WO2002087376A1 - Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau - Google Patents

Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau Download PDF

Info

Publication number
WO2002087376A1
WO2002087376A1 PCT/FR2002/001473 FR0201473W WO02087376A1 WO 2002087376 A1 WO2002087376 A1 WO 2002087376A1 FR 0201473 W FR0201473 W FR 0201473W WO 02087376 A1 WO02087376 A1 WO 02087376A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
matrix
slip material
material according
contact surface
Prior art date
Application number
PCT/FR2002/001473
Other languages
English (en)
Inventor
Pascal Tournier
Original Assignee
Pascal Tournier
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pascal Tournier filed Critical Pascal Tournier
Priority to EP02727703A priority Critical patent/EP1385398A1/fr
Publication of WO2002087376A1 publication Critical patent/WO2002087376A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/026Composites, e.g. carbon fibre or aramid fibre; the sole, one or more sole layers or sole part being made of a composite
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/22Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer
    • A43B13/24Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer by use of insertions
    • A43B13/26Soles made slip-preventing or wear-resisting, e.g. by impregnation or spreading a wear-resisting layer by use of insertions projecting beyond the sole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0005Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14549Coating rod-like, wire-like or belt-like articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/568Applying vibrations to the mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0072Roughness, e.g. anti-slip

Definitions

  • Non-slip material with improved grip, pneumatic and shoe sole incorporating such a material is provided.
  • the invention relates to the field of non-slip materials. More specifically, the invention relates to the structure of a non-slip material making it possible to increase the adhesion coefficient, the material obtained being intended for use in applications such as in particular tires, shoe soles, non-slip mats , transmission belts, rollers or drive rollers, handling gloves, brake pads, etc. In this area, several qualities and / or functions must be fulfilled by non-slip materials, and in particular:
  • the elastomers offer a high coefficient of friction combined with hyperelasticity, the use of a single elastomer does not make it possible to meet all of the qualities and / or functions listed above.
  • Soft erasers for example, offer better adhesion but wear out quickly, unlike hard erasers.
  • a given elastomer is in particular characterized by its viscoelastic properties, the friction of the elastomers being governed inter alia by molecular adhesion and the viscoelastic losses of the material. However, the higher the viscoelastic losses, the greater the energy capable of being dissipated by the material.
  • non-slip materials conventionally incorporate treads or crampons.
  • the tire coating is most often striated to increase the contact pressure on wet ground.
  • streaks decrease the grip of the tire on a dry surface.
  • Tires with a tread reinforced with short fibers are also known. These tend to follow the profile of the sculpture during molding. They are therefore mainly in a situation substantially parallel with respect to the contact surface and are easily removed. Reinforced tire pads are also known on the leading and trailing edges. These fibers or reinforcements are integrated into the tire in such a way that they cannot oppose strong constraints, just like the treads comprising rigid particles arranged randomly. There are also known pads comprising fibers arranged substantially perpendicularly to the contact surface. These fibers flex when they are stressed without tending to become embedded in the relief of the contact surface. This vertical arrangement of the fibers allows an increase in rigidity but not in adhesion. The invention aims to overcome the drawbacks of the prior art.
  • the invention aims to provide an anti-slip material which has a higher coefficient of adhesion than that of the solutions of the prior art while inducing low energy dissipation when it is used.
  • Another object of the invention is to provide such a material which has sufficient flexibility to become embedded in the irregularities of the surface with which it is in contact.
  • the invention also aims to provide such a material which offers good resistance to wear.
  • the invention also aims to provide such a material which can be integrated into the tread of a tire in order to improve its grip while reducing the rolling resistance compared to known tires.
  • Another objective of the invention is to provide such a tire provided with a non-slip material which contributes to improving the braking of the vehicle, and therefore to reducing stopping distances, including when cornering.
  • the invention also aims to provide such a tire incorporating a non-slip material which contributes to the functioning, or at least to the improvement of the functioning of safety systems or members which equip the vehicle.
  • the invention also aims to provide such a material which can be integrated into shoe soles contributing to the comfort of the user.
  • said matrix incorporates fibers inclined with respect to said contact surface, said fibers being made of a material having a rigidity greater than that of said matrix, said fibers being supported or maintained, directly or indirectly, in said matrix using at least one support member, and at least one end of said fibers is flush with or slightly protrudes from said contact surface, so that said fibers improve the adhesion of said material.
  • the adhesion of the non-slip material according to the invention is improved appreciably without causing an increase in the dissipation of energy or excessive wear of the material, and this under various conditions of use.
  • the fibers entrain the surrounding elastomer of the matrix because they are embedded in the matrix by adhering to it. This result is obtained insofar as the fibers extend over most of the thickness of the matrix, being directly or indirectly integral with it.
  • This joining will be direct in the case for example where the fibers are overmolded by the matrix. It will be indirect if the fibers are brought into the recesses of the matrix, then glued or overmolded therein, the glue or the overmolding elastomer then ensuring adhesion between the fibers and the matrix.
  • the support element according to the invention is a separate element from the elastomeric matrix, and molded by it. It is indeed essential that this support element is distinct from the matrix, by being more rigid than the latter, to form a limit to the displacement of the fibers and, consequently, to the deformation of the matrix on its side opposite to the surface. of contact.
  • the fibers and the matrix support higher tangential stresses than in the prior techniques, the adhesion of the non-slip material being therefore increased.
  • the encrustation of the fibers in the surface with which the material is in contact is favored by the inclination of the fibers allowing them to bend when they are subjected to compressive and / or shear stresses.
  • the fibers can thus brace themselves and offer a high resistance to sliding.
  • the fibers are flexible and therefore do not behave like nails such as those integrating studded tires, in order for example not to degrade the road surface, in the case where the material is applied to a tire. If the materials are made of a relatively rigid material such as a metal, the diameter of the fibers will be chosen so as to guarantee their flexibility.
  • the fibers protrude too far from the surface, the adhesion would be reduced, because the emerging parts of these fibers would act as a flocking of fibers.
  • the fibers according to the invention only 'outcrop or, at most, protrude from the matrix only over a small part of their length, for example not exceeding 5 to 15% of their total length. It is therefore understood that most of the length of the fibers is embedded in the matrix.
  • the fibers are only flush with the contact surface of the matrix, that is to say that they are completely embedded in it, in order to improve the service life of the material by limiting the stresses exerted on the fibers during low stresses (such as those occurring during normal rolling, in the case where the material is applied to a tire).
  • the matrix can be made of a relatively stiff elastomeric material while allowing better adhesion and less wear than with the flexible elastomeric materials of the prior art.
  • said fibers form an angle ⁇ of between approximately 5 ° and approximately 70 ° with the normal to said contact surface.
  • said fibers form an angle ⁇ of between approximately 25 ° and approximately 50 ° with the normal to said contact surface.
  • said support element comprises at least one ply embedded in said matrix, one end of said fibers coming to bear on said ply.
  • the embedded ply forming the support is relatively inflexible.
  • the fibers can oppose fairly high stresses since they are retained by one of their ends in the matrix. This prevents the fibers from undergoing an overall displacement with the flexible matrix. In addition, such a characteristic contributes to better encrustation of the fibers in the surface with which the non-slip material is in contact, and therefore to better adhesion.
  • said at least one support member cooperates with said fibers to hold them.
  • the said means or means forming a support have, at least in the zone where they cooperate with said fibers, a blister admitting of being deformed.
  • said blister consists of a gas pocket.
  • the fibers are supported or maintained on a support element which is itself flexible while having a limited displacement, which allows the fibers to better match the strong possible roughness of the surface with which the non-slip material is in contact.
  • said fibers overlap or intertwine said one or said support means.
  • Weft threads possibly present in the matrix of the material to reinforce it, can then advantageously be used as elements forming a support for the fibers.
  • one end of said fibers is embedded in said means support.
  • said fibers preferably comprise at least one zone of greater flexibility near said end embedded in said support means.
  • the fibers can be deformed without exerting excessive torque at their embedded end, thus limiting the risk of loosening of the fibers.
  • said fibers comprise means for limiting their movement around said zone of greater flexibility.
  • said fibers have at least one branch.
  • said at least one branch forms at least one annular or spiral element surrounding at least one of said fibers.
  • the fibers thus formed further entrain the matrix with them, forcing the material to conform to the shape of the surface with which it is in contact.
  • the non-slip material comprises complementary means for maintaining said fibers in an intermediate position between said sheet or said support means and said contact surface.
  • said fibers have different inclinations with respect to said contact surface so that several of said fibers converge with each other at said contact surface.
  • the fibers may react to stresses occurring both longitudinally and laterally, for example in the case of braking when cornering.
  • said fibers have different inclinations with respect to said contact surface so that several of said fibers diverge from each other at said contact surface.
  • said fibers each comprise at least one long unitary fiber.
  • said fibers are made of an agglomerate of particles and entangled fibers.
  • said fibers comprise fibrils or aligned particles integrated in a plastic or elastomeric material.
  • Such fibers can be produced by molding or by extrusion and then cutting, before their integration into the non-slip layer.
  • said fibers are made of one or more materials belonging to the following group: - vulcanized or thermoplastic elastomer,
  • this material will preferably be associated with at least one second material (the two materials can be in the form of filaments) which will have the function of avoiding rigid material to deform permanently.
  • said fibers are sensitive to a magnetic or electric field. According to an advantageous solution common to the previous embodiments, at least one of said fibers is connected to information transmission means.
  • the invention also relates to a method of manufacturing an anti-slip material as described above, comprising the steps consisting in:
  • a method of manufacturing an anti-slip material as described above comprises the steps consisting in:
  • a method of manufacturing an anti-slip material as described above comprises the steps consisting in:
  • the fibers, the particles, or the fibrils that make up the fibers may be subjected to an additional treatment such as sizing, irradiation, flame treatment, spraying with a chemical agent. or soaking in a chemical bath (phosphorus, sulfur, chromium, oxygenation bath, hydrogenation bath).
  • an additional treatment such as sizing, irradiation, flame treatment, spraying with a chemical agent. or soaking in a chemical bath (phosphorus, sulfur, chromium, oxygenation bath, hydrogenation bath).
  • a radial and perpendicular field is applied then a shearing of the elastomer is caused. It is obtained by rotating only one of the peripheral parts of the mold, the outer or inner one. The particles are subjected to the field which encourages them to have a radial alignment. The part of the rotating mold frictionally drives the surrounding matrix and, by the viscosity effect, the fibrils formed are deflected by this shearing. Thus the fibrils instead of being radial, form spirals, all the more inclined as the induced shear is high.
  • the invention also relates to a tire comprising an anti-slip material comprising an elastomeric matrix and having at least one contact surface with a ground, said matrix integrating flexible fibers inclined relative to said contact surface, said fibers being made of a material having a rigidity greater than that of said matrix, said fibers being supported or maintained, directly or indirectly, in said matrix by means of at least one support element, and in that at least one end of said fibers is flush or slightly protrudes from said contact surface.
  • Such a tire makes it possible to obtain a significant drop in rolling resistance and therefore to cause lower energy consumption.
  • the grip of the tire being improved, the stopping distances of a vehicle which is equipped with it are reduced and the road handling is notably improved.
  • said information transmission means are connected to one or more of the following systems:
  • the invention also relates to a shoe sole comprising a non-slip material comprising an elastomeric matrix and having at least one contact surface with a ground, said matrix integrating flexible fibers inclined relative to said contact surface, said fibers being made of a material having a rigidity greater than that of said matrix, said fibers being in support or maintained, directly or indirectly, in said matrix by means of at least one support element, and in that at least one end of said fibers is flush with or slightly protrudes from said contact surface.
  • the orientation of the fibers in the studs can vary depending on their location on the sole to cope with different stresses.
  • said information transmission means are connected to a system for detecting the coefficient of adhesion or friction of said sole on said ground.
  • said system for detecting the coefficient of adhesion or friction is coupled to at least one sound and or light emitter activated when said coefficient of adhesion or friction detected has a value below a predetermined threshold.
  • FIG. 1 shows a sectional view of a non-slip material according to the invention
  • FIG. 2 illustrates in section a tread of a tire incorporating a non-slip material according to the invention
  • FIG. 3 shows a variant of a tire tread incorporating a non-slip material according to the invention
