WO2002092673A1 - Modifikation von verstreckten folien - Google Patents

Modifikation von verstreckten folien Download PDF

Info

Publication number
WO2002092673A1
WO2002092673A1 PCT/EP2002/005256 EP0205256W WO02092673A1 WO 2002092673 A1 WO2002092673 A1 WO 2002092673A1 EP 0205256 W EP0205256 W EP 0205256W WO 02092673 A1 WO02092673 A1 WO 02092673A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
film
polymer
groups
stretching
Prior art date
Application number
PCT/EP2002/005256
Other languages
English (en)
French (fr)
Inventor
Thomas HÄRING
Rima HÄRING
Original Assignee
Haering Thomas
Haering Rima
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP02743003A priority Critical patent/EP1392765B1/de
Priority to US10/477,174 priority patent/US8079480B2/en
Application filed by Haering Thomas, Haering Rima filed Critical Haering Thomas
Priority to DE50210461T priority patent/DE50210461D1/de
Priority to KR10-2003-7014681A priority patent/KR20040008173A/ko
Priority to AU2002342310A priority patent/AU2002342310B2/en
Priority to DE10292065T priority patent/DE10292065D2/de
Priority to CA2446881A priority patent/CA2446881C/en
Priority to JP2002589551A priority patent/JP4154244B2/ja
Priority to KR1020097020575A priority patent/KR101005674B1/ko
Publication of WO2002092673A1 publication Critical patent/WO2002092673A1/de
Priority to ZA2004/00186A priority patent/ZA200400186B/en
Priority to AU2008229666A priority patent/AU2008229666A1/en
Priority to AU2009200145A priority patent/AU2009200145A1/en
Priority to AU2009201729A priority patent/AU2009201729A1/en
Priority to US13/329,112 priority patent/US9126147B2/en
Priority to US14/846,902 priority patent/US20150376360A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/142Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes with "carriers"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/148Organic/inorganic mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0025Applying surface layers, e.g. coatings, decorative layers, printed layers, to articles during shaping, e.g. in-mould printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1079Inducing porosity into non porous precursors membranes, e.g. leaching, pore stretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1093After-treatment of the membrane other than by polymerisation mechanical, e.g. pressing, puncturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/04Hydrophobization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/42Ion-exchange membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0088Blends of polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/256Sheets, plates, blanks or films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/008Wide strips, e.g. films, webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • B29L2009/005Layered products coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3468Batteries, accumulators or fuel cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/12Polymers characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/02Polysilicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • Stretched foils have been used in technology for more than 20 years.
  • Polypropylene or polyethylene films formed by extrusion are widely used in applications such as food packaging, food containers and the like.
  • Stretched polypropylene films, in particular biaxially stretched polypropylene films are widely used in packaging materials because of their excellent mechanical and optical properties. They are generally made by sequential biaxial stretching using a jig.
  • stretched films with inorganic fillers have been used as breathable films for diaper films.
  • the pore diameter of the very inexpensive films used here is, however, by orders of magnitude too large to be used by these films for applications that require dense membranes, e.g. could be used in the fuel cell.
  • the present invention relates to membranes based on stretched films.
  • the above object can be achieved by a stretched polymer film comprising (A) a polymer or polymer blend, and at least (B) another component with an average particle diameter of 0.1 to 15 ⁇ m, which by (C) one or more post-treatment steps, is processed into a membrane after stretching.
  • the average particle diameter of component (B) is in the range from 0.1 to 15 ⁇ m. It is preferably 0.5-8.0 ⁇ m, and the range of 1.0-7.0 ⁇ m is particularly preferred. If the diameter is less than 0.1 ⁇ m, secondary agglomeration occurs, and the resulting particles sometimes have large diameters, which usually lead to the film tearing in the stretching process. There is no particular limitation on the shape of the particles. However, spherical particles are preferred.
  • the proportion of component (B) in the undrawn film is 2 to 80 percent by weight, 10 to 70 percent by weight is preferred, and 20 to 60 percent by weight is particularly preferred.
  • the proportion by weight of polymeric component (A) is correspondingly 98 to 20 percent by weight before stretching, 90 to 30 percent by weight is preferred, and 80 to 40 percent by weight is particularly preferred.
  • the process comprises a simple mixing process. The mixing process can be done by adding component (B) into the molten component (A).
  • the mixing process can take place using a screw extrusion kneading device (for example an extruder with a screw or an extruder with twin screws), a Banbury mixer, a continuous mixer and a mixing roller or the like.
  • a screw extrusion kneading device for example an extruder with a screw or an extruder with twin screws
  • a Banbury mixer for example an extruder with a screw or an extruder with twin screws
  • a suitable solvent or solvent mixture Any solvent in which component (A) dissolves and which is at the same time not a solvent for component (B) is suitable.
  • Preferred solvents are water and aprotic solvents, such as tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), N-methyl-pyrrolidone (NMP), sulfolane and dimethylacetamide (DMAc).
  • THF tetrahydrofuran
  • DMSO dimethyl sulfoxide
  • the film obtained is a composite film or composite membrane.
  • Component (B) is distributed in the matrix of component (A).
  • the residual solvent content of the undrawn film is between two and thirty percent by weight, the range between five and twenty percent by weight of solvent in the undrawn film being particularly preferred.
  • the stretched composite film according to the invention can be subjected to surface treatments, such as corona discharge, plasma treatment and the like, on one or both sides, before or after the aftertreatment (C), as required.
  • surface treatments such as corona discharge, plasma treatment and the like
  • the stretched composite film according to the invention can be coated or laminated on one or both sides with a layer of a polymer or polymer mixture which optionally carries functional groups, solvents or solvents. Specify functional groups.
  • the stretched film which has not yet been aftertreated by process (C) and contains components (A) and (B), can be produced by any known process without any restriction.
  • a stretched composite film can be produced, for example, by a process which comprises the following stages: melt extrusion according to a T-die process, a composition of a fusible component (A) containing a particulate component (B) which is not fusible at the same temperature and loading the extrudate through a cooling roller, combined with an air knife or by splitting rollers with film formation.
  • the production of a biaxially stretched film by subsequent biaxial stretching using a spam device is preferably carried out according to a method comprising forming a film or a film from the composition described above according to a T-nozzle method or according to an inflation method or the like, and then the The film or the film is passed into a longitudinal stretching device for a longitudinal stretching of 0.5 to 10 times (expressed as a mechanical draw ratio) with a heating roller temperature of 100 to 380 ° C, preferably 120 to 350 ° C and particularly preferably 130 ° to 250 ° C.
  • the monoaxially stretched film is then subjected to transverse stretching 0.5 to 15 times using a tensioner at a tensioner temperature of 100 to 380 ° C, preferably 120 to 350 ° C, and most preferably 130 ° to 250 ° C.
  • the resulting biaxially stretched film is further subjected, if necessary, to a heat treatment at 80 to 380 ° C. (a transverse relaxation of 0-25% is permitted with this heat treatment).
  • a further stretching can take place after the stretching above.
  • With longitudinal stretching it is possible to combine multi-stage stretching, rolling, drawing, etc. Monoaxial stretching can be used alone to obtain a stretched film.
  • Particulate component (B) can be organic or inorganic.
  • the condition for the particulate component (B) is that in the subsequent stretching process a gap or a free space is formed around the preferably spherical particle (Fig. 1).
  • the preferably spherical particle is located in a cavity after the stretching process, or if the film has an appropriate thickness, a pore has formed around the particulate component (B). If enough cavities border on each other and their cross-sections intersect, a continuous path or path is created from one side of the film to the other side, which ultimately also represents a pore.
  • Component (B) remains in the film after stretching.
  • a second path is created in the film by stretching.
  • the first path or the first phase is the polymer (A) from which the film is made.
  • the second path or phase is the voids that have been created by the stretching process.
  • the particulate component (B) is located in the cavities.
  • a continuous phase from one side to the other is to be understood as a path.
  • a real percolation must be possible so that the path or phase is continuous. This means that a permitting substance, a liquid (e.g. water), a gas or ion must be able to penetrate from one side to the other.
  • the cavity is filled, the properties of the new path depend on the "filling material". If the filling material is ion-conducting, the entire path is ion-conducting. It is important that the path is continuous.
  • the particulate component (B) is all inorganic substances which form layer structures or framework structures.
  • Layered and / or framework silicates are particularly preferred. All synthetic and natural zeolites are preferred among the framework silicates.
  • the inorganic component (B) is a layered silicate, it is based on montmorillonite, smectite, illite, sepiolite, palygorskite, muscovite, allevardite, amesite, hectorite, talc, fluorochemical, saponite, beidelite, nontronite, stevensite, bentonite, mica , Vermiculite, fluor vermiculite, halloysite, fluorine-containing synthetic talc or mixtures of two or more of the layered silicates mentioned.
  • the layered silicate can be delaminated or pillarted. Montmorillonite is particularly preferred. The protonated form of the layered and / or framework silicates is also
  • component (B) which contains layer and / or framework structures, is functionalized before stretching and / or after stretching. If the functionalization takes place after stretching, it is part of the aftertreatment (C). In a preferred embodiment, the layered and / or framework silicates are functionalized before or after stretching.
  • Layered silicate is generally understood to mean silicates in which the SiO 4 tetrahedra are connected in two-dimensional infinite networks. (The empirical formula for the anion is (Si 2 O 5 2 " ) n). The individual layers are connected to each other by the cations lying between them, whereby mostly Na, K, Mg, Al or / and Ca in the natural occurring layered silicates.
  • a functionalized layered or framework silicate should be understood to mean layered or framework silicates in which the layer spacings are initially increased by incorporation of molecules by reaction with so-called functionalizing agents.
  • 100 angstroms preferably 5 to 50 and in particular 8 to 20 angstroms.
  • the layered or framework silicates (before or after the production of the composites according to the invention) are so-called functionalizing
  • Hydrophobing agents implemented which are often referred to as onium ions or onium salts.
  • the incorporation of organic molecules often also has one
  • the cations of the layered or framework silicates are functionalized by organic ones
  • Hydrophobing agent replaced, the desired chemical functionalization inside and / or on the surface of the silicate can be determined by the nature of the organic residue.
  • the chemical functionalization depends on the type of functionalizing molecule, oligomer or polymer that is to be incorporated into the layered silicate.
  • the cations can be exchanged completely or partially. A complete exchange of the cations, metal ions or protons is preferred.
  • Amount of exchangeable cations, metal ions or protons is usually in
  • IEC Ion exchange capacity
  • Suitable organic functionalizing water repellents are derived from oxonium, ammonium, phosphonium and sulfonium ions, which can carry one or more organic radicals.
  • Suitable functionalizing hydrophobizing agents are those of the general formula I and / or II:
  • R1, R2, R3, R4 independently of one another are hydrogen, a straight-chain branched, saturated or unsaturated hydrocarbon radical having 1 to 40, preferably 1 to 20, carbon atoms.
  • Atoms which optionally carry at least one functional group or 2 of the radicals are connected to one another, in particular to form a heterocyclic radical with 5 to 10 carbon atoms.
  • Atoms particularly preferably with one and more N atoms
  • Y for oxygen, sulfur or carbon
  • n for an integer from 1 to 5, preferably 1 to 3 and
  • Z stands for an anion
  • Suitable functional groups are hydroxyl, nitro, phosphonic or
  • Sulfonic acid groups carboxyl and sulfonic acid groups being particularly preferred.
  • Sulfonic acid chloride and carboxylic acid chlorides are also particularly preferred.
  • Suitable anions Z are derived from proton-providing acids, in particular mineral acids, with halogens such as chlorine, bromine, fluorine, iodine, sulfate, sulfonate, phosphate, phosphonate, phosphite and carboxylate, in particular acetate, being preferred.
  • the layered and / or framework silicates used as starting materials are usually in
  • the preferred suspending agent is water, optionally in a mixture with alcohols, in particular lower alcohols with 1 to 3
  • the solvent is preferred in that it dissolves. This is particularly an aprotic one
  • Solvent Other examples of suspending agents are ketones and hydrocarbons.
  • Layered silicate usually fails from solution.
  • the metal salt formed as a by-product of the ion exchange is preferably water-soluble, so that the hydrophobicized layered silicate as a crystalline solid by e.g. Filtering can be separated.
  • the layered or framework silicate before the functionalization is the layered or framework silicate before the functionalization, of course, as a solid.
  • the cation exchange takes place by post-treatment of the stretched film in a solution containing the functionalizing substances.
  • the cations originally bound to the silicate are removed either using the same solvent or a suitable different solvent in a second step. It is also possible to fix the cations originally bound to the silicate as a solid, in particular as a sparingly soluble salt in and on the silicate surface. This is often the case when the cation originally bound to the silicate is a divalent, trivalent or tetravalent cation, in particular a metal cation. Examples include Ti, Zr, ZrO and TiO 2+ .
  • the ion exchange is largely independent of the reaction temperature.
  • the temperature is preferably above the crystallization point of the medium in which the functionalizing substances are located and below its boiling point. In aqueous systems, the temperature is between 0 and 100 ° C, preferably between 40 and 80 ° C.
  • Alkylammonium ions are preferred as functionalizing agents, especially when a carboxylic acid chloride or sulfonic acid chloride is additionally present as a functional group on the same molecule.
  • the alkylammonium ions can be obtained via customary methylation reagents, such as methyl iodide. Suitable ammonium ions are alpha-omega-aminocarboxylic acids, particularly preferred
  • N-alkyl-aryl-SO 2 XX C1; Br; J; F
  • Aminoalkylarylsulfonic acids N ⁇ A.lkyl-aryl-SO 3 Me + 1 / + 2 / + 3 / + 4
  • RR Me metal or H or ZrO 2+ or TiO 2+
  • Me metal or H or Zr0 2+ or TiO 2+ and the alpha-omega-alkylaminosulfonic acid halides
  • ammonium ions are pyridine and laurylammonium ions.
  • the layered silicates After the functionalization, the layered silicates generally have a layer spacing of
  • the hydrophobized and functionalized layered silicate is freed of water by drying.
  • the layered silicate treated in this way contains one more
  • Layered silicate as a suspension in a water-free suspending agent is mixed with the mentioned polymers and processed into a film.
  • this can functionalized layered or framework silicate are added to the melt.
  • Preference is given to adding unmodified layered or framework silicates to the melt and functionalizing the silicates after stretching. This is particularly preferred if the extrusion temperature is above the destruction temperature of the functionalizing substances.
  • a particularly preferred functionalization of the framework and / or layered silicates is carried out with modified dyes or their precursors, especially with triphenylmethane dyes. They have the general formula:
  • dyes which are derived from the following basic structure:
  • the radicals R can independently of one another be hydrogen, a group having 1 to 40 carbon atoms, preferably a branched or unbranched alkyl, cycloalkyl or an optionally alkylated aryl group which optionally contain one or more fluorine atoms.
  • the radicals R can likewise independently of one another correspond to the radicals Rl, R2, R3 or R4 with the functional groups from the above-mentioned general formulas (I) and (II) for functionalizing hydrophobizing agents.
  • an aprotic solvent eg tetrahydrofuran, DMAc, NMP
  • Layered silicates intercalated The intercalation must be of the type that is ion-conducting
  • Group is on the surface of the silicate particle.
  • the layered silicate functionalized in this way is added to the polymer solution as described in application DE10024575.7.
  • the functionalization of the layered or framework silicates can also be carried out again via a cation exchange in the stretched film. It has proven to be particularly advantageous to use the precursor of the dyes. Only in a subsequent oxidation by an acidic aftertreatment are the actual dyes formed by the elimination of water. In the case of triphenylmethane dyes, it was surprisingly found that a
