JPH0225992Y2 - - Google Patents
Info
- Publication number
- JPH0225992Y2 JPH0225992Y2 JP16990581U JP16990581U JPH0225992Y2 JP H0225992 Y2 JPH0225992 Y2 JP H0225992Y2 JP 16990581 U JP16990581 U JP 16990581U JP 16990581 U JP16990581 U JP 16990581U JP H0225992 Y2 JPH0225992 Y2 JP H0225992Y2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- valve
- sensing element
- sensitive
- temperature sensing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000009466 transformation Effects 0.000 claims description 20
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims description 18
- 229910000734 martensite Inorganic materials 0.000 claims description 16
- 238000006073 displacement reaction Methods 0.000 claims description 14
- 230000005540 biological transmission Effects 0.000 claims description 13
- 239000011159 matrix material Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000001514 detection method Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000005856 abnormality Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000006903 response to temperature Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017535 Cu-Al-Ni Inorganic materials 0.000 description 1
- 229910017773 Cu-Zn-Al Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 230000009347 mechanical transmission Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
Landscapes
- Temperature-Responsive Valves (AREA)
- Control Of Temperature (AREA)
Description
【考案の詳細な説明】
本考案は、互いに離れた位置にある感温素子と
温度に感応して作動するバルブを機械的な伝達手
段によつて伝達し作動する感温バルブに関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature-sensitive valve that operates by transmitting a temperature-sensitive element and a valve that operate in response to temperature through a mechanical transmission means, which are located apart from each other.
従来、温度を検知し検知した温度により作動機
構を作動する場合には、温度を検知した検知信号
は電気信号に変換し、伝送は電線を用い、作動部
は電気磁気的な力を用いたバルブを開閉している
ものがほとんどである。温度を検知し検知信号を
電気信号に変換する方法は、距離の長い伝送を必
要とする場合には有用であるが、温度の検知、作
動装置共に電源を必要とすること、使用環境によ
つては電気絶縁特性、防火対策等の種々の問題が
生ずる。 Conventionally, when detecting temperature and operating an operating mechanism based on the detected temperature, the temperature detection signal is converted into an electrical signal, transmission is performed using electric wire, and the operating part is a valve that uses electromagnetic force. Most of them open and close. The method of detecting temperature and converting the detection signal into an electrical signal is useful when long-distance transmission is required, but it requires a power source for both the temperature detection and actuating device, and it is difficult to use depending on the usage environment. This causes various problems such as electrical insulation properties and fire prevention measures.
本考案はかかる点に鑑み、温度の検知、作動装
置に電源を用いることなく、温度の上昇下降の変
化に伴つてバルブを可逆的に開閉することがで
き、かつ温度の変化に応じてバルブの開閉度合を
連続的に制御し得る形状記憶合金を用いた感温バ
ルブを提案することを主たる目的とする。 In view of these points, the present invention is capable of reversibly opening and closing the valve as the temperature changes, without using a power source for the temperature detection and actuating device. The main objective is to propose a temperature-sensitive valve using a shape memory alloy that can continuously control the degree of opening and closing.
まず、本考案に使用される形状記憶合金につい
て説明する。形状記憶合金は温度の上昇下降に伴
つて生ずる母相・マルテンサイト変態を行なう相
変態の間で、母相で成形した形状を記憶している
特性を持ち、また形状を変える場合に機械的な変
位も大きく変形力も大きいので、新しい感温素子
として注目されている。 First, the shape memory alloy used in the present invention will be explained. Shape memory alloys have the property of remembering the shape formed by the matrix during the phase transformation of matrix-martensitic transformation that occurs as the temperature rises and falls. Because it has large displacement and deformation force, it is attracting attention as a new temperature-sensitive element.