  • FIG. 4 illustrates an embodiment of the non-slip material according to the invention, in which the fibers are sensitive to an electric field
  • FIG. 5 illustrates another embodiment of the non-slip material according to the invention, in which the fibers consist of particles sensitive to a magnetic field;
  • FIG. 6 illustrates an embodiment of the fibers according to which they consist of an elastomeric or thermoplastic bead incorporating fibrils
  • FIG. 7 shows an embodiment of the fixing of the fibers according to which they are embedded in a support
  • FIG. 8 shows another embodiment of the fixing of the fibers in which the fibers integrate a joint
  • FIG. 9 shows another method of fixing by embedding the fibers in a support
  • - Figures 10 to 12 each illustrate an embodiment for fixing the fibers, the latter overlapping on a support
  • - Figures 13 and 14 each show a variant of the embodiment of the fixing by embedding the fibers on a support;
  • - Figure 15 illustrates another method of fixing the fibers on a support using an intermediate piece;
  • FIG. 16 illustrates yet another embodiment of the fibers on a support having a blister
  • FIG. 17 shows an embodiment of the fibers according to which they have ramifications
  • FIG. 19 illustrates an embodiment of the inclination of the fibers according to which they diverge at the level of the contact surface of the non-slip material according to the invention
  • FIG. 20 shows a shoe sole incorporating a non-slip material according to the invention
  • an anti-slip material according to the invention comprises an elastomeric matrix 1 having a contact surface la.
  • fibers 11 are embedded in the matrix 1 while being inclined relative to the contact surface la by forming an angle of approximately 45 ° with a normal to the contact surface la. According to this embodiment, by one of their ends, the fibers 11 are supported on a support 12, itself embedded in the matrix 1, the other end of the fibers coming flush with the contact surface 1a.
  • Each fiber here consists of a flexible elastomeric cord having a rigidity greater than that of the matrix 1, this cord forming a long unitary fiber.
  • the elastomer material constituting the bead is loaded with rigid particles and has a modulus of elasticity 1.5 times greater than that of the matrix
  • the fibers may be made of steel, plastic (polyamide, polypropylene, polycarbonate, polyester, polyvinyl, polyacrylic, etc.), iron, aluminum, glass, carbon, aramid, in animal hair or in several of these materials.
  • the support 12 is a sheet made of a material such as a metal (steel, iron, aluminum, copper), a thermoplastic (polyamide, polypropylene, polyethylene, polycarbonate, phenylene polysulfide, polyester, thermoplastic elastomer), rayon, glass, aramid, carbon.
  • a metal steel, iron, aluminum, copper
  • a thermoplastic polyamide, polypropylene, polyethylene, polycarbonate, phenylene polysulfide, polyester, thermoplastic elastomer
  • rayon glass, aramid, carbon.
  • the fibers 71 are embedded in the support 72 which thus keeps them in the matrix 1.
  • An alternative consists in making the fibers 71 at the same time as the support 72 by molding.
  • the fibers 71 could, according to another production method, be welded or glued to the support 72.
  • the fibers 71 have at their base a flexible zone 711, obtained by a narrowing of section, allowing them to deform without exerting excessive torque at the level of the embedding, thus limiting the risk of loosening.
  • FIG. 8 shows another embodiment of the embedding of the fibers 81 in the support 82, according to which the fibers 82 integrate, near the support, a joint formed by two arms 811. This articulation further comprises a stop 812 which limits the recoil of the fiber 81 beyond a deformation threshold.
  • FIG. 9 illustrates yet another embodiment of the embedding of the fibers 91 in the support 92, according to which the fibers 91 have a head 911 integrating a peripheral groove 912 intended to cooperate with the support 92 which has an oblong opening , to form a built-in connection.
  • the fiber 91 comprises a zone of greater flexibility 913 (shrinking of the fiber) and that the matrix 1 covers only the elongated part of the fiber 91.
  • FIGS. 13 and 14 Two other embodiments of the embedding of the fibers are illustrated by FIGS. 13 and 14, according to which the fibers 131, 141 are coupled to a connecting element 132, 142 comprising a flexible part 1311, 1411, embedded in the element support 133, 143.
  • the fiber 131 is tubular and contains a tackifying (sticky) elastomer having a rebound coefficient of less than 30, helping to further strengthen the adhesion of the non-slip material according to the invention.
  • the heels 1321, 1421 form a stop capable of limiting the pivoting of the connecting elements 132, 142 relative to the supports
  • FIG. 15 illustrates another embodiment of the attachment of the fibers 151 to the support element 152, according to which the fibers are secured to a part 153 held in the support 152.
  • the part 153 is preferably obtained by overmolding of the base fibers, by a thermoplastic material (PP, PE,
  • thermosetting resin polyurethane
  • FIGS. 10 to 12 Other forms of holding the fibers in the matrix 1 are illustrated in FIGS. 10 to 12. As illustrated in FIG. 11, the matrix 1 integrates weft yarns 111 around which the fibers 112 are folded, thus overlapping the yarns 111.
  • a variant consists in interlacing the fibers 101 with the weft threads 102.
  • the fibers 121 overlap an intermediate fabric 122.
  • the movement of the fibers in the matrix is limited by the presence of an element forming a stop 103, 113, 123 against which the fibers are capable of coming to bear.
  • the spacing between the fibers 101, 112 or 121 and the element 103, 113 or 123 is less than 20% of the thickness of the matrix 1 and preferably less than 10% of this thickness.
  • the fibers 161 are held by a reinforcement 162 having a blister 1621 capable of deforming under the thrust of the fibers.
  • This blister 1621 is obtained by the introduction of a chemical agent releasing a gas beyond a certain temperature during the molding of the matrix 1, forming a gas pocket 1622.
  • Recesses 163 are also provided in the matrix 1 to improve the mobility of the fibers 161 within the matrix.
  • the fibers incorporating an anti-slip material according to the invention are essentially elongated.
  • FIGS. 17 and 18 They can also have ramifications, as illustrated by FIGS. 17 and 18.
  • the fibers 171 have branches 1711 comprising annular terminations 1712 (in section in Figure 17). These branches 1711 and terminations 1712 are preferably obtained by molding of thermoplastic material. It is noted, according to the embodiment illustrated in FIG. 18, that the fibers 181 having branches 1811 are bordered by elongate fibers 182 intended to limit the deformation of the matrix and to improve the resistance to wear, in particular in the case of a crampon as shown. The fibers 182 aligned in the transverse direction on the leading and trailing edges of the crampon, are optionally held transversely by weft threads, and in this case make up a fabric supported on the support 183.
  • the method of manufacturing the material according to the invention consists of a pre-molding of the matrix, the mold being provided with an insert intended to provide passages in the matrix for subsequent introduction of the fibers produced separately by molding or extrusion.
  • the fibers are placed in the mold and secured to the elastomer using overmolding, followed by baking.
  • the fibers are placed and maintained in the mold, possibly by means of their attachment to their support, then overmolded by the matrix.
  • the fibers are sensitive to an electric or magnetic field in order to impose an inclination on them once they are embedded in the matrix of the non-slip material according to the invention.
  • the fibers 51 comprise fibrils or particles 511 sensitive to a magnetic field (or electric according to another embodiment) mixed with an elastomer.
  • the inclination of the fibers is obtained by applying a variable magnetic field in the mold as illustrated in FIG. 21.
  • the matrix 1 and the particles 2111 sensitive to a magnetic field intended to form the fibers 211 are injected into a mold comprising an inner wall 2131 and an outer wall 2132, a support element 212 having been previously disposed in the mold.
  • the magnetic circuit 2141 made up of sheets and connected to the coil 214, makes it possible to produce a magnetic field oriented in the direction of the arrow F2 in the air gap (space between the endings 2142 and 2143), the direction of the magnetic field being obtained by setting up, in the desired direction, terminations 2142, 2143 of the magnetic circuit 2141 on the internal walls of the walls 2131 and 2132 respectively of the mold.
  • the walls of the mold outside the magnetic field are made up or coated with a non-magnetizable material so as not to deflect the applied magnetic field and limit magnetic leaks.
  • the variations of the magnetic field correspond to an application by successive and progressive stages of the electric intensity which traverses the coil 214, aiming to optimize the operation together with a vibration of the mold using a piezoelectric element 215 ( simply closing the mold may constitute sufficient shaking or vibration).
  • the fibers 41 are made of plastic and coated with an ionizable layer, before being injected with the matrix material in a mold.
  • the inclination of the fibers is obtained according to a process similar to that used for the embodiment described above. It will be noted that the fibers may have different inclinations. Indeed, as it appears in FIG. 19, the fibers 191 and 192 are inclined differently with respect to the contact surface la so that they diverge at the level of the surface la. Fibers do this in two directions. According to another embodiment, the fibers 191 and 192 could converge at the contact surface la to increase their transverse stability.
  • a tire comprises a pneumatic chamber 26, a carcass reinforcement 27, a layer of elastomer 28, a tread comprising sculptures or spikes 21, in particular intended for driving water off on wet roads .
  • the studs have a contact surface with the ground 20.
  • the tread and the studs of the tire comprise an elastomer matrix 1 in which fibers 22 are embedded, inclined at approximately 45 ° relative to the surface in contact with the ground 20.
  • the fibers 22 come to bear on a sheet 23 embedded in the matrix 1, an intermediate element 24 contributing in a complementary manner to the maintenance of the fibers 22 in their inclined position.
  • the fibers 22, composed of long mixed glass - polypropylene fibers are welded by heating to the element 24, consisting of a fabric comprising polypropylene fibers.
  • the fibers, by their orientation tend to brace, their ends at the contact surface tending to become embedded in the relief of the ground 20, while their other end is held by the ply 23.
  • the fibers 31 are fixed on a support 32 which approximately follows the profile of the spikes . It is interesting to draw the fibers 31 from the support 32 made of a fabric.
  • fibers 22 are connected to information transmission means.
  • the information transmission means comprise a sensor 25 placed between the fibers 21 and the ply 23.
  • the signal from the sensor 25 is transmitted by an electrical contact between the wheel shaft and the chassis of the vehicle to a processing device. information integrated into an operating system of information related to the brake control in order to avoid locking of the wheels during braking.
  • the sensor 25 consists of a piezoelectric film which generates an electric current as a function of the stress of the fiber which presses on it. According to other versions, the sensor 25 can also be of the capacitive, resistive or even inductive type.
  • the sensor 144 is of the resistive type, then consisting of a strain gauge fixed on the flexible zone 1411 of the connecting element 142 of the fibers 141 with the support element 143.
  • the fibers are in this case preferably connected in series with each other by an electrical connection, forming a network through which an electric current is sent.
  • the measurement of the electrical impedance fluctuations makes it possible to identify the variation in electrical resistance of the network or networks thus formed, giving an indication of the behavior of the fibers.
  • the fibers can be made of optical fibers serving both as transmitter and receiver. As pulses are sent to the optical fibers, the reflected signal differs according to the contact or absence of contact of the fiber with the ground. Analysis of the received signal then makes it possible to deduce the state of stress of the fibers, which acts in particular on the distortion of the signal. The level of grip and the speed of rotation are thus determined.
  • fibers comprising magnetic particles have a portion, preferably their base, arranged through a winding of electrically conductive wire.
  • the relative displacement of the magnetized particles through the turns of this winding depending on the stresses on the fiber, generates an electric current.
  • This signal representing the response of a set of inductive sensors of this type is used to determine the speed of rotation (or displacement) and the level of grip.
  • conductive fibers distributed around the periphery are connected in series. An electric current is generated at through this network. Each passage of a conductive fiber on the ground causes a drop in current by transmitting part of it to the ground. Fluctuations in the response recorded determine the speed of rotation.
  • the processing of the information can also make it possible to detect the state of an under-inflated tire, the slackening of the tire resulting in a demand for a greater number of fibers than normal.
  • the sole 200 includes sculptures 201 integrating inclined fibers 2011, embedded in a matrix 1, and coming to bear on a support element 2013.
  • At least one of the fibers 2011 is connected to at least one means of transmitting information.
  • the information means are linked to a system for detecting the adhesion coefficient.
  • a sensor 2012 sensitive to variations in fiber deformation is connected to an electronic circuit which processes the signal from the sensor so as to deduce a loss of adhesion.
  • the technique used for the sensor is chosen from one of the techniques mentioned above for applying the non-slip material according to the invention to tires.
  • a sound or light signal is generated when the detected coefficient of adhesion has a value below a predetermined threshold.
  • the non-slip material according to the invention can also be used in other applications in an advantageous manner, in particular by being integrated into products such as non-slip mats, transmission belts, rollers or drive rollers, gloves for handling ....
  • the application of the invention to the belts makes it possible to transmit a greater torque without increasing the dissipation of energy.
  • the contact surface of the sheaves must be striated or bumpy, in order to provide anchor points for said fibers.
  • the V-belts are produced by stacking successive layers in accordance with the invention.
  • the fibers are arranged symmetrically with respect to the radiant plane of symmetry of the sheave and they work in the same direction on each layer to have no deviation from the support. This is not the case with current belts reinforced with fabrics where the transverse fibers have one end drawn and the other repelled, which has the effect of making the fibers enter rather than making them come out according to the invention.
  • the fibers according to the invention can advantageously be installed only on the front part of a brake shoe.
  • the sensors according to the invention can also be used in other applications such as the movement control of a roller, a drive roller or a belt installed on a machine.
  • Another application relates to the detection of the passage of a person on a carpet. This type of sensor informs a door opening and closing control device or even triggers an alarm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