  • Proton conduction is supported in the membranes made from it. It cannot be said with sufficient certainty whether it is even a water-free proton line. If the dyes are not bound to the silicate, ie if they are in free form in a stretched membrane, they are discharged with the water of reaction in the fuel cell after a short time.
  • the polymer mixtures containing sulfinate groups from the parent application mentioned above, particularly preferably the thermoplastic functionalized polymers (ionomers), are added to the suspension of the hydrophobized phyllosilicates. This can be done in already dissolved form or the polymers themselves are brought into solution in the suspension.
  • the proportion of layered silicates is generally between 1 and 70% by weight. Especially between 2 and 40% by weight and especially between 5 and 15% by weight.
  • a further improvement compared to the parent application is the additional mixing of zirconyl chloride (ZrOCl 2 ) into the membrane polymer solution and into the cavities of the layer and / or framework silicates.
  • ZrOCl 2 zirconyl chloride
  • the aftertreatment of the membrane is carried out in phosphoric acid, sparingly soluble zirconium phosphate precipitates in the immediate vicinity of the silicate grain.
  • Zirconium phosphate shows its own proton conductivity during operation of the fuel cell. Proton conductivity functions as intermediate steps via the formation of the hydrogen phosphates and is state of the art.
  • the targeted introduction in the immediate vicinity of a water reservoir (silicates) is new.
  • the stretched, microporous film containing a particulate component (B) is subjected to one or more post-treatments (C).
  • the microporous film contains layered and / or framework silicates. These are now functionalized in one or more steps.
  • the functionalized filler especially zeolites and representatives of the Glasgowlith range and bentonites, is the only ion-conducting component, its weight fraction is generally between 5 and 80%, especially between 20 and 70% and especially in the range of 30 to 60% by weight.
  • component (A) of the composite membranes according to the invention are defined as follows:
  • Polyolefins such as polyethylene, polypropylene, polyisobutylene, polynorbornene,
  • Polymethylpentene, poly (l, 4-isoprene), poly (3,4-isoprene), poly (l, 4-butadiene), poly (l, 2-butadiene) styrene (co) polymers such as polystyrene, poly (methylstyrene), Po_y ( ⁇ , ⁇ , ß-trifluorostyrene), poly (pentafluorostyrene) perfluorinated ionomers such as National® or the SC ⁇ Hal precursor from National® (Hal F, Cl, Br, I), Dow® membrane, GoreSelect®- Membrane.
  • N-based polymers such as polyvinylcarbazole, polyethyleneimine, poly (2-vinylpyridine), poly (3-vinylpyridine), poly (4-vinylpyridine)
  • (Het) aryl main chain polymers such as:
  • Polyether ketones such as polyether ketone PEK Victrex®, polyether ether ketone PEEK Victrex®,
  • Polyether sulfones such as polysulfone Udel®, polyphenyl sulfone Radel R®,
  • Polymer side chain may be present
  • Polyphenylene ethers such as B. Poly (2,6-dimet_ ⁇ yloxyphenylene), poly (2,6-diphenyloxyphenylene)
  • Phenyloxy-1,4-benzoyl groups can be modified.
  • Type A polymers (polymers with cation exchange groups or their non-ionic precursors): Polymer type A includes all polymers that are derived from the above. Main polymer chains (1) and the following cation exchange groups or their nonionic precursors:
  • S0 3 H, S0 3 Me; P0 3 H 2 , P0 3 Me 2 or S0 2 X, POX 2 are preferred as functional groups.
  • the strongly acidic sulfonic acid groups or their nonionic precursors are particularly preferred as functional groups.
  • Aryl main chain polymers are preferred as polymer main chains. Poly (ether ketones) and poly (ether sulfones) are particularly preferred.
  • Type B polymers (polymers with N-basic groups and / or anion exchange groups):
  • Polymer type A includes all polymers that are derived from the above.
  • Main polymer chains (1) exist and the following
  • Anion exchange groups or their nonionic precursors (with primary, secondary, tertiary basic
  • the main polymer chains are (het) aryl main chain polymers such as poly (ether ketones), poly (ether sulfones) and
  • Type C polymers polymers with crosslinking groups such as sulfinate groups and / or unsaturated groups:
  • Polymer type C includes all polymers from the 0 g. Main polymer chains (1) and crosslinking groups exist. Networking groups are for example:
  • crosslinking reactions (III) and (IV) and (V) are preferred, in particular the crosslinking reaction (III). •
  • Type D polymers (polymers with cation exchange groups and anion exchange groups and / or basic N groups and / or crosslinking groups):
  • the polymer type (5) includes polymers which can contain the main chains from (1) and can carry various groups : the cation exchange groups listed in (2) or their nonionic precursors and the anion exchange groups listed in (3) or primary, secondary or tertiary N-basic groups and / or the crosslinking groups listed in (4).
  • the following combinations are possible: Polymer Dl: polymer with cation exchanger groups or their nonionic precursors and with
  • Polymer D2 Polymers with cation exchanger groups or their nonionic precursors and with
  • Crosslinking groups polymer D3 polymers with anion exchange groups and / or N-basic groups and with
  • Crosslinking groups polymer D4 polymer with cation exchanger groups or their nonionic precursors and with
  • Anion exchanger groups and / or N-basic groups and with crosslinking groups The following describes how stretched films that have an inorganic particulate
  • Component (B) are treated in such a way that membranes for them
  • a meltable stretchable polymer e.g. Polypropylene is composed with an inorganic particulate component (B), preferably a component containing layer and / or framework structures, in particular a layer and / or framework silicate with an average particle size of 5-10 ⁇ .
  • B inorganic particulate component
  • Composing should be understood to mean that the polymer becomes intimate in the melt with the inorganic component, here the
  • Silicate mixed.
  • a common method is to mix the components in the
  • Twin-screw extruder The result is a composite, here silicate in polypropylene.
  • Bentonite montmorillonite is used as a silicate component as an example. However, this does not mean any special restriction to bentonites.
  • the film is now stretched as described above using known methods.
  • the stretched film now represents a microporous membrane.
  • the pore size is dependent on the grain size, elongation properties of the polymer and on the tensile forces that occur during the
  • Stretching was applied. As a tight membrane, it is completely unusable. Gases e.g. penetrate almost unhindered.
  • An organically modified clay or zeolite is used in the membranes according to the invention.
  • Bentonites are clays and montmorillonite is a special bentonite. Montmorillonite is preferred. However, all other substrates into which low-molecular compounds can intercalate can also be used. Montmorillonite is able to bind molecules by intercalation. Montmorillonite is modified so that a strongly basic component protrudes from the particle or is on the particle surface.
  • the organic component preferably contains nitrogen. Heterocycles are particularly preferred, and imidazoles and
  • Guanidine derivatives This is not meant to be a limitation to these two classes of substances. Any other class of substance that contains a strong terminal base is also possible.
  • This organically modified montmorillonite is compounded with the polymer, extruded into a film and then stretched.
  • polypropylene up to 70%
  • the film has now become a dense proton-conducting membrane and can already be used as such in a fuel cell in this state.
  • the membrane is immersed in zirconium oxide chloride solution according to the invention. insoluble
  • Zirconium phosphate precipitates at the phase boundary with the membrane and in the membrane itself.
  • This membrane is suitable for use in the fuel cell.
  • thermoplastics e.g. Polysulfone or Vectra
  • the membrane formed from it can be used for the PEM fuel cell.
  • the advantage of the method according to the invention is that the film is extruded and is not pulled out of a solvent.
  • the above-mentioned process with polymer stretched to form a film, organically modified clay, imidazole, phosphoric acid and subsequent partial precipitation to zirconium phosphate is only one exemplary specific example of the basic invention.
  • a second path is created in the film by stretching.
  • the first path is the polymeric component (A) from which the film itself is made up.
  • the second path is the voids or pores that have been created by the stretching process.
  • a path should be understood as a continuous path from one side to the other. A real percolation must be possible so that the path is continuous. That is, water vapor e.g. must be able to penetrate from one side to the other. If the cavity is filled, the properties of the new path depend on the "filling material". If the filling material is ion-conducting, the entire path is ion-conducting. It is important that the path is continuous.
  • the film before stretching can be produced by extrusion. However, it is also possible to produce the film from a solvent.
  • Extrusion requires the polymer to melt. Most functionalized polymers cannot be extruded without significant disadvantages. If the polymer contains sulfonic acid groups or chemical precursors such as sulfochlorides, the polymer degenerates before it melts. In such cases, production via a solvent-containing process is preferred.
  • This film is now stretched and the resulting second path is filled with a proton-conducting substance at a higher temperature (T> 80 ° C).
  • This filling can e.g. This enables the microporous membrane to be treated alternately in phosphoric acid and zirconium oxide chloride (ZrOCl). This process can be repeated until no more zirconium phosphate fails in the membrane. Precipitation of zirconium phosphate is only one possibility.
  • a polymer e.g. a sulfonated polyether ketone or polysulfone is used.
  • the proton line mainly works via the polymeric sulfonic acid swollen in water and over the temperature range above it via the inorganic proton conductor. A smooth transition takes place.
  • the concept of the two paths is reduced to an unfinished microporous membrane, which is adapted to the desired application in a second modification step.
  • They are two membranes that are put together to form one membrane without disturbing their membrane function.
  • Another vivid picture is a textile material that was woven from two yarns of different colors. Where you can choose the yarns in a very wide range. However, one yarn was subsequently inserted into the finished homogeneous fabric.
  • component (A) is a meltable polymer without degradation and that particulate component (B) is a layered or framework silicate with an average size of 0.1 to 15 ⁇ m.
  • a microporous film is obtained by extrusion of a composite which contains components (A) and (B) with subsequent stretching.
  • This microporous film is post-treated in a solution that contains molecules that have at least two functional groups in the same molecule.
  • One of the functional groups in the molecule has a positive charge, preferably a positive nitrogen atom.
  • the positive nitrogen intercalates into the layer or framework structures of the silicate.
  • a cation exchange takes place.
  • the acidic silicate also creates a nitrogen cation that intercalates into the silicate.
  • the cation exchange on the silicate can take place completely or partially.
  • the resulting membrane is already sufficiently sealed for certain membrane applications, such as alkene-alkane separation.
  • the remaining functional group not intercalated in the layered or framework silicate can be a preliminary stage of an ion-conducting group.
  • an ion-conducting group for example sulfonic acid chlorides, carboxylic acid chloride or phosphonic acid chlorides.
  • precursors of cation or anion exchanger groups are mentioned further above.
  • these precursors are converted into a group that supports selective permeation. This is e.g. in the case of sulfonic acid halides, hydrolysis takes place in an acidic, neutral or alkaline medium.
  • the stretched film is alternately coated with a polyvalent metal salt e.g. Ti4 +, Zr4 +, Ti3 +, Zr3 +, TiO2 +, ZrO2 + and an acid, which can be low or high molecular weight.
  • Particularly preferred acids are phosphoric acid and sulfuric acid diluted with water.
  • the phosphoric acid has a concentration of 1-85% by weight. A concentration of 20 to 80% by weight is preferred.
  • the sulfuric acid has a concentration of 1 to 80% by weight. A concentration of 20 to 50% by weight is preferred.
  • the process of picking up a poorly soluble proton conductor in the membrane can be repeated several times.
  • any substance can be used as the inorganic component which, when stretched, results in free spaces being formed around this substance (see Fig. 1: Process of cavity formation by stretching). It is also not absolutely necessary that the component must be inorganic. As already mentioned, the only condition is that a free space has formed around the particle after stretching.
  • the stretching can be mono or biaxial. Biaxial stretching is preferred. However, monoaxial stretching is also sufficient for use in hollow fibers.
  • stretching over the third spatial direction is also possible, i.e. triaxial.
  • the composite extruded to the film is held in the plane by means of vacuum nozzles and a plate is placed from above, which can also draw a vacuum through small pores.
  • the film is now fixed between two plates. If you now pull the two plates apart, with the vacuum applied, and choose the distance so that the film does not tear but only stretches, you get a film that has been stretched across the thickness.
  • the invention is also used in electrodialysis.
  • the microporous stretched membrane consists of a cation exchanger and the second path consists of an anion exchanger, optionally with proton leaching, for example described in DE 19836514 AI (Fig. 3; drawings on page 2). If this membrane is held in an electric field, the water dissociates into protons and hydroxyl ions. According to the electric field, the protons migrate via the cation exchange path to the cathode and the hydroxyl ions (OH " ) via the anion exchange path to the anode. In this way, membranes for electrodialysis can be produced very cheaply and easily.
  • the paths can also be swapped. Then first an anion exchange membrane or a chemical precursor of the anion exchange group is stretched and the second path is now a cation exchange membrane. The modification of the inorganic component must be chosen accordingly.
  • organically modified particles e.g. montmorillonite
  • the continuous path is formed by stretching and then filled with the ion conductor.
  • Component (B) which contains particulate inorganic layer or scaffold structures, turns a chemical substance of the general formula for hydrophobizing functionalizing agents (I) or (II) that is otherwise movable or volatile under the conditions of use of a membrane over a technically applicable period in the micro-porous film fixed so that it can be used in membrane applications.
  • a "raw" membrane can be produced in large existing systems, which are modified in a second step depending on the application.
  • membranes for desalination can be produced very inexpensively.
  • the basic polymer is e.g. Polypropylene used.
  • the inorganic component e.g. Montmorillonite is previously organically modified so that a charged group remains on the surface. This can e.g. done with an alpha-omega aminosulfonic acid. After stretching, the result is a charged microporous membrane. This is suitable for reverse osmosis.
  • crosslinking reactions can also be carried out within the pores via terminal crosslinkable groups of the functionalizing agents. This can be covalent and / or ionic crosslinking.
  • Another application is the use in alkene-alkane separation.
  • Silver nitrate solution is a poorly soluble complex. It has now surprisingly been found that when this complex is located in a membrane, it is capable of reversibly binding alkenes to it.
  • Alkane mixtures Water or an aprotic solvent can be used as the solvent for the silver salt Solvents are used.
  • Alkenes and olefins permit water-free through such a membrane with a technically applicable flow rate.
  • An improvement in the flow numbers is achieved by inserting organically modified montmorillonite with heterocyclic nitrogen on the surface, which has at least one lone pair of electrons, for example a terminal imidazole group. The membrane is carefully stretched and then placed in silver salt solution. Stretching creates channel structures in the membrane that facilitate transport.
  • an unmodified polymer e.g. Polypropylene is stretched with organically modified montmorillonite. Montmorillonite again has terminal imidazole or pyridine groups on its surface. After stretching, the microporous membrane is placed in a solution containing silver ions. The membrane is then suitable for the alkene-Akan separation. The membrane is suitable for the separation of low molecular weight substances in which one component of the mixture contains a double bond, which form a reversible complex with silver ions. The separation of low molecular weight olefin / alkane mixtures is particularly preferred. The montmorillonite need not necessarily be modified. Polypropylene is composed with montmorillonite and stretched.
  • the porous film is then aftertreated in a solution which contains aromatic nitrogen with at least one lone pair of electrons.
  • the solvent can be any suitable solvent or solvent mixture. Water and aprotic solvents are preferred. It is only important that the corresponding nitrogen-containing molecule penetrates into the clay cavities and fills the pores.
  • the membrane is post-treated in a solution containing silver or copper ions. Anything that keeps silver or copper ions in solution is suitable as a solvent. Water and aprotic solvents such as DMSO, NMP and THF are particularly preferred. As a result, the nitrogen-silver ion complex or the nitrogen-copper ion complex fails in the membrane. This process can be repeated several times if necessary.
  • the membrane is now suitable for water-free alkene-alkane separation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung betrifft einen gestreckten Polymerfilm, umfassend (A) ein Polymer oder Polymerblend, und wenigstens (B) eine weitere Komponente mit einem durchschnittlichen Teilchendurchmesser von 0,1 bis 15 νm, und besonders bevorzugt ist der Bereich von 1,0-7,0 νm. Die Membranen werden verwendet in der Alken-Alkan-Trennung, Elektrodialyse, Meerwasserentsalzung, in Brennstoffzellenanwendungen und anderen Membrananwendungen.