形状記憶合金には、Ni−Ti合金、Cu−Al−Ni
合金、Cu−Zn−Al合金等種々あるが、これらの
合金はある合金組成範囲において、室温近くの温
度でマルテンサイト変態を生じ、この合金組成範
囲では、マルテンサイト変態以上の温度の母相で
成形した形状は、マルテンサイト変態温度以下で
変形し、再び母相の温度に戻すと、予め母相で成
形した形状に復帰するという特性をもち、またマ
ルテンサイト変態にあるときと母相変態にあると
きの同じひずみ量に対する抗張力は、マルテンサ
イト変態時の3倍以上になる。従つて、機械的な
ばねと組合せることにより、母相のときは形状記
憶合金で作られた感温素子の変形力が大きく、温
度が低く形状記憶合金がマルテンサイト変態のと
きは、ばねの力が強く、ばねの力で形状記憶合金
を変形させることができ、従つて温度の上昇下降
により伸長収縮を繰返す感温機構を構成すること
ができる。 Shape memory alloys include Ni-Ti alloy, Cu-Al-Ni
There are various alloys such as alloys, Cu-Zn-Al alloys, etc., but in a certain alloy composition range, these alloys undergo martensitic transformation at a temperature near room temperature, and in this alloy composition range, the parent phase at a temperature above martensitic transformation occurs. The formed shape has the characteristic that it deforms below the martensitic transformation temperature and returns to the shape previously formed in the matrix when the temperature is returned to the matrix temperature. The tensile strength for the same amount of strain at a certain time is more than three times that during martensitic transformation. Therefore, by combining it with a mechanical spring, the deformation force of the temperature sensing element made of the shape memory alloy is large when it is in the matrix state, and when the temperature is low and the shape memory alloy is undergoing martensitic transformation, the deformation force of the spring is large. The spring force is strong, and the shape memory alloy can be deformed by the force of the spring. Therefore, it is possible to construct a temperature-sensitive mechanism that repeats expansion and contraction as the temperature rises and falls.
次に本考案の構成を説明すると、マルテンサイ
ト変態温度の異なる二種以上の形状記憶合金と集
熱板とを作動方向に直列に形成した感温素子と、
感温素子とバルブの弁部との間を機械的に接続す
る伝達機構と、該感温素子の機械的変位に応じて
弁部が偏倚するように構成したバルブとよりなる
感温バルブにおいて、
バルブの弁部には上記感温素子のマルテンサイ
ト変態時の変形力より大きく母相変態時の変形力
より小さい力を発するばねを設けた感温バルブで
ある。 Next, the structure of the present invention will be described. A temperature sensing element includes two or more shape memory alloys having different martensitic transformation temperatures and a heat collecting plate formed in series in the operating direction.
A temperature-sensitive valve comprising a transmission mechanism that mechanically connects a temperature-sensitive element and a valve portion of the valve, and a valve configured such that the valve portion is biased in response to mechanical displacement of the temperature-sensitive element, The valve portion of the valve is provided with a spring that generates a force greater than the deformation force during martensitic transformation of the temperature sensing element and smaller than the deformation force during matrix transformation.
以下本考案の一例について図面を参照しながら
説明する。第1図は感温バルブの一例を示す平面
図、第2図は同じく側面図である。Aは感温素子
を示し、これはマルテンサイト変態温度の異なる
2種の形状記憶合金11a,11bとこの両端に
接続した集熱のための金属体2と感温素子Aを固
定する保持部3とより構成される。金属体22は
銅又は銅合金が用いられる。この場合、全部の形
状記憶合金が変形したときの変位長さがバルブの
作動軸の変位長と同一になるように構成してい
る。すなわち、第2図に示す如く、マルテンサイ
ト変態温度の低い形状記憶合金11aから順次変
形し線Cとの接続部が変位し、感温素子Aの温度
が更に高くなると、第5図に示す如く、形状記憶
合金11bも変形することになる。 An example of the present invention will be described below with reference to the drawings. FIG. 1 is a plan view showing an example of a temperature-sensitive valve, and FIG. 2 is a side view of the same. A indicates a temperature sensing element, which consists of two types of shape memory alloys 11a and 11b having different martensitic transformation temperatures, a metal body 2 for heat collection connected to both ends of the metal body 2, and a holding part 3 for fixing the temperature sensing element A. It consists of The metal body 22 is made of copper or a copper alloy. In this case, the configuration is such that the displacement length when all the shape memory alloys are deformed is the same as the displacement length of the operating shaft of the valve. That is, as shown in FIG. 2, the shape memory alloy 11a with a low martensitic transformation temperature is deformed sequentially and the connection part with the line C is displaced, and as the temperature of the temperature sensing element A further increases, as shown in FIG. , the shape memory alloy 11b is also deformed.
Bはバルブを示し、これは感温素子Aが温度に
感応して機拡的変位を生じたとき、機械的変位に
より流体の流量の連続的な制御又は異常を検知
し、流体の流れを停止するためのバルブである。
Cは、感温素子Aが感応して変位したとき感温素
子Aの変位を伝達するための線を示し、これは弛
みがあつてはならず、硬い棒である必要がなく、
機械的な張力により変形しない線であればよい。
また変位の伝達のため一直線に引く必要もない。
従つて、感温素子Aと作動バルブBとの間は、線
Cの弛みがなく、感温素子Aの変位により容易に
動くときは数〜数十m離れていてもよい。 B indicates a valve, which, when temperature sensing element A generates mechanical displacement in response to temperature, continuously controls the flow rate of fluid or detects an abnormality by mechanical displacement and stops the flow of fluid. This is a valve for
C indicates a line for transmitting the displacement of the temperature sensing element A when the temperature sensing element A responds and is displaced; this line must not be loose and does not need to be a hard rod;
Any wire that does not deform due to mechanical tension may be used.
Furthermore, it is not necessary to draw the lines in a straight line for the purpose of transmitting displacement.
Therefore, when there is no slack in the line C and the temperature sensing element A and the operating valve B move easily due to the displacement of the temperature sensing element A, the distance between the temperature sensing element A and the operating valve B may be several to several tens of meters.
第3図はバルブBの詳細構造を示す断面図、第
4図は同じく第3図中の側面図である。5は通常
機械ばねを示し、これは感温素子Aが温度の変化
によつて変形する変形圧力に平衡する力になるよ
うに作られており、ばね圧力はねじ9,20によ
り調整される。6は作動軸を示し、これは、第1
図に示す如く、伝達機構4に連結され、感温素子
Aが温度により変位すると、本体7の内部を移動
する。作動軸6の一部は切欠き6aが形成され、
第3図中右側から入つた流体は作動軸6の切欠き
6aを通つて左の部屋に入り矢印で示す出口の方
へ流れる。作動軸6の他部は本体7の排出側弁座
と対して弁部となる。 FIG. 3 is a sectional view showing the detailed structure of valve B, and FIG. 4 is a side view of FIG. 3. Reference numeral 5 usually indicates a mechanical spring, which is made to provide a force that balances the deformation pressure of the temperature-sensitive element A due to changes in temperature, and the spring pressure is adjusted by screws 9 and 20. 6 indicates the operating axis, which is the first
As shown in the figure, the temperature sensing element A is connected to the transmission mechanism 4 and moves inside the main body 7 when the temperature sensing element A is displaced due to temperature. A notch 6a is formed in a part of the operating shaft 6,
The fluid entering from the right side in FIG. 3 enters the left chamber through the notch 6a of the operating shaft 6 and flows toward the outlet indicated by the arrow. The other part of the operating shaft 6 serves as a valve portion for the discharge side valve seat of the main body 7.
第3図は、温度が低く第1図に示す如くマルテ
ンサイト変態の状態にある。従つて、ばね5の圧
力が形状記憶合金1の偏倚力より大きいため、感
温素子Aは伸長状態にある。今、温度が上昇して
感温素子Aが母相になると、感温素子Aは記憶さ
れている形状に戻り、感温素子Aの変形力がばね
5の圧力により大きくなるため、第5図に示す如
く、形状記憶合金1が変形し、伝達線Cを経て作
動バルブBに力が伝達される。従つて作動軸6が
ばね5の力に抗して引張られ、第6図に示す如
く、作動軸6が流出口7aを閉塞して流体の流れ
が遮断される。尚、ばね5の圧力は、形状記憶合
金が母相のとき該合金1の変形力がばね5が収縮
したときの圧力よりも大きく、感温素子Aの温度
が低くマルテンサイト変態になつたときばね5の
圧力が感温素子Aの変位力より大きくなるように
構成される。従つて本案バルブは、感温素子Aの
温度が上昇降下することにより、連続的にバルブ
を開閉し、流体の流れを制御することができる。 In FIG. 3, the temperature is low and it is in a state of martensitic transformation as shown in FIG. Therefore, since the pressure of the spring 5 is greater than the biasing force of the shape memory alloy 1, the temperature sensing element A is in an extended state. Now, when the temperature rises and the temperature sensing element A becomes the matrix, the temperature sensing element A returns to the memorized shape, and the deformation force of the temperature sensing element A increases due to the pressure of the spring 5, as shown in Fig. 5. As shown in FIG. 2, the shape memory alloy 1 is deformed and force is transmitted to the actuating valve B via the transmission line C. Therefore, the operating shaft 6 is pulled against the force of the spring 5, and as shown in FIG. 6, the operating shaft 6 closes the outlet 7a and the flow of fluid is interrupted. The pressure of the spring 5 is larger than the pressure when the shape memory alloy is the matrix and the deformation force of the alloy 1 is contracted, and when the temperature of the temperature sensing element A is low and martensitic transformation occurs. The pressure of the spring 5 is configured to be greater than the displacement force of the temperature sensing element A. Therefore, the valve of the present invention can continuously open and close the valve as the temperature of the temperature sensing element A rises and falls, thereby controlling the flow of fluid.
尚、2種以上の感温素子による制御し得る温度
範囲は、合金組成で予め定まつてしまうが、更に
ばね5のばね圧をねじ9,20の位置の調整によ
つて5℃前後の温度幅の調整が可能である。 The temperature range that can be controlled by two or more types of temperature sensing elements is determined in advance by the alloy composition, but the spring pressure of the spring 5 can be adjusted to a temperature of around 5°C by adjusting the position of the screws 9 and 20. The width can be adjusted.
尚、上述の説明では、感温素子で感知した変位
の機械的伝達方法として伝達線Cを用いる趣旨で
あるが、これに代えてレリーズ類似の機械的伝達
手段とすることができる。また伝達線の緊張の度
合は伝達手段のいずれかの位置で、ねじにより緊
張度を調整する機構を設けることにより、作動軸
10のねじ9が作動部本体からの浮き具合をみて
引張り状態の調整を行なうことができる。 In the above description, the transmission line C is used as a method for mechanically transmitting the displacement sensed by the temperature sensing element, but a mechanical transmitting means similar to a release may be used instead. In addition, the degree of tension of the transmission line can be adjusted by providing a mechanism for adjusting the tension using a screw at any position of the transmission means, by checking the degree to which the screw 9 of the operating shaft 10 is lifted from the main body of the operating section. can be done.
また上述例においては、感温素子の温度が上昇
して収縮したとき、バルブのばねを圧縮する構成
としているが、感温素子と伝達部との間にレバー
を組入れることにより、感温素子の温度が上昇し
たとき収縮する力を伸長する力に変換し、伝達部
にレリーズを用い、感温素子が作動するときの変
位をバルブに対し押込むような力によりバルブが
作動するように構成することができる。 Furthermore, in the above example, when the temperature of the temperature sensing element rises and contracts, the spring of the valve is compressed, but by incorporating a lever between the temperature sensing element and the transmission part, the temperature sensing element The system converts the force of contraction when the temperature rises into the force of expansion, uses a release in the transmission part, and configures the valve so that the displacement when the temperature sensing element is activated causes the force to push against the valve, causing the valve to operate. be able to.
以上述べた如く本考案によれば、マルテンサイ
ト変態温度の異なる二種以上の形状記憶合金と集
熱板とを作動方向に直列に形成した感温素子と、
感温素子とバルブの弁部との間を機械的に接続す
る伝達機構と、該感温素子の機械的変位に応じて
弁部が偏倚するように構成したバルブとよりなる
感温バルブにおいて、
バルブの弁部には上記感温素子のマルテンサイ
ト変態時の変形力より大きく母相変態時の変形力
より小さい力を発するばねを設けたので、
雰囲気温度が経時的に変化する箇所に上記感温
素子を設置することにより、電源を用いることな
く温度が上昇下降の変化に伴つてバルブを可逆的
に開閉することができ、かつ温度の変化に応じて
バルブの開閉度合を連続的に制御し得る効果を有
する。したがつて、環境条件の悪い場所あるいは
可燃性ガス、油等の使用されている場所での温度
監視及び保護装置として、或いは暖房・スチーム
設備の温度制御・温度異常検知等に有用である。 As described above, according to the present invention, there is provided a temperature sensing element in which two or more shape memory alloys having different martensitic transformation temperatures and a heat collecting plate are formed in series in the operating direction;
A temperature-sensitive valve comprising a transmission mechanism that mechanically connects a temperature-sensitive element and a valve portion of the valve, and a valve configured such that the valve portion is biased in response to mechanical displacement of the temperature-sensitive element, The valve part of the valve is equipped with a spring that generates a force that is greater than the deformation force during martensitic transformation of the temperature-sensitive element and smaller than the deformation force during matrix transformation, so that the above-mentioned deformation force is applied to areas where the ambient temperature changes over time. By installing a temperature element, the valve can be reversibly opened and closed as the temperature rises and falls without using a power source, and the degree of opening and closing of the valve can be continuously controlled according to temperature changes. It has the effect of obtaining. Therefore, it is useful as a temperature monitoring and protection device in places with poor environmental conditions or places where flammable gas, oil, etc. are used, or in temperature control and temperature abnormality detection of heating and steam equipment.
第1図は本考案の一例を示す平面図、第2図は
同じく側面図、第3図はバルブの要部の構成を示
す断面図、第4図は同じく側面図、第5図は第2
図例の動作の説明に供する図、第6図は第3図例
の動作の説明に供する断面図、である。
11a,11b……形状記憶合金、A……感温
素子、B……バルブ、C……伝達線。
Fig. 1 is a plan view showing an example of the present invention, Fig. 2 is a side view, Fig. 3 is a sectional view showing the configuration of the main parts of the valve, Fig. 4 is a side view, and Fig. 5 is a side view of the valve.
FIG. 6 is a cross-sectional view for explaining the operation of the example shown in FIG. 3. 11a, 11b...Shape memory alloy, A...Temperature sensing element, B...Valve, C...Transmission line.
Claims (1)
状記憶合金と集熱板とを作動方向に直列に形成し
た感温素子と、感温素子とバルブの弁部との間を
機械的に接続する伝達機構と、該感温素子の機械
的変位に応じて弁部が偏倚するように構成したバ
ルブとよりなる感温バルブにおいて、 バルブの弁部には上記感温素子のマルテンサイ
ト変態時の変形力より大きく母相変態時の変形力
より小さい力を発するばねを設けたことを特徴と
する感温バルブ。[Scope of Claim for Utility Model Registration] A temperature sensing element in which two or more shape memory alloys having different martensitic transformation temperatures and a heat collecting plate are formed in series in the operating direction, and between the temperature sensing element and the valve part of the valve. In the temperature-sensitive valve, the temperature-sensitive valve includes a transmission mechanism that mechanically connects the temperature-sensitive element, and a valve configured such that the valve part is biased in accordance with the mechanical displacement of the temperature-sensitive element. A temperature-sensitive valve characterized by being provided with a spring that generates a force greater than the deformation force during martensitic transformation and smaller than the deformation force during matrix transformation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16990581U JPS5874666U (en) | 1981-11-13 | 1981-11-13 | temperature sensitive valve |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16990581U JPS5874666U (en) | 1981-11-13 | 1981-11-13 | temperature sensitive valve |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5874666U JPS5874666U (en) | 1983-05-20 |
JPH0225992Y2 true JPH0225992Y2 (en) | 1990-07-16 |
Family
ID=29961870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16990581U Granted JPS5874666U (en) | 1981-11-13 | 1981-11-13 | temperature sensitive valve |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5874666U (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0348470Y2 (en) * | 1986-09-30 | 1991-10-16 | ||
KR101501048B1 (en) * | 2009-03-03 | 2015-03-10 | 헥사곤 테크놀로지 에이에스 | Shape memory alloy trigger for pressure relief valve |
-
1981
- 1981-11-13 JP JP16990581U patent/JPS5874666U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5874666U (en) | 1983-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4549717A (en) | Heat responsive valve | |
US4848388A (en) | Emergency valve with test capability | |
US10443753B2 (en) | Shape memory alloy actuator for valve for a vapour compression system | |
US3594675A (en) | Temperature-sensing probe | |
US5788212A (en) | Pressure relief device with shaped memory alloy thermally activated trigger | |
US10203042B2 (en) | Self-contained actuated safety valve for gaseous or liquid fuel lines and the like | |
US20110004346A1 (en) | Feedback Control for Shape Memory Alloy Actuators | |
WO2009024334A3 (en) | Valve element and thermostatic control device for controlling a mass flow | |
US12000535B2 (en) | Electronic steam trap | |
CN102400875A (en) | Model based control of shape memory alloy device | |
US4817912A (en) | Bi-metal operator for smoke, fire and air control damper | |
JPH0225992Y2 (en) | ||
TR200003568T2 (en) | Gas flow monitoring monitor | |
GB2137317A (en) | Control valve for radiators | |
US4068820A (en) | Valve | |
JPH0356702Y2 (en) | ||
EP3229002A1 (en) | Measurement module | |
US6269830B1 (en) | Extended area thermal activation device | |
US4191053A (en) | Temperature-responsive actuator | |
US4484725A (en) | Bimetal driven control valve | |
JP2694623B2 (en) | Device for monitoring the tightness of a gas-filled chamber | |
US5844465A (en) | Temperature compensated time-delay switch | |
WO2018078443A2 (en) | Force limited valve actuator and method therefor | |
JPS6364612B2 (en) | ||
WO2018086954A1 (en) | Valve assembly and method for controlling a flow of a fluid using a shape memory alloy member |