Un matériau antidérapant comprenant une matrice élastomère (1) et présentant au moins une surface de contact (1a), est caractérisé selon l'invention en ce que ladite matrice (1) intègre des fibres flexibles (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) inclinées par rapport ô ladite surface de contact (1a), lesdites fibres étant réalisées en un matériau présentant une rigidité supérieure ô celle de ladite matrice (1), lesdites fibres étant en appui ou maintenues, directement ou indirectement, dans ladite matrice (1) ô l'aide d'au moins un élément formant support (12, 23, 32, 72, 82, 92, 102, 103, 111, 113, 122, 123, 133, 143, 152, 162, 2013, 212), et en ce qu'au moins une extrémité desdites fibres affleure ou dépasse légèrement ô ladite surface de contact (1a), de telle sorte que lesdites fibres améliorent l'adhérence dudit matériauApplication aux pneumatiques, aux semelles de chaussure, aux tapis antidérapants, aux courroies de transmission, aux galets ou aux rouleaux d'entraînement, aux gants de manutention.

Description

Matériau antidérapant à adhérence améliorée, pneumatique et semelle de chaussure intégrant un tel matériau.
L'invention concerne le domaine des matériaux antidérapants. Plus précisément, l'invention concerne la structure d'un matériau antidérapant permettant d'en accroître le coefficient d'adhérence, le matériau obtenu étant destiné à être utilisé dans des applications telles que notamment des pneumatiques, des semelles de chaussures, des tapis antidérapants, des courroies de transmission, des galets ou des rouleaux d'entraînement, des gants de manutention, des patins de frein, etc.. Dans ce domaine, plusieurs qualités et/ou fonctions doivent être remplies par les matériaux antidérapants, et notamment :
- présenter une adhérence satisfaisante avec des surfaces diverses susceptibles de présenter des états variables (sec, mouillé, verglacé...); - dissiper peu d'énergie lorsqu'ils sont sollicités ;
- présenter une souplesse leur permettant d'accepter les irrégularités des surfaces avec lesquelles ils sont amenés à être en contact ;
- ne pas être bruyant lorsqu'ils sont sollicités ;
- offrir une bonne résistance à l'usure. Classiquement, de tels matériaux sont réalisés en tout ou partie de matériaux élastomères qui permettent de transmettre des efforts tangentiels importants tout en présentant des qualités d'élasticité intéressantes.
Cependant, bien que les élastomères offrent un coefficient de frottement important combiné à une hyperélasticité, l'utilisation d'un seul élastomère ne permet pas de répondre à l'ensemble des qualités et/ou fonctions listées précédemment. Les gommes souples, par exemple, offrent une meilleure adhérence mais s'usent rapidement, à l'inverse des gommes dures.
Un élastomère donné est notamment caractérisé par ses propriétés viscoélastiques, le frottement des élastomères étant régi entre autres par l'adhésion moléculaire et les pertes viscoélastiques du matériau. Or, plus les pertes viscoélastiques sont élevées, plus l'énergie susceptible d'être dissipée par le matériau est importante.
Ces pertes viscoélastiques se traduisent notamment par :
- une augmentation de la résistance au roulement dans le cas de pneumatiques ;
- une altération du rendement dans le cas de machines utilisant des courroies ou des galets d'entraînement ;
- un accroissement de la fatigue des utilisateurs dans le cas de semelles de chaussures. Un compromis est donc le plus souvent recherché entre l'adhérence et la dissipation d'énergie engendrées par un matériau antidérapant.
Plus particulièrement, dans leur application aux pneumatiques, les matériaux antidérapants intègrent classiquement des sculptures ou crampons. Dans ce cas, le revêtement du pneumatique est le plus souvent strié pour accroître la pression de contact sur sol mouillé. De telles stries diminuent cependant l'adhérence du pneumatique sur surface sèche.
On connaît également les pneus cloutés destinés à une utilisation sur sol enneigé ou verglacé. Dans ce cadre, il a été proposé des clous réalisés en un matériau élastomère renforcé de fibres courtes. Ces pneus étant destinés à une utilisation particulière, il est nécessaire de procéder à un changement de pneumatiques lorsque les conditions routières sont modifiées. En effet, de tels clous entraînent plutôt une perte d'adhérence sur sol sec ou sol mouillé, cet effet indésirable s'amplifiant au cours d'un freinage, les clous élastomères pouvant avoir tendance à fléchir de façon favorable au glissement plutôt qu'en s'y opposant.
On connaît aussi des pneus à bande de roulement renforcée par des fibres courtes. Celles-ci ont tendance à suivre le profil de la sculpture lors du moulage. Elles se trouvent donc principalement dans une situation sensiblement parallèle par rapport à la surface de contact et se déchaussent facilement. On connaît également des patins de pneus renforcés sur les bords d'attaque et de fuite. Ces fibres ou renforts sont intégrés au pneu de telle sorte qu'ils ne peuvent opposer de fortes contraintes, tout comme les bandes de roulement comprenant des particules rigides disposées aléatoirement. On connaît encore des patins comportant des fibres disposées sensiblement perpendiculairement par rapport à la surface de contact. Ces fibres fléchissent lorsqu'elles sont sollicitées sans tendre à s'incruster dans le relief de la surface de contact. Cette disposition verticale des fibres permet un accroissement de la rigidité mais pas de l'adhérence. L'invention a pour objectif de pallier les inconvénients de l'art antérieur.
Plus précisément, l'invention a pour objectif de proposer un matériau antidérapant qui présente un coefficient d'adhérence supérieur à celui des solutions de l'art antérieur tout en induisant une faible dissipation d'énergie lorsqu'il est sollicité. Un autre objectif de l'invention est de fournir un tel matériau qui présente une souplesse suffisante pour s'incruster dans les irrégularités de la surface avec laquelle il est en contact.
L'invention a aussi pour objectif de fournir un tel matériau qui offre une bonne résistance à l'usure. L'invention a également pour objectif de proposer un tel matériau qui puisse être intégré à la bande de roulement d'un pneumatique en vue d'améliorer son adhérence tout en diminuant la résistance au roulement par rapport aux pneumatiques connus.
Un autre objectif de l'invention est de proposer un tel pneumatique doté d'un matériau antidérapant qui contribue à améliorer le freinage du véhicule, et donc à diminuer les distances d'arrêt, y compris en virage.
L'invention a aussi pour objectif de proposer un tel pneumatique intégrant un matériau antidérapant qui contribue au fonctionnement, ou à tout le moins à l'amélioration du fonctionnement de systèmes ou d'organes de sécurité qui équipent le véhicule. L'invention a également pour objectif de proposer un tel matériau qui puisse être intégré à des semelles de chaussure en contribuant au confort de l'utilisateur.
Ces objectifs ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à l'invention qui concerne un matériau antidérapant comprenant une matrice élastomère et présentant au moins une surface de contact.
Selon l'invention, ladite matrice intègre des fibres inclinées par rapport à ladite surface de contact, lesdites fibres étant réalisées en un matériau présentant une rigidité supérieure à celle de ladite matrice, lesdites fibres étant en appui ou maintenues, directement ou indirectement, dans ladite matrice à l'aide d'au moins un élément formant support, et au moins une extrémité desdites fibres affleure ou dépasse légèrement à ladite surface de contact, de telle sorte que lesdites fibres améliorent l'adhérence dudit matériau.
Contrairement à l'art antérieur, l'adhérence du matériau antidérapant selon l'invention est améliorée de façon sensible sans engendrer une augmentation de la dissipation d'énergie ou une usure excessive du matériau, et ceci dans diverses conditions d'utilisation.
En effet, lorsque des sollicitations s'opposent aux fibres, leur extrémité affleurant ou dépassant légèrement à la surface de contact tend à s'incruster dans le relief de la surface avec laquelle le matériau est en contact, tout en entraînant l'élastomère environnant de la matrice. Ceci a pour effet d'augmenter la surface réelle de contact.
On note que les fibres entraînent l'élastomère environnant de la matrice du fait qu'elles sont noyées dans la matrice en adhérant à celle-ci. Ce résultat est obtenu dans la mesure où les fibres s'étendent dans l'essentiel de l'épaisseur de la matrice, en étant directement ou indirectement solidaire avec elle.
Cette solidarisation sera directe dans le cas par exemple où les fibres sont surmoulées par la matrice. Elle sera indirecte si les fibres sont rapportées dans des évidements de la matrice, puis collées ou surmoulées dans ceux-ci, la colle ou l'élastomère de surmoulage assurant alors l'adhésion entre les fibres et la matrice.
Un effet de coin dans les cavités du relief de la surface de contact est aussi obtenu. On note également que l'élément support selon l'invention est un élément distinct de la matrice élastomère, et surmoulé par celle-ci. Il est en effet essentiel que cet élément support soit distinct de la matrice, en étant plus rigide que celle- ci, pour former une limite au déplacement des fibres et, par conséquent, à la déformation de la matrice de son côté opposé à la surface de contact. Ainsi, les fibres et la matrice supportent des contraintes tangentielles plus élevées que dans les techniques antérieures, l'adhérence du matériau antidérapant étant donc accrue.
Il n'y a pas d'augmentation de la dissipation d'énergie, bien au contraire, car l'augmentation de l'adhérence est permise grâce à un travail mécanique des fibres.
En outre, l'incrustation des fibres dans la surface avec laquelle le matériau est en contact est favorisée par l'inclinaison des fibres autorisant celles-ci à fléchir lorsqu'elles sont soumises à des contraintes en compression et/ou en cisaillement. Les fibres peuvent ainsi s'arc-bouter et offrir une forte résistance au glissement.
Pour ce faire, les fibres sont flexibles et ne se comportent donc pas comme des clous tel que ceux intégrant les pneus cloutés, afin par exemple de ne pas dégrader le revêtement routier, dans le cas où le matériau est appliqué à un pneumatique. Si les matériaux sont réalisées dans un matériau relativement rigide tel qu'un métal, le diamètre des fibres sera choisi de façon à garantir leur flexibilité.
On notera que si les fibres dépassent trop de la surface, l'adhérence s'en trouverait réduite, car les parties émergeantes de ces fibres agiraient comme un flocage de fibres. Ainsi, contrairement à certaines techniques de flocage selon lesquelles les fibres ne sont insérées dans une matrice que sur une faible partie de leur longueur, tandis que l'essentiel de leur longueur est externe à la matrice, les fibres selon l'invention ne font qu'affleurer ou, au plus, ne dépassent de la matrice que sur une faible partie de leur longueur, n'excédant pas par exemple 5 à 15 % de leur longueur totale. On comprend donc que l'essentiel de la longueur des fibres est noyée dans la matrice. Idéalement, les fibres ne font qu'affleurer à la surface de contact de la matrice, c'est-à-dire qu'elle sont intégralement noyées dans celle-ci, afin d'améliorer la durée de vie du matériau en limitant les contraintes s'exerçant sur les fibres lors de faibles sollicitations (telles que celles intervenant lors d'un roulage normal, dans le cas où le matériau est appliqué à un pneumatique).