Description

Modifikation von verstreckten Folien
1. Stand der Technik
Schon seit mehr als 20 Jahren werden verstreckte Folien in der Technik eingesetzt. Polypropylen oder Polyethylenfolien, die durch Extrudieren gebildet werden, werden vielfach bei Anwendungen, wie bei der Verpackung von Nahrungsmitteln, als Behälter für Nahrungsmittel und bei ähnlichen Anwendungen verwendet. Gestreckte Polypropylenfilme, insbesondere biaxial gestreckte Polypropylenfilme, werden vielfach bei Verpackungsmaterialen wegen ihrer ausgezeichneten mechanischen und optischen Eigenschaften verwendet. Sie werden allgemein durch aufeinanderfolgendes biaxiales Strecken unter Verwendung einer Spannvorrichtung hergestellt.
In neuerer Zeit werden verstreckte Folien mit anorganischen Füllstoffen als atmungsaktive Folien für Windelfolie eingesetzt. Der Porendurchmesser der hier eingesetzten, sehr kostengünstigen, Folien ist aber um Größenordungen zu groß, als das diese Folien für Anwendungen, die dichte Membranen voraussetzen, wie z.B. in der Brennstoffzelle Verwendung finden könnten.
2. Aufgabe der vorliegenden Erfindung
Es ist Aufgabe der folgenden Erfindung kostengünstig Membranen herzustellen auf Basis von verstreckten Folien.
3. Erfindungsbeschreibung
Die vorliegende Erfindung betrifft Membranen auf der Basis von verstreckten Folien.
Erfindungsgemäß kann die obige Aufgabe gelöst werden durch einen gestreckten Polymerfilm, umfassend (A) ein Polymer oder Polymerblend, und wenigstens (B) einer weiteren Komponente mit einem durchschnittlichen Teilchendurchmesser von 0,1 bis 15μm, welche durch (C) ein oder mehrere Nachbehandlungsschritte, nach der Verstreckung zu einer Membran verarbeitet wird.
Es wurde dabei festgestellt, dass ohne die Verstreckung, die Folie bestehend aus dem Polymer (A) und der teilchenförmigen Komponente (B), bei gleichen Nachbehandlungsschritten (C) nicht zu einer Membran mit gleichen Eigenschaften verarbeitet werden kann.
Der durchschnittliche Teilchendurchmesser der Komponente (B) liegt im Bereich von 0,l-15μm. Er beträgt bevorzugt 0,5-8,0 μm, und besonders bevorzugt ist der Bereich von 1,0-7,0 μm. Wenn der Durchmesser kleiner als 0,1 μm ist, ergibt sich eine sekundäre Agglomeration, und die entstehenden Teilchen besitzen zum Teil große Durchmesser, die im Verstreckungsprozess meist zu einem Reißen der Folie fuhren. Hinsichtlich der Form der Teilchen gibt es keine spezielle Einschränkung. Es sind aber sphärische Teilchen bevorzugt.
Vor der Verstreckung beträgt der Anteil der Komponente (B) an der unverstreckten Folie 2 bis 80 Gewichtsprozent, bevorzugt sind 10 bis 70 Gewichtsprozent, und besonders bevorzugt sind 20 bis 60 Gewichtsprozent. Der Gewichtsanteil der polymeren Komponente (A) beträgt vor der Verstreckung entsprechend 98 bis 20 Gewichtsprozent, bevorzugt sind 90 bis 30 Gewichtsprozent, und besonders bevorzugt sind 80 bis 40 Gewichtsprozent. Für das Verfahren, gemäß dem die teilchenförmige Komponente (B) in die polymere Komponente (A) eingearbeitet wird, gibt es keine besondere Beschränkung. Das Verfahren umfasst ein einfaches Mischverfahren. Der Mischprozess kann durch Hinzufugen der Komponente (B) in die geschmolzene Komponente (A) erfolgen. Der Mischvorgang kann dabei stattfinden unter Verwendung einer Schneckenextrudierknetvorrichtung (beispielsweise einem Extruder mit einer Schnecke oder einem Extruder mit Zwillingsschnecken), einem Banbury- Mischer, einem kontinuierlichen arbeitenden Mischer und einer Mischwalze oder ähnlichem. Lässt sich die Komponente (A) nicht schmelzen oder ist dies nicht erwünscht, so wird sie in einem geeigneten Lösungsmittel oder Lösungsmittelgemisch aufgelöst. Geeignet ist jedes Lösungsmittel in dem sich die Komponente (A) auflöst und das gleichzeitig kein Lösungsmittel für die Komponente (B) ist. Bevorzugte Lösungsmittel sind Wasser und aprotische Lösungsmittel, wir Tetrahydrofuran (THF), Dimethylsulfoxid (DMSO), N-Methyl-Pyrrolidon (NMP), Sulfolan und Dimethylacetamid (DMAc). Die Komponente (B) ist dann fein verteilt in der gelösten Komponente (A).
In jedem Fall des Mischverfahrens entsteht ein Komposit.
Bei der Verwendung von Lösungsmitteln müssen diese nach dem Ziehen zu einem Film auf einer geeigneten Unterlage in einem Trocknungs- oder Fällprozess wieder entfernt werden. Dies ist Stand der Technik und zum Beispiel beschrieben in PCT/EP 00/03910 und WO 01/87992. Die erhaltene Folie stellt eine Kompositfolie bzw. Kompositmembran dar. Die Komponente (B) ist verteilt in der Matrix der Komponente (A).
Ist die Kristallinität der verwendeten Polymere in der unverstreckten Folie so groß, dass die Folie im getrockneten Zustand sich nicht verstrecken lässt, so wird das Lösungsmittel nicht vollständig entfernt. Es wurde dabei überraschend festgestellt, dass Folien bestehend aus den Komponenten (A) und (B), die über ein Lösungsmittelverfahren mit anschließendem Trocknungsprozess hergestellt wurden und die im getrockneten Zustand ohne Zerstörung nicht verstreckbar sind, mit einem Restlösungsmittelgehalt sehr wohl verstreckbar sind. Die Verstreckung erfolgt danach in einem Temperaturbereich der über dem Schmelzpunkt des in der Membran verbleibenden Lösungsmittel liegt und unterhalb des Siedepunktes des Lösungsmittel liegt. Diesem Verstreckungsvorgang kann sich ein weiterer lösungsmittelfreier Verstreckungsprozeß anschließen.
Der Restlösungsmittelgehalt der unverstreckten Folie liegt dabei zwischen zwei und dreißig Gewichtsprozent, besonders bevorzugt ist der Bereich zwischen fünf und zwanzig Gewichtsprozent an Lösungsmittel in der unverstreckten Folie.
Der gestreckte erfindungsgemäße Kompositfilm kann vor oder nach der Nachbehandlung (C) je nach Erfordernis Oberflächenbehandlungen, wie einer Coronaentladung, Plasmabehandlung und ähnlichem, an einer oder auf beiden Seiten, unterworfen werden. Der erfindungsgemäße gestreckte Kompositfilm kann vor oder nach der Nachbehandlung (C) auf einer oder auf beiden Seiten mit einer Schicht aus einem Polymer oder Polymergemisch, das gegebenenfalls funktionelle Gruppen trägt, Lösungsmittel oder Lösungsmittelfrei beschichtet oder laminiert werden. Funktionelle Gruppen angeben.
Für den Fall, dass die Komponente (A) unzerstörbar schmelzbar ist kann die gestreckte, noch nicht mit dem Verfahren (C) nachbehandelte Folie, enthaltend die Komponenten (A) und (B), nach irgendeinem bekannten Verfahren ohne jede Beschränkung hergestellt werden. Die Herstellung einer verstreckten Kompositfolie kann beispielsweise nach einem Verfahren erfolgen, welches folgende Stufen umfasst: Schmelzextrudieren gemäß einem T-Düsenverfahren, einer Zusammensetzung aus einer schmelzbaren Komponente (A), enthaltend eine bei gleicher Temperatur nicht schmelzbaren teilchenförmigen Komponente (B) und Durchladen des Extrudats durch eine Kühlwalze, kombiniert mit einem Lufϊtrakel oder durch Spaltwalzen unter Folienbildung. Die Herstellung eines biaxial gestreckten Films durch darauffolgendes biaxiales Strecken unter Verwendung einer Spamivorrichtung erfolgt bevorzugt gemäß einem Verfahren, das die Bildung einer Folie oder eines Films aus der oben beschriebenen Zusammensetzung gemäß einem T-Düsenverfahren umfasst oder gemäß einem Aufblasverfahren oder ähnlichem, und wobei dann die Folie oder der Film in eine longitudinale Verstreckungsvorrichtung geleitet wird, um ein longitudinales Strecken mit dem 0,5- bis lOfachen (ausgedrückt als mechanisches Ziehverhältnis) mit Heizwalzentemperatur von 100 bis 380°C, bevorzugt 120 bis 350°C und besonders bevorzugt 130° bis 250°C, zu erreichen. Der monoaxial gestreckte Film wird dann einem transversalen Strecken um das 0,5- bis 15fache unter Verwendung einer Spannvorrichtung bei einer Spannungsvorrichtungstemperatur von 100 bis 380°C, bevorzugt 120 bis 350°C und besonders bevorzugt 130° bis 250°C unterworfen. Der entstehende biaxial gestreckte Film wird weiter, je nach Bedarf, einer Wärmebehandlung bei 80 bis 380°C unterworfen (bei dieser Wärmebehandlung ist eine transversale Relaxation von 0-25% erlaubt). Selbstverständlich kann ein weiteres Strecken nach dem obigen Strecken erfolgen. Bei dem longitudinalen Verstrecken ist es möglich, ein mehrstufiges Strecken, Walzen, Ziehen usw. zu kombinieren. Das monoaxiale Strecken kann alleine verwendet werden, um einen gestreckten Film zu erhalten.
Die teilchenförmige Komponente (B) kann organisch oder anorganisch sein. Bedingung für die teilchenförmige Komponente (B) ist, dass sich bei dem anschließenden Streckprozess um das bevorzugt sphärische Teilchen ein Spalt bzw. ein freier Raum bildet (Abb. 1). Das bevorzugt sphärische Teilchen befindet sich nach dem Streckprozess in einem Hohlraum oder bei entsprechender Dicke der Folie hat sich um die teilchenförmige Komponente (B) eine Pore gebildet. Wenn genügend Hohlräume aneinander grenzen und sich ihre Querschnitte überschneiden entsteht ein durchgängiger Weg bzw. Pfad von einer Seite der Folie auf die andere Seite, was letztendlich auch wieder eine Pore darstellt. Die Komponente (B) verbleibt nach der Verstreckung in der Folie.
Es wird über die Verstreckung ein zweiter Pfad in der Folie geschaffen. Der erste Pfad bzw. die erste Phase stellt das Polymer (A), aus dem die Folie besteht, selbst dar. Der zweite Pfad bzw. Phase sind die Hohlräume, die durch den Verstreckungsvorgang entstanden sind. In den Hohlräumen befindet sich die teilchenförmige Komponente (B). Als Pfad soll verstanden werden eine durchgängige Phase von einer Seite zur anderen. Damit der Weg bzw. die Phase durchgängig ist muss eine echte Perkolation möglich sein. D.h., eine permitierende Substanz, eine Flüssigkeit (z.B. Wasser), ein Gas oder Ion muss von der einen Seite auf die andere Seite durchdringen können. Wird der Hohlraum gefüllt, so sind die Eigenschaften des neuen Pfades abhängig von dem "Füllmaterial ". Ist das Füllmaterial ionenleitend, so ist der gesamte Pfad ionenleitend. Wichtig ist, dass der Pfad durchgängig ist.
Als teilchenförmige Komponente (B) sind besonders bevorzugt alle anorganischen Substanzen, die Schichtstrukturen oder Gerüststrukturen ausbilden. Besonders bevorzugt sind Schicht- und/oder Gerüstsilikate. Alle synthetischen und natürlichen Zeolithe sind unter den Gerüstsilikaten bevorzugt. Ist die anorganische Komponente (B) ein Schichtsilikat, so ist er auf der Basis von Montmorillonit, Smectit, Illit, Sepiolit, Palygorskit, Muscovit, Allevardit, Amesit, Hectorit, Talkum, Fluorhectorit, Saponit, Beidelit, Nontronit, Stevensit, Bentonit, Glimmer, Vermiculit, Fluorvermiculit, Halloysit, Fluor enthaltende synthetische Talkumtypen oder Mischungen aus zwei oder mehr der genannten Schichtsilikate. Das Schichtsilikat kann delaminiert oder pillartiert sein. Besonders bevorzugt wird Montmorillonit. Weiterhin ist bevorzugt die protonierte Form der Schicht- und/oder Gerüstsilikate.
In einer Ausluhrungsform der Erfindung wird die Komponente (B), die Schicht- und/oder Gerüststrukturen enthält, vor der Verstreckung und/oder nach der Verstreckung funktionalisiert. Geschieht die Funktionalisierung nach der Verstreckung, so ist sie ein Teil der Nachbehandlung (C). In einer bevorzugten Ausführungsform werden die Schicht- und/oder Gerüstsilikate vor oder nach der Verstreckung funktionalisiert.
Beschreibung des funktionalisierten Schichtsilikates:
Unter einem Schichtsilikat versteht man im allgemeinen Silikate, in welchen die SiO4-Tetraeder in zweidimensionalen unendlichen Netzwerken verbunden sind. (Die empirische Formel für das Anion lautet (Si2O5 2")n). Die einzelnen Schichten sind durch die zwischen ihnen liegenden Kationen miteinander verbunden, wobei meistens als Kationen Na, K, Mg, AI oder/und Ca in den natürlich vorkommenden Schichtsilikaten vorliegen.
Unter einem funktionalisiertem Schicht- oder Gerüstsilikat sollen Schicht- oder Gerüstsilikate verstanden werden, bei welchen durch Umsetzung mit sogenannten Funktionalisierungsmitteln die Schichtabstände durch Einlagerung von Molekülen zunächst vergrößert werden.
