WO2002097378A1 - Procede permettant de mesurer l'epaisseur d'une couche de scorie ou la position du niveau superficiel d'une couche de metal en fusion et dispositif de mesure - Google Patents

Procede permettant de mesurer l'epaisseur d'une couche de scorie ou la position du niveau superficiel d'une couche de metal en fusion et dispositif de mesure Download PDF

Info

Publication number
WO2002097378A1
WO2002097378A1 PCT/JP2002/000750 JP0200750W WO02097378A1 WO 2002097378 A1 WO2002097378 A1 WO 2002097378A1 JP 0200750 W JP0200750 W JP 0200750W WO 02097378 A1 WO02097378 A1 WO 02097378A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
potential
slag
molten metal
Prior art date
Application number
PCT/JP2002/000750
Other languages
English (en)
French (fr)
Inventor
Kazuharu Hanazaki
Hiroshi Iwamura
Yukio Terauchi
Teruaki Kajikawa
Original Assignee
Heraeus Electro-Nite Japan, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro-Nite Japan, Ltd. filed Critical Heraeus Electro-Nite Japan, Ltd.
Publication of WO2002097378A1 publication Critical patent/WO2002097378A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/24Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of resistance of resistors due to contact with conductor fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/08Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces heated electrically, with or without any other source of heat
    • F27B3/085Arc furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0028Devices for monitoring the level of the melt