A l'aide des fibres disposées dans un matériau antidérapant selon l'invention, la matrice peut être réalisée en un matériau élastomère relativement raide tout en permettant une meilleure adhérence et usure moindre qu'avec les matériaux élastomère souples de l'art antérieur.
Selon une solution préférée, lesdites fibres forment un angle α compris entre environ 5° et environ 70° avec la normale à ladite surface de contact. Préférentiellement, lesdites fibres forment un angle α compris entre environ 25° et environ 50° avec la normale à ladite surface de contact.
L'inclinaison des fibres sera adaptée en fonction de la direction des sollicitations pour laquelle une meilleure adhérence est recherchée. Dans les autres directions, l'adhérence plus faible permet de réduire davantage la dissipation d'énergie du matériau antidérapant. Les fibres sont disposées de façon organisée, c'est-à-dire non aléatoire, sinon l'effet d'augmentation de l'adhérence ne pourrait être obtenu. En effet, selon une disposition aléatoire, l'augmentation d'adhérence obtenue à l'aide de fibres orientées dans une même direction serait compensée par une perte d'adhérence due à une orientation d'autres fibres dans une direction opposée. Il est donc préférable de privilégier une direction pour l'inclinaison des fibres. Selon une première solution avantageuse, ledit élément formant support comprend au moins une nappe noyée dans ladite matrice, une extrémité desdites fibres venant en appui sur ladite nappe.
On notera que la nappe noyée formant support est relativement peu flexible.
De cette façon, les fibres peuvent s'opposer à des contraintes assez élevées puisqu'elles sont retenues par une de leur extrémité dans la matrice. On évite ainsi que les fibres ne subissent un déplacement d'ensemble avec la matrice flexible. De plus, une telle caractéristique contribue à une meilleure incrustation des fibres dans la surface avec laquelle le matériau antidérapant est en contact, et donc à une meilleure adhérence.
Selon une seconde solution avantageuse, ledit au moins un élément formant support coopère avec lesdites fibres pour les maintenir. Avantageusement, dans l'une ou l'autre solution, le ou lesdits moyens formant support présentent, au moins dans la zone où ils coopèrent avec lesdites fibres, une boursouflure admettant de se déformer.
Dans ce cas, ladite boursouflure est constituée d'une poche de gaz.
De cette façon, les fibres sont en appui ou maintenues sur un élément support qui est lui-même flexible tout en ayant un déplacement limité, ce qui permet aux fibres de mieux épouser les fortes aspérités éventuelles de la surface avec laquelle le matériau antidérapant est en contact.
Selon un autre mode de réalisation du maintien des fibres par l'élément formant support, lesdites fibres chevauchent ou entrelacent ledit ou lesdits moyens formant support.
Des fils de trame, éventuellement présents dans la matrice du matériau pour la renforcer, peuvent alors être avantageusement utilisés en tant qu'éléments formant support des fibres.
Selon un autre mode de réalisation du maintien des fibres par l'élément formant support, une extrémité desdites fibres est encastrée dans lesdits moyens support. Dans ce cas, lesdites fibres comprennent préférentiellement au moins une zone de plus grande flexibilité à proximité de ladite extrémité encastrée dans ledit moyen formant support.
De cette façon, les fibres peuvent se déformer sans exercer de couple excessif au niveau de leur extrémité encastrée, limitant ainsi le risque de déchaussement des fibres.
Préférentiellement, lesdites fibres comprennent des moyens de limitation de leur déplacement autour de ladite zone de plus grande flexibilité.
Selon une variante, lesdites fibres présentent au moins une ramification. Dans ce cas, ladite au moins une ramification forme au moins un élément annulaire ou spirale entourant au moins une desdites fibres.
De telles ramifications limitent les déformations des fibres, ce qui a pour effet de réduire le risque de cohésion entre les fibres et la matrice.
De plus, les fibres ainsi constituées entraînent davantage la matrice avec elles, forçant le matériau à épouser la forme de la surface avec laquelle il est en contact.
Ces ramifications sont susceptibles d'apporter un effet ventouse tout en répartissant les contraintes entre les fibres et la matrice.
Selon une autre variante, la matériau antidérapant comprend des moyens complémentaires de maintien desdites fibres à une position intermédiaire entre ladite nappe ou lesdits moyens formant support et ladite surface de contact.
De tels moyens contribuent à limiter la déformation des fibres.
Selon un autre mode de réalisation, lesdites fibres présentent différentes inclinaisons par rapport à ladite surface de contact de façon à ce que plusieurs desdites fibres convergent entre elles au niveau de ladite surface de contact.
Une telle configuration s'avère particulièrement intéressante pour une application de l'invention aux pneumatiques. En effet, dans ce cas, les fibres pourront réagir à des sollicitations survenant à la fois longitudinalement et latéralement, par exemple dans le cas d'un freinage en virage. Selon une variante, lesdites fibres présentent différentes inclinaisons par rapport à ladite surface de contact de façon à ce que plusieurs desdites fibres divergent entre elles au niveau de ladite surface de contact.
Selon un premier mode de réalisation des fibres, lesdites fibres comprennent chacune au moins une fibre longue unitaire.
Selon un deuxième mode de réalisation des fibres, lesdites fibres sont réalisées d'un agglomérat de particules et de fibres enchevêtrées.
Selon un autre mode de réalisation des fibres, lesdites fibres comprennent des fibrilles ou des particules alignées intégrées dans une matière plastique ou élastomère.
De telles fibres peuvent être réalisées par moulage ou par extrusion puis découpe, avant leur intégration dans la couche antidérapante.
Avantageusement, lesdites fibres sont réalisées en un ou plusieurs matériaux appartenant au groupe suivant : - élastomère vulcanisé ou thermoplastique,
- plastique,
- aluminium,
- acier,
- verre, - carbone,
- aramide,
- poils de bête.
Dans le cas où des matériaux rigides sont choisis, tel que l'acier et l'aluminium, on associera préférentiellement à ce matériau au moins un deuxième matériau (les deux matériaux pouvant se présenter sous forme de filaments) qui aura pour fonction d'éviter au matériau rigide de se déformer de façon permanente.
Selon une autre caractéristique, lesdites fibres sont sensibles à un champ magnétique ou électrique. Selon une solution avantageuse commune aux précédents modes de réalisation, au moins une desdites fibres est reliée à des moyens de transmission d'informations.
L'invention concerne également un procédé de fabrication d'un matériau antidérapant tel que décrit précédemment, comprenant les étapes consistant à :
- injecter ladite matrice dans un moule pourvu d'inserts destinés à ménager des passages pour lesdites fibres en surmoulant ledit au moins un élément formant support ;
- introduire lesdites fibres dans lesdits passages une fois les inserts retirés ;
- surmouler ou fixer ladite matrice, ledit au moins un élément formant support et lesdites fibres.
Selon un autre mode de réalisation, un procédé de fabrication d'un matériau antidérapant tel que décrit précédemment comprend les étapes consistant à :
- placer lesdites fibres dans un moule et les maintenir en position par l'intermédiaire dudit moule et/ou d'au moins un élément formant support ;
- surmouler lesdites fibres et ledit au moins un élément formant support par ladite matrice.
Selon encore un autre mode de réalisation, un procédé de fabrication d'un matériau antidérapant tel que décrit précédemment comprend les étapes consistant à :
- injecter un mélange comprenant ladite matrice et lesdites fibres ou les composés desdites fibres dans un moule ;
- appliquer un champ électrique ou magnétique variable dans le moule selon une orientation correspondant à l'inclinaison souhaitée desdites fibres ; - mettre en vibrations ledit moule avant ou pendant au moins une fraction de l'application dudit champ électrique ou magnétique.
Pour assurer une meilleure cohésion entre les fibres et la matrice, les fibres, les particules, ou les fibrilles qui composent les fibres, pourront subir un traitement complémentaire tel qu'un ensimage, une irradiation, un flammage, une pulvérisation d'un agent chimique ou un trempage dans un bain chimique (au phosphore, au soufre, au chrome, bain d'oxygénation, bain d'hydrogénation).
Selon un autre procédé permettant d'obtenir l'inclinaison des fibres dans la matrice, un champ radial et perpendiculaire est appliqué puis un cisaillement de l'élastomère est provoqué. Il est obtenu en faisant tourner une seule des parties périphériques du moule, celle extérieure ou intérieure. Les particules sont soumises au champ qui les incite à avoir un alignement radial. La partie du moule tournant entraîne par frottement la matrice environnante et, par l'effet de viscosité, les fibrilles formées sont déviées par ce cisaillement. Ainsi les fibrilles au lieu d'être radiales, forment des spirales, d'autant plus inclinées que le cisaillement induit est élevé.
L'invention concerne également un pneumatique comprenant un matériau antidérapant comprenant une matrice élastomère et présentant au moins une surface de contact avec un sol, ladite matrice intégrant des fibres flexibles inclinées par rapport à ladite surface de contact, lesdites fibres étant réalisées en un matériau présentant une rigidité supérieure à celle de ladite matrice, lesdites fibres étant en appui ou maintenues, directement ou indirectement, dans ladite matrice à l'aide d'au moins un élément formant support, et en ce qu'au moins une extrémité desdites fibres affleure ou dépasse légèrement à ladite surface de contact.
Un tel pneumatique permet d'obtenir une baisse sensible de la résistance au roulement et donc d'entraîner une consommation d'énergie moindre. L'adhérence du pneumatique étant améliorée, les distances d'arrêt d'un véhicule qui en est équipé sont réduites et la tenue de route est notablement améliorée.
Selon un mode de réalisation avantageux d'un tel pneumatique, lesdits moyens de transmission d'informations sont reliés à un ou plusieurs des systèmes suivants :
- système antiblocage des roues lors d'un freinage ;
- système antipatinage de roues ;
- système de détection de la pression et/ou de l'état de gonflement dudit pneumatique ;
- système de détection d'usure dudit pneumatique.