Die Schichtdicken derartiger Silikate, vor der Delaminierung der Schichten durch die
Einlagerung von funktioneilen Gruppen tragenden Molekülen, betragen üblicherweise von 5 bis
100 Angström, vorzugsweise 5 bis 50 und insbesondere 8 bis 20 Angström.
Zur Funktionalisierung werden die Schicht- oder Gerüstsilikate (vor oder nach der Herstellung der erfindungsgemäßen Komposite) mit sogenannten funktionalisierenden
Hydrophobierungsmitteln umgesetzt, welche oft auch als Oniumionen oder Oniumsalze bezeichnet werden. Die Einlagerung von organischen Molekülen hat oft auch eine
Hydrophobierung der Silikate zur Folge. Daher wird hier der Begriff funktionalisierende
Hydrophobierungsmittel verwendet.
Die Kationen der Schicht- oder Gerüstsilikate werden durch organische funktionalisierende
Hydrophobierungsmittel ersetzt, wobei durch die Art des organischen Restes die gewünschte chemische Funktionalisierung im Inneren und/oder an der Oberfläche des Silikates bestimmt werden kann. Die chemische Funktionalisierung richtet sich nach der Art des jeweiligen funktionalisierenden Moleküls, Oligomers oder Polymeren, welches in das Schichtsilikat eingebaut werden soll.
Der Austausch der Kationen, meist Metallionen oder Protonen kann vollständig oder teilweise erfolgen. Bevorzugt ist ein vollständiger Austausch der Kationen, Metallionen oder Protonen. Die
Menge der austauschbaren Kationen, Metallionen oder Protonen wird üblicherweise in
Milliäquivalent (meq) pro 1 g Gerüst- oder Schichtsilikat angegeben und als
Ionenaustauscherkapazität (IEC) bezeichnet.
Bevorzugt sind Schicht- oder Gerüstsilikate mit einer Kationenaustauscherkapazität von mindestens 0,5 , vorzugsweise 0,8 bis 1,3 meq/g. Geeignete organische funktionalisierende Hydrophobierungsmittel leiten sich von Oxonium-, Ammonium-, Phosphonium- und Sulfoniumionen ab, welche einen oder mehrere organische Reste tragen können.
Als geeignete funktionalisierende Hydrophobierungsmittel seien solche der allgemeinen Formel I und/oder II genannt:
Figure imgf000006_0001
II
Wobei die Substituenten folgende Bedeutung haben:
Rl, R2, R3, R4 unabhängig voneinander Wasserstoff, einen geradkettigen verzweigten, gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 40, vorzugsweise 1 bis 20 C-
Atomen, welcher gegebenenfalls mindestens eine funktionelle Gruppe trägt oder 2 der Reste miteinander verbunden sind, insbesondere zu einem heterocyclischen Rest mit 5 bis 10 C-
Atomen besonders bevorzugt mit einem und mehr N- Atomen,
X für Phosphor, Stickstoff oder Kohlenstoff,
Y für Sauerstoff, Schwefel oder Kohlenstoff, n für eine ganze Zahl von 1 bis 5, vorzugsweise 1 bis 3 und
Z für eine Anion steht.
Für den Fall, dass Y für Kohlenstoff steht ist einer der Reste Rl, R2 oder R3 doppelt an den
Kohlenstoff gebunden.
Geeignete funktionelle Gruppen sind Hydroxyl-, Nitro- , Phosphonsäure- oder
Sulfonsäuregruppen, wobei Carboxyl- und Sulfonsäuregruppen besonders bevorzugt sind.
Ebenso sind besonders bevorzugt Sulfonsäurechlorid und Carbonsäurechloride.
Geeignete Anionen Z leiten sich von Protonen liefernden Säuren, insbesondere Mineralsäuren ab, wobei Halogene wie Chlor, Brom, Fluor, lod, Sulfat, Sulfonat, Phosphat, Phosphonat, Phosphit und Carboxylat, insbesondere Acetat bevorzugt sind.
Die als Ausgangsstoffe verwendeten Schicht- und/oder Gerüstsilikate werden in der Regel in
Form einer Suspension umgesetzt. Das bevorzugte Suspendierungsmittel ist Wasser, gegebenenfalls in Mischung mit Alkoholen, insbesondere niederen Alkoholen mit 1 bis 3
Kohlenstoffatomen. Ist das funktionalisierende Hydrophobierungsmittel nicht wasserlöslich, so wird das Lösungsmittel bevorzugt indem es sich löst. Besonders ist dies dann ein aprotisches
Lösungsmittel. Weitere Beispiele für Suspendiermittel sind Ketone und Kohlenwasserstoffe.
Gewöhnlich wird ein mit Wasser mischbares Suspendierungsmittel bevorzugt. Bei der Zugabe des Hydrophobierungsmittel zum Schichtsilikat tritt ein Ionenaustausch ein, wodurch das
Schichtsilikat überlicherweise aus der Lösung ausfallt. Das als Nebenprodukt des Ionenaustausch entstehende Metallsalz ist vorzugsweise wasserlöslich, so dass das hydrophobierte Schichtsilikat als kristalliner Feststoff durch z.B. Abfiltrieren abgetrennt werden kann. Findet die
Funktionalisierung nach der Verstreckung in der Folie, so liegt das Schicht- oder Gerüstsilikat vor der Funktionalisierung natürlich als Feststoff vor. Der Kationenaustausch erfolgt durch Nachbehandeln der verstreckten Folie in einer die funktionalisierenden Substanzen enthaltenden Lösung. Die Entfernung der ursprünglich an das Silikat gebundenen Kationen erfolgt entweder über das gleiche Lösungsmittel oder eine geeignetes anderes Lösungsmittel in einem zweiten Schritt. Es ist auch möglich die ursprünglich an das Silikat gebundenen Kationen als Feststoff, insbesondere als schwerlösliches Salz im und an der Silikatoberfläche zu fixieren. Dies ist dann häufig der Fall, wenn das ursprünglich am Silikat gebundene Kation ein zwei-, drei- oder vierwertiges Kation, insbesondere Metallkation ist. Beispiele hierfür sind Ti , Zr , ZrO und TiO2+.
Der Ionenaustausch ist von der Reaktionstemperatur weitgehend unabhängig. Die Temperatur liegt vorzugsweise über dem Kristallisationspunkt des Mediums, indem sich die funktionalisierenden Substanzen befinden und unter seinem Siedepunkt. Bei wäßrigen Systemen liegt die Temperatur zwischen 0 und 100°C, vorzugsweise zwischen 40 und 80°C. Als Funktionalisierungmittel sind Alkylammoniumionen bevorzugt, besonders dann wenn als funktionelle Gruppe zusätzlich noch ein Carbonsäurechlorid oder Sulfonsäurechlorid an demselben Molekül vorhanden ist. Die Alkylammoniumionen sind über übliche Methylierungsreagenzien, wie Methyljodid erhältlich. Geeignete Ammoniumionen sind alpha- omega-Aminocarbonsäuren, besonders bevorzugt sind
Aminoalkylarylsulfohalogenid R3N-Alkyl-Aryl-SO2X X=C1; Br; J; F
R
Aminoalkylarylsulfonsäuren, N^A.lkyl-Aryl-SO3Me +1/+2/+3/+4
R R Me= Metall o. H o. ZrO2+ o. TiO2+
+ und die omega-Alkylaminosulfonsäuren. R3N-Alkyl-SO3H/Me+1/+2 +3 +4
+ Die alpha-omega-Aminoarylsulfonsäuren R3N-Aryl-SO3Me+1 +2 +3 +4
Me= Metall o. H o. Zr02+ o. TiO2+ und die alpha-omega-Alkylaminosulfonsäurehalogenide
+ R3N-Alkyl-SO2X X=F; Cl; Br; J
Weitere bevorzugte Ammoniumionen sind Pyridin- und Laurylammoniumionen.
Nach der Funktionalisierung weisen die Schichtsilikate im allgemeinen einen Schichtabstand von
10 bis 50 Angström, vorzugsweise von 13 bis 40 Angström auf.
Das hydrophobierte und funktionalisierte Schichtsilikat wird von Wasser durch Trocknen befreit.
Im allgemeinen enthält das so behandelte Schichtsilikat noch einen
Restwassergehalt von 0-5 Gew. % Wasser. Anschließend kann das funktionalisierte
Schichtsilikat als Suspension in einem möglichst wasserfreien Suspendiermittel mit den erwähnten Polymeren gemischt werden und zu einer Folie weiterverarbeitet werden. In dem Fall, das die Extrusion zur Darstellung der unversteckten Folie gewählt wird, kann das funktionalisierte Schicht- oder Gerüstsilikat zur Schmelze hinzugegben werden. Bevorzugt ist die Zugabe von unmodifizierten Schicht- oder Gerüstsilikaten zur Schmelze und eine Funktionalisierung der Silikate nach der Verstreckung. Dies ist besonders bevorzugt wenn die Extrusionstemperatur über der Zerstörungstemperatur der funktionalisierenden Substanzen liegt.
Eine speziell bevorzugte Funktionalisierung der Gerüst- und/oder Schichtsilikate erfolgt mit modifizierten Farbstoffen oder deren Vorstufen, besonders mit Triphenylmethanfarbstoffen. Sie haben die allgemeine Formel:
Figure imgf000008_0001
In der vorliegenden Erfindung werden Farbstoffe verwendet, die sich von dem folgendem Grundgerüst ableiten:
Figure imgf000008_0002
Die Reste R können unabhängig voneinander Wasserstoff, eine 1 bis 40 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl-, Cycloalkyl- oder eine gegebenenfalls alkylierte Arylgruppe sein, die gegebenenfalls ein oder mehrere Fluoratome enthalten. Die Reste R können ebenso unabhängig voneinander den Resten Rl, R2, R3 oder R4 mit den funktionellen Gruppen aus der oben genannten allgemeinen Formel (I) und (II) für funktionalisierende Hydrophobierungsmittel entsprechen. Zur Funktionalisierung des Schichtsilikates wird der Farbstoff oder seine reduzierte Vorstufe in einem aprotischen Lösungsmittel (z.B. Tetrahydrofuran, DMAc, NMP) zusammen mit dem
Silikat umgesetzt. Nach ca. 24 Stunden ist der Farbstoff bzw. die Vorstufe in die Kavitäten des
Schichtsilikates interkaliert. Die Interkalation muß von der Art sein, daß eine ionenleitende
Gruppe sich an der Oberfläche des Silikatpartikels befindet.
Die nachfolgende Abbildung zeigt schematisch den Vorgang
Figure imgf000009_0001
Das so funktionalisierte Schichtsilikat wird als Zusatz zu der Polymerlösung wie in Anmeldung DE10024575.7 beschrieben hinzugegeben. Die Funktionalisierung der Schicht- oder Gerüstsilikate kann ebenso wieder über einen Kationenaustausch in der verstreckten Folie erfolgen. Es hat sich als besonders günstig erwiesen die Vorstufe der Farbstoffe zu verwenden. Erst in einer darauffolgenden Oxidation durch eine saure Nachbehandlung werden die eigentlichen Farbstoffe durch Abspaltung von Wasser gebildet. Im Falle der Triphenylmethanfarbstoffe wurde dabei überraschend festgestellt, daß eine
Figure imgf000009_0002
Protonenleitung, in den daraus hergestellten Membranen unterstützt wird. Ob es sich sogar um eine wasserfreie Protonenleitung handelt kann nicht mit ausreichender Sicherheit gesagt werden. Sind die Farbstoffe nicht an das Silikat gebunden, liegen sie also in freier Form in einer verstreckten Membran vor, so werden sie bereits nach kurzer Zeit mit dem Reaktionswasser in der Brennstoffzelle ausgetragen.
Erfindungsgemäß werden die Sulfinatgruppen enthaltenden Polymermischungen aus der oben angeführten Stammanmeldung, besonders bevorzugt die thermoplastischen funktionalisierten Polymere (Ionomere) zu der Suspension der hydrophobierten Schichtsilikate gegeben. Dies kann in bereits gelöster Form erfolgen oder die Polymere werden in der Suspension selbst in Lösung gebracht. Allgemein ist der Anteil der Schichtsilikate zwischen 1 und 70 Gew.%. Besonders zischen 2 und 40 Gew. % und speziell zwischen 5 und 15 Gew. %.
Eine weitere Verbesserung gegenüber der Stammanmeldung ist die zusätzliche Einmischung von Zirkonylchlorid (ZrOCl2) in die Membranpolymerlösung und in die Kavitäten der Schicht- und/oder Gerüstsilikate. Erfolgt die Nachbehandlung der Membran in Phophorsäure, so fällt in unmittelbarer Nähe des Silikatkornes in der Membran schwerlösliches Zirkonphosphat aus. Zirkonphosphat zeigt im Betrieb der Brennstoffzelle eine Eigenprotonenleitfähigkeit. Die Protonenleitfähigkeit funktioniert über die Bildung der Hydrogenphosphate als Zwischenschritte und ist Stand der Technik. Das gezielte Einbringen in direkter Nähe eines Wasserspeichers (Silikate) ist neu.
Die verstreckte, mikroporöse Folie enthaltend eine teilchenförmige Komponente (B) wird erfindungsgemäß einer oder mehrerer Nachbehandlungen (C) unterworfen. In einer besonderen Ausfuhrungsform der Erfindung enthält die mikroporöse Folie Schicht- und/oder Gerüstsilikate. Diese werden nun in einem oder mehreren Schritten funktionalisiert.
Ist der funktionalisierte Füllstoff, besonders Zeolithe und Vertreter der Beidelithreihe und Bentonite, die einzige ionenleitende Komponente, so ist sein Gewichtsanteil allgemein zwischen 5 bis 80%, besonders zwischen 20 und 70% und speziell im Bereicht von 30 bis 60% Gew..
Die polymeren Komponenten der Komponente (A) der erfindungsgemäßen Compositemembranen sind folgendermaßen definiert:
(1) Hauptketten (Backbones) der erfindungsgemäßen Polymere:
Eigentlich sind als Polymerhauptketten alle Polymere möglich. Bevorzugt als Hauptketten werden jedoch:
Polyolefine wie Polyethylen, Polypropylen, Polyisobutylen, Polynorbornen,
Polymethylpenten, Poly(l,4-isopren), Poly(3,4-isopren), Poly(l,4-butadien), Poly(l,2-butadien) Styrol(co)polymere wie Polystyrol, Po_y(methylstyrol), Po_y(α,ß,ß-trifluorstyrol), Poly(pentafluorostyrol) perfluorierten Ionomere wie Nation® oder der SC^Hal-Vorstufe von Nation® (Hal=F, Cl, Br, I), Dow®-Membrane, GoreSelect®-Membrane.
N-basische Polymere wie Polyvinylcarbazol, Polyethylenimin, Poly(2-vinylpyridin), Poly(3-vinylpyridin), Poly(4-vinylpyridin)
(Het)arylhauptkettenpolymere, die die in Abb. 1 aufgeführten Baugruppen enthalten. Besonders bevorzugt werden (Het)arylhauptkettenpolymere wie:
Polyetherketone wie Polyetherketon PEK Victrex®, Polyetheretherketon PEEK Victrex®,
Polyetheretherketonketon PEEKK, Polyetherketonetherketon-keton PEKEKK Ultrapek®
Polyethersulfone wie Polysulfon Udel®, Polyphenylsulfon Radel R®,
Polyetherethersulfon Radel A®, Polyethersulfon PES Victrex®
Poly(benz)imidazole wie PBI Celazol® und andere den (Benz)imidazol-Baustein enthaltende
Oligomere und Polymere, wobei die (Benz)imidazolgruppe in der Hauptkette oder in der
Polymerseitenkette vorhanden sein kann
Polyphenylenether wie z. B. Poly(2,6-dimet_ιyloxyphenylen), Poly(2,6- diphenyloxyphenylen)
Polyphenylensulfid und Copolymere
Poly(l,4-phenylene) oder Poly(l,3-phenylene), die in der Seitengruppe ggf. mit Benzoyl-,
Naphtoyl- oder o-Phenyloxy-l,4-Benzoylgruppen, m-Phenyloxy-l,4-Benzoylgruppen oder p-
Phenyloxy-l,4-Benzoylgruppen modifiziert sein können.
Poly(benzoxazole) und Copolymere
Poly(benzthiazole) und Copolymere Poly(phtalazinone) und Copolymere Polyanilin und Copolymere Polythiazol Polypyrrol
(2) Polymere des Typs A (Polymere mit Kationenaustauschergruppen oder deren nichionischen Vorstufen): Unter den Polymertyp A fallen alle Polymere, die aus den o. g. Polymerhauptketten (1) und folgenden Kationenaustauschergruppen oder ihren nichtionischen Vorstufen bestehen können:
S03H, S03Me; P03H2, P03Me2; COOH, COOMe
S02X, POX2, COX mit X=Hal, OR2, N(R2)2, Anhydridrest,
Figure imgf000012_0001
.
Figure imgf000012_0002
Dabei sind S03H, S03Me; P03H2, P03Me2 bzw. S02X, POX2 als funktionelle Gruppen bevorzugt. Besonders bevorzugt als funktionelle Gruppen sind die stark sauren Sulfonsäuregruppen oder ihre nichtionischen Vorstufen. Als Polymerhauptketten sind Arylhauptkettenpolymere bevorzugt. Besonders bevorzugt sind Poly(etherketone) und Poly(ethersulfone)
(3) Polymere des Typs B (Polymere mit N-basischen Gruppen und/oder Anionenaustauschergruppen) :
Unter den Polymertyp A fallen alle Polymere, die aus den o. g. Polymerhauptketten (1) bestehen und folgende
Anionenaustauschergruppen oder ihren nichtionischen Vorstufen (mit primärem, sekundärem, tertiärem basischem
N) tragen können:
N(R2)3 +Y", P(R2)3 +Y", wobei die R2-Reste gleich oder voneinander verschieden sein können;
N(R2)2 (primäre, sekundäre oder tertiäre Amine);
Polymere mit den in Abb. 2 aufgeführten N-basischen (Het)aryl- und Heterocyclusgruppen.
Als Polymerhauptketten sind (Het)arylhauptkettenpolymere wie Poly(etherketone), Poly(ethersulfone) und
Poly(benzimidazole) bevorzugt. Als basische Gruppen sind bevorzugt primäre, sekundäre und tertiäre
Aminogruppen, Pyridylgruppen und Imidazolgruppen.
(4) Polymere des Typs C (Polymere mit Vernetzungsgruppen wie Sulfinatgruppen und/oder ungesättigten Gruppen):
Unter den Polymertyp C fallen alle Polymere, die aus den 0. g. Polymerhauptketten (1) und Vernetzungsgruppen bestehen. Vernetzungsgruppen sind beispielsweise:
4a) Alkengruppen: Polymer-C(Rι3)=C(Rι45) mit Rι3, R14, Rι5=R2 oder R,
4b) Polymer-Si(R16Rπ)-H mit R15) R17= R2 oder R,
4c) Polymer-COX, Polymer-S02X, Polymer-POX2
4d) Sulfinatgruppen Polymer-S02Me
4e) Polymer-N(R2) 2 mit R2≠H. Dabei kann auf der Polymerhauptkette einer der genannten Vernetzungsgruppen oder mehrere der genannten Vernetzungsgruppen liegen. Die Vernetzung kann dabei durchgeführt werden durch folgende literaturbekannte Reaktionen:
(I) Gruppe 4a) durch Addition von Peroxiden;
(II) Gruppe 4a) mit Gruppe 4b) unter Pt-Katalyse via Hydrosilylierung;
(III) Gruppe 4d) mit Düialogenalkan- oder Dihalogenaryl- Vernetzern (z. B. Hal-(CH2)X-Hal, x=3-20) unter S- Alkylierung der Sulfinatgruppe;
(IV) Gruppe 4e) mit Düialogenalkan- oder Dihalogenaryl-Vernetzern (z. B. Hal-(CH2)X-Hal, x=3-20) unter Alkylierung der tertiären basischen N-Gruppe
(V) Gruppe 4d) und Gruppe 4e) mit Düialogenalkan- oder Dihalogenaryl-Vernetzern (z. B. Hal-(CH2)X-Hal, x=3-20) unter S-Alkylierung der Sulfinatgruppe und Alkylierung der tertiären basischen N-Gruppe
(VI) Gruppe 4c) durch Reaktion mit Diaminen.
Dabei sind die Vernetzungsreaktionen (III) und (IV) und (V) bevorzugt, insbesondere die Vernetzungsreaktion (III).
(5) Polymere des Typs D (Polymere mit Kationenaustauschergruppen und Anionenaustauschergruppen und/oder basischen N-Gruppen und/oder Vernetzungsgruppen): Unter den Polymertyp (5) fallen Polymere, welche die Hauptketten aus (1) enthalten können, die verschiedenartige Gruppen tragen können: die in (2) aufgeführten Kationenaustauschergruppen oder ihre nichtionischen Vorstufen und die in (3) aufgeführten Anionenaustauschergruppen oder primären, sekundären oder tertiären N-basischen Gruppen und/oder die in (4) aufgeführten Vernetzungsgruppen. Folgende Kombinationen sind dabei möglich: Polymer Dl: Polymer mit Kationentauschergruppen oder ihren nichtionischen Vorstufen und mit
Anionentauschergruppen und/oder N-basischen Gruppen Polymer D2: Polymere mit Kationenaustauschergruppen oder ihren nichtionischen Vorstufen und mit
Vernetzungsgruppen Polymer D3: Polymere mit Anionentauschergruppen und/oder N-basischen Gruppen und mit
Vernetzungsgruppen Polymer D4: Polymer mit Kationentauschergruppen oder ihren nichtionischen Vorstufen und mit
Anionentauschergruppen und/oder N-basischen Gruppen und mit Vernetzungsgruppen Im Folgenden wird beschrieben wie verstreckte Folien, die eine anorganische teilchenförmige
Komponente (B) enthalten so nachbehandelt werden, dass daraus Membranen für
Brennstoffzellenanwendungen, Alken-Alkan-Trennung, Elektrodialyse, Umkehrosmose, Dialyse,
Pervaporation, Elektrolyse und andere Membrananwendungen erhältlich sind.
Ein schmelzbares verstreckbares Polymer z.B. Polypropylen wird mit einer anorganischen teilchenformigen Komponente (B), bevorzugt eine Schicht- und/oder Gerüststrukturen enthaltende Komponente, insbesondere ein Schicht- und/oder Gerüstsilikat mit einer durchschnittlichen Teilchengröße von 5-10μ compountiert. Unter Compountieren soll verstanden werden: Das Polymer wird in der Schmelze innig mit der anorganischen Komponente, hier dem
Silikat, vermischt. Eine gängige Methode ist das Vermengen der Komponenten im
Doppelschneckenextruder. Als Ergebnis erhält man einen Komposit, hier Silikat in Polypropylen.
Als silikatische Komponente wird beispielhaft im weiteren der Bentonit Montmorillonit verwendet. Das bedeutet aber keine spezielle Einschränkung auf Bentonite.
Die Folie wird nun wie weiter oben beschrieben nach bekannten Methoden verstreckt.
Die verstreckte Folie stellt nun eine mikroporöse Membran dar. Die Porengröße ist abhängig von der Korngröße, Dehnungseigenschaften des Polymers und von den Zugkräften, die während der
Verstreckung angewendet wurden. Als dichte Membran ist sie vollkommen unbrauchbar. Gase z.B. dringen annähernd ungehindert hindurch.
Bei den erfindungsgemäßen Membranen wird ein organisch modifizierter Ton oder Zeolith verwendet. Bentonite sind Tone und Montmorillonit ist ein spezieller Bentonit. Montmorillonit ist bevorzugt. Es können aber auch alle anderen Substrate verwendet werden, in die niedermolekulare Verbindungen interkalieren können. Montmorillonit ist in der Lage Moleküle durch Interkalation an sich zu binden. Montmorillonit wird so modifiziert, dass eine stark basische Komponente aus dem Partikel herausragt oder sich auf der Partikeloberfläche befindet.
Diese organische Modifikation ist Stand der Technik. Die organische Komponente ist bevorzugt stickstoffhaltig. Besonders bevorzugt sind Heterozyklen und unter diesen wieder Imidazole und
Guanidinderivate. Das soll keine Beschränkung auf diese beiden Substanzklassen bedeuten. Es ist auch jede andere Substanzklasse möglich, die eine starke endständige Base enthält.
Dieser organisch modifizierte Montmorillonit wird mit dem Polymer compountiert, zu einer Folie extrudiert und danach verstreckt. Im Falle von Polypropylen können ohne weiteres bis zu 70%
(Gew.) eingearbeitet werden. Besonders bevorzugt sind 50-60% (Gew.). Als Ergebnis erhält man eine mikroporöse verstreckte Folie mit Tonpartikel, die auf ihrer Oberfläche Imidazolgruppen tragen. Diese Folie wird nun mit Phosphorsäure nachbehandelt. Die Phosphorsäure dringt in die
Folie ein und bildet eine Verbindung mit den Imidazolgruppen. Darüber hinaus füllen sich noch bestehende Hohlräume, sowohl in dem anorganischen Partikel als auch außerhalb mit der
Phosphorsäure. Die Folie ist nun eine dichte Protonen leitende Membran geworden und ist in diesem Zustand bereits als solche in einer Brennstoffzelle einsetzbar.
Um die Membran weiter gegen das "Ausbluten" der Phosphorsäure abzudichten, wird erfindungsgemäß die Membran in Zirkonoxidchlorid-Lösung eingetaucht. Unlösliches
Zirkonphosphat fällt an der Phasengrenze zur Membran und in der Membran selbst aus. Die
Membran wird durch diesen Vorgang weiter abgedichtet. Zirkonphosphate unterstützen die
Protonenleitung. Diese Membran ist geeignet für den Einsatz in der Brennstoffzelle.
Bei Verwendung von Thermoplasten als Polymerkomponente wie z.B. Polysulfon oder Vectra
950® (von Ticona) ist die daraus gebildete Membran für die PEM-Brennstoffzelle einsetzbar.
Auch für Temperaturen über 80°C.
Der Vorteil des erfindungsgemäßen Verfahrens ist, dass die Folie extrudiert wird und nicht aus einem Lösungsmittel heraus gezogen wird. Das obengenannte Verfahren mit zur Folie verstrecktem Polymer, organisch modifiziertem Ton, Imidazol, Phosphorsäure und nachfolgend teilweisem Ausfällen zu Zirkonphosphat ist nur ein exemplarisches spezielles Beispiel für die grundsätzliche Erfindung.
Es wird über die Verstreckung ein zweiter Pfad in der Folie geschaffen. Der erste Pfad stellt die polymere Komponente (A) aus dem die Folie besteht selbst dar. Der zweite Pfad sind die Hohlräume oder die Poren, die durch den Verstreckungsvorgang entstanden sind. Als Pfad soll verstanden werden ein durchgängiger Weg von einer Seite zur anderen. Damit der Weg durchgängig ist muß eine echte Perkolation möglich sein. D.h., Wasserdampf z.B. muß von der einen Seite auf die andere Seite durchdringen können. Wird der Hohlraum gefüllt, so sind die Eigenschaften des neuen Pfades abhängig von dem "Füllmaterial ". Ist das Füllmaterial ionenleitend, so ist der gesamte Pfad ionenleitend. Wichtig ist, dass der Pfad durchgängig ist. Die Folie vor der Verstreckung kann durch Extrusion hergestellt werden. Es ist aber auch möglich die Folie aus einem Lösungmittel heraus herzustellen.
Die Herstellung der Folie mit dem modifizierten oder unmodifizierten Füllstoff aus einem Lösungsmittel heraus ist Stand der Technik.
Die Extrusion setzt ein Schmelzen des Polymers voraus. Die allermeisten funktionalisierten Polymere sind nicht ohne erhebliche Nachteile extrudierbar. Enthält das Polymer Sulfonsäuregruppen oder chemische Vorstufen wie Sulfochloride, so degeneriert das Polymer bevor es schmilzt. In solchen Fällen wird die Herstellung über ein lösungsmittelhaltigen Prozeß bevorzugt.