Definitions

  • the present invention relates to a method and a device for measuring a slag layer thickness or a slag layer thickness and a molten metal layer surface level position.
  • the measurement method using the impedance difference is that the connection impedance at the connector of the lance that holds the electrode cannot be ignored, and the error is large.
  • the method using an electromagnetic coil requires that the electromagnetic coil be immersed in molten steel. It was necessary to prevent damage to the equipment, and the equipment was large and expensive, which was a problem.
  • the present invention has been made in order to solve such a problem, and uses a method for measuring the thickness of a slag layer, which has a small error and a low cost, and a measuring apparatus therefor, and a principle used in these methods.
  • the aim is to provide a method and a measuring device for measuring the surface level of the molten metal layer. Disclosure of the invention
  • Molten steel filled in a container such as a converter is mainly composed of molten metal, and its electrical characteristics show conductivity as a metal, whereas the slag layer floating on the surface of molten steel It is an electrolyte that shows the characteristics as a battery when the electrode is immersed in it. I understand that.
  • the atmosphere occupying the upper layer of the slag layer has insulating properties as well known.
  • the present invention has been made with a focus on these points, and utilizes the fact that the electrical characteristics of the slag layer are different from those of the lower molten steel and the upper atmosphere to reduce the thickness of the slag layer. They are trying to measure.
  • the electrical characteristics of the slag layer described above are not limited to molten steel, but can be applied to molten metal in general. Therefore, the present invention is directed to molten metal.
  • the first slag layer thickness measuring method of the present invention is specifically the following method. That is, a method of measuring the thickness of the slag layer of the molten metal in which the slag layer floats on the surface of the molten metal layer, wherein the air layer occupies the upper layer of the slag layer from the molten metal layer through the slag layer.
  • the electrode is moved upward to monitor the electrode-to-container characteristic, which is the electrical characteristic between the conductive container containing the molten metal and the electrode.
  • the electrode From the conductivity due to the interposition of the molten metal layer when the electrode is immersed in the molten metal layer, to the power generation performance due to the interposition of the slag layer that moves to the slag layer and functions as an electrolyte by the electrode.
  • the electrode passes through the molten metal slag interface, which is a transition point, and the electrode escapes from the slag layer to the air layer, the characteristics between the electrode and the container are changed from the power generation property to the insulation property due to the presence of the air layer.
  • the travel distance of the electrode from the molten metal slag interface to the slag-air interface passage time is measured, and the thickness of the slag layer is measured. This is a slag layer thickness measurement method.
  • FIG. 1 is an explanatory diagram showing the principle of the first slag layer thickness measuring method.
  • 1 is a container
  • 2 is a molten metal layer
  • 3 is a slag layer
  • 4 is an atmospheric layer
  • 5 is an electrode.
  • the slag layer 3 is an electrolyte as described above, and when the electrodes are immersed therein, it exhibits the characteristics as a chemical battery. This is because electromotive force is generated when cations (Si 2 +, P 2 +, etc.) and anions (O 2 ⁇ ) in the molten slag exchange electrons through the electrodes.
  • the first method for measuring the thickness of the slag layer is to move the electrode 5 from the molten metal layer 2 to the atmosphere layer 4 through the slag layer 3 and to measure the electrical characteristics between the electrode 5 and the container 1 during this time.
  • the thickness of the slag layer 3 is measured by using the change in the characteristics between a certain electrode and the container.
  • FIG. 1 is an explanatory diagram of this measuring method.
  • the container 1 such as a converter for containing molten metal is generally formed by stacking refractory bricks inside a metal container. The container 1 alone does not have conductivity, but the molten metal is contained in the container 1. By containing the metal, the metal adheres to the inner surface of the container 1 so that the space between the inner surface of the container 1 and the ground becomes conductive.
  • the container becomes conductive. Therefore, by examining the electrical characteristics between the electrode 5 and the ground, the electrical characteristics between the electrode 5 and the container 1, which is the electrical characteristics between the electrode 5 and the container 1, can be examined.
  • the electrode 5 when the electrode 5 is located on the molten metal layer 2 (a), since the molten metal layer 2 is in a molten state of the metal, the characteristic between the electrode and the container is conductive. .
  • the electrode 5 moves to the slag layer 3 (b), the characteristics between the electrode and the container become power generation as described above.
  • the electrode 5 passes through the slag layer 3 and moves to the atmospheric layer 4 (c) the air intervenes and the characteristics between the electrode and the container become insulating.
  • the electrode 5 when the electrode 5 is moved upward from the molten metal layer 2 to the atmospheric layer 4, the electrode 5 passes through the boundary surface between the molten metal layer 2 and the slag layer 3, where the characteristics between the electrode and the container change from conductive to electric power.
  • the thickness of the slag layer 3 can be known by measuring the distance that the electrode 5 has moved up during this time.
  • the electrode 5 is moved upward, but the electrode may be moved downward.
  • the second slag layer thickness measuring method is a method of measuring the thickness of the slag layer of the molten metal in which the slag layer floats on the surface of the molten metal layer, and occupies the upper layer of the slag layer.
  • the electrode is moved downward from the atmospheric layer through the slag layer to the molten metal layer, and the electrode is an electrical property between the container and the electrode that contains the molten metal and has electrical conductivity.
  • the characteristics between the electrode and the container are monitored, and the characteristics of the slag layer functioning as an electrolyte by immersing the electrode in the slag layer due to the insulated nature of the presence of the air when the electrode is in the air layer.
  • the electrode moves from the slag layer to the molten metal layer at the time of passing through the atmosphere slag interface, which is the point of transition to power generation due to the interposition, and the electrode-to-vessel characteristic is changed from the power generation to the molten metal layer.
  • the electrode is moved down from the air layer through the slag layer to the molten metal layer, and the electrode layer and the air layer where the characteristics change from insulating to power generation.
  • the electrode passes through the interface between the slag layer and the molten metal layer, where the electrode passes through the interface between the slag layer and the molten metal layer, where the electrode-vessel characteristics change from power generation to electrical conductivity.
  • the first slag layer thickness measuring method or the second slag layer thickness measuring method is a change in the electrode-container characteristic, which is the electric characteristic between the electrode and the container.
  • the measurement is performed by using the change between the conductivity, power generation, and insulation properties.
  • This change is not a change between homogenous things such as a change in impedance, but a change between different things, so that the change can be captured clearly and the thickness of the slag layer can be accurately determined. Can be measured.
  • a low slag layer thickness measurement method can be provided.
  • the molten metal slag interface point, the slag-atmosphere interface point, the air-slag interface point, or the slag melting point A method of measuring the thickness of the slag layer, in which the detection of the time of passage through the metal interface is performed by measuring the potential of the electrode with respect to the container, can be considered.
  • a third slag layer thickness measuring method is the same as the above-described first slag layer thickness measuring method, wherein a direct current power supply is provided between the electrode and the container, wherein the electrode side is a cathode.
  • Vcc and a resistor Rx connected in series with this power source are inserted, and the above-mentioned DC power source Vcc and the value of the resistor Rx are set to a value corresponding to that the electrode is immersed in the slag layer.
  • the potential of the container is set as a reference potential
  • the potential of the electrode is set to a high potential higher than the reference potential, and the electrode is moved upward from the molten metal layer to the atmospheric layer.
  • a slag layer thickness measuring method is provided in which a time point at which the potential of the electrode changes from the high potential to a low potential lower than the reference potential is detected.
  • FIG. 2 is an explanatory diagram showing a configuration of a measuring device used in the third slag layer thickness measuring method.
  • FIG. 2 shows that between the electrode 5 and the container 1 in FIG. 1, a DC power supply Vcc l 1 having the electrode 5 side as a cathode and a resistor R x 12 connected in series with the power supply 11 are provided.
  • a potential measuring means 13 for measuring the potential of the electrode 5 with respect to the container 1, that is, the voltage between the electrode 5 and the container 1 is provided.
  • the values of the DC power supply 1 1 and the resistance R xl 2 are determined as follows: when the electrode is immersed in the slag layer, the potential of the electrode 5 with the potential of the container 1 as the reference potential is higher than the potential of the reference potential. It is set to be
  • FIG. 3 shows an equivalent circuit of FIG. In FIG. 2, the movement of the electrode 5 between the molten metal layer 2, the slag layer 3 and the atmospheric layer 4 is the same as switching the switching switch 19 in FIG. . That is, when the electrode 5 is located on the molten metal layer 2 (a), since the molten metal layer 2 is in a molten metal state, the electrode-vessel characteristic is conductive. A short circuit occurs between the container 1 and the molten metal layer 2. When the electrode 5 is located on the slag layer 3 (b), the slag layer 3 is an electrolyte and exhibits battery characteristics. It is the same as connecting a battery with power Eo and internal resistance Ro. When the electrode 5 is located in the atmosphere layer 4 (c), the atmosphere has insulation properties, so that the space between the electrode 5 and the container 1 is open via the atmosphere layer 4. The equivalent circuits in each of these cases are shown in (a) to (c) of FIG.
  • FIG. 4 (b) is a high potential higher than this reference potential with respect to the potential of the container 1, which is the reference potential, by setting the values of the DC power supply Vcc and the resistor RX described above.
  • the ground potential is reached with respect to the ground in Fig. 4 (b).
  • Rx is on the order of several hundred kilohms
  • the internal resistance Ro in the battery characteristics indicated by the slag layer 3 is about tens to hundreds of ohms. Therefore, as shown in Fig. 4 (b), Vb is Eo Is almost equal to Since this electromotive force is positive with respect to the ground, Vb has a positive potential.
  • Vc becomes one Vcc (V), which is a negative potential.
  • the time when the potential of the electrode 5 changes from 0 (V) to the positive potential that is, the time when the potential changes from the reference potential to a higher potential higher than the reference potential
  • the time when the molten metal slag passes through the interface is detected. That is, when the time when the potential of the electrode 5 changes from the brass potential to the minus potential, that is, the time when the potential changes from a high potential higher than the reference potential to a low potential lower than the reference potential, is detected, the slag-air interface is detected. This means that the passage point has been detected.
  • the thickness of the slag layer 3 can be known by calculating the moving distance of the electrode 5 from the time of passing through the molten metal slag interface to the time of passing through the slagu air interface.
  • the electrode is moved upward.
  • the fourth slag layer thickness measuring method is the same as the above-mentioned second slag layer thickness measuring method, except that a DC power supply Vcc having the electrode side as a cathode is provided between the electrode and the container.
  • a resistor Rx connected in series with this power supply is inserted, and the values of the DC power supply Vcc and the resistance Rx are referenced to the potential of the container when the electrode is immersed in the slag layer.
  • the potential of the electrode as a potential is set so as to be higher than the reference potential, and the electrode is moved downward from the atmospheric layer to the molten metal layer, so that the potential of the electrode with respect to the reference potential is reduced.
  • the time at which the potential of the electrode changes from a lower potential lower than the reference potential to the higher potential is referred to as the time of passing through the air-slag interface.
  • the time of passing the slag-molten metal interface is referred to as Potential
  • the change in the potential of the electrode is the reference potential, the high potential higher than the reference potential, and the reference potential. It is a change to any of the lower potentials lower than the potential, and the change can be captured digitally, so that the change can be detected accurately, and based on these detections, the electrode Since the moving distance can be accurately obtained, the thickness of the slag layer can be accurately known.
  • the above-described measuring method can be said to be a method that is less susceptible to a change in the impedance between the electrode and the container.
  • the moving distance of the electrode is directly measured.
  • the moving time of the electrode from the time to the time of passing the slag-molten metal interface or from the time of passing the molten metal slag interface to the time of passing the slag-atmospheric interface is measured, and from the moving time and the moving speed of the electrode, Alternatively, the moving distance of the electrode may be obtained. That is, the fifth slag layer thickness measurement method In the first, second, third, or fourth slag layer thickness measuring method, the moving speed of the upward movement or the downward movement of the electrode is constant, and the electrode is connected to the slag layer.
  • the moving time of the electrode from the time of passing the molten metal slag interface to the time of passing the slag-air interface is measured, and the electrode is moved to the atmosphere.
  • the moving time of the electrode from the time of passing through the atmospheric slag interface to the time of passing through the slag-molten metal interface is measured, and the movement of the electrode is measured.
  • the first slag layer thickness measuring device is composed of an electrode, a container containing a molten metal in which the slag layer floats on the surface of the molten metal layer and having conductivity, and Electrode moving means for moving upward through the slag layer to the atmosphere layer occupying the upper layer of the slag layer, or moving downward from the atmosphere layer through the slag layer to the molten metal layer; and the electrode and the container;
  • a DC power supply Vcc having the electrode side as a cathode and a resistor RX connected in series with the power supply are inserted, and the values of the DC power supply Vcc and the resistance Rx are determined.
  • a measuring circuit formed by setting the potential of the container as a reference potential and setting the potential of the electrode to be higher than the reference potential, and the electrode with respect to the reference potential. Measure the potential of A potential measuring means, which is detected by the potential measuring means, from a time when the reference potential changes to the high potential to a time when the potential changes from the high potential to a low potential lower than the reference potential, or An electrode moving distance measuring means for measuring a moving distance of the electrode from a time when the potential changes to the high potential to a time when the high potential changes to the reference potential. It is a measuring device.
  • This first slag layer thickness measuring device passes the electrode from the molten metal layer to the slag layer.
  • the potential measurement means uses a molten metal slag that transfers the characteristics between the electrode and the container between the container containing the molten metal and the electrode from conductivity to power generation.
  • the time of passage through the interface the time when the potential of the electrode changes from the reference potential to a higher potential higher than the reference potential is detected, and as the time of passage through the slag-atmosphere interface, which shifts from power generation to insulation, the potential of the electrode becomes Detects the point in time when the potential changes from a high potential to a low potential lower than the reference potential.
  • the electrode moving distance measuring means obtains the moving distance of the electrode from the time of passing through the molten metal slag interface to the time of passing through the slag-atmosphere interface, and sets the distance as the thickness of the slag layer.
  • the potential measuring means is characterized by the characteristics between the electrode and the container between the electrode containing the molten metal and the electrode.
  • the electrode is immersed in the slag layer that functions as an electrolyte due to the insulating properties of the air when it is in the layer, and the potential of the electrode is changed from a low potential lower than the reference potential to the
  • the characteristics between the electrode and the container are determined as the time when the electrode passes through the slag-molten metal interface where the electrode enters the molten metal layer and becomes conductive due to power generation.
  • the electrode moving distance measuring means obtains the moving distance of the electrode from the time of passing through the interface of the atmospheric slag to the time of passing through the slag-molten metal interface, and defines this as the thickness of the slag layer.
  • this apparatus is an apparatus for obtaining the thickness of the slag layer based on the third slag layer thickness measuring method or the fourth slag layer thickness measuring method described above. Is the same as the above-described third slag layer thickness measuring method or the fourth slag layer thickness measuring method, and therefore the description is omitted.
  • the second slag layer thickness measuring apparatus comprises: an electrode; a container having a conductivity containing molten metal in which the slag layer floats on the surface of the molten metal layer; and Moving upward from the molten metal layer through the slag layer to the air layer occupying the upper layer of the slag layer; or, moving from the air layer through the slag layer to the molten metal layer.
  • a DC power supply Vcc having the electrode side as a cathode, and a resistor Rx connected in series with the power supply, between the electrode moving means for lowering and moving the electrode and the container.
  • the values of the power supply Vcc and the resistance Rx are set such that, when the electrode is immersed in the slag layer, the potential of the container is higher than the reference potential with the potential of the container as the reference potential.
  • a measuring circuit formed and set; a potential measuring means for measuring the potential of the electrode with respect to the reference potential; and a potential detected by the potential measuring means, from the time when the potential changes from the reference potential to the high potential.
  • a slag layer comprising: an electrode moving time measuring means for measuring a moving time of a pole; and an electrode moving distance calculating means for calculating a moving distance of the electrode by calculation from the moving speed and the moving time of the electrode. It is a thickness measuring device.
  • This second slag layer thickness measuring device has the same effect as the fifth slag layer thickness measuring method because the moving distance of the electrode is obtained by calculation from the moving speed and the moving time of the electrode. Further, the configuration is exactly the same as that of the first slag layer thickness measuring apparatus described above, except that the moving distance of the electrode is calculated from the moving speed and the moving time of the electrode. This is exactly the same as the first slag layer thickness measuring device.
  • a third slag layer thickness measuring device that measures the moving speed of the electrode using two electrodes is conceivable.
  • the third slag layer thickness measuring device is the same as the second slag layer thickness measuring device described above, except that one electrode is added in addition to the electrodes, and the lower ends of these two electrodes are connected to each other. By disposing them at a fixed distance in the moving direction and simultaneously moving two of these electrodes, the time lag of the potential detected by each of the two electrodes with respect to the container is measured, and the time lag is measured.
  • a slag layer thickness measuring device comprising a moving speed detecting means for obtaining the moving speed from the deviation and the fixed distance.
  • FIG. 6 (a) is an illustration of the principle of speed detection of the moving speed detecting means used in the third slag layer thickness measuring device.
  • FIG. 6 (a) below the electrode 22
  • the ends are provided above the lower end of the electrode 21 by a distance D in the upward direction, which is the direction of movement, and the electrodes 21 and 22 are connected to the I input and the second input of the measuring device 23, respectively. It is connected.
  • a method for measuring the potential of the electrode 2 122 with respect to the container 1 is the same as the above-described method for measuring the potential of the electrode.
  • this slag layer thickness measuring device it is not necessary to determine the moving speed of the electrode in advance.
  • the first to third slag layer thickness measuring devices described above are directed to molten metal, but molten steel can be used as the molten metal.
  • the material of the electrode used for this be an iron alloy containing at least one of Mo Co Cr Mn.
  • the molten metal in the container is at a high temperature, and the electrode immersed in the molten metal is melted with time. Therefore, it is desirable to make the time until melting as long as possible, but in this regard, the above alloy is difficult to melt and is excellent as a material of the electrode.
  • the electrode when measuring the thickness of the slag layer, if the oxygen concentration needs to be measured, the electrode may be used in combination with the molten steel electrode of the oxygen probe. By doing so, the measurement of the thickness of the slag layer and the measurement of the oxygen concentration can be performed at the same time, and the electrodes can be used together, so that the cost of the measurement device can be reduced.
  • the lower tip of the electrode used in combination with the molten steel electrode of the oxygen probe and the zirconia electrode of the oxygen probe are aligned, and the parts other than both tips are quartz tubes. It may be used by covering with a protective pipe such as. By doing so, it is possible to prevent slag from adhering to both the electrode and the zirconium electrode of the oxygen probe, and at the same time, to measure the thickness of the slag layer and the oxygen concentration. And electrodes Therefore, the cost of the measuring device can be reduced.
  • the electrode may be attached to a molten steel temperature measuring probe for use. By doing so, the measurement of the thickness of the slag layer and the measurement of the molten steel temperature can be performed at the same time, and the electrodes can be used together, so that the cost of the measurement device can be reduced.
  • a vacuum tank provided with a dip tube at the bottom is placed above the slag floating on the molten metal, and the dip tube is immersed in the molten metal.
  • the molten metal is taken into the vacuum chamber, Ca is added, and the particles of the slag component in the molten metal are aggregated, so that the slag component in the molten metal is easily removed.
  • the above description relates to a method or an apparatus for measuring the thickness of a slag layer.
  • the principle used in this method is not only for measuring the thickness of the slag layer but also for measuring the surface level position of the molten metal layer.
  • the position at the surface level of the molten metal layer that is, above the opening of the container containing the molten metal and at a predetermined distance from the container.
  • the first slag layer thickness and molten metal layer surface level position measurement method is as described above, wherein the molten metal in which the slag layer floats on the surface of the molten metal layer is provided above the opening of a conductive container.
  • a method for measuring a distance from a fixed point located at a predetermined fixed distance from a container to a surface of the molten metal layer, and a thickness of the slag layer, the method comprising: The electrode is moved upward to the fixed point in the atmosphere layer occupying the upper layer of the slag layer through the slag layer, and the electrode-to-container characteristic, which is the electric characteristic between the container and the electrode, is monitored.
  • the characteristics between the electrode and the container are such that the electrode moves to the slag layer and functions as an electrolyte because of the conductivity due to the interposition of the molten metal layer when the electrode is immersed in the molten metal layer.
  • Departure by intervention of Molten metal Suragu interface is a time to move to sex
  • the slag-air interface at the time of passage, and at the time when the electrode escapes from the slag layer to the air layer and the characteristics between the electrode and the container shift from the power generation property to the insulation property through the air layer.
  • the time at which the electrode has moved is measured from the time of passing through the molten metal-slag interface to the time of passing through the slag-atmosphere interface to determine the thickness of the slag layer.
  • the distance traveled by the electrode from the point of passing the metal slag interface to the fixed point is measured, and the slag layer thickness and the molten metal layer surface level, which are the distance from the fixed point to the surface of the molten metal layer, are measured. This is a position measurement method.
  • FIG. 7 is an explanatory diagram showing the measurement principle of the above method.
  • a predetermined distance from the container 1 is set above the opening of the container 1 having a conductivity and containing the molten metal in which the slag layer floats on the surface of the molten metal layer.
  • the electrode is moved to the fixed point 9 and the electrode 5 is moved upward from the molten metal layer through the slag layer to the fixed point 9 in the atmospheric layer occupying the upper layer of the slag layer.
  • the thickness 6 of the slag layer and the distance 10 from the fixed point 9 to the surface of the molten metal layer 2 are measured by using the change in the electrical characteristics between the electrode and the container, which is the electrical characteristic between the two.
  • the measuring method of the slag layer thickness 6 is exactly the same as the first slag layer thickness measuring method.
  • the method of detecting the point 10 of passing through the molten metal slag interface used for measuring the distance 10 from the fixed point 9 to the surface of the molten metal layer 2 is exactly the same as the first slag layer thickness measuring method.
  • the distance 10 from the fixed point 9 to the surface of the molten metal layer 2 can be obtained by measuring the distance that the electrode 5 has moved from the point 7 to the fixed point 9 when passing through the metal slag interface.
  • the electrode 5 is moved upward, but the electrode may be moved downward.
  • the measurement of the surface level position of the molten metal layer means that the distance 10 from the fixed point 9 to the surface of the molten metal layer 2 is measured.
  • the distance from the fixed point to the surface of the molten metal layer is determined by moving the electrode 5 from the time of passing the molten metal slag interface to the fixed point, or from the fixed point to the time of passing the slag-molten metal interface. It can be performed by measuring the distance or time, and the detection of the time of passing through the molten metal slag interface or the time of passing through the slag-molten metal interface can be performed by the slag layer thickness measurement method described above.
  • the second, third, fourth or fifth slag layer thickness and molten metal layer surface level position measurement method or the first or second slag layer thickness and molten metal layer surface level position measurement method
  • the second method for measuring the thickness of the slag layer and the surface level of the molten metal layer is as follows: the molten metal layer contains a molten metal in which the slag layer floats on the surface thereof, and a predetermined amount is defined from the container above the opening of the conductive container.
  • the electrode is moved downward through the slag layer to the molten metal layer, and the electrode-container characteristic which is an electrical characteristic between the container containing the molten metal and having conductivity and the electrode.
  • the electrode-to-vessel characteristics are monitored, and the insulating properties of the electrode due to the interposition of the atmosphere when the electrode is in the atmospheric layer indicate that the electrode is immersed in the slag layer and functions as an electrolyte.
  • the electrode moves from the slag layer to the molten metal layer, and the characteristics between the electrode and the container are changed from the power generation property to the conductivity due to the interposition of the molten metal layer.
  • the slag-molten metal interface passing point which is the point in time when the slag transitions to the molten metal interface, and from the fixed point to the slag-molten metal interface passing point, the movement distance of the electrode is measured.
  • the distance traveled by the electrode from the time when the air slag interface was passed to the time when the slag-molten metal interface was passed was measured, and the thickness of the slag layer was measured. This is a method for measuring the slag layer thickness and the molten metal layer surface level position.
  • the third slag layer thickness and molten metal layer surface level position measuring method is the first slag layer thickness and molten metal layer surface level position measuring method, wherein the electrode is disposed between the electrode and the container.
  • a DC power supply Vcc having a negative electrode on the side and a resistor Rx connected in series with the power supply are inserted, and the values of the DC power supply Vcc and the resistance Rx are set so that the electrode is immersed in the slag layer.
  • the potential of the electrode is set to be higher than the reference potential
  • the potential of the electrode is set to be higher than the reference potential.
  • the electrode is moved upward from the molten metal layer to the atmospheric layer, and the potential of the electrode is measured with respect to the reference potential.
  • the time when the potential changes from the high potential to the high potential, and the time when the potential of the electrode changes from the high potential to the low potential lower than the reference potential is detected as the slag-atmosphere interface time. This is a method for measuring the slag layer thickness and the molten metal layer surface level position.
  • a fourth slag layer thickness and molten metal layer surface level position measuring method is the second slag layer thickness and molten metal layer surface level position measuring method, wherein: A DC power supply Vcc having the electrode side as a cathode and a resistor Rx connected in series with the power supply are inserted, and the values of the DC power supply Vcc and the resistance Rx are inserted into the slag layer.
  • the potential of the electrode with the potential of the container as a reference potential is set to be higher than the reference potential, and the electrode is lowered from the atmospheric layer to the molten metal layer.
  • the said slagoo As fusion metal interface passing through time, the potential of the electrodes, a time point of change from the high potential to said reference potential, a slag layer thickness and the molten metal layer surface level position measuring method comprising detecting.
  • the method for calculating the thickness of the slag layer includes the following steps. The movement time of the electrode from the time of passing through the metal slag interface to the time of passing through the slag-air interface is measured, and the distance from the predetermined point to the surface of the molten metal layer is calculated.
  • the first slag layer thickness and molten metal layer surface level position measuring device comprises: an electrode; a conductive container containing a molten metal in which the slag layer floats on the surface of the molten metal layer; and the electrode described above. Ascending movement from the molten metal layer to a fixed point located at a predetermined fixed distance from the container above the opening of the container in the atmosphere layer occupying the upper layer of the slag layer through the slag layer.
  • an electrode moving means for moving down from the fixed point in the atmospheric layer through the slag layer to the molten metal layer; and between the electrode and the container; A DC power supply V and a resistor Rx connected in series with the power supply are inserted, and the values of the DC power supply Vcc and the resistance Rx are changed when the electrode is immersed in the slag layer.
  • a measuring circuit formed by setting the potential of the electrode to be higher than the reference potential; a potential measuring means for measuring the potential of the electrode with respect to the reference potential; and a thickness of the slag layer.
  • a slag layer thickness measuring electrode moving distance measuring means for measuring the moving distance of the electrode, and For measuring the distance to the surface of the molten metal layer, from the point in time when the potential measuring means changes from the reference potential to the high potential to the fixed point, or from the fixed point.
  • a molten metal layer surface level position measuring electrode moving distance measuring means for measuring a moving distance of the electrode from the high potential to the reference potential, and a slag layer thickness and melting This is a metal layer surface level position measuring device.
  • the second slag layer thickness and molten metal layer surface level position measuring device is configured to accommodate the electrode and the molten metal in which the slag layer floats on the surface of the molten metal layer so as to have conductivity.
  • a vessel and the electrode at a constant moving speed, from the molten metal layer, through the slag layer, in the air layer occupying the upper layer of the slag layer, above the opening of the container, from the container in advance.
  • An electrode moving means for ascending and moving to a fixed point located at a predetermined distance away from the fixed point or moving downward from the fixed point in the atmospheric layer through the slag layer to the molten metal layer; and the electrode and the container.
  • a DC power supply Vcc having the electrode side as a cathode, a resistor Rx connected in series with the power supply, and values of the DC power supply Vcc and the resistance Rx.
  • the movement time of the electrode is measured from the time when the potential changes to a low potential lower than the potential, or from the time when the potential changes from the low potential to the high potential to the time when the potential changes from the high potential to the reference potential.
  • FIG. 1 is an explanatory diagram showing the principle of a first slag layer thickness measuring method of the present invention.
  • FIG. 2 is an explanatory diagram showing the principle of the third slag layer thickness measuring method of the present invention.
  • FIG. 3 is an equivalent circuit diagram of FIG.
  • Fig. 4 is an equivalent circuit diagram of Fig. 3, (a) when the electrode is located on the molten metal layer, (b) is when the electrode is located on the slag layer, (c) is the electrode Is located in the atmospheric layer.
  • Fig. 5 is a diagram showing the change in the potential of the electrode with the potential of the container as the reference potential when the electrode is moved upward from the molten metal layer to the atmospheric layer through the slag layer.
  • Fig. 3 is an explanatory view of a method of measuring the moving speed of the electrodes using two electrodes, (a) shows the principle, and (b) shows the change in the potential of each electrode.
  • FIG. 7 is an explanatory diagram showing the principle of the first slag layer thickness and molten metal layer surface level position measuring method of the present invention.
  • FIG. 8 is an explanatory diagram showing a configuration of a slag layer thickness measuring device according to a first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing a structure of a joint portion of an electrode, a probe, and a lance in FIG.
  • FIG. 10 is a display example of the display of the slag layer thickness measuring apparatus using the method of obtaining the moving distance from the moving time and moving speed of the electrode of the first embodiment.
  • Fig. 11 shows (a), (b), (c), and (d) the slag layer thickness using the method of obtaining the moving distance from the moving time and moving speed of the electrode in the first embodiment.
  • 9 is a display example of a change in the potential of an electrode in a measurement device.
  • FIG. 12 is a sectional view of a probe employing a feed screw mechanism.
  • Fig. 13 shows the configuration of the slag layer thickness measurement device used in combination with the oxygen concentration measurement device
  • Fig. 14 shows the configuration of the slag layer thickness measurement device used in combination with the oxygen concentration measurement device (
  • FIG. 15 is an explanatory view showing a configuration of a slag layer thickness and molten steel layer surface level position measuring device according to a second embodiment of the present invention.
  • the present invention is directed to molten metal
  • the slag layer thickness measuring apparatus according to the first embodiment of the present invention uses molten steel as molten metal.
  • FIG. 8 is an explanatory diagram showing the configuration of the slag layer thickness measuring device according to the first embodiment.
  • 31 is a converter
  • 32 is a molten steel layer
  • 33 is a slag layer
  • 34 is an atmospheric layer
  • 35 is an electrode
  • 36 is a probe
  • 37 is a lance
  • 38 is a lance.
  • 39 is an encoder
  • 40 a is a measuring device
  • 41 is a DC power supply Vcc
  • 42 is a resistor R
  • X, 4 3 are electrode potential measurement circuits (analog circuits), 4 4 are lance movement control circuits, 4
  • 5 is an encoder pulse count circuit
  • 4 7 is a microcomputer
  • a converter is used as a container for storing molten steel, but a ladle may be used.
  • the electrode 35 is held by the probe 36, and the lance 37 fixing the probe 36 is moved vertically by the lance moving device 38, whereby the electrode 35 is moved up and down.
  • the electrode 35 is moved.
  • the lance moving device 38 includes a motor that can be positioned and controlled, such as a pulse motor and a support motor, and a device that converts the rotational motion of the rack and pinion into a linear motion.
  • a feed screw mechanism as shown in FIG. 12 may be used.
  • a paper probe is used as a substitute for the lance, and the probe is rotated to move the probe up and down.
  • FIG. 9 shows the structure of the joint between the electrode 35, the probe 36, and the lance 37 in FIG.
  • the electrode 35 is connected to the contact contact 51 of the probe 36, and the ring contact in contact with the contact 51
  • the probe 52 is connected to the electrode potential measuring circuit (analog circuit) 43.
  • Probe 36 can withstand the high temperature of molten steel for a short period of time required for measurement, and must be replaced every time measurement is performed.
  • the converter 31 is formed by stacking refractory bricks inside a metal container, and the converter 31 alone does not have conductivity, but contains molten steel in the converter 31. As a result, the metal adheres to the inner surface of the converter 31 so that the space between the inner surface of the converter 31 and the ground becomes conductive. That is, it is equivalent to the converter 31 being grounded to the ground.
  • a DC power supply Vcc 11 having the electrode 35 as a cathode and a resistor R x 12 connected in series with the DC power supply 11 are connected between the ground and the electrode 35.
  • the values of the DC power supply 11 and the resistance R x 12 are such that when the electrode 35 is immersed in the slag layer 33, the potential of the electrode 5 with respect to the converter 31 at the same potential as the ground is It is set to have a positive potential.
  • the resistance R xl 2 is set to an extremely large value as compared with the internal resistance in the chemical battery characteristics indicated by the slag layer 33.
  • the internal resistance in the characteristics is about several tens to several hundred ohms, whereas the resistance R x 12 is set to several hundred kilohms.
  • the potential between the electrode 35 and the ground becomes substantially equal to the electromotive force in the chemical battery characteristics indicated by the slag layer 33. Since this electromotive force is positive with respect to the ground, the potential of the electrode 35 becomes a positive potential.
  • the electrode potential measuring circuit (analog circuit) 43 is a circuit for measuring the potential of the electrode 35 using the potential of the converter 31 as the ground potential as a reference potential.
  • the encoder 39 is linked with the lens moving device 38, and generates a pulse to measure the moving distance when the lance 37 moves up and down, and this pulse is counted by the encoder pulse counting circuit 45. By doing so, the moving distance of the lance 37 is obtained.
  • the lance is provided with uneven or black-and-white striped scales in the direction of movement on the side surface of the lance.
  • a method of detecting and counting the change in the stripe pattern of the lance and measuring the travel distance of the lance is also conceivable.
  • the electrode 35 is moved downward from the atmospheric layer 34 through the slag layer 33 to the molten steel layer 32, or conversely, the molten steel layer 32 is moved from the molten steel layer 32 to the slag layer.
  • the slag layer is moved up to the atmosphere layer 3 4 through 3 3, and the slag layer is taken advantage of the change in the electrode-container characteristics, which is the electrical property between the electrode 35 and the converter 31, which is the container.
  • the thickness of the slag layer 33 is measured by moving upward from the molten steel layer 32 through the slag layer 33 to the atmospheric layer 34.
  • the change in the potential of the electrode 35 with the reference potential of the converter 31 having the same potential as that of the ground is as shown in FIG. 5 described above.
  • Va is 0 (V).
  • Tb when the electrode 35 transfers from the molten steel layer 32 to the slag layer 33, that is, at the time of passing through the molten steel slag interface, Vb has a positive potential.
  • Tc when the electrode 35 moves from the slag layer 33 to the atmosphere layer 34, that is, at the time of passing through the slag-atmosphere interface, Vc becomes -Vcc (V), and the potential becomes negative.
  • the distance moved by the electrode 35 that is, the distance moved by the lance 37 is counted by the encoder pulse counting circuit 45, and the potential of the electrode 35 changes from 0 (V) to a positive potential.
  • the time point and the time point when the potential changes from the positive potential to the negative potential are detected by the electrode potential measurement circuit (analog circuit) 43 and the encoder pulse count circuit 45 and the electrode potential measurement circuit (analog circuit) 43 during this time are detected.
  • the output signal is input to the microcomputer 47 to determine the thickness of the slag layer, and the status is displayed on the display 48.
  • the moving distance of the electrode 35 is directly obtained by using the pulse output from the encoder 39, but there is also a method of calculating the moving distance and the moving time of the electrode by calculation.
  • the encoder 39 and encoder pulse count circuit 45 are removed from Fig. 8, and the moving speed of the electrode 35 is set to a predetermined constant speed, and the electrode potential measuring circuit (analog circuit) 4 3
  • the microcomputer 47 calculates the moving time of the electrode 35, and calculates the moving time of the electrode 35 from the moving time and the moving speed of the electrode 35. Calculate the moving distance to determine the thickness of the slag layer.
  • the moving speed of the electrode is determined in advance, and this moving speed is used in the calculation to determine the thickness of the slag layer.
  • the measurement may be performed using two electrodes as shown in FIG.
  • the change in the potential of the electrode 35 with the potential of the converter 31 having the same potential as the ground as the reference potential is the same as that of the fifth embodiment. It looks like the figure.
  • a change in the potential can be displayed on a display provided in the measuring apparatus, and a calculation result of the slag layer thickness can be displayed.
  • FIG. 10 shows a display example in the slag layer thickness measuring device in this case.
  • FIGS. 11 (a), (b), (c), and (d) all show examples of changes in the potential of the electrode 35 in such a case.
  • the electrode 35 is moved upward from the molten steel layer 32 through the slag layer 33 to the atmospheric layer 34, but the electrode 35 is moved from the atmospheric layer 34 to the slag layer 33.
  • the thickness of the slag layer 33 can be known even if the slag layer 33 is moved downward to the molten steel layer 32.
  • the electrode 35 is moved up and down in the vertical direction, but may be moved obliquely with respect to the slag layer 33.
  • the thickness of the slag layer can be obtained by calculation from the tilt angle and the moving distance of the electrode.
  • the change in the potential of the electrode 35 is 0 (V), which is the reference potential, and the positive potential, which is a higher potential than this reference potential. And a change to one of the negative potentials, which is a lower potential lower than the reference potential, so that it is possible to accurately detect these changes, and to move the electrode 35 based on these detections. Since the distance can be accurately obtained, the thickness of the slag layer 33 can be accurately known.
  • the change in the potential of the electrode 35 is determined by the reference. It is still a change to any one of a potential, a high potential higher than the reference potential, and a low potential lower than the reference potential. It can be said that this is a measurement method that is not easily affected by the change in the impedance between 31 and 1.
  • the first embodiment is directed to molten steel, but the contents described above can be generally applied to molten metal.
  • the material of the electrode be an iron alloy containing at least one of Mo, Co, Cr, and Mn.
  • the molten metal in the container is at a high temperature, and the electrode immersed in the molten metal is melted with time. Therefore, it is desirable to make the time until melting as long as possible.
  • the above alloy is difficult to melt and is excellent as a material of the electrode.
  • an electrode used for measuring the oxygen concentration is an oxygen probe 73 having a zirconia pole 71. It may be used in combination with the molten steel electrode 72. By doing so, the measurement of the thickness of the slag layer and the measurement of the oxygen concentration can be performed at the same time, and the electrodes can be used together, so that the cost of the measuring device can be reduced.
  • reference numeral 74 denotes an oxygen concentration measuring device
  • reference numeral 75 denotes a slag layer thickness measuring device.
  • the lower tip position of the electrode 72 used together with the molten steel electrode of the oxygen probe 73 and the zirconia electrode 71 of the oxygen probe was determined.
  • the portions other than the both ends may be covered with a protection pipe 76 such as a quartz tube for use.
  • a protection pipe 76 such as a quartz tube for use.
  • the slag layer thickness measuring device described above It may be used by attaching it to a bus. By doing so, the measurement of the thickness of the slag layer and the measurement of the molten steel temperature can be performed at the same time, and the electrodes can be used together, so that the cost of the measurement device can be reduced.
  • a vacuum tank equipped with a dip tube at the bottom is placed above the slag floating on the molten steel, and the dip tube is immersed in the molten steel, and the vacuum
  • the immersion tube With water, and if this cooling water and molten steel come into contact with each other, an explosion may occur.Therefore, it is necessary to control the position of the vacuum tank from the slag surface at a constant height.
  • the surface level position of the molten steel layer it is necessary to measure the surface level position of the molten steel layer. Then, together with the measurement of the slag layer thickness, the surface level of the molten steel layer, that is, above the opening of the container containing the molten metal, from the fixed point located at a predetermined fixed distance from the container, the The distance to the surface is measured.
  • a slag layer thickness and molten steel layer surface level position measuring device which is a second embodiment will be described.
  • the position of the vacuum chamber can be controlled by reflecting the change in the distance from the fixed point to the surface of the molten steel layer measured by this device in the positional relationship between the fixed point and the vacuum chamber.
  • FIG. 15 is an explanatory view showing a configuration of a slag layer thickness and molten steel layer surface level position measuring device according to a second embodiment of the present invention.
  • the same numbers as in FIG. 8 have the same contents as in FIG.
  • a vacuum chamber 24 provided with a dip tube 25 at the bottom is disposed above the converter 31 to detect a state where the electrode 35 is located at a fixed point 49.
  • a fixed point detection mark 28 is provided on the side of the lance 37, a light source 27 and a sensor 29 for detecting the fixed point detection mark 28 are provided, and a fixed point detection circuit 46 is provided. Is input to the fixed point detection circuit 46 and the output of the fixed point detection circuit 46 is input to the microcomputer 47.
  • the molten steel layer 32 is moved upward from the molten steel layer 32 through the slag layer 33 to the atmospheric layer 34, and the thickness of the slag layer and the molten steel layer are determined from the fixed point. Measure the distance to the surface.
  • the method of measuring the thickness of the slag layer is exactly the same as in the first embodiment.
  • the distance from the fixed point to the surface of the molten steel layer is determined by the time when the electrode 35 transitions from the molten steel layer 32 to the slag layer 33, that is, from the point of passing through the molten steel slag interface to the fixed point. 5. That is, the distance the lance 37 has moved may be measured.
  • the time when the molten steel passes through the slag interface is the time when the potential of the electrode 35 changes from the reference potential to the high potential, and when the fixed point is reached, the sensor 29 detects the fixed point detection mark 28.
  • the thickness of the slag layer is increased by the microcomputer 47 as in the first embodiment. And the distance from the fixed point to the surface of the molten steel layer is calculated, and the condition is displayed on the display 48. Also in the slag layer thickness and molten steel layer surface level position measuring device of the second embodiment described above, the measurement may be performed by moving the electrode down as in the first embodiment. Further, the moving distance of the electrode 35 may be obtained by calculation from the moving speed and the moving time of the electrode. For this purpose, the moving speed of the electrodes may be measured using two electrodes as shown in FIG. Further, the electrode may be moved obliquely with respect to the slag layer. In addition, a ladle may be used as a container for storing molten steel. In addition, not only molten steel but also general molten metal can be used.
  • the surface level position of the slag layer can be measured.
  • the DC power supply 11 has the cathode on the electrode 35 side, but can measure in principle even if the electrode 35 side is the anode. .
  • the electrical characteristics of the slag layer are different from that of the lower layer of molten steel and the upper layer of atmosphere, and the slag layer thickness is It can measure and measure the surface level position of the slag layer.
  • the electric property between the electrode and the container is a change in the characteristic between the electrode and the container. The measurement is performed by using the change between each property of insulation.
  • This change is not a change between homogenous things such as a change in impedance, but is a change between different things, so that the change can be captured clearly and the thickness of the slag layer can be accurately determined. It is possible to provide a method for measuring the thickness of the slag layer that can be measured.In addition, the electrode itself is inexpensive, so it can be replaced each time it is measured, and there is no need to prevent damage to the electrode. According to the slag layer thickness measuring method described above, a low-cost slag layer thickness measuring method can be provided. According to the third slag layer thickness measuring method or the fourth slag layer thickness measuring method, the change in the potential of the electrode is the same as the reference potential, the high potential higher than the reference potential, and the reference potential.
  • the change in the potential of the electrode will be the reference potential and the reference potential. Since the change is still either a high potential higher than the potential or a low potential lower than the reference potential, according to this measurement method, the change in impedance between the electrode and the container is determined. It is possible to provide a slag layer thickness measuring method which is hardly affected.
  • the fifth slag layer thickness measuring method it is not necessary to directly measure the moving distance of the electrode, and a slag layer thickness measuring method that can simplify the measuring method can be provided.
  • the change in the potential of the electrode is a change in one of a reference potential, a high potential higher than the reference potential, and a low potential lower than the reference potential. Since the change can be captured digitally, the change can be detected accurately, and based on these detections, the moving distance of the electrode can be accurately obtained. That you can know exactly A lag layer thickness measuring device can be provided.
  • the slag layer thickness measuring device that is not easily affected by the impedance change between the electrode and the container.
  • the second slag layer thickness measuring device that can provide the following, the following effect is obtained in addition to the effect of the slag layer thickness measuring device according to claim 6. That is, according to the slag layer thickness measuring apparatus, it is not necessary to directly measure the moving distance of the electrode, and therefore, it is possible to provide a slag layer thickness measuring apparatus with a simple measuring method.
  • the third slag layer thickness measuring device it is possible to provide a slag layer thickness measuring device that does not require the electrode moving speed to be determined in advance.
  • first to third slag layer thickness measuring devices are directed to molten metal
  • molten steel can be used as the molten metal.
  • the slag layer thickness is measured by using an iron alloy containing at least one of Mo, Co, Cr, and Mn as the material of the electrode of the slag layer thickness measuring device using molten steel as molten metal. At this time, it is possible to use a slag layer thickness measuring device that is difficult to melt the electrode.
  • the electrode of the slag layer thickness measuring device By using the electrode of the slag layer thickness measuring device using molten steel as the molten metal together with the molten steel electrode of the oxygen probe, it is possible to simultaneously measure the thickness of the slag layer and measure the oxygen concentration In addition, since the electrodes can be used together, the cost of the measuring device can be reduced.
  • the electrodes of the above-mentioned slag layer thickness measuring device which is used in combination with the molten steel electrode of the oxygen probe, and the lower tip position of the zirconia electrode of the oxygen probe for oxygen concentration measurement are aligned, and the parts other than the two tip parts are aligned.
  • a protective pipe such as a quartz tube, slag can be prevented from adhering to both the electrode and the zirconia electrode of the oxygen probe.At the same time, measurement of the slag layer thickness and oxygen concentration Measurement can be performed and electrodes can be used together, reducing the cost of measuring equipment Can be achieved.
  • each slag layer thickness measuring device By attaching the electrodes of each slag layer thickness measuring device using molten steel as molten metal to the molten steel temperature measurement probe, it is possible to simultaneously measure the slag layer thickness and the molten steel temperature, Since electrodes can be used together, the cost of the measuring device can be reduced.
  • the first to fifth slag layer thickness and molten metal layer surface level position measuring methods or the first and second slag layer thickness and molten metal layer surface level position measuring device.
  • the slag layer thickness measurement method or the principle used in the slag layer thickness measurement device described above it is possible to measure not only the slag layer thickness but also the surface level position of the molten metal layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

明 細 書 スラグ層厚さ又はスラグ層厚さと溶融金属層表面レベル位置測定方法及びその
技術分野
この発明は、 スラグ層厚さまたはスラグ層厚さと溶融金属層表面レベル位置 測定方法及びその測定装置に関する。 背景技術
溶鉱炉で生成された銑鉄から鋼を精製するのに用いられる転炉等では、 精製 を制御するために、 溶鋼の表面に浮遊しているスラグ層の厚さを測定する必要 がある。 このため、 1本または 2本の電極を用いて、 溶鋼、 スラグ、 及び大気 のインピーダンスの差異を測定することによりスラグ層の厚さを求める方法や 、 電磁コイルの誘導電圧が溶鋼、 スラグ、 及び大気でそれぞれ異なることを利 用してスラグ層の厚さを求める方法が使用されている。
しかしながら、 インピーダンスの差異を利用した測定方法は、 電極を保持す るランスのコネクタにおける接続インピーダンスが無視できず、 誤差が大きい こと、 また、 電磁コイルを用いる方法は、 電磁コイルを溶鋼に浸漬した際の損 傷防止を施す必要があり、 装置が大型で高価になり、 それぞれ問題であった。 この発明は、 このような問題点を解決するためになされたものであって、 誤 差が小さく、 コストの低いスラグ層厚さ測定方法とその測定装置、 及び、 これ らに使用する原理を用いた溶融金属層表面レベル位置測定方法とその測定装置 を提供しょうとするものである。 発明の開示
転炉等の容器に満たされた溶鋼は、 溶けた金属が主成分であり、 その電気的 特性としては金属としての導電性を示すのに対して、 溶鋼の表面に浮遊してい るスラグ層は電解質であり、 その中に電極を浸漬すると電池としての特性を示 すことが分かってきた。 また、 スラグ層の上層を占める大気は、 よく知られて いるように電気的特性としては絶縁性を有している。 この発明は、 'これらの点 に注目してなされたものであって、 スラグ層が示す電気的特性が、 その下層の 溶鋼や上層の大気と異なることを利用して、 スラグ層の厚さを測定しようとす るものである。 上記のスラグ層が示す電気的特性は、 溶鋼に限らず、 溶融金属 一般に適用できるので、 本発明では、 溶融金属を対象としている。
本発明の第 1のスラグ層厚さ測定方法は、 具体的には、 次のような方法であ る。 即ち、 溶融金属層表面にスラグ層が浮遊する溶湯の、 前記スラグ層の厚さ を測定する方法であって、 前記溶融金属層から前記スラグ層を通って前記スラ グ層の上層を占める大気層まで電極を上昇移動させて、 前記溶湯を収容して導 電性を帯びた容器と前記電極との間の電気的特性である電極一容器間特性を監 視し、 この電極一容器間特性が、 前記電極が前記溶融金属層に没入していると きの前記溶融金属層の介在による導電性から、 前記電極が前記スラグ層へ移動 して電解質として機能する前記スラグ層の介在による発電性に移行する時点で ある溶融金属ースラグ界面通過時点と、 前記電極が前記スラグ層から前記大気 層へ脱出して、 前記電極一容器間特性が、 前記発電性から前記大気層の介在に よる絶縁性に移行する時点であるスラグー大気界面通過時点とを検知すると共 に、 前記溶融金属ースラグ界面通過時点から前記スラグー大気界面通過時点ま でに、 前記電極が移動した移動距離を計測して、 前記スラグ層の厚さとしてな るスラグ層厚さ測定方法である。
第 1図は、 この第 1のスラグ層厚さ測定方法の原理を示した説明図である。 第 1図において、 1は容器、 2は溶融金属層、 3はスラグ層、 4は大気層、 5 は電極である。 スラグ層 3は前述の通り電解質であり、 その中に電極を浸漬す ると化学電池としての特性を示す。 これは、 溶融スラグ中の陽イオン (S i 2 + , P 2 +等) と陰イオン (0 2— ) が電極を通じて電子の授受をすることに より起電力が発生するからである。
この第 1のスラグ層厚さ測定方法は、 電極 5を、 溶融金属層 2からスラグ層 3を通って大気層 4まで上昇移動させ、 この間の電極 5と容器 1との間の電気 的特性である電極一容器間特性の変化を利用して、 スラグ層 3の厚さを測定す るものであり、 第 1図は、 この測定方法の説明図である。 溶融金属を収容する 転炉等の容器 1は、 一般に、 金属製の容器の内側に耐火煉瓦を積み上げて形成 されており、 容器 1だけでは導電性を有しないが、 容器 1内に溶融金属を収容 することによって、 容器 1の内面に金属が付着することにより、 容器 1の内面 と大地との間が導電性を有するようになる。 即ち、 容器が導電性を帯びるよう になる。 そこで、 電極 5と大地間の電気的特性を調べることによって、 電極 5 と容器 1との間の電気的特性である電極一容器間特性を調べることができる。 この場合、 第 1図において、 電極 5が溶融金属層 2に位置しているとき (a ) は、 溶融金属層 2が金属の溶けた状態であるから、 電極一容器間特性は導電 性である。 電極 5がスラグ層 3に移動すると (b ) 、 電極一容器間特性は上述 ' の通り発電性となる。 電極 5がスラグ層 3を抜けて大気層 4に移動すると (c ) 、 大気が介在して電極一容器間特性は絶縁性となる。 そこで、 電極 5を溶融 金属層 2から大気層 4へ上昇移動させる際、 電極一容器間特性が導電性から発 電性に変化する溶融金属層 2とスラグ層 3の境界面を電極 5が通過する溶融金 属ースラグ界面通過時点 7と、 電極一容器間特性が発電性から絶縁性に変化す るスラグ層 3と大気層 4の境界面を電極 5が通過するスラグー大気界面通過時 点 8とを検知し、 この間に、 電極 5が上昇移動した距離を測定することにより 、 スラグ層 3の厚さを知ることができる。
上記の第 1のスラグ層厚さ測定方法では、 電極 5を上昇移動させているが、 電極を下降移動させてもよい。 この場合の第 2のスラグ層厚さ測定方法は、 溶 融金属層表面にスラグ層が浮遊する溶湯の、 前記スラグ層の厚さを測定する方 法であって、 前記スラグ層の上層を占める大気層から前記スラグ層を通って前 記溶融金属層まで電極を降下移動させて、 前記溶湯を収容して導電性を帯びた 容器と前記電極との間の電気的特性である電極一容器間特性を監視し、 この電 極一容器間特性が、 前記電極が前記大気層にあるときの大気の介在による絶緣 性から、 前記電極が前記スラグ層に没入して電解質として機能する前記スラグ 層の介在による発電性に移行する時点である大気ースラグ界面通過時点と、 前 記電極が前記スラグ層から前記溶融金属層へ移動して、 前記電極一容器間特性 が、 前記発電性から前記溶融金属層の介在による導電性に移行する時点である スラグー溶融金属界面通過時点とを検知すると共に、 前記大気—スラグ界面通 過時点から前記スラグー溶融金属界面通過時点までに、 前記電極が移動した移 動距離を計測して、 前記スラグ層の厚さとしてなるスラグ層厚さ測定方法であ る。
この第 2のスラグ層厚さ測定方法の場合、 電極を、 大気層からスラグ層を通 つて溶融金属層まで降下移動させ、 電極 -容器間特性が絶縁性から発電性に変 化する大気層とスラグ層の境界面を電極が通過する大気ースラグ界面通過時点 と、 電極一容器間特性が発電性から導電性に変化するスラグ層と溶融金属層の 境界面を電極が通過するスラグー溶融金属界面通過時点とを検知し、 この間に 、 電極が下降移動した距離を測定することにより、 電極を上昇移動させた場合 と同様に、 スラグ層の厚さを知ることができる。
上記の第 1のスラグ層厚さ測定方法、 または、 第 2のスラグ層厚さ測定方法 によれば、 電極と容器との間の電気的特性である電極一容器間特性の変化であ る、 導電性、 発電性、 または、 絶縁性の各性質相互間の変化を利用して測定を 行なう。 この変化は、 インピ一ダンスの変化のような同質なもの相互間の変化 ではなく、 異質なもの相互間の変化であるので、 変化を明瞭にとらえることが でき、 スラグ層の厚さを正確に測定することができる。
また、 電極自身は、 コスト的には高価ではないことから、 測定の都度交換し てよく、 電極に損傷防止を施す必要がないため、 これらのスラグ層厚さ測定方 法によれば、 コストの低いスラグ層厚さ測定方法を提供することができる。 上記の第 1のスラグ層厚さ測定方法、 及び、 第 2のスラグ層厚さ測定方法に おける、 溶融金属ースラグ界面通過時点、 スラグー大気界面通過時点、 大気一 スラグ界面通過時点、 あるいは、 スラグー溶融金属界面通過時点の検知を、 前 記容器に対する前記電極の電位を測定することにより行なうスラグ層厚さ測定 方法が考えられる。
まず、 この方法による、 第 3のスラグ層厚さ測定方法は、 上記の第 1のスラ グ層厚さ測定方法において、 前記電極と前記容器との間に、 前記電極側を陰極 とした直流電源 Vccとこの電源と直列接続された抵抗 R xを揷入し、' 且つ、 前 記直流電源 Vccと前記抵抗 R xの値を、 前記電極が前記スラグ層に没入してい るときに、 前記容器の電位を基準電位とした前記電極の電位が前記基準電位よ りも高い高電位となるように設定すると共に、 前記電極を前記溶融金属層から 前記大気層まで上昇移動させて、 前記基準電位に対する前記電極の電位を測定 し、 前記溶融金属—スラグ界面通過時点として、 前記電極の電位が前記基準電 位から前記高電位へ変化する時点を、 また、 前記スラグー大気界面通過時点と して、 前記電極の電位が前記高電位から前記基準電位よりも低い低電位へ変化 する時点を、 検知してなるスラグ層厚さ測定方法である。
第 2図は、 この第 3のスラグ層厚さ測定方法に用いられる測定装置の構成を 示した説明図である。 第 2図は、 第 1図の電極 5と容器 1との間に、 電極 5側 を陰極とした直流電源 Vcc l 1と、 この電源 1 1と直列接続された抵抗 R x 1 2を揷入し、 容器 1に対する電極 5の電位、 即ち、 電極 5と容器 1との間の電 圧を測定する電位測定手段 1 3を設けたものである。 ここで、 直流電源 1 1と 抵抗 R x l 2の値は、 電極がスラグ層に没入しているときに、 容器 1の電位を 基準電位とした電極 5の電位が、 基準電位よりも高い電位となるように設定さ れている。
第 3図は、 第 2図の等価回路を示したものである。 第 2図において、 電極 5 が、 溶融金属層 2、 スラグ層 3または大気層 4の間を移動することは、 電気的 に見ると、 第 3図の切換スィッチ 1 9を切り換えるのと同じである。 即ち、 電 極 5が溶融金属層 2に位置しているとき (a ) は、 溶融金属層 2が、 金属の溶 けた状態であるから、 電極—容器間特性は導電性であるので、 電極 5と容器 1 との間は溶融金属層 2を介した短絡状態となる。 電極 5がスラグ層 3に位置し ているとき (b ) は、 スラグ層 3が電解質であることから電池特性を示して、 電極 5と容器 1との間に、 スラグ層 3の代わりに、 起電力が E oで内部抵抗が R oの電池が接続されているのと同じになる。 電極 5が大気層 4に位置してい るとき (c ) は、 大気が絶縁性を有するから、 電極 5と容器 1との間は、 大気 層 4を介して開放されていることになる。 これらの各場合の等価回路を、 第 4 図の (a ) から (c ) に示す。
即ち、 第 2図において、 容器 1の電位を基準電位 0 (V) として、 電極 5が 溶融金属層 2に位置しているとき (a ) 、 スラグ層 3に位置しているとき (b ) 、 あるいは、 大気層 4に位置しているとき (c) の、 それぞれの基準電位に 対する電極 5の電位を、 Va、 Vb、 Vcとすると、 これらは、 それぞれ第 4 図の (a) から (c) に示すように、 Va = 0 (V) (基準電位) 、 Vb= ( E oRx-VccR o) / (Ro + Rx) (V) 、 V c = -Vcc (V) (基準電 位よりも低い低電位) となる。 ここで、 第 4図 (b) の Vbは、 前述した直流 電源 Vccと抵抗 R Xの値の設定により、 基準電位である容器 1の電位に対して 、 この基準電位よりも高い高電位であり、 第 4図 (b) のアースに対してブラ ス電位となる。 一般には、 Rxは数百キロオーム台、 スラグ層 3が示す電池特 性における内部抵抗 Roは数十から数百オーム程度であることから、 第 4図 ( b) に示すように、 Vbは E oにほぼ等しくなる。 この起電力は、 アースに対 して陽極性であるので、 Vbはプラス電位となる。
上記の測定回路を用いて、 電極 5を、 溶融金属層 2からスラグ層 3を通って 大気層 4まで上昇移動させた場合の、 容器 1の電位を基準電位とした電極 5の 電位を測定すると、 第 5図のようになる。 Ta時点で測定を開始し、 電極 5が 溶融金属層 2に位置しているとき (a) は、 &で0 (V) である。 電極 5が 溶融金属層 2からスラグ層 3に移行する Tb時点、 即ち、 溶融金属ースラグ界 面通過時点では、 Vbでプラス電位となる。 さらに、 接触子 5がスラグ層 3か ら大気層 4に移行する Tc時点、 即ち、 スラグー大気界面通過時点では、 Vc で一 Vcc (V) となり、 マイナス電位となる。
そうすると、 電極 5の電位が 0 (V) からプラス電位に変化した時点、 即ち 、 基準電位からこの基準電位よりも高い高電位へ変化した時点を検知すれば、 溶融金属ースラグ界面通過時点を検知したことになり、 電極 5の電位が、 ブラ ス電位からマイナス電位に変化した時点、 即ち、 基準電位よりも高い高電位か ら基準電位よりも低い低電位へ変化した時点を検知すればスラグー大気界面通 過時点を検知したことになる。
そこで、 これらの検知を基に、 溶融金属ースラグ界面通過時点からスラグー 大気界面通過時点までに、 電極 5が移動した移動距離を求めることにより、 ス ラグ層 3の厚さを知ることができる。
上記の第 3のスラグ層厚さ測定方法では、 電極を上昇移動させているが、 電 極を下降移動させた場合についても、 同様の原理で測定することができる。 こ の場合の第 4のスラグ層厚さ測定方法は、 上記の第 2のスラグ層厚さ測定方法 において、 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 V ccとこの電源と直列接続された抵抗 R xを挿入し、 且つ、 前記直流電源 Vccと 前記抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容 器の電位を基準電位とした前記電極の電位が、 前記基準電位よりも高い高電位 となるように設定すると共に、 前記電極を前記大気層から前記溶融金属層まで 降下移動させて、 前記基準電位に対する前記電極の電位を測定し、 前記大気— スラグ界面通過時点として、 前記電極の電位が前記基準電位よりも低い低電位 から前記高電位へ変化する時点を、 また、 前記スラグー溶融金属界面通過時点 として、 前記電極の電位が前記高電位から前記基準電位へ変化する時点を、 検 知してなるスラグ層厚さ測定方法である。
上記の第 3のスラグ層厚さ測定方法、 または、 第 4のスラグ層厚さ測定方法 によれば、 電極の電位の変化が、 基準電位と、 この基準電位よりも高い高電位 と、 この基準電位よりも低い低電位のいずれかへの変化であり、 変化をデジタ ル的にとらえることができるので、 変化の検知を正確に行なうことができ、 こ れらの検知を基にして、 電極の移動距離を正確に求めることができることから 、 スラグ層の厚さを正確に知ることができる。
また、 電極に接続されたコネクタなどの接触抵抗により、 電極と容器との間 のインピ一ダンスが変化しても、 電極の電位の変化は、 基準電位と、 この基準 電位よりも高い高電位と、 この基準電位よりも低い低電位のいずれかへの変化 であることに変わりはないので、 上記の測定方法は、 電極と容器との間のイン ピーダンスの変化の影響を受けにくい方法といえる。
上記の第 1、 第 2、 第 3、 または第 4のスラグ層厚さ測定方法では、 電極の 移動距離を直接測定しているが、 前記電極の移動速度を一定とし、 前記大気一 スラグ界面通過時点から前記スラグー溶融金属界面通過時点まで、 あるいは、 前記溶融金属ースラグ界面通過時点から前記スラグー大気界面通過時点までの 、 前記電極の移動時間を測定し、 この移動時間と電極の移動速度から、 演算で 電極の移動距離を求めるようにしてもよい。 即ち、 第 5のスラグ層厚さ測定方 法として、 上記の第 1、 第 2、 第 3、 または第 4のスラグ層厚さ測定方法にお いて、 前記電極の上昇移動または降下移動の移動速度を一定とすると共に、 前 記電極を前記溶融金属層から前記大気層まで上昇移動させる方法を用いた場合 は、 前記溶融金属ースラグ界面通過時点から前記スラグー大気界面通過時点ま での、 前記電極の移動時間を計測し、 前記電極を前記大気層から前記溶融金属 層まで降下移動させる方法を用いた場合は、 前記大気ースラグ界面通過時点か ら前記スラグ一溶融金属界面通過時点までの、 前記電極の移動時間を計測し、 前記電極の前記移動距離を計測するのに代えて、 前記電極の前記移動速度と前 記移動時間から、 演算により前記電極の前記移動距離を求めてなるスラグ層厚 さ測定方法が存在する。
この方法によれば、 電極の移動距離を直接測定する必要がなく、 測定方法が 簡便になる。
次に、 本発明のスラグ層厚さ測定装置について説明する。 まず、 第 1のスラ グ層厚さ測定装置は、 電極と、 溶融金属層表面にスラグ層が浮遊する溶湯を収 容して導電性を帯びた容器と、 前記電極を前記溶融金属層から前記スラグ層を 通って前記スラグ層の上層を占める大気層まで上昇移動させ、 あるいは、 前記 大気層から前記スラグ層を通つて前記溶融金属層まで降下移動させる電極移動 手段と、 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vcc とこの電源と直列接続された抵抗 R Xを揷入すると共に、 前記直流電源 V ccと 前記抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容 器の電位を基準電位として、 前記電極の電位が前記基準電位よりも高い電位と なるように設定して形成された測定回路と、 前記基準電位に対する前記電極の 電位を測定する電位測定手段と、 前記電位測定手段が検知した、 前記基準電位 から前記高電位へ変化する時点から、 前記高電位から前記基準電位よりも低い 低電位へ変化する時点までの、 あるいは、 前記低電位から前記高電位へ変化す る時点から、 前記高電位から前記基準電位へ変化する時点までの、 前記電極の 移動距離を計測する電極移動距離計測手段と、 で構成されてなるスラグ層厚さ 測定装置である。
この第 1のスラグ層厚さ測定装置は、 電極を溶融金属層からスラグ層を通つ てスラグ層の上層を占める大気層まで上昇移動させる場合は、 電位測定手段が 、 溶湯を収容する容器と電極との間の電極一容器間特性が、 導電性から発電性 へ移行する溶融金属ースラグ界面通過時点として、 電極の電位が、 基準電位か ら基準電位より高い高電位へ変化する時点を検知すると共に、 発電性から絶縁 性へ移行するスラグ一大気界面通過時点として、 電極の電位が、 高電位から基 準電位より低い低電位へ変化する時点を検知する。 そして、 電極移動距離計測 手段が、 溶融金属ースラグ界面通過時点からスラグー大気界面通過時点までの 間の電極の移動距離を求めて、 スラグ層の厚さとする。
また、 大気層からスラグ層を通って溶融金属層まで、 電極を降下移動させる 場合は、 電位測定手段が、 溶湯を収容する容器と電極との間の電極一容器間特 性が、 電極が大気層にあるときの大気の介在による絶縁性から、 電解質として 機能するスラグ層に没入.して発電性に移行する大気ースラグ界面通過時点とし て、 電極の電位が、 基準電位より低い低電位から基準電位より高い高電位へ変 化する時点を検知すると共に、 電極一容器間特性が、 発電性から、 電極が溶融 金属層へ没入して導電性に移行するスラグ一溶融金属界面通過時点として、 電 極の電位が、 高電位から基準電位へ変化する時点を検知する。 そして電極移動 距離計測手段が、 大気ースラグ界面通過時点からスラグー溶融金属界面通過時 点までの間の電極の移動距離を求め、 これをスラグ層の厚さとする。
即ち、 この装置は、 上述の第 3のスラグ層厚さ測定方法、 または、 第 4のス ラグ層厚さ測定方法に基づいて、 スラグ層の厚さを求める装置であり、 その作 用、 効果は、 上述の第 3のスラグ層厚さ測定方法、 または、 第 4のスラグ層厚 さ測定方法と同様であるので、 説明を省略する。
上記の第 1のスラグ層厚さ測定装置では、 電極の移動距離を、 直接測定する 電極移動距離計測手段により求めているが、 電極の移動速度と移動時間とから 、 演算により求める第 2のスラグ層厚さ測定装置も考えられる。 この第 2のス ラグ層厚さ測定装置は、 電極と、 溶融金属層表面にスラグ層が浮遊する溶湯を 収容して導電性を帯びた容器と、 移動速度を一定として、 前記電極を、 前記溶 融金属層から前記スラグ層を通って前記スラグ層の上層を占める大気層まで上 昇移動させ、 あるいは、 前記大気層から前記スラグ層を通って前記溶融金属層 まで、 降下移動させる電極移動手段と、 前記電極と前記容器との間に、 前記電 極側を陰極とした直流電源 Vccと、 この電源と直列接続された抵抗 R xを挿入 すると共に、 前記直流電源 Vccと前記抵抗 R xの値を、 前記電極が前記スラグ 層に没入しているときに、 前記容器の電位を基準電位として、 前記電極の電位 が前記基準電位よりも高い電位となるように設定して形成された測定回路と、 前記基準電位に対する前記電極の電位を測定する電位測定手段と、 前記電位測 定手段が検知した、 前記基準電位から前記高電位へ変化する時点から、 前記高 電位から前記基準電位よりも低い低電位へ変化する時点までの、 あるいは、 前 記低電位から前記高電位へ変化する時点から、 前記高電位から前記基準電位へ 変化する時点までの、 前記電極の移動時間を計測する電極移動時間計測手段と 、 前記電極の前記移動速度と前記移動時間とから、 演算により前記電極の移動 距離を求める電極移動距離演算手段と、 で構成されてなるスラグ層厚さ測定装 置である。
この第 2のスラグ層厚さ測定装置は、 電極の移動距離を、 電極の移動速度と 移動時間とから、 演算により求めるので、 第 5のスラグ層厚さ測定方法と同様 の効果を有する。 また、 電極の移動距離を、 電極の移動速度と移動時間とから 、 演算により求めること以外は、 上記の第 1のスラグ層厚さ測定装置と全く同 じ構成であり、 その作用、 効果も上記の第 1のスラグ層厚さ測定装置と全く同 じである。
上記の第 2のスラグ層厚さ測定装置において、 電極の移動速度を、 2個の電 極を用いて測定する第 3のスラグ層厚さ測定装置が考えられる。 この第 3のス ラグ層厚さ測定装置は、 上記の第 2のスラグ層厚さ測定装置において、 前記電 極に加えて、 電極を 1個追加すると共に、 これらの 2個の電極の下端を、 その 移動方向に一定距離だけ離して設けると共に、 これらの電極を 2個同時に移動 させることにより、 前記容器に対する 2個の各前記電極の検知する電位の時間 的ずれを測定すると共に、 この時間的ずれと前記一定距離とから前記移動速度 を求める移動速度検出手段を設けてなるスラグ層厚さ測定装置である。
第 6図 (a ) は、 この第 3のスラグ層厚さ測定装置に用いられる移動速度検 出手段の速度検出原理の説明図である。 第 6図 (a ) において、 電極 2 2の下 端は電極 2 1の下端よりも、 移動方向である上方向に距離 Dだけ離して設けら れており、 電極 2 1及び電極 2 2はそれぞれ測定装置 2 3の第 I入力及び第 2 入力に接続されている。 また、 測定装置 2 3における、 容器 1に対する電極 2 1 2 2の電位の測定方法は、 前述の電極の電位測定方法と同様の方法を用い る。 そこで、 電極 2 1 2 2を 2個同時に、 溶融金属層 2からスラグ層 3を通 つて大気層 4まで上昇移動させると、 電極 2 1 2 2の電位は、 第 6図 (b ) のように、 第 I入力と第 2入力とでは、 Tだけずれることになる。 そうすると 、 電極 2 1 2 2の上昇移動速度 Sは、 S DZTで求められる。
このスラグ層厚さ測定装置によれば、 電極の移動速度を予め定めておく必要 がない。
上述した第 1のスラグ層厚さ測定装置から第 3のスラグ層厚さ測定装置は、 溶融金属を対象としているが、 溶融金属として溶鋼を用いることができる。 溶融金属として溶鋼を用いたスラグ層厚さ測定装置では、 これに使用される 電極の材質を、 Mo Co Cr Mnの中から、 少なくとも一つを含む鉄の合金 とすることが推奨される。 上述したスラグ層厚さ測定装置では、 容器内の溶湯 が高温であり、 この溶湯に浸漬した電極は、 時間がたっと溶融してしまう。 そ こで、 溶融するまでの時間をできるだけ長くすることが望ましいが、 この点で 、 上記の合金は溶融しにくく、 電極の材質として優れている。
上述した各スラグ層厚さ測定装置において、 スラグ層の厚さを測定する際、 酸素濃度の測定が必要な場合に、 電極を酸素プローブの溶鋼電極と併用して用 いるようにしても良い。 このようにすることにより、 同時に、 スラグ層の厚さ の測定と、 酸素濃度の測定を行なうことができると共に、 電極を併用できるの で、 測定装置のコスト低減を図ることができる。
また、 上記のスラグ層厚さ測定装置において、 酸素プローブの溶鋼電極と併 用する電極と、 酸素プローブのジルコニァ極との下部先端位置をそろえると共 に、 双方の先端部分以外の部分を石英管等の防護用パイプで覆って用いるよう にしても良い。 このようにすることにより、 電極と、 酸素プローブのジルコ二 ァ極の双方に対して、 スラグが付着するのを防止でき、 また、 同時に、 スラグ 層の厚さの測定と、 酸素濃度の測定を行なうことができると共に、 電極を併用 できるので、 測定装置のコスト低減を図ることができる。
また、 上述した各スラグ層厚さ測定装置において、 電極を溶鋼温度測定プロ —ブへ取り付けて用いるようにしても良い。 このようにすることにより、 同時 に、 スラグ層の厚さの測定と、 溶鋼温度の測定を行なうことができると共に、 電極を併用できるので、 測定装置のコスト低減を図ることができる。
ところで、 転炉等の溶融金属を収容した容器では、 下部に浸漬管を備えた真 空槽を溶融金属上に浮遊するスラグの上方に配設すると共に、 浸漬管を溶融金 属内に浸漬させ、 真空槽内に溶融金属を取り込んで、 C a等を加えて、 溶融金 属中のスラグ成分の粒子を凝集させることにより、 溶融金属中のスラグ成分を 取り除きやすくしている。 この場合、 浸漬管を水冷する必要があり、 この冷却 水と溶融金属とが触れると爆発を生じる恐れがあるので、 真空槽の溶融金属層 表面からの高さの位置制御が必要であり、 このため、 溶融金属層の表面レベル 位置を測定する必要がある。
上述した説明は、 スラグ層厚さ測定方法またはその装置に関するものである が、 これに用いられている原理は、 スラグ層厚さの測定のみならず、 溶融金属 層の表面レベル位置の測定にも使用することができるので、 次に、 スラグ層厚 さの測定と共に、 溶融金属層の表面レベル位置、 即ち、 溶湯を収容した容器の 開口部上方で、 容器から予め定められた一定距離離れて位置する定点から溶融 金属層の表面までの距離の測定を行なう方法について述べる。
この方法における、 第 1のスラグ層厚さ及び溶融金属層表面レベル位置測定 方法は、 溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた 容器の開口部上方で、 前記容器から予め定められた一定距離離れて位置する定 点から前記溶融金属層の表面までの距離、 及び、 前記スラグ層の厚さを測定す る方法であつて、 前記溶融金属層から前記スラグ層を通って前記スラグ層の上 層を占める大気層中の前記定点まで電極を上昇移動させて、 前記容器と前記電 極との間の電気的特性である電極一容器間特性を監視し、 この電極一容器間特 性が、 前記電極が前記溶融金属層に没入しているときの前記溶融金属層の介在 による導電性から、 前記電極が前記スラグ層へ移動して電解質として機能する 前記スラグ層の介在による発電性に移行する時点である溶融金属ースラグ界面 通過時点と、 前記電極が前記スラグ層から前記大気層へ脱出して、 前記電極一 容器間特性が、 前記発電性から、 前記大気層の介在による絶縁性に移行する時 点であるスラグー大気界面通過時点とを検知すると共に、 前記溶融金属ースラ グ界面通過時点から前記スラグー大気界面通過時点までに、 前記電極が移動し た移動距離を計測して、 前記スラグ層の厚さとすると共に、 前記溶融金属ース ラグ界面通過時点から前記定点までに、 前記電極が移動した移動距離を計測し て、 前記定点から前記溶融金属層の表面までの距離としてなるスラグ層厚さ及 び溶融金属層表面レベル位置測定方法である。
第 7図は、 上記の方法の測定原理を示した説明図である。 上記の方法では、 第 7図において、 溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性 を帯びた容器 1の開口部上方で、 容器 1から予め定められた一定距離離れた位 置を、 定点 9とし、 電極 5を、 溶融金属層からスラグ層を通ってスラグ層の上 層を占める大気層中の定点 9まで電極を上昇移動させて、 この間の電極 5と容 器 1との間の電気的特性である電極一容器間特性の変化を利用して、 スラグ層 の厚さ 6及び、 定点 9から溶融金属層 2の表面までの距離 1 0を測定するもの である。 上記の方法では、 スラグ層の厚さ 6の測定方法は、 第 1のスラグ層厚 さ測定方法と全く同じである。 また、 定点 9から溶融金属層 2の表面までの距 離 1 0の測定に用いられる溶融金属ースラグ界面通過時点 7の検知方法も第 1 のスラグ層厚さ測定方法と全く同じであり、 この溶融金属ースラグ界面通過時 点 7から定点 9に至るまで電極 5が移動した距離を測定することにより定点 9 から溶融金属層 2の表面までの距離 1 0を求めることができる。
上記の方法では、 電極 5を上昇移動させているが、 電極を下降移動させても よい。 また、 上記で述べたとおり、 第 7図において、 溶融金属層の表面レベル 位置の測定は、 即ち、 定点 9から溶融金属層 2の表面までの距離 1 0を測定す ることである。 ここでいう定点から溶融金属層の表面までの距離を求めること は、 溶融金属ースラグ界面通過時点から定点に至るまで、 あるいは、 定点から スラグー溶融金属界面通過時点に至るまでに、 電極 5が移動した距離または時 間を測定することで行なうことができ、 溶融金属ースラグ界面通過時点あるい はスラグ一溶融金属界面通過時点の検知は、 上述した各スラグ層厚さ測定方法 において使用されている検知方法がそのまま使用できる。 そこで、 第 2、 第 3 、 第 4、 または第 5のスラグ層厚さ及び溶融金属層表面レベル位置測定方法、 あるいは、 第 1、 または第 2のスラグ層厚さ及び溶融金属層表面レベル位置測 定装置として、 上述した各スラグ層厚さ測定方法あるいは上述した各スラグ層 厚さ測定装置を応用することにより、 以下に示す方法及び装置が考えられる。 第 2のスラグ層厚さ及び溶融金属層表面レベル位置測定方法は、 溶融金属層 表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容器の開口部上方で 、 前記容器から予め定められた一定距離離れて位置する定点から前記溶融金属 層の表面までの距離、 及び、 前記スラグ層の厚さを測定する方法であって、 前 記スラグ層の上層を占める大気層中の前記定点から前記スラグ層を通つて前記 溶融金属層まで、 電極を降下移動させて、 前記溶湯を収容して導電性を帯びた 容器と、 前記電極との間の電気的特性である電極一容器間特性を監視し、 この 電極一容器間特性が、 前記電極が前記大気層にあるときの大気の介在による絶 縁性から、 前記電極が前記スラグ層に没入して電解質として機能する前記スラ グ層の介在による発電性に移行する時点である大気ースラグ界面通過時点と、 前記電極が前記スラグ層から前記溶融金属層へ移動して、 前記電極一容器間特 性が、 前記発電性から、 前記溶融金属層の介在による導電性に移行する時点で あるスラグー溶融金属界面通過時点とを検知すると共に、 前記定点から前記ス ラグ一溶融金属界面通過時点までに、 前記電極が移動した移動距離を計測して 、 前記定点から前記溶融金属層の表面までの距離とすると共に、 前記大気ース ラグ界面通過時点から前記スラグー溶融金属界面通過時点までに、 前記電極が 移動した移動距離を計測して、 前記スラグ層の厚さとしてなるスラグ層厚さ及 ぴ溶融金属層表面レベル位置測定方法である。