On obtient ainsi une meilleure précision pour la mise en œuvre des systèmes ABS (Anti Blocking System), en prenant l'information directement sur la bande de roulement du pneumatique. L'invention concerne également une semelle de chaussure comprenant un matériau antidérapant comprenant une matrice élastomère et présentant au moins une surface de contact avec un sol, ladite matrice intégrant des fibres flexibles inclinées par rapport à ladite surface de contact, lesdites fibres étant réalisées en un matériau présentant une rigidité supérieure à celle de ladite matrice, lesdites fibres étant en appui ou maintenues, directement ou indirectement, dans ladite matrice à l'aide d'au moins un élément formant support, et en ce qu'au moins une extrémité desdites fibres affleure ou dépasse légèrement à ladite surface de contact.
L'orientation des fibres dans les crampons peut varier selon leur emplacement sur la semelle pour faire face à des sollicitations différentes.
Selon un mode de réalisation avantageux d'une telle semelle de chaussure, lesdits moyens de transmission d'informations sont reliés à un système de détection du coefficient d'adhérence ou de frottement de ladite semelle sur ledit sol. Préférentiellement, ledit système de détection du coefficient d'adhérence ou de frottement est couplé à au moins un émetteur sonore et ou lumineux activé lorsque ledit coefficient d'adhérence ou de frottement détecté a une valeur inférieure à un seuil prédéterminé. D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante de plusieurs modes de réalisation préférentiels de l'invention donnés à titre d'exemples illustratifs et non limitatifs, et des dessins parmi lesquels :
- la figure 1 représente une vue en coupe d'un matériau antidérapant selon l'invention ;
- la figure 2 illustre en coupe une bande de roulement d'un pneumatique intégrant un matériau antidérapant selon l'invention ;
- la figure 3 représente une variante d'une bande de roulement de pneumatique intégrant un matériau antidérapant selon l'invention ; - la figure 4 illustre un mode de réalisation du matériau antidérapant selon l'invention, dans lequel les fibres sont sensibles à un champ électrique ;
- la figure 5 illustre un autre mode de réalisation du matériau antidérapant selon l'invention, dans lequel les fibres sont constituées de particules sensibles à un champ magnétique ;
- la figure 6 illustre un mode de réalisation des fibres selon lequel elles sont constituées d'un cordon élastomère ou thermoplastique intégrant des fibrilles ;
- la figure 7 représente un mode de réalisation de la fixation des fibres selon lequel elles sont encastrées dans un support ;
- la figure 8 représente un autre mode de réalisation de la fixation des fibres dans lequel les fibres intègrent une articulation ;
- la figure 9 représente un autre mode de fixation par encastrement des fibres dans un support ; - les figures 10 à 12 illustrent chacune un mode de réalisation pour la fixation des fibres, celles-ci venant à chevauchement sur un support ;
- les figures 13 et 14 représentent chacune une variante du mode de réalisation de la fixation par encastrement des fibres sur un support ; - la figure 15 illustre un autre mode de fixation des fibres sur un support à l'aide d'une pièce intermédiaire ;
- la figure 16 illustre encore un autre mode de réalisation des fibres sur un support présentant une boursouflure ;
- la figure 17 représente un mode de réalisation des fibres selon lequel elles présentent des ramifications ;
- la figure 18 représente un autre mode de réalisation des fibres présentant des ramifications ;
- la figure 19 illustre un mode de réalisation de l'inclinaison des fibres selon lequel elles divergent au niveau de la surface de contact du matériau antidérapant selon l'invention ;
- la figure 20 représente une semelle de chaussure intégrant un matériau antidérapant selon l'invention ;
- la figure 21 illustre une étape d'un procédé de fabrication permettant l'alignement de fibres sensibles à un champ magnétique. En référence à la figure 1, un matériau antidérapant selon l'invention comprend une matrice élastomère 1 présentant une surface de contact la.
Selon l'invention, des fibres 11 sont noyées dans la matrice 1 en étant inclinées par rapport à la surface de contact la en formant un angle d'environ 45° avec une normale à la surface de contact la. Selon ce mode de réalisation, par une de leurs extrémités, les fibres 11 sont en appui sur un support 12, lui-même noyé dans la matrice 1, l'autre extrémité des fibres venant affleurer à la surface de contact la.
Un tel matériau antidérapant est disposé sous ou sur une structure 2, variable selon l'application envisagée. Chaque fibre est ici constituée d'un cordon élastomère flexible présentant une rigidité supérieure à celle de la matrice 1, ce cordon formant une fibre longue unitaire.
Le matériau élastomère constituant le cordon est chargé de particules rigides et présente un module d'élasticité 1,5 fois supérieur à celui de la matrice
1.
Les fibres pourront dans d'autres modes de réalisation, être réalisées en acier, en plastique (polyamide, polypropylène, polycarbonate, polyester, polyvinilique, polyacrylique...), en fer, en aluminium, en verre, en carbone, en aramide, en poils de bête ou en plusieurs de ces matériaux.
Le support 12 est une nappe réalisée en un matériau tel qu'un métal (acier, fer, aluminium, cuivre), un thermoplastique (polyamide, polypropylène, polyéfhylène, polycarbonate, polysulfure de phénylène, polyester, élastomère thermoplastique), rayonne, verre, aramide, carbone. Ainsi, tel qu'illustré par la figure 6, les fibres 61 sont réalisées par moulage ou par extrusion d'un élastomère renforcé par des fibres courtes 611 sensiblement alignées dans le sens de la fibre 61.
Selon un autre mode de réalisation de l'invention tel qu'illustré par la figure 7, les fibres 71 sont encastrées dans le support 72 qui les maintient ainsi dans la matrice 1. Une alternative consiste à réaliser les fibres 71 en même temps que le support 72 par moulage. Les fibres 71 pourraient, selon un autre procédé de réalisation, être soudées ou collées sur le support 72.
On notera que les fibres 71 présentent à leur base une zone flexible 711, obtenue par un rétrécissement de section, leur permettant de se déformer sans exercer de couple excessif au niveau de l'encastrement, limitant ainsi le risque de déchaussement.
La figure 8 représente un autre mode de réalisation de l'encastrement des fibres 81 dans le support 82, selon lequel les fibres 82 intègrent, à proximité du support, une articulation formée par deux bras 811. Cette articulation comporte en outre une butée 812 qui limite le recul de la fibre 81 au-delà d'un seuil de déformation.
La figure 9 illustre encore un autre mode de réalisation de l'encastrement des fibres 91 dans le support 92, selon lequel les fibres 91 présentent une tête 911 intégrant une gorge périphérique 912 destinée à coopérer avec le support 92 qui comporte une ouverture de forme oblongue, pour former une liaison à encastrement.
On note dans ce mode de réalisation que la fibre 91 comprend une zone de plus grande flexibilité 913 (rétrécissement de la fibre) et que la matrice 1 recouvre seulement la partie longiligne de la fibre 91.
Deux autres modes de réalisation de l'encastrement des fibres sont illustrés par les figures 13 et 14, selon lesquels les fibres 131, 141 sont couplées à un élément de liaison 132, 142 comportant une partie flexible 1311, 1411, encastré dans l'élément support 133, 143. En référence à la figure 13, la fibre 131 est tubulaire et contient un élastomère tackifiant (collant) présentant un coefficient de rebond inférieur à 30, contribuant à renforcer encore l'adhérence du matériau antidérapant selon l'invention.
On notera que les talons 1321, 1421 forment une butée susceptible de limiter le pivotement des éléments de liaison 132, 142 par rapport aux supports
133, 143.
La figure 15 illustre un autre mode de réalisation de la fixation des fibres 151 sur l'élément support 152, selon lequel les fibres sont solidarisées à une pièce 153 maintenue dans le support 152. La pièce 153 est obtenue de préférence par surmoulage de la base des fibres, par une matière thermoplastique (PP, PE,
PA...), et éventuellement une résine thermodurcissable (polyester, époxyde, polyuréthane).
D'autres formes de maintien des fibres dans la matrice 1 sont illustrées par les figures 10 à 12. Telle qu'illustrée par la figure 11, la matrice 1 intègre des fils de trame 111 autour desquels les fibres 112 sont repliées, venant ainsi chevaucher les fils 111.
Comme cela apparaît clairement sur la figure 10, une variante consiste à entrelacer les fibres 101 avec les fils de trame 102.
Dans une autre variante représentée par la figure 12, les fibres 121 chevauchent un tissu intermédiaire 122.
On notera pour ces trois derniers modes de réalisation, que le déplacement des fibres dans la matrice est limité par la présence d'un élément formant butée 103, 113, 123 contre lequel les fibres sont susceptibles de venir en appui. L'écartement entre les fibres 101, 112 ou 121 et l'élément 103, 113 ou 123 est inférieur à 20% de l'épaisseur de la matrice 1 et de préférence inférieur à 10% de cette épaisseur.
Dans un autre mode de réalisation illustré par la figure 16, les fibres 161 sont maintenues par un renfort 162 présentant une boursouflure 1621 susceptible de se déformer sous la poussée des fibres. Cette boursouflure 1621 est obtenue par l'introduction d'un agent chimique dégageant un gaz au-delà d'une certaine température lors du moulage de la matrice 1, formant une poche de gaz 1622.
Des évidements 163 sont en outre ménagés dans la matrice 1 pour améliorer la mobilité des fibres 161 au sein de la matrice.
Selon les modes de réalisation qui viennent d'être décrits, les fibres intégrant un matériau antidérapant selon l'invention sont essentiellement longilignes.
Elles peuvent également présenter des ramifications, comme illustrées par les figures 17 et 18.
En référence à la figure 17, les fibres 171 présentent des ramifications 1711 comprenant des terminaisons annulaires 1712 (en coupe sur la figure 17). Ces ramifications 1711 et terminaisons 1712 sont obtenues de préférence par moulage de matière thermoplastique. On note, selon le mode de réalisation illustré par la figure 18, que les fibres 181 présentant des ramifications 1811, sont bordées par des fibres 182 longilignes destinées à limiter la déformation de la matrice et à améliorer la résistance à l'usure, en particulier dans le cas d'un crampon tel que représenté. Les fibres 182 alignées dans la direction transversale sur les bords d'attaque et de fuite du crampon, sont éventuellement maintenues transversalement par des fils de trame, et composent dans ce cas un tissu appuyé sur le support 183.
De façon commune à l'ensemble des modes de réalisation qui viennent d'être décrits, le procédé de fabrication du matériau selon l'invention consiste en un prémoulage de la matrice, le moule étant pourvu d'insert destiné à ménager des passages dans la matrice pour une introduction ultérieure des fibres réalisées séparément par moulage ou extrusion.