Die Eigenschaften der zwei Pfade lassen sich über einen nahezu beliebigen Bereich modifizieren. Es ist ein Problem in der Brennstoffzellentechnik, dass Protonenleitfähigkeit unter 80°C besonders gut mit wasserhaltigen Membranen funktioniert (z.B. Nafion®). Über dieser Temperatur wird Wasser zunehmend ausgetragen und in der Folge sinkt die Protonenleitfähigkeit und damit die Leistung. Nach dem Stand der Technik hat man versucht dieses Problem zu lösen in dem man Kompositmaterialen aus einem Polymer und einem anorganischen Füllstoff, der auch protonenleitend ist oder die Protonenleitung unterstützt, herstellt. Das Problem dabei ist, dass die einzelnen Pfade, also anorganischer Füllstoff oder organisches Ionomer nicht unabhängig voneinander von einer Seite der Membran auf die andere Seite der Membran durchgehend sind. Erfindungsgemäß wird nun aufbauend nach diesem Stand der Technik eine Membran hergestellt. Diese enthält einen wasserabhängigen polymeren Protonenleiter z.B. eine polymere Sulfonsäure und eine anorganische Komponente, die gegebenenfalls vorher organisch modifiziert wurde. Diese Folie wird nun verstreckt und der entstehende zweite Pfad mit einer bei höherer Temperatur (T>80°C) protonenleitenden Substanz gefüllt. Dieses Füllen kann z.B. dadurch ermöglicht werden, dass die mikroporöse Membran abwechselnd in Phosphorsäure und Zirkonoxidchlorid (ZrOCl ) nachbehandelt wird. Diese Vorgang kann so oft wiederholt werden bis keine weiteres Zirkonphosphat mehr in der Membran ausfallt. Das Ausfallen von Zirkonphosphat ist aber nur eine Möglichkeit. Als Polymer wird z.B. ein sulfoniertes Polyetherketon oder Polysulfon verwendet.
Als Ergebnis erhält man eine Membran, die zwei durchgehende protonenleitende Pfade besitzt. Für den Temperaturbereich unter 80°C funktioniert die Protonenleitung überwiegend über die in Wasser gequollene polymere Sulfonsäure und über den Temperaturbereich darüber über den anorganischen Protonenleiter. Es findet ein fließender Übergang statt.
In einer weiteren Modifikation wird das Konzept der zwei Pfade reduziert auf eine unfertige mikroporöse Membran, die in einem zweiten Modifikationsschritt der gewünschten Anwendung angepasst wird. Es sind zwei Membranen, die zu einer zusammengefügt werden ohne das sie sich dabei in ihrer Membranfunktion stören. Ein anderes anschauliches Bild ist ein textiler Stoff der aus zwei Garnen mit unterschiedlicher Farbe gewebt wurde. Wobei man die Garne in einem sehr breiten Bereich wählen kann. Das eine Garn wurde aber in den fertigen homogenen Stoff nachträglich eingefügt.
Das Verfahren wird exemplarisch noch einmal schematisch beschrieben für den besonders bevorzugen Fall, das die Komponente (A) ein ohne Degradation schmelzbares Polymer ist und das die teilchenförmige Komponente (B) ein Schicht- oder Gerüstsilikat mit einer Durchschnittsgröße von 0,1 bis 15μ ist.
Durch Extrusion eines Composites der die Komponenten (A) und (B) enthält mit nachfolgender Verstreckung erhält man eine mikroporöse Folie. Diese mikroporöse Folie wird nachbehandelt in einer Lösung die Moleküle enthält, die wenigsten zwei funktionelle Gruppen im gleichen Molekül besitzen. Eine der funktionellen Gruppe im Molekül hat eine positve Ladung, bevorzugt ist dies ein positives Stickstoffatom. Der positive Stickstoff interkaliert in die Schicht- bzw. Gerüststrukturen des Silikates. Es findet ein Kationenaustausch statt. Durch Protonierung eines primären, sekundären oder tertiären Stickstoff z.B. durch das saure Silikat entsteht ebenfalls ein Stickstoff-Kation, der in das Silikat interkaliert. Der Kationenaustausch am Silikat kann, wie bereits weiter oben erwähnt vollkommen oder teilweise stattfinden. Die entstehende Membran ist für bestimmte Membrananwendungen, wie Alken-Alkan-Trennung bereits ausreichend abgedichtet. Die in das Schicht- oder Gerüstsilikat nicht interkalierte verbleibende funktionelle Gruppe kann eine Vorstufe einer Ionenleitenden Gruppierung sein. Beispielweise Sulfonsäurechloride, Carbonsäurechlorid oder Phosphonsäurechloride. Weitere Beispiele für Vorstufen von Kationen- oder Anionentauschergruppierungen sind weiter vorher genannt. Diese Vorstufen werden in einer weiteren Nachbehandlung in eine die selektive Permeation unterstützende Gruppierung umgesetzt. Dies ist z.B. im Falle der Sulfonsäurehalogenide eine Hydrolyse, die im sauren, neutralen oder alkalischen Medium stattfindet.
Um die Folie weiter abzudichten wird nun die verstreckte Folie wechselweise mit einem mehrwertigen Metallsalz z.B. Ti4+, Zr4+, Ti3+, Zr3+, TiO2+, ZrO2+ und einer Säure, die nieder oder hochmolekular sein kann versetzt. Als Säuren sind besonders bevorzugt mit Wasser verdünnte Phosphorsäure und Schwefelsäure. Die Phosphorsäure hat eine Konzentration von 1- 85 Gew.%. Bevorzugt ist eine Konzentration von 20 bis 80 Gew.%. Die Schwefelsäure hat eine Konzentration von 1 bis 80 Gew.%. Bevorzugt ist eine Konzentration von 20 bis 50 %Gew.. Des Vorgang des Aufaliens eines schwerlöslichen Protonenleiters in der Membran kann mehrfach wiederholt werden.
Als anorganische Komponente kann jede Substanz verwendet werden, die bei einer Verstreckung zur Folge hat, dass sich frei Räume um diese Substanz bilden (siehe dazu Abb. 1 : Vorgang der Hohlraumbildung durch Verstreckung). Es ist auch nicht zwingend notwendig, dass die Komponente anorganisch sein muß. Einzige Bedingung ist, wie schon gesagt, dass sich um das Partikel nach der Verstreckung ein freier Raum gebildet hat. Die Verstreckung kann mono- oder auch biaxial erfolgen. Bevorzugt ist eine biaxiale Verstreckung. Für die Anwendung in Hohlfasern genügt aber auch eine monoaxiale Verstreckung.
Zusätzlich ist auch noch eine Verstreckung über die dritte Raumrichtung möglich, also Triaxial. Dazu wird z.B. der zur Folie extrudierte Komposit über Vakuumdüsen in der Ebene gehalten und von oben setzt eine Platte auf, die ebenfalls über kleine Poren ein Vakuum ziehen kann. Die Folie ist nun zwischen zwei Platten fixiert. Zieht man nun die beiden Platten auseinander, bei angelegtem Vakuum, und wählt den Abstand so, dass die Folie nicht reißt sondern nur verstreckt, so erhält man eine Folie die über die Dicke verstreckt wurde. Eine weitere Anwendung findet die Erfindung in der Elektrodialyse.
Die mikroporöse verstreckte Membran besteht aus einem Kationentauscher und der zweite Pfad besteht aus einem Anionentauscher, gegebenfalls mit Protonenleaching z.B. beschrieben in DE 19836514 AI (Abb.3; Zeichnungen Seite 2). Wird diese Membran in ein elektrisches Feld gehalten so dissoziiert in ihr das Wasser in Protonen und Hydroxylionen. Gemäß dem elektrischen Feld wandern die Protonen über den Kationentauscherpfad zur Kathode und die Hydroxylionen (OH") über den Anionentauscherpfad zur Anode. Es lassen sich auf diese Weise sehr kostengünstig und einfach Membranen für die Elektrodialyse herstellen.
Die Pfade können aber auch getauscht werden. Dann wird zuerst eine Anionentauschermembran bzw. eine chemische Vorstufe der Anionentauschergruppierung verstreckt und der zweite Pfad ist nun eine Kationentauschermembran. Die Modifikation der anorganischen Komponente muß entsprechend gewählt werden.
Ein Vorteil der Erfindung ist vorher nur kurz erwähnt worden. Ionomere sind im Regelfall nicht extrudierbar. So läßt sich Nafion® nicht ohne Plastifizierer extrudieren. Der Plastifizierer (Hilfsmittel zur Extrusion) läßt sich später nur sehr schwer aus der Membran entfernen. Dies ist aber notwendig für die Funktionsfähigkeit der Membran.
Erfindungsgemäß lassen sich organisch modifizierte Partikel (z.B. Montmorillonit) in schmelzbaren und somit extrudierbaren Polymeren zu Folien verarbeiten. Im zweiten Schritt wird durch die Verstreckung der durchgängige Pfad ausgebildet und dann mit dem Ionenleiter gefüllt. Durch die teilchenförmige anorganische Schicht- oder Gerüststrukturen enthaltende Komponente (B) wird eine ansonsten unter den Anwendungsbedingungen einer Membran bewegliche bzw. flüchtige funktionelle Gruppen tragende chemische Substanz der allgemeinen Formel für hydrophobierende Funktionalisierungmittel (I) oder (II) über einen technisch anwendbaren Zeitraum in der mirkroporösen Folie so fixiert, das diese in Membrananwendungen eingesetzt werden kann.
Dies erlaubt eine enorme Senkung der Produktionskosten. Es können in großen bestehenden Anlagen große Flächen einer "Roh" -Membran hergestellt werden, die je nach Anwendung in einem zweiten Schritt modifiziert werden. So sind nach diesem Verfahren sehr kostengünstig Membranen für die Meerwasserentsalzung herstellbar. Hier wird als Grundpolymer z.B. Polypropylen verwendet. Die anorganische Komponente z.B. Montmorillonit wird vorher so organisch modifiziert, dass an der Oberfläche eine geladene Gruppe verbleibt. Dies kann z.B. mit einer alpha-omega Aminosulfonsäure geschehen. Nach der Verstreckung erhält man als Resultat eine geladene mikroporöse Membran. Diese ist geeignet für die Umkehrosmose. Darüber hinaus können innerhalb der Poren noch Vernetzungsreaktionen durchführt werden über endständige Vernetzungsfahige Gruppen der Funktionalisierungsmittel. Dies kann eine kovalente und/ oder eine ionische Vernetzung sein.
Eine weitere Anwendung ist die Verwendung in der Alken- Alkan-Trennung.
Stickstoff in Heterozyklen mit einem freien Elektronenpaar bildet mit Silberionen z.B.
Silbernitratlösung einen schwerlöslichen Komplex. Es wurde nun überraschend festgestellt, dass, wenn dieser Komplex sich in einer Membran befindet, dieser in der Lage ist reversibel Alkene an sich zu binden.
Stellt man eine Folie aus Polybenzimidazol her und legt diese über einen Zeitraum von 24
Stunden bis zu zwei Wochen in verdünnter bis konzentrierter Silbersalzlösung, bevorzugt ist
Silbernitrat, ein, so hat diese Membran überraschenderweise eine Trennleistung auf Alken-
Alkan-Gemische. Als Lösungmittel für das Silbersalz kann Wasser oder ein aprotisches Lösungsmittel verwendet werden. Alkene und Olefine permitieren durch eine solche Membran wasserfrei mit einer technisch anwendbaren Flußrate. Eine Verbesserung der Flußzahlen wird erreicht durch einfügen von organisch modifiziertem Montmorillonit mit heterozyklischem Stickstoff an der Oberfläche, der mindestens ein freies Elektronenpaar aufweist z.B. eine endständige Imidazolgruppe. Die Membran wird vorsichtig verstreckt und danach in Silbersalzlösung eingelegt. Durch das Verstrecken werden in der Membran Kanalstrukturen erzeugt, die den Transport erleichtern.
Eine erhebliche Kostenreduktion wird erreicht, wenn ein unmodifiziertes Polymer z.B. Polypropylen mit organisch modifiziertem Montmorillonit verstreckt wird. Der Montmorillonit trägt auf seiner Oberfläche wieder endständige Imidazol oder Pyridin-Gruppen. Nach der Verstreckung wird die mikroporöse Membran in eine Silberionen haltige Lösung eingelegt. Danach ist die Membran geeignet für die Alken-Akan-Trennung. Die Membran ist geeignet für die Trennung von niedermolekularen Substanzen bei denen eine Komponente des Gemisches eine Doppelbindung enthält, die eine reversiblen Komplex mit Silberionen eingehen. Besonders bevorzugt ist die Trennung von niedermolekularen Olefm/Alkan-Gemischen. Der Montmorillonit muß nicht zwangsweise modifiziert sein. Polypropylen wird mit Montmorillonit compountiert und verstreckt. Danach wird die poröse Folie in einer Lösung nachbehandelt, die aromatischen Stickstoff mit wenigstens einem freien Elektronenpaar enthält. Das Lösungsmittel kann jedes geeignete Lösungmittel oder Lösungsmittelgemisch sein. Wasser und aprotische Lösungsmittel sind bevorzugt. Wichtig ist nur, daß das entsprechende stickstoffhaltige Molekül in die Kavitäten des Tones eindringt und die Poren ausfüllt. In dem darauffolgenden Schritt wird die Membran in einer Silber- oder Kupferionenhaltigen Lösung nachbehandelt. Als Lösungsmittel ist alles geeignet was Silber- oder Kupferionen in Lösung hält. Besonders bevorzugt ist Wasser und aprotische Lösungsmittel, wie zum Beispiel DMSO, NMP und THF. Als Folge fallt der Stickstoff-Silberionen-Komplex bzw. der Stickstoff-Kupferionen- Komplex in der Membran aus. Dieser Vorgang kann gegebenenfalls mehrfach wiederholt werden. Die Membran ist nun geeignet für die wasserfreie Alken- Alkan-Trennung.

Claims

Ansprüche
1. Gefüllte verstreckte Membranen.
2. Gefüllte verstreckte Membranen mit heterozyklischem Silberionenkomplex für die Alken- Alkan-Trennung.
PCT/EP2002/005256 2001-05-11 2002-05-13 Modifikation von verstreckten folien WO2002092673A1 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
KR1020097020575A KR101005674B1 (ko) 2001-05-11 2002-05-13 연신 필름의 변형
JP2002589551A JP4154244B2 (ja) 2001-05-11 2002-05-13 延伸フィルムの改良
DE50210461T DE50210461D1 (de) 2001-05-11 2002-05-13 Modifikation von verstreckten folien
US10/477,174 US8079480B2 (en) 2001-05-11 2002-05-13 Modification of drawn film
AU2002342310A AU2002342310B2 (en) 2001-05-11 2002-05-13 Modification of drawn film
DE10292065T DE10292065D2 (de) 2001-05-11 2002-05-13 Modifikation von verstreckten Folien
CA2446881A CA2446881C (en) 2001-05-11 2002-05-13 Modification of stretched films
EP02743003A EP1392765B1 (de) 2001-05-11 2002-05-13 Modifikation von verstreckten folien
KR10-2003-7014681A KR20040008173A (ko) 2001-05-11 2002-05-13 연신 필름의 변형
ZA2004/00186A ZA200400186B (en) 2001-05-11 2004-01-12 Modification of drawn film
AU2008229666A AU2008229666A1 (en) 2001-05-11 2008-09-28 Modification of drawn film
AU2009200145A AU2009200145A1 (en) 2001-05-11 2009-01-09 Modification of drawn film
AU2009201729A AU2009201729A1 (en) 2001-05-11 2009-04-30 Modification of drawn film
US13/329,112 US9126147B2 (en) 2001-05-11 2011-12-16 Modification of drawn film
US14/846,902 US20150376360A1 (en) 2001-05-11 2015-09-07 Modification of drawn film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122814.7 2001-05-11
DE10122814 2001-05-11

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10477174 A-371-Of-International 2002-05-13
US10/477,174 A-371-Of-International US8079480B2 (en) 2001-05-11 2002-05-13 Modification of drawn film
US13/329,112 Division US9126147B2 (en) 2001-05-11 2011-12-16 Modification of drawn film

Publications (1)

Publication Number Publication Date
WO2002092673A1 true WO2002092673A1 (de) 2002-11-21

Family

ID=7684346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/005256 WO2002092673A1 (de) 2001-05-11 2002-05-13 Modifikation von verstreckten folien

Country Status (12)

Country Link
US (3) US8079480B2 (de)
EP (2) EP1392765B1 (de)
JP (2) JP4154244B2 (de)
KR (2) KR20040008173A (de)
CN (1) CN1527859A (de)
AT (1) ATE366771T1 (de)
AU (4) AU2002342310B2 (de)
CA (1) CA2446881C (de)
DE (2) DE10292065D2 (de)
ES (1) ES2292774T3 (de)
WO (1) WO2002092673A1 (de)
ZA (1) ZA200400186B (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869032A1 (fr) * 2004-04-15 2005-10-21 Commissariat Energie Atomique Procede de preparation de particules d'argile conductrices de protons et materiau comprenant de telles particules
WO2006097603A1 (fr) * 2005-03-16 2006-09-21 Institut National Polytechnique De Grenoble Extrusion d'un polymere thermoplastique portant des groupements ioniques acides
WO2006097602A1 (fr) * 2005-03-16 2006-09-21 Institut National Polytechnique De Grenoble Preparation d'une membrane par extrusion d'un polymere thermoplastique portant des groupements ioniques alcalins.
KR101123589B1 (ko) * 2003-11-06 2012-03-20 테크놀로지안 투트키무스케스쿠스 브이티티 다공성 플라스틱 필름의 제조방법 및 플라스틱 필름

