heat responsive valve | |
US5119555A (en) | Non-explosive separation device | |
EP0122057A2 (en) | Shape-memory-metal effect actuator | |
US5788212A (en) | Pressure relief device with shaped memory alloy thermally activated trigger | |
US8869675B2 (en) | Actuating drive for positioning a final control element and method for capturing a position of the final control element | |
US10203042B2 (en) | Self-contained actuated safety valve for gaseous or liquid fuel lines and the like | |
US20110004346A1 (en) | Feedback Control for Shape Memory Alloy Actuators | |
JP5389811B2 (en) | Temperature monitoring device for high and medium voltage components | |
CN102400875A (en) | Model based control of shape memory alloy device | |
CN105470043B (en) | Use the surface temperature responding to switch of smart material actuator | |
EP2244151A2 (en) | Electric control valve | |
CN111446111A (en) | Gas density relay with online self-checking function and checking method thereof | |
US4099292A (en) | Telescoping heat responsive releasing means | |
JPH0356702Y2 (en) | ||
JPH0225992Y2 (en) | ||
CN107154539A (en) | A kind of temperature alarm wire clamp | |
US20240250463A1 (en) | Electrical Plug-in Connection | |
CN111446110A (en) | Gas density relay capable of realizing intelligent monitoring in whole service life and implementation method thereof | |
JP4116343B2 (en) | Gas meter fire prevention safety device | |
US5844465A (en) | Temperature compensated time-delay switch | |
CN210668211U (en) | Gas density relay based on ubiquitous power internet of things application | |
CZ494890A3 (en) | Apparatus for monitoring fluid-tightness of a chamber filled with a gas | |
Krishnan et al. | A shape memory alloy based cryogenic thermal conduction switch | |
CN212136344U (en) | Gas density relay with online self-checking function and monitoring device |