第 3のスラグ層厚さ及び溶融金属層表面レベル位置測定方法は、 第 1のスラ グ層厚さ及び溶融金属層表面レベル位置測定方法において、 前記電極と前記容 器との間に、 前記電極側を陰極とした直流電源 Vccと、 この電源と直列接続さ れた抵抗 R xを揷入し、 且つ、 前記直流電源 Vccと前記抵抗 R xの値を、 前記 電極が前記スラグ層に没入しているときに、 前記容器の電位を基準電位とした 前記電極の電位が、 前記基準電位よりも高い高電位となるように設定すると共 に、 前記電極を前記溶融金属層から前記大気層まで上昇移動させて、 前記基準 電位に対する前記電極の電位を測定し、 前記溶融金属ースラグ界面通過時点と して、 前記電極の電位が、 前記基準電位から前記高電位へ変化する時点を、 ま た、 前記スラグ—大気界面通過時点として、 前記電極の電位が、 前記高電位か ら前記基準電位よりも低い低電位へ変化する時点を、 検知してなるスラグ層厚 さ及び溶融金属層表面レベル位置測定方法である。
第 4のスラグ層厚さ及ぴ溶融金属層表面レベル位置測定方法は、 第 2のスラ グ層厚さ及び溶融金属層表面レベル位置測定方法において、 前記電極と前記容 器との間に、 前記電極側を陰極とした直流電源 Vccと、 この電源と直列接続さ れた抵抗 R xを挿入し、 且つ、 前記直流電源 Vccと前記抵抗 R xの値を、 前記 電極が前記スラグ層に没入しているときに、 前記容器の電位を基準電位とした 前記電極の電位が、 前記基準電位よりも高い高電位となるように設定すると共 に、 前記電極を前記大気層から前記溶融金属層まで降下移動させて、 前記基準 電位に対する前記電極の電位を測定し、 前記大気ースラグ界面通過時点として 、 前記電極の電位が、 前記基準電位よりも低い低電位から前記高電位へ変化す る時点を、 また、 前記スラグー溶融金属界面通過時点として、 前記電極の電位 が、 前記高電位から前記基準電位へ変化する時点を、 検知してなるスラグ層厚 さ及び溶融金属層表面レベル位置測定方法である。
第 5のスラグ層厚さ及び溶融金属層表面レベル位置測定方法は、 第 1、 第 2 、 第 3、 または第 4のスラグ層厚さ及び溶融金属層表面レベル位置測定方法に おいて、 前記電極の上昇移動または降下移動の移動速度を一定とすると共に、 前記電極を前記溶融金属層から前記大気層まで上昇移動させる方法を用いた場 合は、 前記スラグ層の厚さ算出用として、 前記溶融金属ースラグ界面通過時点 から前記スラグ—大気界面通過時点までの、 前記電極の移動時間を計測し、 前 記定点から前記溶融金属層の表面までの距離算出用として、 前記溶融金属ース ラグ界面通過時点から前記定点までの、 前記電極の移動時間を計測し、 前記電 極を前記大気層から前記溶融金属層まで降下移動させる方法を用いた場合は、 前記定点から前記溶融金属層の表面までの距離算出用として、 前記定点から前 記スラグ一溶融金属界面通過時点までの、 前記電極の移動時間を計測し、 前記 スラグ層の厚さ算出用として、 前記大気ースラグ界面通過時点から前記スラグ —溶融金属界面通過時点までの、 前記電極の移動時間を計測し、 前記電極の各 前記移動距離を計測するのに代えて、 前記電極の前記移動速度と各前記移動時 間とから、 演算により前記電極の各前記移動距離を求めてなるスラグ層厚さ及 び溶融金属層表面レベル位置測定方法である。
第 1のスラグ層厚さ及び溶融金属層表面レベル位置測定装置は、 電極と、 溶 融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容器と、 前 記電極を、 前記溶融金属層から、 前記スラグ層を通って前記スラグ層の上層を 占める大気層中の、 前記容器の開口部上方で、 前記容器から予め定められた一 定距離離れて位置する定点まで上昇移動させ、 あるいは、 前記大気層中の前記 定点から、 前記スラグ層を通って前記溶融金属層まで、 降下移動させる電極移 動手段と、 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 V と、 この電源と直列接続された抵抗 R xを挿入すると共に、 前記直流電源 V ccと前記抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前 記容器の電位を基準電位として、 前記電極の電位が前記基準電位よりも高い電 位となるように設定して形成された測定回路と、 前記基準電位に対する前記電 極の電位を測定する電位測定手段と、 前記スラグ層の厚さ測定用として、 前記 電位測定手段が検知した、 前記基準電位から前記高電位へ変化する時点から、 前記高電位から前記基準電位よりも低い低電位へ変化する時点までの、 あるい は、 前記低電位から前記高電位へ変化する時点から、 前記高電位から前記基準 電位へ変化する時点までの、 前記電極の移動距離を計測するスラグ層厚さ測定 用電極移動距離計測手段と、 前記定点から前記溶融金属層の表面までの距離測 定用として、 前記電位測定手段が検知した前記基準電位から前記高電位へ変化 する時点から前記定点までの、 あるいは、 前記定点から、 前記高電位から前記 基準電位へ変化する時点までの、 前記電極の移動距離を計測する溶融金属層表 面レベル位置測定用電極移動距離計測手段と、 で構成されてなるスラグ層厚さ 及ぴ溶融金属層表面レベル位置測定装置である。
そして、 第 2のスラグ層厚さ及び溶融金属層表面レベル位置測定装置は、 電 極と、 溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容 器と、 前記電極を、 移動速度を一定として、 前記溶融金属層から、 前記スラグ 層を通って前記スラグ層の上層を占める大気層中の、 前記容器の開口部上方で 、 前記容器から予め定められた一定距離離れて位置する定点まで上昇移動させ 、 あるいは、 前記大気層中の前記定点から、 前記スラグ層を通って前記溶融金 属層まで降下移動させる電極移動手段と、 前記電極と前記容器との間に、 前記 電極側を陰極とした直流電源 Vccと、 この電源と直列接続された抵抗 R xを揷 入すると共に、 前記直流電源 Vccと前記抵抗 R xの値を、 前記電極が前記スラ グ層に没入しているときに、 前記容器の電位を基準電位として、 前記電極の電 位が前記基準電位よりも高い電位となるように設定して形成された測定回路と 、 前記基準電位に対する前記電極の電位を測定する電位測定手段と、 前記スラ グ層の厚さ測定用として、 前記電位測定手段が検知した、 前記基準電位から前 記高電位へ変化する時点から、 前記高電位から前記基準電位よりも低い低電位 へ変化する時点までの、 あるいは、 前記低電位から前記高電位へ変化する時点 から、 前記高電位から前記基準電位へ変化する時点までの、 前記電極の移動時 間を計測するスラグ層厚さ測定用電極移動時間計測手段と、 前記定点から前記 溶融金属層の表面までの距離測定用として、 前記電位測定手段が検知した、 前 記基準電位から前記高電位へ変化する時点から前記定点までの、 あるいは、 前 記定点から、 前記高電位から前記基準電位へ変化する時点までの、 前記電極の 移動時間を計測する溶融金属層表面レベル位置測定用電極移動時間計測手段と 、 前記電極の前記移動速度と各前記移動時間とから、 演算により前記電極の移 動距離を求める電極移動距離演算手段と、 で構成されてなるスラグ層厚さ及び 溶融金属層表面レベル位置測定装置である。
上記の各スラグ層厚さ及び溶融金属層表面レベル位置測定方法、 あるいは、 スラグ層厚さ及び溶融金属層表面レベル位置測定装置によれば、 上述のスラグ 層厚さ測定方法またはスラグ層厚さ測定装置に使用される原理を用いることに より、 スラグ層厚さの測定のみならず、 スラグ層の表面レベル位置を測定する ことができる。 図面の簡単な説明 第 1図は、 本発明の第 1のスラグ層厚さ測定方法の原理を示した説明図であ る。
第 2図は、 本発明の第 3のスラグ層厚さ測定方法の原理を示した説明図であ る。
第 3図は、 第 2図の等価回路図である。
第 4図は、 第 3図の等価回路図で、 (a ) は電極が溶融金属層に位置してい る場合、 (b ) は電極がスラグ層に位置している場合、 (c ) は電極が大気層 に位置している場合を示す。
第 5図は、 電極を、 溶融金属層からスラグ層を通って大気層まで上昇移動さ せた場合の、 容器の電位を基準電位とした電極の電位の変化を示した図である 第 6図は、 2個の電極を用いて電極の移動速度を測定する方法の説明図で、 ( a ) はその原理、 (b ) は各電極の電位の変化を示す。
第 7図は、 本発明の第 1のスラグ層厚さ及び溶融金属層表面レベル位置測定 方法の原理を示した説明図である。
第 8図は、 本発明の第 1実施例であるスラグ層厚さ測定装置の構成を示した 説明図である。
第 9図は、 第 8図における、 電極、 プローブ、 及びランスの接合部分の構造 を示した説明図である。
第 1 0図は、 第 1実施例の電極の移動時間と移動速度からその移動距離を求 める方法を用いたスラグ層厚さ測定装置のディスプレイの表示例である。
第 1 1図は、 (a ) 、 (b ) 、 (c ) 、 (d ) 共に、 第 1実施例の電極の移 動時間と移動速度からその移動距離を求める方法を用いたスラグ層厚さ測定装 置における電極の電位の変化の表示例である。
第 1 2図は、 送りねじ機構を採用したプローブの断面図である。
第 1 3図は、 酸素濃度測定装置と併用したスラグ層厚さ測定装置の構成図 (
1 ) である。
第 1 4図は、 酸素濃度測定装置と併用したスラグ層厚さ測定装置の構成図 (
2 ) である。 第 1 5図は、 本発明の第 2実施例であるスラグ層厚さ及び溶鋼層表面レベル 位置測定装置の構成を示した説明図である。 発明を実施するための最良の形態
次に、 本発明の実施例につき、 図面に基づき詳しく説明する。 本発明は、 溶 融金属を対象とするものであるが、 本発明の第 1実施例であるスラグ層厚さ測 定装置では溶融金属として、 溶鋼を用いている。
第 8図は、 第 1実施例であるスラグ層厚さ測定装置の構成を示した説明図で ある。 第 8図において、 3 1は転炉、 3 2は溶鋼層、 3 3はスラグ層、 3 4は 大気層、 3 5は電極、 3 6はプロ一ブ、 3 7はランス、 3 8はランス移動装置
、 3 9はエンコーダ、 4 0 aは計測装置、 4 1は直流電源 Vcc、 4 2は抵抗 R
X、 4 3は電極電位測定回路 (アナログ回路)、 4 4はランス移動制御回路、 4
5はエンコーダパルスカウント回路、 4 7はマイクロコンピュータ、 そして、
4 8はディスプレイである。
本第 1実施例では、 溶鋼を収容する容器として転炉を用いているが、 取鍋を 使用してもよい。
第 8図において、 電極 3 5は、 プローブ 3 6に保持されており、 このプロ一 ブ 3 6を固定しているランス 3 7をランス移動装置 3 8により、 垂直方向上下 に移動させることによって、 電極 3 5を移動させる仕組みとしている。 ランス 移動装置 3 8は、 パルスモー夕やサ一ポモータ等位置決め制御可能なモー夕等 と、 ラックとピニョンによる回転運動を直線運動に変換する装置等で構成され ている。
このような構成のランス移動装置 3 8を用いる代わりに、 第 1 2図に示すよ うな送りねじ機構を用いるようにしてもよい。 第 1 2図では、 紙製のプローブ をランスの代用として用いるとともに、 このプローブを回転させることによつ て、 上下に移動させる仕組としている。
第 9図は、 第 8図の、 電極 3 5、 プローブ 3 6、 及びランス 3 7の接合部分 の構造を示したものである。 第 9図において、 電極 3 5はプローブ 3 6の接触 コンタクト 5 1に接続され、 この接触コンタクト 5 1と接触しているリング接 触子 5 2が電極電位測定回路 (アナログ回路) 4 3へ接続されている。 プローブ 3 6は、 溶融した高温の溶鋼に対しては、 測定に必要な短時間しか耐えること ができず、 測定の都度交換する必要があり、 このような構造が採用されている 第 8図において、 転炉 3 1は、 一般に、 金属製の容器の内側に耐火煉瓦を積 み上げて形成されており、 転炉 3 1だけでは導電性を有しないが、 転炉 3 1内 に溶鋼を収容することによって、 転炉 3 1の内面に金属が付着することにより 、 転炉 3 1の内面と大地との間が導電性を有するようになる。 即ち、 転炉 3 1 が大地にアースされたのと等価となる。
また、 アースと電極 3 5との間には、 電極 3 5側を陰極とした直流電源 Vcc 1 1と、 この直流電源 1 1と直列接続された抵抗 R x 1 2接続されている。 こ こで、 直流電源 1 1と抵抗 R x 1 2の値は、 電極 3 5がスラグ層 3 3に没入し ているときに、 アースと同電位の転炉 3 1に対する電極 5の電位が、 プラス電 位となるように設定されている。 具体的には、 前述したように、 抵抗 R x l 2 は、 スラグ層 3 3が示す化学電池特性における内部抵抗に比べて、 極端に大き な値に設定され、 例えば、 スラグ層 3 3が示す電池特性における内部抵抗は数 十から数百オーム程度であるのに対して、 抵抗 R x 1 2は数百キロオーム代に 設定される。 その結果、 前述したように、 電極 3 5とアース間の電位は、 スラ グ層 3 3が示す化学電池特性における起電力にほぼ等しくなる。 この起電力は 、 アースに対して陽極性であるので、 電極 3 5の電位はプラス電位となる。 電極電位測定回路 (アナログ回路) 4 3は、 アース電位である転炉 3 1の電位 を基準電位とした電極 3 5の電位を測定する回路である。 エンコーダ 3 9はラ ンス移動装置 3 8と連動しており、 ランス 3 7が上下に移動した際に移動距離 を測定するためのパルスを発生し、 このパルスを、 エンコーダパルスカウント 回路 4 5がカウントすることにより、 ランス 3 7の移動距離を求める。
このエンコーダ 3 9を用いる代わりに、 ランスの側面上移動方向に凹凸また は白黒で等間隔の縞模様状スケールを備えるとともに、 光源と光センサを用い て、 ランスの移動に伴って、 凹凸または白黒の縞模様の変化を検知、 カウント して、 ランスの移動距離を測定する方法も考えられる。 上記の第 8図の測定装置において、 電極 3 5を大気層 3 4からスラグ層 3 3 を通って溶鋼層 3 2まで降下移動させるか、 これとは逆に、 溶鋼層 3 2からス ラグ層 3 3を通って大気層 3 4まで上昇移動させ、 この間の電極 3 5と容器で ある転炉 3 1との間の電気的特性である電極一容器間特性の変化を利用して、 スラグ層 3 3の厚さを測定するが、 本第 1実施例では、 溶鋼層 3 2からスラグ 層 3 3を通って大気層 3 4まで上昇移動させてスラグ層 3 3の厚さを測定する この場合の、 ァ一スと同電位の転炉 3 1の電位を基準電位とした電極 3 5の 電位の変化は、 前述した第 5図のようになる。
第 5図において、 T a時点で測定を開始し、 電極 3 5が溶鋼層 3 2に位置し ているとき (a ) は、 V aで 0 (V) である。 電極 3 5が溶鋼層 3 2からスラ グ層 3 3に移行する T b時点、 即ち、 溶鋼ースラグ界面通過時点では、 V bで プラス電位となる。 さらに、 電極 3 5がスラグ層 3 3から大気層 3 4に移行す る T c時点、 即ち、 スラグー大気界面通過時点では、 V cで— Vcc (V) とな り、 マイナス電位となる。 そこで、 電極 3 5の移動した距離、 即ち、 ランス 3 7の移動した距離を、 エンコーダパルスカウント回路 4 5でカウントすると共 に、 電極 3 5の電位が、 0 (V) からプラス電位に変化する時点と、 プラス電 位からマイナス電位に変化する時点を、 電極電位測定回路 (アナログ回路) 4 3 で検知し、 この間のエンコーダパルスカウント回路 4 5および、 電極電位測定 回路 (アナログ回路) 4 3の出力信号がマイクロコンピュータ 4 7へ入力されて 、 スラグ層の厚さが求められ、 その状況がディスプレイ 4 8で表示される。 上記の測定装置では、 エンコーダ 3 9の出力するパルスを用いて、 電極 3 5 の移動距離を直接求めているが、 電極の移動速度と移動時間とから、 演算によ り求める方法もある。 この方法では、 第 8図から、 エンコーダ 3 9とェンコ一 ダパルスカウント回路 4 5を外すと共に、 電極 3 5の移動速度をあらかじめ定 めた一定速度とし、 電極電位測定回路 (アナログ回路) 4 3で溶鋼ースラグ界面 通過時点とスラグ一大気界面通過時点とが検知され、 この信号がマイクロコン ピュー夕 4 7へ入力される。 そして、 このマイクロコンピュータ 4 7が、 電極 3 5の移動時間を求め、 この移動時間と電極 3 5の移動速度から電極 3 5の移 動距離を演算して、 スラグ層の厚さを求める。
この方法では、 電極の移動速度をあらかじめ定め、 この移動速度を演算に使 用してスラグ層の厚さを求めているが、 電極の移動速度をあらかじめ定めない で、 電極の移動速度を、 前述したように、 第 6図に示すような 2個の電極を用 いて測定するようにしてもよい。
電極 3 5の移動時間と移動速度から、 その移動距離を求める方法の場合も、 アースと同電位の転炉 3 1の電位を基準電位とした電極 3 5の電位の変化は、 前述した第 5図のようになる。 この方法を用いたスラグ層厚さ測定装置におい て、 この測定装置の備えるディスプレイでこの電位の変化を表示させると共に 、 スラグ層の厚さの演算結果を表示させることもできる。 第 1 0図は、 この場 合のスラグ層厚さ測定装置における表示例を示したものである。 また、 第 1 1 図 (a ) 、 (b ) 、 ( c ) 、 ( d ) は、 共に、 このような場合の、 電極 3 5の 電位の変化の例を示したものである。
上記の測定装置では、 電極 3 5を、 溶鋼層 3 2からスラグ層 3 3を通って大 気層 3 4まで上昇移動させているが、 電極 3 5を、 大気層 3 4からスラグ層 3 3を通って溶鋼層 3 2まで下降移動させても、 同様にスラグ層 3 3の厚さを知 ることができる。
また、 上記の測定装置では、 電極 3 5を、 垂直方向上下に移動させているが 、 スラグ層 3 3に対して斜めに移動させるようにしてもよい。 この場合は、 傾 けた角度と、 電極の移動距離とから、 演算によりスラグ層の厚さを求めること ができる。
上記の測定装置によれば、 第 1 1図からも分かるように、 電極 3 5の電位の 変化が、 基準電位である 0 (V) と、 この基準電位よりも高い高電位であるプ ラス電位と、 この基準電位よりも低い低電位であるマイナス電位のいずれかへ の変化であるので、 これらの変化の検知を正確に行なうことができ、 これらの 検知を基にして、 電極 3 5の移動距離を正確に求めることができることから、 スラグ層 3 3の厚さを正確に知ることができる。
また、 電極 3 5に接続されたコネクタなどの接触抵抗により、 電極 3 5と容 器 3 1との間のインピーダンスが変化しても、 電極 3 5の電位の変化は、 基準 電位と、 この基準電位よりも高い高電位と、 この基準電位よりも低い低電位の いずれかへの変化であることに変わりはないので、 上記の測定装置による測定 方法は、 電極 3 5と容器 3 1との間のインピーダンスの変化の影響を受けにく い測定方法といえる。
上記の第 1実施例では、 前述したように、 溶鋼を対象としているが、 上記で 説明した内容は、 一般的に溶融金属を対象とした場合にも適用できる。
溶鋼のスラグ層厚さを測定するスラグ層厚さ測定装置では、 その電極の材質 を、 Mo、 Co、 Cr、 Mnの中から、 少なくとも一つを含む鉄の合金とすること が推奨される。 上述したスラグ層厚さ測定装置では、 容器内の溶湯が高温であ り、 この溶湯に浸漬した電極は、 時間がたっと溶融してしまう。 そこで、 溶融 するまでの時間をできるだけ長くすることが望ましいが、 この点で、 上記の合 金は溶融しにくく、 電極の材質として優れている。
上述したスラグ層厚さ測定装置において、 スラグ層の厚さを測定する際、 第 1 3図に示すように、 酸素濃度の測定に用いる電極をジルコニァ極 7 1を有す る酸素プローブ 7 3の溶鋼電極 7 2と併用して用いるようにしても良い。 この ようにすることにより、 同時に、 スラグ層の厚さの測定と、 酸素濃度の測定を 行なうことができると共に、 電極を併用できるので、 測定装置のコスト低減を 図ることができる。 第 1 3図において、 7 4は酸素濃度測定器、 7 5はスラグ 層厚さ測定器である。
また、 上述したスラグ層厚さ測定装置において、 第 1 4図に示すように、 酸 素プローブ 7 3の溶鋼電極と併用する電極 7 2と、 酸素プローブのジルコニァ 極 7 1との下部先端位置をそろえると共に、 双方の先端部分以外の部分を石英 管等の防護用パイプ 7 6で覆って用いるようにしても良い。 このようにするこ とにより、 電極と、 酸素プローブのジルコニァ極の双方に対して、 スラグが付 着するのを防止でき、 また、 同時に、 スラグ層の厚さの測定と、 酸素濃度の測 定を行なうことができると共に、 電極を併用できるので、 測定装置のコスト低 減を図ることができる。 第 1 4図において、 7 4は酸素濃度測定器、 7 5はス ラグ層厚さ測定器である。
また、 '上述したスラグ層厚さ測定装置において、 電極を溶鋼温度測定プロ一 ブへ取り付けて用いるようにしても良い。 このようにすることにより、 同時に 、 スラグ層の厚さの測定と、 溶鋼温度の測定を行なうことができると共に、 電 極を併用できるので、 測定装置のコスト低減を図ることができる。
前述したように、 転炉等の溶鋼を収容した容器では、 下部に浸漬管を備えた 真空槽を溶鋼上に浮遊するスラグの上方に配設すると共に、 浸漬管を溶鋼内に 浸漬させ、 真空槽内に溶鋼を取り込んで、 C a等を加えて、 溶鋼中のスラグ成 分の粒子を凝集させることにより、 溶鋼中のスラグ成分を取り除きやすくして いる。 この場合、 浸漬管を水冷する必要があり、 この冷却水と溶鋼とが触れる と爆発を生じる恐れがあるので、 真空槽のスラグ表面からの高さを一定にする 位置制御が必要であり、 このため、 溶鋼層の表面レベル位置を測定する必要が ある。 そこで、 次に、 スラグ層厚さの測定と共に、 溶鋼層の表面レベル位置、 即ち、 溶湯を収容した容器の開口部上方で、 容器から予め定められた一定距離 離れて位置する定点から溶鋼層の表面までの距離の測定を行なう、 本発明の第
2実施例である、 スラグ層厚さ及び溶鋼層表面レベル位置測定装置について述 ベる。 この装置で測定する、 定点から溶鋼層の表面までの距離の変化を、 定点 と真空槽との位置関係に反映させることにより、 真空槽の位置を制御すること ができる.
第 1 5図は、 本発明の第 2実施例であるスラグ層厚さ及び溶鋼層表面レベル 位置測定装置の構成を示した説明図である。 第 1 5図において、 第 8図と同番 号は、 第 8図と同内容である。 第 8図と異なるのは、 下部に浸漬管 2 5を備え た真空槽 2 4を転炉 3 1の上方に配設し、 電極 3 5が定点 4 9に位置する状態 を検知するための、 定点検知用マーク 2 8をランス 3 7の側面に設け、 この定 点検知用マーク 2 8を検出するための光源 2 7及びセンサ 2 9を設けると共に 、 定点検知回路 4 6を設け、 センサ 2 9の出力をこの定点検知回路 4 6へ入力 していると共に、 この定点検知回路 4 6の出力をマイクロコンピュータ 4 7へ 入力している点である。 また、 本第 2実施例でも、 第 1実施例同様、 溶鋼層 3 2からスラグ層 3 3を通って大気層 3 4まで上昇移動させて、 スラグ層の厚さ 、 及び、 定点から溶鋼層の表面までの距離を測定する。
この場合、 スラグ層の厚さの測定方法は、 第 1実施例と全く同じである。 ま た、 定点から溶鋼層の表面までの距離は、 電極 3 5が、 溶鋼層 3 2からスラグ 層 3 3に移行する時点、 即ち、 溶鋼ースラグ界面通過時点から、 定点に至るま でに、 電極 3 5、 即ち、 ランス 3 7の移動した距離を測定すればよい。 溶鋼一 スラグ界面通過時点は、 電極 3 5の電位が、 基準電位から前記高電位へ変化す る時点であり、 また、 定点に至った時点は、 センサ 2 9が定点検知用マーク 2 8を検知した時点であるから、 これらの検知信号が、 定点検知回路 4 6を介し てマイクロコンピュータ 4 7へ入力されることにより、 第 1実施例と同様にし て、 マイクロコンピュータ 4 7により、 スラグ層の厚さおよび定点から溶鋼層 の表面までの距離が演算され、 その状況が、 ディスプレイ 4 8で表示される。 上記の第 2実施例であるスラグ層厚さ及び溶鋼層表面レベル位置測定装置に おいても、 第 1実施例におけるのと同様に、 電極を降下移動させて測定しても よい。 また、 電極 3 5の移動距離を、 電極の移動速度と移動時間とから、 演算 により求めてもよい。 そのために、 電極の移動速度を、 第 6図に示すような 2 個の電極を用いて測定するようにしてもよい。 また、 電極を、 スラグ層に対し て斜めに移動させるようにしてもよい。 また、 溶鋼を収容する容器として、 取 鍋を使用してもよい。 また、 溶鋼のみならず、 一般の溶融金属を用いることも できる。
上記の第 2実施例であるスラグ層厚さ及び溶鋼層表面レベル位置測定装置に よれば、 上述のスラグ層厚さ測定装置に使用される原理を用いることにより、 スラグ層厚さの測定のみならず、 スラグ層の表面レベル位置を測定することが できる。
上述した第 1実施例および第 2実施例のいずれにおいても、 直流電源 1 1は 、 電極 3 5側を陰極としているが、 電極 3 5側を陽極としても、 原理的には、 測定可能である。 即ち、 第 8図および第 1 5図において、 Vccの極性を逆にし ても、 スラグ層が示す電気的特性が、 その下層の溶鋼や上層の大気と異なるこ とを利用したスラグ層厚さの測定や、 スラグ層の表面レベル位置の測定を行な うことができる。 産業上の利用可能性 第 1のスラグ層厚さ測定方法または第 2のスラグ層厚さ測定方法によれば、 電極と容器との間の電気的特性である電極一容器間特性の変化である、 導電性 、 発電性、 または、 絶縁性の各性質相互間の変化を利用して測定を行なう。 こ の変化は、 インピーダンスの変化のような同質なもの相互間の変化ではなく、 異質なもの相互間の変化であるので、 変化を明瞭にとらえることができ、 スラ グ層の厚さを正確に測定することができるスラグ層厚さ測定方法を提供できる また、 電極自身は、 コスト的には高価ではないことから、 測定の都度交換し てよく、 電極に損傷防止を施す必要がないため、 これらのスラグ層厚さ測定方 法によれば、 コストの低いスラグ層厚さ測定方法を提供することができる。 第 3のスラグ層厚さ測定方法または第 4のスラグ層厚さ測定方法によれば、 電極の電位の変化が、 基準電位と、 この基準電位よりも高い高電位と、 この基 準電位よりも低い低電位のいずれかへの変化であり、 変化をデジタル的にとら えることができるので、 変化の検知を正確に行なうことができ、 これらの検知 を基にして、 電極の移動距離を正確に求めることができることから、 スラグ層 の厚さを正確に知ることができるスラグ層厚さ測定方法を提供できる。
また、 電極からこの電位を測定する回路までの途中のコネクタなどの接触抵 抗により、 電極と容器との間のインピーダンスが変化しても、 電極の電位の変 化は、 基準電位と、 この基準電位よりも高い高電位と、 この基準電位よりも低 い低電位のいずれかへの変化であることに変わりはないので、 この測定方法に よれば、 電極と容器との間のインピーダンスの変化の影響を受けにくいスラグ 層厚さ測定方法を提供できる。
第 5のスラグ層厚さ測定方法によれば、 電極の移動距離を直接測定する必要 がなく、 測定方法が簡便になるスラグ層厚さ測定方法を提供できる。
第 1のスラグ層厚さ測定装置によれば、 電極の電位の変化が、 基準電位と、 この基準電位よりも高い高電位と、 この基準電位よりも低い低電位のいずれか への変化であり、 変化をデジタル的にとらえることができるので、 変化の検知 を正確に行なうことができ、 これらの検知を基にして、 電極の移動距離を正確 に求めることができることから、 スラグ層の厚さを正確に知ることができるス ラグ層厚さ測定装置を提供できる。
また、 電極に接続されたコネクタなどの接触抵抗により、 電極と容器との間 のインピーダンスが変化しても、 電極の電位の変化は、 基準電位と、 この基準 電位よりも高い高電位と、 この基準電位よりも低い低電位のいずれかへの変化 であることに変わりはないので、 この測定方法によれば、 電極と容器との間の インピーダンスの変化の影響を受けにくいスラグ層厚さ測定装置を提供できる 第 2のスラグ層厚さ測定装置によれば、 請求項 6記載のスラグ層厚さ測定装 置の効果に加えて、 次の効果を有する。 即ち、 このスラグ層厚さ測定装置によ れば、 電極の移動距離を直接測定する必要がなく、 従って、 測定方法が簡便に なるスラグ層厚さ測定装置を提供できる。
第 3のスラグ層厚さ測定装置によれば、 電極の移動速度を予め定めておく必 要がないスラグ層厚さ測定装置を提供できる。
第 1のスラグ層厚さ測定装置から第 3のスラグ層厚さ測定装置は、 溶融金属 を対象としているが、 溶融金属として溶鋼を用いることができる。
溶融金属として溶鋼を用いる上記のスラグ層厚さ測定装置の電極の材質を、 Mo、 Co、 Cr、 Mnの中から、 少なくとも一つを含む鉄の合金とすることにより 、 スラグ層厚さの測定の際、 電極溶融しにくいスラグ層厚さ測定装置とするこ とができる。
溶融金属として溶鋼を用いる上記のスラグ層厚さ測定装置の電極を、 酸素プ ローブの溶鋼電極と併用することにより、 同時に、 スラグ層の厚さの測定と、 酸素濃度の測定を行なうことができると共に、 電極を併用できるので、 測定装 置のコスト低減を図ることができる。
電極を、 酸素プローブの溶鋼電極と併用する上記のスラグ層厚さ測定装置の 電極と、 酸素濃度測定用の酸素プローブのジルコニァ極の下部先端位置をそろ えると共に、 双方の先端部分以外の部分を石英管等の防護用パイプで覆うこと により、 電極と、 酸素プローブのジルコニァ極の双方に対して、 スラグが付着 するのを防止でき、 また、 同時に、 スラグ層の厚さの測定と、 酸素濃度の測定 を行なうことができると共に、 電極を併用できるので、 測定装置のコスト低減 を図ることができる。
溶融金属として溶鋼を用いる上記の各スラグ層厚さ測定装置の電極を溶鋼温 度測定プローブへ取り付けることにより、 同時に、 スラグ層の厚さの測定と、 溶鋼温度の測定を行なうことができると共に、 電極を併用できるので、 測定装 置のコスト低減を図ることができる。
第 1から、 第 5のスラグ層厚さ及び溶融金属層表面レベル位置測定方法、 あ るいは、 第 1、 及び、 第 2のスラグ層厚さ及び溶融金属層表面レベル位置測定 装置によれば、 上述のスラグ層厚さ測定方法またはスラグ層厚さ測定装置に使 用される原理を用いることにより、 スラグ層厚さの測定のみならず、 溶融金属 層の表面レベル位置を測定することができる。

Claims

請 求 の 範 囲
1 . 溶融金属層表面にスラグ層が浮遊する溶湯の、 前記スラグ層の厚さを測 定する方法であって、
前記溶融金属層から前記スラグ層を通つて前記スラグ層の上層を占める大気 層まで電極を上昇移動させて、 前記溶湯を収容して導電性を帯びた容器と前記 電極との間の電気的特性である電極一容器間特性を監視し、
この電極一容器間特性が、 前記電極が前記溶融金属層に没入しているときの 前記溶融金属層の介在による導電性から、 前記電極が前記スラグ層へ移動して 電解質として機能する前記スラグ層の介在による発電性に移行する時点である 溶融金属ースラグ界面通過時点と、
前記電極が前記スラグ層から前記大気層へ脱出して、 前記電極一容器間特性 が、 前記発電性から前記大気層の介在による絶縁性に移行する時点であるスラ グー大気界面通過時点とを検知すると共に、
前記溶融金属ースラグ界面通過時点から前記スラグー大気界面通過時点まで に、 前記電極が移動した移動距離を計測して、 前記スラグ層の厚さとしてなる スラグ層厚さ測定方法。
2 . 溶融金属層表面にスラグ層が浮遊する溶湯の、 前記スラグ層の厚さを測 定する方法であって、
前記スラグ層の上層を占める大気層から前記スラグ層を通って前記溶融金属 層まで電極を降下移動させて、 前記溶湯を収容して導電性を帯びた容器と前記 電極との間の電気的特性である電極一容器間特性を監視し、
この電極一容器間特性が、 前記電極が前記大気層にあるときの大気の介在に よる絶縁性から、 前記電極が前記スラグ層に没入して電解質として機能する前 記スラグ層の介在による発電性に移行する時点である大気ースラグ界面通過時 点と、
前記電極が前記スラグ層から前記溶融金属層へ移動して、 前記電極一容器間 特性が、 前記発電性から前記溶融金属層の介在による導電性に移行する時点で あるスラグー溶融金属界面通過時点とを検知すると共に、 前記大気ースラグ界面通過時点から前記スラグー溶融金属界面通過時点まで に、 前記電極が移動した移動距離を計測して、 前記スラグ層の厚さとしてなる スラグ層厚さ測定方法。
3 . 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vccと この電源と直列接続された抵抗 R xを挿入し、 且つ、 前記直流電源 Vccと前記 抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容器の 電位を基準電位とした前記電極の電位が、 前記基準電位よりも高い高電位とな るように設定すると共に、
前記電極を前記溶融金属層から前記大気層まで上昇移動させて、 前記基準電 位に対する前記電極の電位を測定し、
前記溶融金属ースラグ界面通過時点として、 前記電極の電位が前記基準電位 から前記高電位へ変化する時点を、
また、 前記スラグー大気界面通過時点として、 前記電極の電位が前記高電位 から前記基準電位よりも低い低電位へ変化する時点を、
検知してなる請求項 1記載のスラグ層厚さ測定方法。
4 . 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vccと この電源と直列接続された抵抗 R xを挿入し、 且つ、 前記直流電源 Vccと前記 抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容器の 電位を基準電位とした前記電極の電位が、 前記基準電位よりも高い高電位とな るように設定すると共に、
前記電極を前記大気層から前記溶融金属層まで降下移動させて、 前記基準電 位に対する前記電極の電位を測定し、
前記大気ースラグ界面通過時点として、 前記電極の電位が前記基準電位より も低い低電位から前記高電位へ変化する時点を、
また、 前記スラグー溶融金属界面通過時点として、 前記電極の電位が前記高 電位から前記基準電位へ変化する時点を、
検知してなる請求項 2記載のスラグ層厚さ測定方法。
5 . 前記電極の上昇移動または降下移動の移動速度を一定とすると共に、 前記電極を前記溶融金属層から前記大気層まで上昇移動させる方法を用いた 場合は、 前記溶融金属ースラグ界面通過時点から前記スラグー大気界面通過時 点までの、 前記電極の移動時間を計測し、
前記電極を前記大気層から前記溶融金属層まで降下移動させる方法を用いた 場合は、 前記大気ースラグ界面通過時点から前記スラグー溶融金属界面通過時 点までの、 前記電極の移動時間を計測し、
前記電極の前記移動距離を計測するのに代えて、
前記電極の前記移動速度と前記移動時間から、 演算により前記電極の前記移 動距離を求めてなる請求項 1から請求項 4のいずれか 1項に記載のスラグ層厚 さ測定方法。
6 . 電極と、
溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容器と 前記電極を前記溶融金属層から前記スラグ層を通つて前記スラグ層の上層を 占める大気層まで上昇移動させ、 あるいは、 前記大気層から前記スラグ層を通 つて前記溶融金属層まで降下移動させる電極移動手段と、
前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vccとこの 電源と直列接続された抵抗 R Xを挿入すると共に、 前記直流電源 Vccと前記抵 抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容器の電 位を基準電位として、 前記電極の電位が前記基準電位よりも高い電位となるよ うに設定して形成された測定回路と、
前記基準電位に対する前記電極の電位を測定する電位測定手段と、 前記電位測定手段が検知した、 前記基準電位から前記高電位へ変化する時点 から、 前記高電位から前記基準電位よりも低い低電位へ変化する時点までの、 あるいは、 前記低電位から前記高電位へ変化する時点から、 前記高電位から前 記基準電位へ変化する時点までの、 前記電極の移動距離を計測する電極移動距 離計測手段と、
で構成されてなるスラグ層厚さ測定装置。
7 . 電極と、
溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容器と 移動速度を一定として、 前記電極を、 前記溶融金属層から前記スラグ層を通 つて前記スラグ層の上層を占める大気層まで上昇移動させ、 あるいは、 前記大 気層から前記スラグ層を通って前記溶融金属層まで、 降下移動させる電極移動 手段と、
前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vccと、 こ の電源と直列接続された抵抗 R Xを挿入すると共に、 前記直流電源 Vccと前記 抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容器の 電位を基準電位として、 前記電極の電位が前記基準電位よりも高い電位となる ように設定して形成された測定回路と、
前記基準電位に対する前記電極の電位を測定する電位測定手段と、 前記電位測定手段が検知した、 前記基準電位から前記高電位へ変化する時点 から、 前記高電位から前記基準電位よりも低い低電位へ変化する時点までの、 あるいは、 前記低電位から前記高電位へ変化する時点から、 前記高電位から前 記基準電位へ変化する時点までの、 前記電極の移動時間を計測する電極移動時 間計測手段と、
前記電極の前記移動速度と前記移動時間とから、 演算により前記電極の移動 距離を求める電極移動距離演算手段と、
で構成されてなるスラグ層厚さ測定装置。
8 . 前記電極に加えて、 電極を 1個追加すると共に、 これらの 2個の電極の 下端を、 その移動方向に一定距離だけ離して設けると共に、
これらの電極を 2個同時に移動させることにより、 前記容器に対する 2個の 各前記電極の検知する電位の時間的ずれを測定すると共に、 この時間的ずれと 前記一定距離とから前記移動速度を求める移動速度検出手段を設けてなる請求 項 7記載のスラグ層厚さ測定装置。
9 . 前記溶融金属を溶鋼としてなる請求項 6から請求項 8のいずれか 1項に 記載のスラグ層厚さ測定装置。
1 0 . 前記電極の材質を、 Mo、 Co、 Cr、 Mnの中から、 少なくとも一つを 含む鉄の合金としてなる請求項 9記載のスラグ層厚さ測定装置。
1 1 . 前記電極を、 酸素濃度測定用の酸素プローブの溶鋼電極と併用してな る請求項 9または請求項 1 0記載のスラグ層厚さ測定装置。
1 2 . 前記電極と、 酸素濃度測定用の酸素プローブのジルコニァ極との下部 先端位置をそろえると共に、 双方の先端部分以外の部分を石英管等の防護用パ イブで覆ってなる請求項 1 1記載のスラグ層厚さ測定装置。
1 3 . 前記電極を溶鋼温度測定プローブへ取り付けてなる請求項 9から請求 項 1 2のいずれか 1項に記載のスラグ層厚さ測定装置。
1 4 . 溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた 容器の開口部上方で、 前記容器から予め定められた一定距離離れて位置する定 点から前記溶融金属層の表面までの距離、 及び、 前記スラグ層の厚さを測定す る方法であって、
前記溶融金属層から前記スラグ層を通って前記スラグ層の上層を占める大気 層中の前記定点まで電極を上昇移動させて、 前記容器と前記電極との間の電気 的特性である電極一容器間特性を監視し、
この電極一容器間特性が、 前記電極が前記溶融金属層に没入しているときの 前記溶融金属層の介在による導電性から、 前記電極が前記スラグ層へ移動して 電解質として機能する前記スラグ層の介在による発電性に移行する時点である 溶融金属ースラグ界面通過時点と、
前記電極が前記スラグ層から前記大気層へ脱出して、 前記電極一容器間特性 が、 前記発電性から、 前記大気層の介在による絶縁性に移行する時点であるス ラグー大気界面通過時点とを検知すると共に、
前記溶融金属ースラグ界面通過時点から前記スラグ一大気界面通過時点まで に、 前記電極が移動した移動距離を計測して、 前記スラグ層の厚さとすると共 に、
前記溶融金属ースラグ界面通過時点から前記定点までに、 前記電極が移動し た移動距離を計測して、 前記定点から前記溶融金属層の表面までの距離として なるスラグ層厚さ及び溶融金属層表面レベル位置測定方法。
1 5 . 溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた 容器の開口部上方で、 前記容器から予め定められた一定距離離れて位置する定 点から前記溶融金属層の表面までの距離、 及び、 前記スラグ層の厚さを測定す る方法であって、
前記スラグ層の上層を占める大気層中の前記定点から前記スラグ層を通って 前記溶融金属層まで、 電極を降下移動させて、 前記溶湯を収容して導電性を帯 びた容器と、 前記電極との間の電気的特性である電極一容器間特性を監視し、 この電極一容器間特性が、 前記電極が前記大気層にあるときの大気の介在に よる絶縁性から、 前記電極が前記スラグ層に没入して電解質として機能する前 記スラグ層の介在による発電性に移行する時点である大気ースラグ界面通過時 点と、
前記電極が前記スラグ層から前記溶融金属層へ移動して、 前記電極一容器間 特性が、 前記発電性から、 前記溶融金属層の介在による導電性に移行する時点 であるスラグー溶融金属界面通過時点とを検知すると共に、
前記定点から前記スラグー溶融金属界面通過時点までに、 前記電極が移動し た移動距離を計測して、 前記定点から前記溶融金属層の表面までの距離とする と共に、
前記大気ースラグ界面通過時点から前記スラグ一溶融金属界面通過時点まで に、 前記電極が移動した移動距離を計測して、 前記スラグ層の厚さとしてなる スラグ層厚さ及び溶融金属層表面レベル位置測定方法。
1 6 . 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vcc と、 この電源と直列接続された抵抗 R xを揷入し、 且つ、 前記直流電源 Vccと 前記抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容 器の電位を基準電位とした前記電極の電位が、 前記基準電位よりも高い高電位 となるように設定すると共に、
前記電極を前記溶融金属層から前記大気層まで上昇移動させて、 前記基準電 位に対する前記電極の電位を測定し、
前記溶融金属ースラグ界面通過時点として、 前記電極の電位が、 前記基準電 位から前記高電位へ変化する時点を、
また、 前記スラグー大気界面通過時点として、 前記電極の電位が、 前記高電 位から前記基準電位よりも低い低電位へ変化する時点を、 検知してなる請求項 1 4記載のスラグ層厚さ及び溶融金属層表面レベル位置 測定方法。
1 7 . 前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vcc と、 この電源と直列接続された抵抗 R xを揷入し、 且つ、 前記直流電源 Vccと 前記抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容 器の電位を基準電位とした前記電極の電位が、 前記基準電位よりも高い高電位 となるように設定すると共に、
前記電極を前記大気層から前記溶融金属層まで降下移動させて、 前記基準電 位に対する前記電極の電位を測定し、
前記大気ースラグ界面通過時点として、 前記電極の電位が、 前記基準電位よ りも低い低電位から前記高電位へ変化する時点を、
また、 前記スラグー溶融金属界面通過時点として、 前記電極の電位が、 前記 高電位から前記基準電位へ変化する時点を、
検知してなる請求項 1 5記載のスラグ層厚さ及び溶融金属層表面レベル位置 測定方法。
1 8 . 前記電極の上昇移動または降下移動の移動速度を一定とすると共に、 前記電極を前記溶融金属層から前記大気層まで上昇移動させる方法を用いた 場合は、
前記スラグ層の厚さ算出用として、 前記溶融金属ースラグ界面通過時点から 前記スラグー大気界面通過時点までの、 前記電極の移動時間を計測し、
前記定点から前記溶融金属層の表面までの距離算出用として、 前記溶融金属 ースラグ界面通過時点から前記定点までの、 前記電極の移動時間を計測し、 前記電極を前記大気層から前記溶融金属層まで降下移動させる方法を用いた 場合は、
前記定点から前記溶融金属層の表面までの距離算出用として、 前記定点から 前記スラグー溶融金属界面通過時点までの、 前記電極の移動時間を計測し、 前記スラグ層の厚さ算出用として、 前記大気ースラグ界面通過時点から前記 スラグー溶融金属界面通過時点までの、 前記電極の移動時間を計測し、
前記電極の各前記移動距離を計測するのに代えて、 前記電極の前記移動速度と各前記移動時間とから、 演算により前記電極の各 前記移動距離を求めてなる請求項 1 4から請求項 1 7のいずれか 1項に記載の スラグ層厚さ及び溶融金属層表面レベル位置測定方法。
1 9 . 電極と、
溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容器と 前記電極を、 前記溶融金属層から、 前記スラグ層を通って前記スラグ層の上 層を占める大気層中の、 前記容器の開口部上方で、 前記容器から予め定められ た一定距離離れて位置する定点まで上昇移動させ、 あるいは、 前記大気層中の 前記定点から、 前記スラグ層を通って前記溶融金属層まで、 降下移動させる電 極移動手段と、
前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vccと、 こ の電源と直列接続された抵抗 R xを挿入すると共に、 前記直流電源 Vccと前記 抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容器の 電位を基準電位として、 前記電極の電位が前記基準電位よりも高い電位となる ように設定して形成された測定回路と、
前記基準電位に対する前記電極の電位を測定する電位測定手段と、 前記スラグ層の厚さ測定用として、 前記電位測定手段が検知した、 前記基準 電位から前記高電位へ変化する時点から、 前記高電位から前記基準電位よりも 低い低電位へ変化する時点までの、 あるいは、 前記低電位から前記高電位へ変 化する時点から、 前記高電位から前記基準電位へ変化する時点までの、 前記電 極の移動距離を計測するスラグ層厚さ測定用電極移動距離計測手段と、 前記定点から前記溶融金属層の表面までの距離測定用として、 前記電位測定 手段が検知した前記基準電位から前記高電位へ変化する時点から前記定点まで の、 あるいは、 前記定点から、 前記高電位から前記基準電位へ変化する時点ま での、 前記電極の移動距離を計測する溶融金属層表面レベル位置測定用電極移 動距離計測手段と、
で構成されてなるスラグ層厚さ及び溶融金属層表面レベル位置測定装置。
2 0 . 電極と、 溶融金属層表面にスラグ層が浮遊する溶湯を収容して導電性を帯びた容器と 前記電極を、 移動速度を一定として、 前記溶融金属層から、 前記スラグ層を 通って前記スラグ層の上層を占める大気層中の、 前記容器の開口部上方で、 前 記容器から予め定められた一定距離離れて位置する定点まで上昇移動させ、 あ るいは、 前記大気層中の前記定点から、 前記スラグ層を通って前記溶融金属層 まで降下移動させる電極移動手段と、
前記電極と前記容器との間に、 前記電極側を陰極とした直流電源 Vccと、 こ の電源と直列接続された抵抗 R Xを挿入すると共に、 前記直流電源 Vccと前記 抵抗 R xの値を、 前記電極が前記スラグ層に没入しているときに、 前記容器の 電位を基準電位として、 前記電極の電位が前記基準電位よりも高い電位となる ように設定して形成された測定回路と、
前記基準電位に対する前記電極の電位を測定する電位測定手段と、 前記スラグ層の厚さ測定用として、 前記電位測定手段が検知した、 前記基準 電位から前記高電位へ変化する時点から、 前記高電位から前記基準電位よりも 低い低電位へ変化する時点までの、 あるいは、 前記低電位から前記高電位へ変 化する時点から、 前記高電位から前記基準電位へ変化する時点までの、 前記電 極の移動時間を計測するスラグ層厚さ測定用電極移動時間計測手段と、 前記定点から前記溶融金属層の表面までの距離測定用として、 前記電位測定 手段が検知した、 前記基準電位から前記高電位へ変化する時点から前記定点ま での、 あるいは、 前記定点から、 前記高電位から前記基準電位へ変化する時点 までの、 前記電極の移動時間を計測する溶融金属層表面レベル位置測定用電極 移動時間計測手段と、
前記電極の前記移動速度と各前記移動時間とから、 演算により前記電極の移 動距離を求める電極移動距離演算手段と、
で構成されてなるスラグ層厚さ及び溶融金属層表面レベル位置測定装置。
PCT/JP2002/000750 2001-05-25 2002-01-31 Procede permettant de mesurer l'epaisseur d'une couche de scorie ou la position du niveau superficiel d'une couche de metal en fusion et dispositif de mesure WO2002097378A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-157959 2001-05-25
JP2001157959A JP5124894B2 (ja) 2001-05-25 2001-05-25 スラグ層厚さ又はスラグ層厚さと溶融金属層表面レベル位置測定方法及びその測定装置

Publications (1)

Publication Number Publication Date
WO2002097378A1 true WO2002097378A1 (fr) 2002-12-05

Family

ID=19001742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000750 WO2002097378A1 (fr) 2001-05-25 2002-01-31 Procede permettant de mesurer l'epaisseur d'une couche de scorie ou la position du niveau superficiel d'une couche de metal en fusion et dispositif de mesure

Country Status (3)

Country Link
JP (1) JP5124894B2 (ja)
TW (1) TW528853B (ja)
WO (1) WO2002097378A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032561B3 (de) * 2004-07-05 2006-02-09 Heraeus Electro-Nite International N.V. Behälter für Metallschmelze sowie Verwendung des Behälters
DE102006003950A1 (de) * 2006-01-26 2007-08-30 Heraeus Electro-Nite International N.V. Vorrichtung zum Bestimmen einer Grenzfläche einer Schlackeschicht
KR100793936B1 (ko) 2006-09-18 2008-01-16 주식회사 포스코 용융 몰드플럭스 두께 측정 장치 및 방법
CN101849167B (zh) * 2008-10-28 2011-06-01 东北大学 熔融金属液位的测量装置及测量方法
JP5375815B2 (ja) * 2010-12-24 2013-12-25 ヘレウス・エレクトロナイト株式会社 溶融金属測定用プローブの浸漬深さ制御方法、及びこれに用いる溶融金属測定用プローブ
AR086927A1 (es) * 2011-06-16 2014-01-29 Avemis S A S Dispositivo para medir el espesor de la escoria
EP2737285A1 (en) * 2011-07-27 2014-06-04 Tata Steel UK Ltd Method and apparatus for measuring liquid metal height and the thickness of a slag layer in a metallurgical vessel
EP2554955A1 (en) * 2011-08-05 2013-02-06 Tata Steel UK Limited Method and apparatus for measuring liquid metal height and the thickness of a slag layer in a metallurgical vessel
KR101734219B1 (ko) 2015-12-30 2017-05-12 우진 일렉트로나이트(주) 탕면측정용 저항방식 프로브
CN107504892B (zh) * 2017-10-13 2023-04-28 中国恩菲工程技术有限公司 矿热电炉渣层厚度检测装置及检测方法
CN109238122A (zh) * 2018-08-28 2019-01-18 江苏天楹环保能源成套设备有限公司 一种用于测量等离子体熔融炉熔渣层厚度的方法
CN113418565A (zh) * 2021-07-20 2021-09-21 光大环保技术研究院(深圳)有限公司 一种等离子熔融炉内温度与熔渣厚度的测量装置及方法
TW202415466A (zh) * 2022-06-28 2024-04-16 巴西商維蘇威耐火材料有限公司 用於測量熔融金屬頂部熔渣層的位置與厚度之測量噴槍

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419427A (en) * 1977-07-15 1979-02-14 Broken Hill Pty Co Ltd Method and apparatus for indicating liquid level in conatainer
US5827474A (en) * 1997-01-02 1998-10-27 Vesuvius Crucible Company Apparatus and method for measuring the depth of molten steel and slag

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516757A (en) * 1974-07-08 1976-01-20 Nippon Steel Corp Yokinaino yojukinzokureberukenshutsuhoho
JPS5123414A (ja) * 1974-08-22 1976-02-25 Sumitomo Metal Ind Yokoruijuryokeisokuhoho
JPS60188818A (ja) * 1984-03-09 1985-09-26 Showa Alum Corp 金属溶湯のレベルセンサ
JPH0478525U (ja) * 1990-11-17 1992-07-08
JPH09145450A (ja) * 1995-11-22 1997-06-06 Nippon Steel Corp スラグ層厚測定方法
JPH1130545A (ja) * 1997-07-09 1999-02-02 Tsukishima Kikai Co Ltd 溶融炉における堆積物の検出装置および検出方法
JP3692245B2 (ja) * 1998-09-11 2005-09-07 三菱重工業株式会社 プラズマ式灰溶融炉の溶融スラグ深さ等の測定方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5419427A (en) * 1977-07-15 1979-02-14 Broken Hill Pty Co Ltd Method and apparatus for indicating liquid level in conatainer
US5827474A (en) * 1997-01-02 1998-10-27 Vesuvius Crucible Company Apparatus and method for measuring the depth of molten steel and slag

Also Published As

Publication number Publication date
JP5124894B2 (ja) 2013-01-23
TW528853B (en) 2003-04-21
JP2002356709A (ja) 2002-12-13

Similar Documents

Publication Publication Date Title
CN102859336B (zh) 在冶金容器中的测量
WO2002097378A1 (fr) Procede permettant de mesurer l'epaisseur d'une couche de scorie ou la position du niveau superficiel d'une couche de metal en fusion et dispositif de mesure
EP0469044B1 (en) Continuous-use molten metal inclusion sensor
JPS5831284A (ja) スラグ・金属浴内の金属浴面を検出する装置
WO1991013324A1 (fr) Appareil et procede de detection de niveau de liquide
US7876095B2 (en) Apparatus for determination of an interface of a slag layer
CN113418565A (zh) 一种等离子熔融炉内温度与熔渣厚度的测量装置及方法
JP3138953B2 (ja) スラグ厚測定装置
US4037761A (en) Indication of levels in receptacles
CN110230975B (zh) 一种钢铁熔渣层厚度测量装置
CA2709206C (en) Assembly for measurement of a metal level in a reduction cell
GB2286051A (en) Determining the thickness of layers on a metal melt
JP4181374B2 (ja) 溶鋼層表面位置またはスラグ層厚さ或はその双方測定方法、その装置及びそれに用いられるプローブ
KR101734219B1 (ko) 탕면측정용 저항방식 프로브
JP5375815B2 (ja) 溶融金属測定用プローブの浸漬深さ制御方法、及びこれに用いる溶融金属測定用プローブ
CN220507939U (zh) 测量枪
CN112400098A (zh) 用于检测熔炼炉中的金属液位的检测系统
KR101577809B1 (ko) 용융금속 내 슬래그 두께 측정이 가능한 복합 프로브
KR20130022927A (ko) 용융 슬래그 중 산화철 측정방법
JP2003207473A (ja) スラグの塩基度測定方法とその装置
SU1217609A1 (ru) Способ контрол уровн металлической ванны при электрошлаковом процессе
JP2011075582A (ja) 酸素銅用酸素センサの選択方法
JP2012251884A (ja) 境界位置検知方法、境界位置検知システム及び該境界位置検知システムに用いるデータ測定プローブ
CN102177279A (zh) 使金属电解槽放液的系统、方法和装置
KR20170079311A (ko) 복합 프로브 및 이를 구비하는 복합 프로브 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A OF 19-03-2004)

122 Ep: pct application non-entry in european phase