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407793B1 (ko) * 2001-09-04 2003-12-01 한국과학기술연구원 분리능이 있는 수소 이온 교환 복합막, 복합 용액, 그제조방법 및 이를 포함하는 연료전지
JP4550920B2 (ja) * 2008-06-05 2010-09-22 株式会社東芝 燃料電池
KR100928898B1 (ko) * 2009-04-17 2009-11-30 (주)씨에스텍 미세다공성 고분자 분리막의 제조방법 및 상기 방법으로 제조된 미세다공성 고분자 분리막
KR101156439B1 (ko) * 2010-02-11 2012-06-18 삼성모바일디스플레이주식회사 복합체막, 이를 포함하는 플렉시블 기판 및 이를 채용한 유기 발광장치
US9192625B1 (en) * 2011-07-01 2015-11-24 Mangala Joshi Antimicrobial nanocomposite compositions, fibers and films
CN103509364B (zh) * 2012-06-29 2016-08-03 罗门哈斯公司 含银组合物
WO2014025735A1 (en) * 2012-08-07 2014-02-13 Promerus, Llc Cycloalkylnorbornene monomers, polymers derived therefrom and their use in pervaporation
WO2014034910A1 (ja) * 2012-08-31 2014-03-06 日本碍子株式会社 オレフィンの回収方法
BR112015008023B1 (pt) 2012-10-12 2022-03-03 The Regents Of The University Of California Processo de aumento de hidrofilicidade e membrana de polianilina submetida ao mesmo
PT2996799T (pt) 2013-05-15 2021-10-15 Univ California Membranas de polianilina formadas por inversão de fase para aplicações de osmose direta
SG11201608333XA (en) 2014-04-08 2016-11-29 Univ California Polyaniline-based chlorine resistant hydrophilic filtration membranes
CN106574071B (zh) 2014-08-21 2020-05-29 W·W·严 微孔片材产品及其制备和使用方法
JP2017535642A (ja) 2014-11-05 2017-11-30 イエン,ウイリアム・ウインチン 微孔性シート製品、ならびに、その製造方法及び使用方法
US10829600B2 (en) 2014-11-05 2020-11-10 William Winchin Yen Microporous sheet product and methods for making and using the same
KR20170079234A (ko) * 2015-12-30 2017-07-10 상명대학교산학협력단 질산염을 포함하는 sf6 분리용 고분자 전해질 분리막
IT201700115604A1 (it) * 2017-10-14 2019-04-14 Spin Pet Srl Processo per una membrana anionica nanostrutturata innovativa basata su un copolimero a catena laterale epossidica ed argilla stratificata modificata per elettrolisi e celle a combustibile.
WO2019187640A1 (ja) * 2018-03-30 2019-10-03 日本碍子株式会社 ゼオライト膜複合体、ゼオライト膜複合体の製造方法、および、分離方法
WO2022243976A1 (en) * 2021-05-20 2022-11-24 King Abdullah University Of Science And Technology Metal-polymer coordination membranes for molecular sieving
CN113601879B (zh) * 2021-08-03 2023-03-24 上海康宁医疗用品有限公司 一种三维立体的膨体聚四氟乙烯面部植入体的生产工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335614A2 (de) * 1988-03-25 1989-10-04 Du Pont Canada Inc. Heterogene Membranen aus thermoplastisch orientierbaren Polymeren mit hohem Füllstoffgehalt
EP0464718A1 (de) * 1990-06-30 1992-01-08 Praxair Technology, Inc. Sauerstoffpermeable Polymermembranen
US5670051A (en) * 1996-05-23 1997-09-23 Membrane Technology And Research, Inc. Olefin separation membrane and process
WO1997044121A1 (en) * 1996-05-17 1997-11-27 Colorado School Of Mines Membrane separation of components in a fluid mixture
US5744183A (en) * 1995-08-17 1998-04-28 Ellsworth; Robert M. Removal of sulfides from alcoholic beverages
CN1207398A (zh) * 1997-08-06 1999-02-10 天津纺织工学院 无机粒子填充的聚合物分离膜及制造方法
DE19929482A1 (de) * 1999-06-28 2001-03-01 Univ Stuttgart Polymermembran zur Anreicherung von Olefinen aus Olefin/Paraffin-Mischungen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1992482U (de) * 1968-05-17 1968-08-22 Melter & Kühn, 7530 Pforzheim Tischuhr
US4297935A (en) 1978-02-24 1981-11-03 Marmon Company Divider keyer circuit for synthesis organ
DE3214447C2 (de) 1982-04-20 1994-05-11 Eilentropp Hew Kabel Ungesintertes Wickelband des Polytetrafluorethylen
CA1311886C (en) * 1986-06-12 1992-12-29 Satoshi Nagou Microporous film and process for production thereof
US5229465A (en) 1990-06-30 1993-07-20 Praxair Technology, Inc. Oxygen-permeable polymeric membranes
US4842741A (en) 1988-03-25 1989-06-27 Du Pont Canada Inc. Heterogeneous membranes from highly filled thermoplastic orientable polymers
US5690949A (en) * 1991-10-18 1997-11-25 Minnesota Mining And Manufacturing Company Microporous membrane material for preventing transmission of viral pathogens
NL9301245A (nl) * 1993-07-15 1995-02-01 Tno Werkwijze en inrichting voor het afscheiden van een component uit een fluidummengsel.
DE19836514A1 (de) 1998-08-12 2000-02-17 Univ Stuttgart Modifikation von Engineeringpolymeren mit N-basischen Gruppe und mit Ionenaustauschergruppen in der Seitenkette
US6953510B1 (en) * 1998-10-16 2005-10-11 Tredegar Film Products Corporation Method of making microporous breathable film
JP2000256492A (ja) * 1999-03-04 2000-09-19 Toyota Central Res & Dev Lab Inc 多孔材料及びその製造方法
KR100315894B1 (ko) * 1999-12-30 2001-12-24 박호군 고분자 전해질을 이용한 알켄 분리용 고체상 촉진 수송분리막
DE10024576A1 (de) 2000-05-19 2001-11-22 Univ Stuttgart Kovalent und ionisch vernetzte Polymere und Polymermembranen
DE10024575A1 (de) 2000-11-02 2001-11-22 Univ Stuttgart Kovalent vernetzte Polymere und Polymermembranen via Sulfinatalkylierung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0335614A2 (de) * 1988-03-25 1989-10-04 Du Pont Canada Inc. Heterogene Membranen aus thermoplastisch orientierbaren Polymeren mit hohem Füllstoffgehalt
EP0464718A1 (de) * 1990-06-30 1992-01-08 Praxair Technology, Inc. Sauerstoffpermeable Polymermembranen
US5744183A (en) * 1995-08-17 1998-04-28 Ellsworth; Robert M. Removal of sulfides from alcoholic beverages
WO1997044121A1 (en) * 1996-05-17 1997-11-27 Colorado School Of Mines Membrane separation of components in a fluid mixture
US5670051A (en) * 1996-05-23 1997-09-23 Membrane Technology And Research, Inc. Olefin separation membrane and process
CN1207398A (zh) * 1997-08-06 1999-02-10 天津纺织工学院 无机粒子填充的聚合物分离膜及制造方法
DE19929482A1 (de) * 1999-06-28 2001-03-01 Univ Stuttgart Polymermembran zur Anreicherung von Olefinen aus Olefin/Paraffin-Mischungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199925, Derwent World Patents Index; Class A32, AN 1999-288712, XP002216777 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123589B1 (ko) * 2003-11-06 2012-03-20 테크놀로지안 투트키무스케스쿠스 브이티티 다공성 플라스틱 필름의 제조방법 및 플라스틱 필름
FR2869032A1 (fr) * 2004-04-15 2005-10-21 Commissariat Energie Atomique Procede de preparation de particules d'argile conductrices de protons et materiau comprenant de telles particules
WO2005101552A2 (fr) * 2004-04-15 2005-10-27 Commissariat A L'energie Atomique Procede de preparation de particules d'argile conductrices de protons et materiau composite comprenant de telles particules
WO2005101552A3 (fr) * 2004-04-15 2006-07-13 Commissariat Energie Atomique Procede de preparation de particules d'argile conductrices de protons et materiau composite comprenant de telles particules
JP2007533090A (ja) * 2004-04-15 2007-11-15 コミツサリア タ レネルジー アトミーク プロトン伝導性粘土粒子の製造方法及びその粒子を含む複合材料
US8562728B2 (en) 2004-04-15 2013-10-22 Commissariat A L'energie Atomique Process for preparing proton-conducting clay particles and composite material comprising such particles
WO2006097603A1 (fr) * 2005-03-16 2006-09-21 Institut National Polytechnique De Grenoble Extrusion d'un polymere thermoplastique portant des groupements ioniques acides
WO2006097602A1 (fr) * 2005-03-16 2006-09-21 Institut National Polytechnique De Grenoble Preparation d'une membrane par extrusion d'un polymere thermoplastique portant des groupements ioniques alcalins.
FR2883292A1 (fr) * 2005-03-16 2006-09-22 Inst Nat Polytech Grenoble Extrusion de polymeres ioniques a groupements ioniques acides
FR2883293A1 (fr) * 2005-03-16 2006-09-22 Inst Nat Polytech Grenoble Extrusion de polymeres ioniques a groupements ioniques alcalins
US7956095B2 (en) 2005-03-16 2011-06-07 Institut National Polytechnique De Grenoble Extrusion of a thermoplastic polymer bearing acid ionic groupings
US7973089B2 (en) 2005-03-16 2011-07-05 Institut National Polytechnique De Grenoble Membrane preparation method comprising the extrusion of a thermoplastic polymer bearing alkaline groupings

Also Published As

Publication number Publication date
EP1392765A1 (de) 2004-03-03
EP1884534A2 (de) 2008-02-06
DE50210461D1 (de) 2007-08-23
US20150376360A1 (en) 2015-12-31
ES2292774T3 (es) 2008-03-16
EP1392765B1 (de) 2007-07-11
KR20090108672A (ko) 2009-10-15
JP2007262419A (ja) 2007-10-11
DE10292065D2 (de) 2004-08-05
US20120088095A1 (en) 2012-04-12
US8079480B2 (en) 2011-12-20
AU2008229666A1 (en) 2008-11-06
ZA200400186B (en) 2005-05-25
KR20040008173A (ko) 2004-01-28
AU2009201729A1 (en) 2009-05-21
JP2004530020A (ja) 2004-09-30
EP1884534A3 (de) 2008-03-05
CN1527859A (zh) 2004-09-08
AU2002342310B2 (en) 2008-10-09
US9126147B2 (en) 2015-09-08
JP4154244B2 (ja) 2008-09-24
CA2446881A1 (en) 2002-11-21
KR101005674B1 (ko) 2011-01-05
US20040191522A1 (en) 2004-09-30
AU2009200145A1 (en) 2009-02-12
CA2446881C (en) 2011-08-02
ATE366771T1 (de) 2007-08-15

Similar Documents

Publication Publication Date Title
EP1392765B1 (de) Modifikation von verstreckten folien
EP1177247B1 (de) Komposite und kompositmembranen
DE69805643T2 (de) Membrane-elektroden-anordnung
EP1639153B1 (de) Composites und compositemembranen
DE60125042T2 (de) Hybridmaterial, verwendung des hybridmaterials und verfahren zu seiner herstellung
WO2015090571A1 (de) IONENAUSTAUSCHER-MEMBRAN AUS BIAXIAL VERSTRECKTER β-PORÖSER FOLIE
DE112009002507B4 (de) Verstärkte brennstoffzellen-elektrolytmembran, membran-elektroden-anordnung und polymerelektrolytbrennstoffzelle, diese enthaltend und herstellungsverfahren dazu
JP2004530020A5 (de)
DE10296922T5 (de) Elektrodenstruktur für Polymerelektrolytbrennstoffzellen, Verfahren zum Herstellen derselben und Polymerelektrolytbrennstoffzelle
WO2002000773A9 (de) Kovalent vernetzte polymere und polymermembranen via sulfinatalkylierung
WO2003060012A1 (de) Funktionalisierte hauptkettenpolymere
WO2004048446A2 (de) Modifikation von verstreckten folien
DE10295737B4 (de) Kovalent vernetzter Komposit, kovalente vernetzte Kompositmembran, Verfahren zu deren Herstellung und Verwendung der Membranen
DE4333019A1 (de) Ionenselektive Membran/Spacer-Einheiten
WO2003014201A2 (de) Membranen für ionentransport
DE4333020A1 (de) Abstandhalter (Spacer) für Dialyse-, Elektrodialyse- oder Elektrolyse-Zellen
DE10134793A1 (de) Membranen für Ionentransport

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2446881

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002589551

Country of ref document: JP

Ref document number: 1020037014681

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002743003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10477174

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004/00186

Country of ref document: ZA

Ref document number: 2002814015X

Country of ref document: CN

Ref document number: 200400186

Country of ref document: ZA

WWP Wipo information: published in national office

Ref document number: 2002743003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002342310

Country of ref document: AU

REF Corresponds to

Ref document number: 10292065

Country of ref document: DE

Date of ref document: 20040805

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10292065

Country of ref document: DE

WWG Wipo information: grant in national office

Ref document number: 2002743003

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097020575

Country of ref document: KR