Une fois les inserts retirés, les fibres sont mises en place dans le moule et solidarisées à l'élastomère en l'aide d'un surmoulage poursuivie d'une cuisson. Selon une alternative, les fibres sont placées et maintenues dans le moule, éventuellement par l'intermédiaire de leur fixation à leur support, puis surmoulées par la matrice.
Selon un autre mode de réalisation, les fibres sont sensibles à champ électrique ou magnétique en vue de leur imposer une inclinaison une fois noyées dans la matrice du matériau antidérapant selon l'invention.
Ainsi, en référence à la figure 5, les fibres 51 comprennent des fibrilles ou particules 511 sensibles à un champ magnétique (ou électrique selon un autre mode de réalisation) mélangées à un élastomère.
L'inclinaison des fibres est obtenue en appliquant un champ magnétique variable dans le moule tel qu'illustré par la figure 21.
En référence à cette figure 21, la matrice 1 et les particules 2111 sensibles à un champ magnétique destinées à former les fibres 211 sont injectées dans un moule comportant une paroi intérieure 2131 et une paroi extérieure 2132, un élément support 212 ayant été au préalable disposé dans le moule. Le circuit magnétique 2141, constitué de tôles et relié à la bobine 214, permet de produire un champ magnétique orienté dans la direction de la flèche F2 dans l'entrefer (espace entre les terminaisons 2142 et 2143), la direction du champ magnétique étant obtenue par la mise en place, selon la direction souhaitée, des terminaisons 2142, 2143 du circuit magnétique 2141 sur les parois internes respectivement des parois 2131 et 2132 du moule.
Les parois du moule hors du champ magnétique sont constituées ou revêtues d'une matière non magnétisable pour ne pas dévier le champ magnétique appliqué et limiter les fuites magnétiques. Les variations du champ magnétique correspondent à une application par paliers successifs et progressifs de l'intensité électrique qui parcoure la bobine 214, visant à optimiser l'opération conjointement à une mise en vibration du moule à l'aide d'un élément piézoélectrique 215 (la simple fermeture du moule peut constituer une secousse ou une vibration suffisante). Selon le mode de réalisation illustré par la figure 4, les fibres 41 sont réalisées en plastique et revêtues par une couche ionisable, avant d'être injectées avec la matière de la matrice dans un moule.
L'inclinaison des fibres est obtenue selon un procédé similaire à celui utilisé pour le mode de réalisation décrit précédemment. On notera que les fibres peuvent présenter des inclinaisons différentes. En effet, tel que cela apparaît sur la figure 19, les fibres 191 et 192 sont inclinées différemment par rapport à la surface de contact la de telle sorte qu'elles divergent au niveau de la surface la. Les fibres agissent ainsi, dans deux directions. Selon un autre mode de réalisation, les fibres 191 et 192 pourraient converger au niveau de la surface contact la pour accroître leur stabilité tiansversale.
L'application d'un matériau antidérapant selon l'invention aux pneumatiques va maintenant être décrit à l'aide de l'exemple de la figure 2. Tel que représenté par la figure 2, un pneumatique comprend une chambre pneumatique 26, une armature de carcasse 27, une couche d' élastomère 28, une bande de roulement comportant des sculptures ou crampons 21, notamment destinés à chasser l'eau sur route mouillée. Les crampons présentent une surface de contact avec le sol 20.
Selon l'invention, la bande de roulement et les crampons du pneumatique comprennent une matrice élastomère 1 dans laquelle sont noyées des fibres 22, inclinées à environ 45° par rapport à la surface de contact avec le sol 20.
Les fibres 22 viennent en appui sur une nappe 23 noyée dans la matrice 1, un élément intermédiaire 24 contribuant de façon complémentaire au maintien des fibres 22 dans leur position inclinée. Pour un meilleur maintien, les fibres 22 composées de fibres longues mixtes verre - polypropylène, sont soudées par chauffage à l'élément 24, constitué d'un tissus comprenant des fibres polypropylène. En cas de freinage dû véhicule, tendant à exercer des forces orientées dans le sens de la flèche FI indiquée sur la figure 2, les fibres, de par leur orientation, ont tendance à s'arc-bouter, leur extrémité à la surface de contact ayant tendance à s'incruster dans le relief du sol 20, tandis que leur autre extrémité est maintenue par la nappe 23. Selon une variante illustrée par la figure 3, les fibres 31 sont fixées sur un support 32 qui suit approximativement le profil des crampons. Il est intéressant de tirer les fibres 31 du support 32 constitué d'un tissu.
Selon un mode de réalisation avancé d'un pneumatique intégrant un matériau antidérapant selon l'invention, des fibres 22 sont reliées à des moyens de transmission d'informations.
Les moyens de transmission d'informations comprennent un capteur 25 placé entre les fibres 21 et la nappe 23. Le signal provenant du capteur 25 est transmis par un contact électrique entre l'arbre de roue et le châssis du véhicule à un organe de traitement de l'information intégré à un système d'exploitation de l'information relié à la commande des freins en vue d'éviter un blocage des roues lors d'un freinage.
Le capteur 25 consiste en un film piézoélectrique qui génère un courant électrique fonction de la sollicitation de la fibre qui appuie sur celui-ci. Selon d'autres versions, le capteur 25 peut aussi être de type capacitif, résistif ou bien inductif.
Tel qu'illustré par la figure 14, le capteur 144 est du type résistif, consistant alors en une jauge de déformation fixée sur la zone flexible 1411 de l'élément de liaison 142 des fibres 141 avec l'élément support 143. Les fibres sont dans ce cas de préférence connectées en série entre elles par une liaison électrique, formant un réseau à travers lequel un courant électrique est envoyé. La mesure des fluctuations d'impédance électrique permet d'identifier la variation de résistance électrique du ou des réseaux ainsi formés, donnant une indication du comportement des fibres. Selon un autre mode de réalisation des capteurs, les fibres peuvent être réalisées en fibres optiques servant à la fois d'émetteur et de récepteur. Des impulsions étant envoyées aux fibres optiques, le signal réfléchi diffère en fonction du contact ou de l'absence de contact de la fibre avec le sol. L'analyse du signal reçu permet alors de déduire l'état de sollicitation des fibres, qui agit notamment sur la distorsion du signal. Le niveau d'adhérence et la vitesse de rotation sont ainsi déterminés.
Selon encore un autre mode de réalisation des capteurs, des fibres comprenant des particules aimantées, ont une portion, de préférence leur base, disposée à travers un enroulement de fil conducteur électrique. Le déplacement relatif des particules aimantées à travers les spires de cet enroulement, fonction des sollicitations de la fibre, génère un courant électrique. Ce signal représentant la réponse d'un ensemble de capteurs inductifs de ce type, est exploité pour en déterminer la vitesse de rotation (ou de déplacement) et le niveau d'adhérence.
Selon encore un autre type de capteurs, des fibres conductrices réparties sur le pourtour, sont connectées en série. Un courant électrique est généré à travers ce réseau. Chaque passage d'une fibre conductrice sur le sol entraîne une baisse de courant en en transmettant une partie au sol. Les fluctuations de la réponse relevée permettent de déterminer la vitesse de rotation.
Quelque soit le mode de réalisation du ou des capteurs qui coopèrent ou qui sont au moins en partie constitués par lesdites fibres, le traitement de l'information peut également permettre de détecter l'état d'un pneu sous gonflé, l'avachissement du pneu entraînant une sollicitation d'un nombre de fibres plus important que la normale.
L'application d'un matériau antidérapant selon l'invention aux semelles de chaussures va maintenant être décrit à l'aide de la figure 20.
Tel que cela apparaît clairement sur cette figure, la semelle 200 comporte des sculptures 201 intégrant des fibres 2011 inclinées, noyées dans une matrice 1, et venant en appui sur un élément formant support 2013.
Selon un mode de réalisation avancé d'une telle semelle, au moins une des fibres 2011 est reliée à au moins un moyen de transmission d'information.
Les moyens d'informations sont reliés à un système de détection du coefficient d'adhérence. Pour ce faire, un capteur 2012 sensible aux variations de déformation des fibres est relié à un circuit électronique qui traite le signal du capteur de façon à déduire une perte d'adhérence. La technique utilisée pour le capteur est choisie parmi l'une des techniques mentionnées précédemment pour l'application du matériau antidérapant selon l'invention aux pneumatiques.
Un signal sonore ou lumineux est généré lorsque le coefficient d'adhérence détecté a une valeur inférieure à un seuil prédéterminé. Le matériau antidérapant selon l'invention pourra aussi être utilisé dans d'autres applications de façon avantageuse, notamment en étant intégré à des produits tels que les tapis antidérapants, les courroies de transmission, les galets ou les rouleaux d'entraînement, les gants de manutention ....
L'application de l'invention aux courroies permet de transmettre un couple plus important sans accroître la dissipation d'énergie. Cependant la surface de contact des réas doit être striée ou bosselée, afin d'offrir des points d'ancrage audites fibres. Les courroies en V sont réalisées en empilant des couches successives conformes à l'invention. Pour éviter que ledit élément formant support des fibres s'éloigne d'un côté de la surface sous la pression desdites fibres, les fibres sont disposées symétriquement par rapport au plan radiant de symétrie du réa et elles travaillent dans le même sens sur chaque couche pour ne pas avoir de déviation du support. Ceci n'est pas le cas des courroies actuelles renforcées par des tissus où les fibres transversales ont une extrémité tirée et l'autre repoussée, ce qui a pour effet de faire rentrer les fibres plutôt que de les faire sortir selon l'invention.
Il est à noter par ailleurs que les fibres selon l'invention pourront avantageusement être installées seulement sur la partie avant d'un patin de frein.
Les capteurs selon l'invention peuvent aussi être utilisés dans d'autres applications telles que le contrôle de mouvement d'un galet, d'un rouleau d'entraînement ou d'une courroie installés sur une machine. Une autre application concerne la détection de passage d'une personne sur un tapis. Ce type de capteurs informe un dispositif de contrôle d'ouverture et de fermeture de porte ou bien déclenche une alarme.
D'autres modes de réalisation utilisant le principe d'un matériau antidérapant intégrant une matrice dans laquelle sont noyées des fibres inclinées par rapport à une surface de contact tel que décrit précédemment sont bien sûr envisageables sans sortir du cadre de l'invention.

Claims

REVENDICATIONS
- Matériau antidérapant comprenant une matrice élastomère (1) et présentant au moins une surface de contact (la), caractérisé en ce que ladite matrice (1) intègre des fibres flexibles (11, 22,
31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) inclinées par rapport à ladite surface de contact (la), lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) étant réalisées en un matériau présentant une rigidité supérieure à celle de ladite matrice (1), lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 191, 192, 2011, 211) étant en appui ou maintenues, directement ou indirectement, dans ladite matrice (1) à l'aide d'au moins un élément formant support (12, 23, 32, 72, 82, 92, 102, 103, 111, 113, 122, 123, 133, 143, 152, 162, 2013, 212), et en ce qu'au moins une extrémité desdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) affleure ou dépasse légèrement à ladite surface de contact (la), de telle sorte que lesdites fibres améliorent l'adhérence dudit matériau. - Matériau antidérapant selon la revendication 1, caractérisé en ce que lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) forment un angle α compris entre environ 5° et environ 70° avec la normale à ladite surface de contact. - Matériau antidérapant selon la revendication 2, caractérisé en ce que lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) forment un angle α compris entre environ 25° et environ 50° avec la normale à ladite surface de contact. - Matériau antidérapant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit élément formant support (12, 23, 32, 152, 162, 2013, 212) comprend au moins une nappe noyée dans ladite matrice, une extrémité desdites fibres (11, 22, 31, 151, 161, 2011, 211) venant en appui sur ladite nappe. - Matériau antidérapant selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ledit au moins un élément formant support (12, 32, 102, 111, 122) coopère avec lesdites fibres (11) pour les maintenir. - Matériau antidérapant selon les revendications 1 à 5, caractérisé en ce que le ou lesdits moyens formant support (162) présentent, au moins dans la zone où ils coopèrent avec lesdites fibres (161), une boursouflure (1621) admettant de se déformer. - Matériau antidérapant selon la revendication 6, caractérisé en ce que ladite boursouflure (1621) est constituée d'une poche de gaz (1622). - Matériau antidérapant selon la revendication 5, caractérisé en ce que lesdites fibres (101, 112, 121) chevauchent ou entrelacent ledit ou lesdits moyens formant support (102, 111, 122). - Matériau antidérapant selon les revendications 5 ou 6, caractérisé en ce qu'une extrémité desdites fibres (71, 81, 1) est encastrée dans lesdits moyens support (72, 82, 92). - Matériau antidérapant selon l'une quelconque des revendications 5 à 9, caractérisé en ce que lesdites fibres (71, 81, 91, 131, 141) comprennent au moins une zone de plus grande flexibilité (711, 811, 913, 1311, 1411) à proximité de ladite extrémité encastrée dans ledit moyen formant support. - Matériau antidérapant selon la revendication 10, caractérisé en ce que lesdites fibres (81, 131, 141) comprennent des moyens de limitation (812, 1321, 1421) de leur déplacement autour de ladite zone de plus grande flexibilité. - Matériau antidérapant selon l'une quelconque des revendications 1 à 11, caractérisé en ce que lesdites fibres (171, 181) présentent au moins une ramification (1711, 1811). - Matériau antidérapant selon la revendication 12, caractérisé en ce que ladite au moins une ramification (1711) forme au moins un élément annulaire ou spirale (1712) entourant au moins une desdites fibres (1711). - Matériau antidérapant selon l'une quelconque des revendications 1 à 13, caractérisé en ce qu'il comprend des moyens complémentaires de maintien (24) desdites fibres à une position intermédiaire entre ladite nappe ou lesdits moyens formant support (23) et ladite surface de contact. - Matériau antidérapant selon l'une quelconque des revendications 1 à 14, caractérisé en ce que lesdites fibres (191, 192) présentent différentes inclinaisons par rapport à ladite surface de contact de façon à ce que plusieurs desdites fibres convergent entre elles au niveau de ladite surface de contact. - Matériau antidérapant selon l'une quelconque des revendications 1 à 14, caractérisé en ce que lesdites fibres (191, 192) présentent différentes inclinaisons par rapport à ladite surface de contact de façon à ce que plusieurs desdites fibres divergent entre elles au niveau de ladite surface de contact. - Matériau antidérapant selon l'une quelconque des revendications 1 à 16, caractérisé en ce que lesdites fibres (11, 22, 31, 41, 71, 81, 91, 101, 112, 121, 141, 151, 161, 171, 181, 182, 191, 192, 2011) comprennent chacune au moins une fibre longue unitaire. - Matériau antidérapant selon l'une quelconque des revendications 1 à 16, caractérisé en ce que lesdites fibres (61) sont réalisées d'un agglomérat de particules et de fibres enchevêtrées (611). - Matériau antidérapant selon l'une quelconque des revendications 1 à 16, caractérisé en ce que lesdites fibres (51) comprennent des fibrilles ou des particules (511) alignées intégrées dans une matière plastique ou élastomère. - Matériau antidérapant selon l'une quelconque des revendications 1 à 19, caractérisé en ce que lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) sont réalisées en un ou plusieurs matériaux appartenant au groupe suivant
- élastomère vulcanisé ou thermoplastique,
- plastique, - aluminium,
- acier,
- verre,
- carbone,
- aramide, - poils de bête. - Matériau antidérapant selon la revendication 20, caractérisé en ce que lesdites fibres (41, 51, 211) sont sensibles à un champ magnétique ou électrique. - Matériau antidérapant selon l'une quelconque des revendications 1 à 21, caractérisé en ce qu'au moins une desdites fibres (11, 22, 31, 41, 51, 61,
71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011, 211) est reliée à des moyens de transmission d'informations (25, 144, 2012). - Procédé de fabrication d'un matériau antidérapant selon l'une quelconque des revendications 1 à 22, caractérisé en ce qu'il comprend les étapes consistant à :
- injecter ladite matrice (1) dans un moule pourvu d'inserts destinés à ménager des passages pour lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011) en surmoulant ledit au moins un élément formant support (12, 23, 32, 72, 82, 92, 102, 103, 111, 113, 122, 123, 133, 143, 152, 162, 2013, 212) ;
- introduire lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011) dans lesdits passages une fois les inserts retirés ;
- surmouler ou fixer ladite matrice (1), ledit au moins un élément formant support (12, 23, 32, 72, 82, 92, 102, 103, 111, 113, 122, 123, 133, 143, 152, 162, 2013, 212) et lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011). - Procédé de fabrication d'un matériau antidérapant selon l'une quelconque des revendications 1 à 22, caractérisé en ce qu'il comprend les étapes consistant à :
- placer lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91, 101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011) dans un moule et les maintenir en position par l'intermédiaire dudit moule et/ou d'au moins un élément formant support (12,
23, 24, 32, 72, 82, 92, 102, 103, 111, 113, 122, 123, 133, 143, 152, 162, 2013, 212) ; - surmouler lesdites fibres (11, 22, 31, 41, 51, 61, 71, 81, 91,
101, 112, 121, 131, 141, 151, 161, 171, 181, 182, 191, 192, 2011) et ledit au moins un élément formant support (12, 23,
24, 32, 72, 82, 92, 102, 103, 111, 113, 122, 123, 133, 143, 152, 162, 2013, 212) par ladite matrice (1). - Procédé de fabrication d'un matériau antidérapant selon l'une quelconque des revendications 1 à 22, caractérisé en ce qu'il comprend les étapes consistant à :
- injecter un mélange comprenant ladite matrice (1) et lesdites fibres (211) ou les composés desdites fibres (211) dans un moule ; - appliquer un champ électrique ou magnétique variable dans le moule selon une orientation correspondant à l'inclinaison souhaitée desdites fibres ;
- mettre en vibrations ledit moule (2131, 2132) avant ou pendant au moins une fraction de l'application dudit champ électrique ou magnétique. - Pneumatique caractérisé en ce qu'il comprend un matériau antidérapant comprenant une matrice élastomère (1) et présentant au moins une surface de contact avec un sol (20), ladite matrice (1) intégrant des fibres flexibles (22) inclinées par rapport à ladite surface de contact, lesdites fibres (22) étant réalisées en un matériau présentant une rigidité supérieure à celle de ladite matrice (1), lesdites fibres (22) étant en appui ou maintenues, directement ou indirectement, dans ladite matrice (1) à l'aide d'au moins un élément formant support (23), et en ce qu'au moins une extrémité desdites fibres (22) affleure ou dépasse légèrement à ladite surface de contact selon l'une quelconque des revendications 1 à 22. - Pneumatique selon les revendications 22 et 26, caractérisé en ce que lesdits moyens de transmission d'informations (25) sont reliés à un ou plusieurs des systèmes suivants : - système antiblocage des roues lors d'un freinage ;
- système antipatinage de roues ;
- système de détection de la pression et/ou de l'état de gonflement dudit pneumatique ;
- système de détection d'usure dudit pneumatique. - Semelle de chaussure caractérisée en ce qu'elle comprend un matériau antidérapant comprenant une matrice élastomère (1) et présentant au moins une surface de contact avec un sol, ladite matrice (1) intégrant des fibres flexibles (2011) inclinées par rapport à ladite surface de contact, lesdites fibres (2011) étant réalisées en un matériau présentant une rigidité supérieure à celle de ladite matrice (1), lesdites fibres étant en appui ou maintenues, directement ou indirectement, dans ladite matrice à l'aide d'au moins un élément formant support (2013), et en ce qu'au moins une extrémité desdites fibres (2011) affleure ou dépasse légèrement à ladite surface de contact selon l'une quelconque des revendications 1 à 22. - Semelle de chaussure selon les revendications 22 et 28, caractérisée en ce que lesdits moyens de transmission d'informations (2012) sont reliés à un système de détection du coefficient d'adhérence ou de frottement de ladite semelle sur ledit sol. - Semelle de chaussure selon la revendication 29, caractérisée en ce que ledit système de détection du coefficient d'adhérence ou de frottement est couplé à au moins un émetteur sonore et/ou lumineux activé lorsque ledit coefficient d'adhérence ou de frottement détecté a une valeur inférieure à un seuil prédéterminé.
PCT/FR2002/001473 2001-04-27 2002-04-26 Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau WO2002087376A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02727703A EP1385398A1 (fr) 2001-04-27 2002-04-26 Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0105804A FR2824068B1 (fr) 2001-04-27 2001-04-27 Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau
FR01/05804 2001-04-27

Publications (1)

Publication Number Publication Date
WO2002087376A1 true WO2002087376A1 (fr) 2002-11-07

Family

ID=8862849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001473 WO2002087376A1 (fr) 2001-04-27 2002-04-26 Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau

Country Status (3)

Country Link
EP (1) EP1385398A1 (fr)
FR (1) FR2824068B1 (fr)
WO (1) WO2002087376A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121277A (zh) * 2016-12-22 2019-08-13 株式会社爱世克私 鞋子的鞋底及鞋底的制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2863458B1 (fr) * 2003-12-16 2006-06-02 Pascal Gerard Tournier Semelle et talon de chaussure renforces a absorption d'energie et durabilite ameliorees
WO2008027045A1 (fr) * 2006-08-31 2008-03-06 Societe De Technologie Michelin Composition élastomère possédant des microfibres de verre
US9834937B2 (en) 2013-11-04 2017-12-05 Steel Grip Samm, Inc. Non-skid safety mat for providing adhering support when placed upon a sloping roof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR596857A (fr) * 1925-04-17 1925-11-03 Dispositif antidérapant pour bandages élastiques de roues
US3555697A (en) * 1967-09-20 1971-01-19 Dassler Puma Sportschuh Sport shoe
DE1948213A1 (de) * 1969-09-24 1971-04-01 Thiele Dr Hans Allwetterreifen fuer Kraftfahrzeuge
DE2318801A1 (de) * 1973-04-13 1974-10-24 Dunlop Ag Stahldrahteinsatz fuer fahrzeugluftreifen
DE8126601U1 (de) * 1981-09-12 1982-02-18 Klose, Horst, 7867 Maulburg Sportschuh
DE3230016A1 (de) * 1982-08-12 1984-02-16 GERO-Bürstenfabrik Gebr. Rothweiler, 7450 Hechingen Verfahren und vorrichtung zum herstellen von mit borsten besetzten schuhsohlen
US5313718A (en) * 1988-10-07 1994-05-24 Nike, Inc. Athletic shoe with bendable traction projections
US5785782A (en) * 1995-05-02 1998-07-28 Tsuzuki Electric Corporation Slip-preventing vehicle tire
JP2001081202A (ja) * 1999-09-09 2001-03-27 Polymatech Co Ltd 熱伝導性成形体およびその製造方法ならびに導体回路用樹脂基板

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR596857A (fr) * 1925-04-17 1925-11-03 Dispositif antidérapant pour bandages élastiques de roues
US3555697A (en) * 1967-09-20 1971-01-19 Dassler Puma Sportschuh Sport shoe
DE1948213A1 (de) * 1969-09-24 1971-04-01 Thiele Dr Hans Allwetterreifen fuer Kraftfahrzeuge
DE2318801A1 (de) * 1973-04-13 1974-10-24 Dunlop Ag Stahldrahteinsatz fuer fahrzeugluftreifen
DE8126601U1 (de) * 1981-09-12 1982-02-18 Klose, Horst, 7867 Maulburg Sportschuh
DE3230016A1 (de) * 1982-08-12 1984-02-16 GERO-Bürstenfabrik Gebr. Rothweiler, 7450 Hechingen Verfahren und vorrichtung zum herstellen von mit borsten besetzten schuhsohlen
US5313718A (en) * 1988-10-07 1994-05-24 Nike, Inc. Athletic shoe with bendable traction projections
US5785782A (en) * 1995-05-02 1998-07-28 Tsuzuki Electric Corporation Slip-preventing vehicle tire
JP2001081202A (ja) * 1999-09-09 2001-03-27 Polymatech Co Ltd 熱伝導性成形体およびその製造方法ならびに導体回路用樹脂基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 20 10 July 2001 (2001-07-10) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110121277A (zh) * 2016-12-22 2019-08-13 株式会社爱世克私 鞋子的鞋底及鞋底的制造方法
EP3536183A4 (fr) * 2016-12-22 2019-12-11 ASICS Corporation Semelle de chaussure et procédé de fabrication de semelle
AU2016433456B2 (en) * 2016-12-22 2020-10-22 Asics Corporation Shoe sole and method for manufacturing sole
CN110121277B (zh) * 2016-12-22 2021-05-04 株式会社爱世克私 鞋子的鞋底及鞋底的制造方法
US11864625B2 (en) 2016-12-22 2024-01-09 Asics Corporation Shoe sole and method for manufacturing sole

Also Published As

Publication number Publication date
FR2824068B1 (fr) 2005-05-20
FR2824068A1 (fr) 2002-10-31
EP1385398A1 (fr) 2004-02-04

Similar Documents

Publication Publication Date Title
CA1307950C (fr) Organe de transmission pour variateur continu de vitesse a maillons transversaux poussants et ame souple, fonctionnant par frottement sec
EP2188138B1 (fr) Pneumatique equipe pour la fixation d'un objet a sa paroi et attache a cet effet
FR2936291A1 (fr) Courroie de transmission de puissance.
FR2787388A1 (fr) Bandage elastique utilisable de facon non pneumatique
EP0829658B1 (fr) Procédé de fabrication d'une courroie de transmission et courroie obtenue par ce procédé
FR2935296A1 (fr) Bande de roulement de pneu a sculpture directionnelle.
EP1385398A1 (fr) Materiau antiderapant a adherence amelioree, pneumatique et semelle de chaussure integrant un tel materiau
EP0827575B1 (fr) Dispositif de jonctionnement perfectionne pour bandes transporteuses et procede de fabrication
EP0587650A1 (fr) Dispositif de mesure du defilement d'une bande de roulement lors de son application sur une carcasse de pneumatique et son procede de mise en uvre.
FR2534191A1 (fr) Pneu plein en caoutchouc ou matiere analogue a bande de roulement amovible
EP0721854A1 (fr) Dispositif de roulage à plat pour véhicule automobile et son procédé de fabrication
US6679962B2 (en) Method for fabricating power transmission belt including grinding with specified grinding wheel
FR2611600A1 (fr) Pneumatique radial avec utilisation de deux caoutchouc pour la bande de roulement
WO2006018566A1 (fr) Dispositif permettant de reproduire les conditions d'une conduite sur surface glissante pour un vehicule a roues et son procede de montage
FR2719780A1 (fr) Dispositif pour ski de fond et ski équipé d'un tel dispositif.
EP3105069A1 (fr) Patin monolithique pour chemin de roulement d'un dispositif antiderapant pour pneumatique de vehicule automobile
FR2795149A1 (fr) Courroie trapezoidale de transmission de puissance a hautes performances
EP0194948A1 (fr) Dispositif répartiteur de contrainte pour galet de guidage de câble de transport aérien
EP1289795B1 (fr) Tapis de protection et/ou decoration, notamment destine a equiper un vehicule automobile
EP1000774B1 (fr) Appui de sécurité en matériau élastomérique injectable pour pneumatique
WO2023222528A1 (fr) Courroie de transmission pour convoyeur à rouleaux à gorges concaves et convoyeur associé
FR2564040A1 (fr) Structure de pneu-jante pour vehicule leger tout terrain et pour motocyclette
JPH01164609A (ja) タイヤ滑り止め装置
EP3619058A1 (fr) Pneumatique a jauge d'usure explicite
FR2537060A1 (fr) Equipement pour roue de vehicule auto-moteur destine a accroitre l'adherence de cette roue sur des chaussees glissantes, verglacees, niviformes ou visqueuses, procede de fabrication et de pose d'un tel equipement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002727703

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002727703

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002727703

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP