WO2002096845A2 - Verfahren zur methanolherstellung aus kohlenwasserstoff - Google Patents

Verfahren zur methanolherstellung aus kohlenwasserstoff Download PDF

Info

Publication number
WO2002096845A2
WO2002096845A2 PCT/EP2002/005862 EP0205862W WO02096845A2 WO 2002096845 A2 WO2002096845 A2 WO 2002096845A2 EP 0205862 W EP0205862 W EP 0205862W WO 02096845 A2 WO02096845 A2 WO 02096845A2
Authority
WO
WIPO (PCT)
Prior art keywords
methanol
synthesis gas
synthesis
gas
reforming
Prior art date
Application number
PCT/EP2002/005862
Other languages
English (en)
French (fr)
Other versions
WO2002096845A3 (de
Inventor
Hans-Joachim Bähnisch
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Publication of WO2002096845A2 publication Critical patent/WO2002096845A2/de
Publication of WO2002096845A3 publication Critical patent/WO2002096845A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis

Definitions

  • the invention relates to a process for the production of methanol, which is particularly suitable for expanding existing plants and for plants of particularly large capacity, from hydrocarbon, e.g. Natural gas or such gases that are produced during oil production.
  • hydrocarbon e.g. Natural gas or such gases that are produced during oil production.
  • a methanol production plant forms a network with a plant for the production of synthesis gas from natural gas, air and water, both plants being dimensioned in such a way that the synthesis gas produced exactly covers the requirements of the methanol-producing catalyst of a synthesis gas cycle and in particular stoichiometrically based on that is composed of the following reactions, only two of which are linearly dependent on one another:
  • cH 2 , cCO 2 and cCO are the respective gas concentrations of the relevant starting materials on a mole basis.
  • the synthesis gas actually generated in reformers can be overstoichiometric if ⁇ > 2 or understoichiometric if ⁇ ⁇ 2.
  • Such a synthesis gas is usually produced in a primary reformer (also referred to in the literature as a steam reformer), usually together with a secondary reformer, from natural gas or in similar gas generation plants from other carbon sources. It is also known from DE 19951 137 to mix several differently composed synthesis gases from different sources so that a feed gas suitable for the production of methanol results, furthermore to place a methanol prereactor in a favorable manner and to increase the methanol synthesis capacity.
  • the synthesis gas is generated in at least two different reforming systems, of which the one reforming system contains at least one reforming device which generates a substoichiometric synthesis gas, and the other reforming system contains at least one reforming device which generates a superstoichiometric synthesis gas,
  • each of the reforming systems can be composed of a plurality of individual reforming devices connected in parallel.
  • a further advantage of the invention is that partial load operation is also economically possible, which has not been possible in previous practice with only one primary reformer plus a downstream secondary reformer.
  • At least a part of the purge stream (also referred to as "purge" in specialist circles), which has to be discharged from the circulation system for catalytic methanol synthesis, in order to initiate Restricting protection with inert gas components, branched off and used as feed gas for at least one substoichiometric synthesis gas-producing reformer.
  • This possibility of use is a further advantage of the invention, since otherwise this flushing stream can usually only be used as a firing gas for a primary reformer, which generates superstoichiometric synthesis gas.
  • the circulation system for catalytic methanol synthesis is preceded by a methanol prereactor, in which methanol is also generated and discharged.
  • At least one reforming device which generates a substoichiometric or superstoichiometric synthesis gas
  • at least one methanol prereactor in which methanol is also generated and discharged.
  • Such methanol pre-reactors can be arranged either before or after or both before and after the compression stage which may follow the system for synthesis gas generation.
  • At least one reforming device which generates a substoichiometric synthesis gas is designed as an autothermal reformer or catalytic autothermal reformer or as a partial oxidation and at least one reforming device which generates superstoichiometric synthesis gas is designed as a primary reformer, which has no downstream Secondary reformer succeeds.
  • the synthesis gas generated is compressed at least in one stage. This will happen in an advantageous manner if the optimum operating pressure of the autothermal reformer deviates significantly downwards from that of the chosen method of catalytic methanol synthesis. In such a case, it is also advantageous if the synthesis gas generated in the primary reformer is compressed in several stages.
  • the invention is illustrated below with the aid of two greatly simplified block flow diagrams. Both show the method according to the invention with a primary reformer 1 as a reforming device which generates an over-stoichiometric synthesis gas, and an autothermal reformer 2 as a reforming device which produces an under-stoichiometric synthesis gas, and a catalytic see circulation system for methanol synthesis 3.
  • the desulfurized natural gas 4 is divided into a portion of natural gas 5 to the primary reformer and a portion of natural gas 6 to the autothermal reformer, and each of the two natural gas portions is supplied with a precisely determined amount of water vapor from water vapor 7.
  • the natural gas 5 is then converted to the primary reformer in the catalyst-filled tubes on the reaction side 8 of the primary reformer 1 to synthesis gas. Since this reaction is endothermic, the fuel gas mixture 10 is burned on the firing side 9 of the primary reformer 1 (the exhaust line is not shown here for reasons of clarity).
  • This fuel gas mixture 10 consists of a high-calorific fuel gas 11, which can be, for example, natural gas, and purge gas 12, which must be continuously removed from the catalytic cycle system for methanol synthesis 3 in order to avoid inert accumulation in the circuit.
  • the approximately 880 ° C hot synthesis gas 13 generated in the primary reformer 1 is cooled in the waste heat system 14, steam usually being generated.
  • the cooled synthesis gas 15 is then pre-compressed to about 40 bar in the pre-compression 16.
  • the pre-compressed synthesis gas 17 is after-cooled in the intermediate cooling 18 and the synthesis gas 19 can be combined with the synthesis gas 20 from the autothermal reformer 2. Except for the combination, this type of synthesis gas generation essentially corresponds to the already known prior art.
  • the synthesis gas 19 admixed synthesis gas 20 originates from the autothermal reformer 2, in which a synthesis gas is generated with natural gas 6, oxygen 21 and purge gas 22, which is cooled down as a synthesis gas 23 which is about 1000 ° C. in the waste heat system 24.
  • the two synthesis gases 19 and 20 can have different compositions, as long as the resulting synthesis gas mixture 25 is composed in accordance with equation (4). This enables significant synergy effects to be achieved in full load operation, since neither autothermal reformers nor primary reformers, operated individually, are usually able to generate an optimal gas composition for methanol synthesis without restrictions or additional measures.
  • FIG. 2 is expanded compared to FIG. 1 by the 4 methanol pre-reactors 29, 32, 35 and 38.
  • the methanol pre-reactors serve to increase the total achievable conversion to methanol in an inexpensive manner, provided that enough synthesis gas can be provided. This involves accepting methanol synthesis that is incomplete compared to a circulatory system, but this is not a problem here because the residual gas from the pre-reactors is not discarded, but is ultimately used in a circulatory system for methanol synthesis, in this example the catalytic circulatory system for methanol synthesis 3.
  • the methanol pre-reactors can be used in a sensible manner at 4 different points, methanol being obtained in each case and a synthesis gas depleted by this amount being dispensed: 1. Before pre-compression 16: methanol pre-reactor 29 with methanol 30 and depleted synthesis gas 31
  • Table 1 shows a calculated design example for the invention, based on a system according to FIG. 1:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung von Methanol aus Kohlenwasserstoff, insbesondere Erdgas, wobei das Synthesegas in mindestens zwei verschiedenen Reformiersystemen erzeugt wird, von denen das eine Reformiersystem mindestens eine Reformiervorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, enthält, und das andere Reformiersystem mindestens eine Reformiervorrichtung, welche ein überstöchiometrisches Synthesegas erzeugt, enthält, das erzeugte überstöchiometrische Synthesegas nachfolgend verdichtet wird, die erzeugten überstöchiometrischen und unterstöchiometrischen Synthesegase zusammengeführt werden, und das zusammengeführte Synthesegas in einem Kreislaufsystem katalytisch unter Druck zu Methanol umgesetzt wird. Hierbei kann jedes der Reformiersysteme aus einer Mehrzahl parallel verschalteter, einzelner Reformiervorrichtungen zusammengesetzt sein.

Description

Verfahren zur Methanolherstellung aus Kohlenwasserstoff
[0001] Die Erfindung bezieht sich auf ein Verfahren zur Methanolherstellung, welches sich besonders zur Erweiterung bestehender Anlagen sowie für Anlagen be- sonders großer Kapazität eignet, aus Kohlenwasserstoff, z.B. Erdgas oder solchen Gasen, die bei der Erdölförderung anfallen.
[0002] Normalerweise bildet eine Methanolerzeugungsanlage einen Verbund mit einer Anlage zur Erzeugung von Synthesegas aus Erdgas, Luft und Wasser, wobei beide Anlagen so dimensioniert werden, dass das erzeugte Synthesegas die Anforderungen des Methanol erzeugenden Katalysators eines Synthesegaskreislaufes genau abdeckt und insbesondere stöchiometrisch bezogen auf die folgenden Reaktionen zusammengesetzt ist, wobei nur zwei davon linear abhängig voneinander sind:
CO + 2 H2 <-> CH3OH - 90,84 kJ/mol (1)
CO2 + H2 - CO + H2O + 41 ,20 kJ/mol (2)
CO2 + 3 H2 «- CH3OH + H2O - 49,64 kJ/mol (3)
Nach diesen Reaktionsgleichungen gilt für ein stöchiometrisches Synthesegas:
cH2-cCO2 ζ = = 2 (4) cCO+cCO2
wobei cH2, cCO2 und cCO die jeweiligen Gaskonzentrationen der betreffenden Ausgangsstoffe auf Mol-Basis sind. Das tatsächlich in Reformiervorrichtungen erzeugte Synthesegas kann überstöchiometrisch sein, wenn ζ > 2 ist, oder unterstöchiometrisch sein, wenn ζ < 2 ist.
[0003] Ein solches Synthesegas wird üblicherweise in einem Primärreformer (in der Literatur auch als Dampfreformer bezeichnet), in der Regel zusammen mit einem Sekundärreformer, aus Erdgas oder in ähnlichen Gaserzeugungsanlagen aus anderen Kohlenstoffquellen einstraßig hergestellt. Ebenfalls bekannt ist aus der DE 19951 137, mehrere verschieden zusammengesetzte Synthesegase aus unterschiedlichen Quellen so zusammenzumischen, dass sich ein für die Methanolherstellung passendes Einsatzgas ergibt, ferner, in günstiger Weise einen Methanol-Vorreaktor zu platzieren und die Methanolsynthesekapazität zu erhöhen. [0004] Weiterhin sind eine Reihe von Anlagen bzw. Verfahren zur katalytischen Methanolsynthese bekannt, wobei für die Fülle der Lösungen hier als Beispiel die Schriften DE 35 18 362, US 29 04 575, DE 41 00 632 genannt seien, ferner existieren eine große Anzahl von Schriften, die sich mit der Erzeugung von Synthesegas befassen, welches sich als Einsatzgas für die genannten Methanolsyntheseverfahren eignet.
[0005] Aufgabe der Erfindung ist es daher, die bekannten Verfahren so miteinander zu kombinieren, dass systembedingte Nachteile überwunden werden, eine güns- tige Nachrüstbarkeit geschaffen wird und Anlagen großer Kapazität in besonders wirtschaftlicher Weise gestaltet werden können.
[0006] Mit einem Verfahren der eingangs bezeichneten Art wird diese Aufgabe gemäß der Erfindung dadurch gelöst, dass
• das Synthesegas in mindestens zwei verschiedenen Reformiersystemen erzeugt wird, von denen das eine Reformiersystem mindestens eine Reformiervorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, enthält, und das andere Reformiersystem mindestens eine Reformiervorrichtung, welche ein überstöchio- metrisches Synthesegas erzeugt, enthält,
• das erzeugte überstöchiometrische Synthesegas nachfolgend verdichtet wird,
• die erzeugten überstöchiometrischen und unterstöchiometrischen Synthesegase zusammengeführt werden, und
• das zusammengeführte Synthesegas in einem Kreislaufsystem katalytisch unter Druck zu Methanol umgesetzt wird.
Hierbei kann jedes der Reformiersysteme aus einer Mehrzahl parallel verschalteter, einzelner Reformiervorrichtungen zusammengesetzt sein.
[0007] Hierdurch wird der Vorteil erreicht, dass sehr große Anlagenkapazitäten erreicht werden können. Ein weiterer Vorteil der Erfindung ist, dass auch ein Teillastbetrieb wirtschaftlich möglich ist, was bei der bisherigen Praxis mit nur einem Primärreformer zuzüglich einem nachgeschalteten Sekundärreformer nicht möglich ist.
[0008] In einer weiteren Ausgestaltung der Erfindung wird zumindest ein Teil des Spülstroms (in Fachkreisen auch als "Purge" bezeichnet), der aus dem Kreislaufsystem zur katalytischen Methanolsynthese ausgeschleust werden muss, um eine Anrei- cherung mit Inertgasbestandteilen zu beschränken, abgezweigt und als Einsatzgas für mindestens eine unterstöchiometrisches Synthesegas erzeugende Reformiervorrichtung mitverwendet. Diese Nutzungsmöglichkeit ist ein weiterer Vorteil der Erfindung, da sonst üblicherweise dieser Spülstrom nur als Befeuerungsgas für einen Primärre- former, welcher überstöchiometrisches Synthesegas erzeugt, verwendet werden kann.
[0009] In einer weiteren Ausgestaltung der Erfindung wird dem Kreislaufsystem zur katalytischen Methanolsynthese ein Methanol-Vorreaktor vorangeschaltet, in welchem ebenfalls Methanol erzeugt und ausgeschleust wird.
[0010] In einer weiteren Ausgestaltung der Erfindung wird mindestens einer Reformiervorrichtung, welche ein unterstöchiometrisches oder überstöchiometrisches Synthesegas erzeugt, mindestens ein Methanol-Vorreaktor nachgeschaltet, in welchem ebenfalls Methanol erzeugt und ausgeschleust wird. Solche Methanol-Vorreaktoren können entweder vor oder nach oder sowohl vor als auch nach der dem System zur Synthesegaserzeugung eventuell nachfolgenden Verdichtungsstufe angeordnet werden.
[0011] In weiteren Ausgestaltungen der Erfindung wird zumindest eine Reformier- Vorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, als Autothermer Reformer oder Katalytischer Autothermer Reformer oder als partielle Oxidation ausgebildet und zumindest eine Reformiervorrichtung, welche überstöchiometrisches Synthesegas erzeugt, als Primärreformer ausgebildet, welchem stromabwärts kein Sekundärreformer nachfolgt.
[0012] In den Systemen, die einen Autothermen Reformer enthalten, wird das erzeugte Synthesegas mindestens einstufig verdichtet. Dies wird in vorteilhafter Weise dann geschehen, wenn der optimale Betriebsdruck des Autothermen Reformers von dem des gewählten Verfahrens der katalytischen Methanolsynthese deutlich nach unten abweicht. In einem solchen Fall ist es ebenfalls vorteilhaft, wenn die Verdichtung des im Primärreformer erzeugten Synthesegases mehrstufig erfolgt.
[0013] Die Erfindung wird im Folgenden anhand von 2 stark vereinfachten Blockfließbildern verdeutlicht. Beide zeigen das erfindungsgemäße Verfahren mit einem Primärreformer 1 als einer Reformiervorrichtung, welche ein überstöchiometrisches Synthesegas erzeugt, und einen Autothermen Reformer 2 als einer Reformiervorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, und einem katalyti- sehen Kreislaufsystem zur Methanolsynthese 3. Hierbei wird das entschwefelte Erdgas 4 in einen Anteil Erdgas 5 zum Primärreformer und einen Anteil Erdgas 6 zum Autothermen Reformer aufgeteilt und jedem der beiden Erdgasanteile jeweils eine genau bestimmte Menge Wasserdampf vom Wasserdampf 7 zugeführt. Danach wird das Erdgas 5 zum Primärreformer in den katalysatorgefüllten Rohren auf der Reaktionsseite 8 des Primärreformers 1 zu Synthesegas umgesetzt. Da diese Reaktion endotherm ist, wird auf der Feuerungsseite 9 des Primärreformers 1 die Brenngasmischung 10 verfeuert (der Abgasstrang wird aus Gründen der Übersichtlichkeit hier nicht dargestellt). Diese Brenngasmischung 10 besteht aus einem heizwertreichen Brenn- gas 11, welches z.B. Erdgas sein kann, und aus Spülgas 12, welches kontinuierlich aus dem katalytischen Kreislaufsystem zur Methanolsynthese 3 ausgeschleust werden muss, um Inertenanreicherung im Kreislauf zu vermeiden. Das im Primärreformer 1 erzeugte, ca. 880 °C heiße Synthesegas 13 wird im Abhitzesystem 14 abgekühlt, wobei üblicherweise Dampf erzeugt wird. Das gekühlte Synthesegas 15 wird daraufhin in der Vorverdichtung 16 auf ca. 40 bar vorverdichtet. Das vorverdichtete Synthesegas 17 wird in der Zwischenkühlung 18 nachgekühlt und das Synthesegas 19 kann mit dem Synthesegas 20 aus dem Autothermen Reformer 2 zusammengeführt werden. Bis auf die Zusammenführung entspricht diese Art der Erzeugung von Synthesegas im Wesentlichen dem bereits bekannten Stand der Technik.
[0014] Das dem Synthesegas 19 zugemischte Synthesegas 20 entstammt dem Autothermen Reformer 2, in welchem mit Erdgas 6, Sauerstoff 21 und Spülgas 22 ein Synthesegas erzeugt wird, welches als ca. 1000 °C heißes Synthesegas 23 im Abhitzesystem 24 heruntergekühlt wird. Die beiden Synthesegase 19 und 20 können dabei verschiedene Zusammensetzungen aufweisen, solange sich das ergebende Synthesegasgemisch 25 entsprechend Gleichung (4) zusammensetzt. Hierdurch lassen sich im Volllastbetrieb deutliche Synergieeffekte erzielen, da weder Autotherme Reformer noch Primärreformer, einzeln betrieben, üblicherweise in der Lage sind, ohne Einschränkungen oder Zusatzmaßnahmen eine optimale Gaszusammensetzung für eine Methanolsynthese zu erzeugen. Die Zusammenmischung der beiden Synthesegase bewirkt jedoch, dass beide Systeme zur Synthesegaserzeugung in ihren jeweils optimalen Betriebszuständen betrieben werden können, was ein Vorteil der Erfindung ist. Erst wenn Teillastbetrieb gefahren werden soll, was mit einer Abschaltung eines der Systeme zur Synthesegaserzeugung verbunden wäre, oder eine Störung in einem der Synthesegaserzeuger auftritt, müssen die Betriebsbedingungen für den übrigen Synthesegaserzeuger so neu eingestellt werden, dass dieser ein Synthesegas entsprechend Gleichung (4) erzeugt. [0015] Das Synthesegasgemisch 25 wird danach in der Nachverdichtung 26 auf einen Enddruck von ca. 60 bis'100 bar verdichtet, das nachverdichtete Synthesegas 27 wird in das katalytische Kreislaufsystem zur Methanolsynthese 3 eingeleitet, wo in ei- nem oder mehreren Reaktoren Methanol erzeugt und im Anschluss daran auskondensiert wird. Dieses auskondensierte Methanol wird als Methanol 28 ausgeschleust und muss in der Regel noch gereinigt werden.
[0016] Figur 2 ist in der Darstellung gegenüber Figur 1 um die 4 Methanol-Vorre- aktoren 29, 32, 35 und 38 erweitert. Die Methanol-Vorreaktoren dienen dazu, den erreichbaren Gesamtumsatz zu Methanol auf preiswerte Weise zu erhöhen, immer vorausgesetzt, es kann genügend Synthesegas bereitgestellt werden. Hierbei nimmt man eine gegenüber einem Kreislaufsystem unvollständige Methanolsynthese in Kauf, was aber hier deshalb unproblematisch ist, weil das Restgas aus den Vorreaktoren nicht verworfen wird, sondern letztendlich in einem Kreislaufsystem für die Methanolsynthese genutzt wird, in diesem Beispiel dem katalytischen Kreislaufsystem zur Methanolsynthese 3. Die Methanol-Vorreaktoren können an 4 verschiedenen Stellen sinnvoll eingesetzt werden, wobei jeweils Methanol gewonnen und ein um diese Menge abge- reichertes Synthesegas abgegeben wird: 1. vor der Vorverdichtung 16: Methanol-Vorreaktor 29 mit Methanol 30 und abgerei- chertem Synthesegas 31
2. nach der Vorverdichtung 16: Methanol-Vorreaktor 32 mit Methanol 33 und abgerei- chertem Synthesegas 34
3. hinter dem Autothermen Reformer 2: Methanol-Vorreaktor 35 mit Methanol 36 und abgereichertem Synthesegas 37
4. direkt vor dem katalytischen Kreislaufsystem zur Methanolsynthese 3: Methanol- Vorreaktor 38 mit Methanol 39 und abgereichertem Synthesegas 40
[0017] Außer der in Figur 2 gewählten Darstellung mit insgesamt 4 Methanol-Vor- reaktoren lassen sich auch Varianten
• mit nur einzelnen Methanol-Vorreaktoren,
• mit mehreren parallel geschalteten Methanol-Vorreaktoren und
• mit im Bypass betriebenen Methanol-Vorreaktoren an den jeweiligen Stellen sinnvoll einsetzen, wobei die jeweiligen Anforderungen an die Wirtschaftlichkeit des Teillastverhaltens der Gesamtanlage besondere Berücksichtigung finden, was ein weiterer Vorteil der Erfindung ist. [0018] Tabelle 1 zeigt ein gerechnetes Auslegungsbeispiel für die Erfindung, basierend auf einer Anlage gemäß Figur 1:
Tabelle 1:
Figure imgf000008_0001
Bezugszeichenliste
1 Primärreformer
2 Autothermer Reformer
3 katalytisches Kreislaufsystem zur Methanolsynthese
4 entschwefeltes Erdgas
5 Erdgas (zu 1)
6 Erdgas (zu 2)
7 Wasserdampf
8 Reaktionsseite des Primärreformers 1
9 Feuerungsseite des Primärreformers 1
10 Brenngasmischung
11 Brenngas
12 Spülgas
13 heißes Synthesegas
14 Abhitzesystem
15 gekühltes Synthesegas
16 Vorverdichtung
17 vorverdichtetes Synthesegas
18 Zwischenkühlung
19 Synthesegas
20 Synthesegas
21 Sauerstoff
22 Spülgas
23 heißes Synthesegas
24 Abhitzesystem
25 Synthesegasgemisch
26 Nachverdichtung
27 nachverdichtetes Synthesegas Methanol
Methanol-Vorreaktor
Methanol abgereichertes Synthesegas
Methanol-Vorreaktor
Methanol abgereichertes Synthesegas
Methanol-Vorreaktor
Methanol abgereichertes Synthesegas
Methanol-Vorreaktor
Methanol abgereichertes Synthesegas

Claims

Patentansprüche
1. Verfahren zur Herstellung von Methanol aus Kohlenwasserstoff, dadurch gekennzeichnet, dass das Synthesegas in mindestens zwei verschiedenen Reformiersystemen erzeugt wird, von denen das eine Reformiersystem mindestens eine Reformiervorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, enthält, und das andere Reformiersystem mindestens eine Reformiervorrichtung, welche ein überstöchiometrisches Synthesegas erzeugt, enthält, das erzeugte überstöchiometrische Synthesegas nachfolgend verdichtet wird, die erzeugten überstöchiometrischen und unterstöchiometrischen Synthesegase zusammengeführt werden, und das zusammengeführte Synthesegas in einem Kreislaufsystem katalytisch unter Druck zu Methanol umgesetzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest ein Teil des Spülstroms, der aus dem Kreislaufsystem zur katalytischen Methanolsynthese ausgeschleust werden muss, um eine Anreicherung mit Inertgasbestandteilen zu beschränken, abgezweigt und als Einsatzgas für mindestens eine unterstöchiometrisches Synthesegas erzeugende Reformiervorrichtung mitverwendet wird
3. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass dem Kreislaufsystem zur katalytischen Methanolsynthese ein Methanol- Vorreaktor vorangeschaltet wird, in welchem ebenfalls Methanol erzeugt und ausgeschleust wird.
4. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mindestens einer Reformiervorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, mindestens ein Methanol-Vorreaktor nachgeschaltet wird, in welchem ebenfalls Methanol erzeugt und ausgeschleust wird.
5. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass mindestens einer Reformiervorrichtung, welche ein überstöchiometrisches Synthesegas erzeugt, mindestens ein Methanol-Vorreaktor nachgeschaltet wird, in welchem ebenfalls Methanol erzeugt und ausgeschleust wird.
6. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass zumindest eine Reformiervorrichtung, welche ein unterstöchiometrisches Synthesegas erzeugt, als Autothermer Reformer oder Katalytischer Autothermer Reformer ausgebildet wird.
7. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass zumindest eine Reformiervorrichtung, welche unterstöchiometrisches Synthesegas erzeugt, als Partielle Oxidation ausgebildet wird.
8. Verfahren nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass zumindest eine Reformiervorrichtung, welche überstöchiometrisches Synthesegas erzeugt, als Primärreformer ausgebildet wird, welchem stromabwärts kein Sekundärreformer nachfolgt.
PCT/EP2002/005862 2001-05-31 2002-05-28 Verfahren zur methanolherstellung aus kohlenwasserstoff WO2002096845A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2001126719 DE10126719A1 (de) 2001-05-31 2001-05-31 Verfahren zur Methanolherstellung aus Erdgas
DE10126719.3 2001-05-31

Publications (2)

Publication Number Publication Date
WO2002096845A2 true WO2002096845A2 (de) 2002-12-05
WO2002096845A3 WO2002096845A3 (de) 2003-12-11

Family

ID=7686890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005862 WO2002096845A2 (de) 2001-05-31 2002-05-28 Verfahren zur methanolherstellung aus kohlenwasserstoff

Country Status (2)

Country Link
DE (1) DE10126719A1 (de)
WO (1) WO2002096845A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166872A1 (en) * 2017-03-12 2018-09-20 Haldor Topsøe A/S Co-production of methanol and ammonia
WO2018166873A1 (en) * 2017-03-12 2018-09-20 Haldor Topsøe A/S Co-production of methanol, ammonia and urea

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010008857A1 (de) 2010-02-22 2011-08-25 Lurgi GmbH, 60439 Verfahren zur Herstellung von Methanol
EP3741738B1 (de) 2019-05-22 2022-09-21 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Verfahren zur herstellung von methanol
DE102019124078A1 (de) * 2019-09-09 2021-03-11 Thyssenkrupp Ag Verfahren zur Synthese eines Stoffs

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951137A1 (de) * 1999-09-07 2001-03-15 Krupp Uhde Gmbh Verfahren zur Methanolsynthese aus Wasserstoff, Kohlenmonoxid und Kohlendioxid unter Druck

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4100632C1 (de) * 1991-01-11 1992-04-23 Uhde Gmbh, 4600 Dortmund, De

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951137A1 (de) * 1999-09-07 2001-03-15 Krupp Uhde Gmbh Verfahren zur Methanolsynthese aus Wasserstoff, Kohlenmonoxid und Kohlendioxid unter Druck

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018166872A1 (en) * 2017-03-12 2018-09-20 Haldor Topsøe A/S Co-production of methanol and ammonia
WO2018166873A1 (en) * 2017-03-12 2018-09-20 Haldor Topsøe A/S Co-production of methanol, ammonia and urea
CN110177772A (zh) * 2017-03-12 2019-08-27 托普索公司 甲醇、氨和尿素的联合生产
US11130681B2 (en) 2017-03-12 2021-09-28 Haldor Topsoe A/S Co-production of methanol and ammonia
US11130680B2 (en) 2017-03-12 2021-09-28 Haldor Topsoe A/S Co-production of methanol, ammonia and urea
RU2766961C1 (ru) * 2017-03-12 2022-03-16 Хальдор Топсёэ А/С Совместное получение метанола, аммиака и мочевины
AU2018233670B2 (en) * 2017-03-12 2022-04-28 Haldor Topsøe A/S Co-production of methanol, ammonia and urea
CN110177772B (zh) * 2017-03-12 2022-09-09 托普索公司 甲醇、氨和尿素的联合生产
US11767226B2 (en) 2017-03-12 2023-09-26 Topsoe A/S Co-production of methanol, ammonia and urea
US11767227B2 (en) 2017-03-12 2023-09-26 Topsoe A/S Co-production of methanol and ammonia

Also Published As

Publication number Publication date
WO2002096845A3 (de) 2003-12-11
DE10126719A1 (de) 2002-12-19

Similar Documents

Publication Publication Date Title
DE69905543T2 (de) Verfahren zur Herstellung von Methanol
EP3307675B1 (de) Mehrdruckverfahren zur herstellung von ammoniak
EP1751080A1 (de) Koproduktion von methanol und ammoniak aus erdgas
DE102008002963A1 (de) Polygenerationssysteme
WO2017137581A1 (de) Verfahren zur synthese von methanol
DE60100415T2 (de) Verfahren zur Herstellung von Synthesegas für die Herstellung von Benzin , Kerosin und Gasöl
DE2657598A1 (de) Verfahren zur erzeugung eines kohlenmonoxydreichen gases
DE2542705C2 (de) Verfahren und Anlage zur Herstellung von mit Deuterium angereichertem Wasser bei der Gewinnung von Wasserstoff
WO2002096845A2 (de) Verfahren zur methanolherstellung aus kohlenwasserstoff
DE112020001970T5 (de) Synthetik-Produkt-Herstellungssystem und Synthetik-Produktherstellungsverfahren
EP3969433A1 (de) Verfahren und anlage zur synthese von methanol
EP1210308B1 (de) Verfahren und anlage zur methanolsynthese aus wasserstoff, kohlenmonoxid und kohlendioxid unter druck
DE3518362A1 (de) Verfahren zur herstellung von methanol
WO2015177051A1 (de) Herstellung von synthesegas mit zwei autothermen reformern
EP3782973A1 (de) Verfahren und anlage zur herstellung von methanol
EP2520786B1 (de) IGCC-Kraftwerk mit einem Wasser-Gas-Shift-Membranreaktor (WGS-MR) sowie Verfahren zum Betreiben eines solchen IGCC-Kraftwerks mit Spülgas
BE1030201B1 (de) Ammoniaksynthese und Harnstoffsynthese mit reduziertem CO2-Fußabdruck
EP3770140B1 (de) Verfahren und anlage zur synthese von methanol
WO2020239754A1 (de) Verfahren und anlage zur synthese von methanol
WO2015106952A1 (de) Verfahren und vorrichtung zur erzeugung von dimethylether
AT526550A1 (de) Verfahren zur kontinuierlichen Produktion von Wasserstoff, Kohlenstoffdioxid und Stickstoff
EP3523245B1 (de) Verfahren zur herstellung eines produkts, insbesondere von ammoniak aus einem synthesegas
WO2016174126A1 (de) Asymmetrische kreislaufkaskaden in der gaskatalyse
WO2023139179A1 (de) AMMONIAKSYNTHESE UND HARNSTOFFSYNTHESE MIT REDUZIERTEM CO2-FUßABDRUCK
DE3206516C2 (de) Verfahren zur Erzeugung von Ammoniak-Synthesegas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP