WO2002084088A1 - Moteur a combustion interne a cylindres multiples - Google Patents

Moteur a combustion interne a cylindres multiples Download PDF

Info

Publication number
WO2002084088A1
WO2002084088A1 PCT/JP2001/010292 JP0110292W WO02084088A1 WO 2002084088 A1 WO2002084088 A1 WO 2002084088A1 JP 0110292 W JP0110292 W JP 0110292W WO 02084088 A1 WO02084088 A1 WO 02084088A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
cylinders
expansion
stroke
internal combustion
Prior art date
Application number
PCT/JP2001/010292
Other languages
English (en)
French (fr)
Inventor
Kunio Hasegawa
Eiji Mishima
Toshihiro Imanishi
Kazunori Nishikawa
Takeshi Serizawa
Yoshiki Morinaga
Original Assignee
Daihatsu Motor Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001110220A external-priority patent/JP2002303141A/ja
Priority claimed from JP2001123078A external-priority patent/JP2002317702A/ja
Application filed by Daihatsu Motor Co.,Ltd. filed Critical Daihatsu Motor Co.,Ltd.
Priority to DE10197229T priority Critical patent/DE10197229T5/de
Priority to US10/474,525 priority patent/US7028648B2/en
Publication of WO2002084088A1 publication Critical patent/WO2002084088A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/104Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on a side position of the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/01Internal exhaust gas recirculation, i.e. wherein the residual exhaust gases are trapped in the cylinder or pushed back from the intake or the exhaust manifold into the combustion chamber without the use of additional passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/37Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with temporary storage of recirculated exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/41Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories characterised by the arrangement of the recirculation passage in relation to the engine, e.g. to cylinder heads, liners, spark plugs or manifolds; characterised by the arrangement of the recirculation passage in relation to specially adapted combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1812Number of cylinders three
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1824Number of cylinders six
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a multi-cylinder internal combustion engine including a plurality of cylinders sharing one crankshaft.
  • the present invention utilizes this fact to improve the combustibility of the air-fuel mixture in each cylinder in a multi-cylinder internal combustion engine using hydrocarbon fuel such as gasoline or hydrogen or hydrogen as fuel.
  • a pressure storage chamber communicating with the combustion chamber is provided, and a part of the combustion (expansion) gas during the explosion (expansion) stroke is stored in this pressure storage chamber, and the stored combustion (expansion) gas is supplied to the intake stroke or compression. It is configured to discharge to the combustion chamber during the stroke.
  • Japanese Utility Model Laid-Open No. 5-833351 Japanese Patent Laid-Open No. Hei 5-18732 and Japanese Patent Laid-Open No. Hei 9-6810
  • a part of the combustion (expansion) gas during the explosion (expansion) stroke is stored in the pressure accumulator, and the stored combustion (expansion) gas is stored in the intake stroke or the compression stroke.
  • the combustion (expansion) gas stored in the pressure accumulating chamber has its temperature during a period from the explosion (expansion) stroke to the intake stroke or the compression stroke through the exhaust stroke.
  • the radical component contained in the combustion (expansion) gas stored in the gas rapidly decreases, and most of the radical components are not excited or stable products (eg, CO.HC, H 2 , H 2 0) almost disappears.
  • each of the former prior arts merely aims at increasing the compression pressure and reducing NOx by the EGR effect, and achieves improvement in the combustibility of the mixture by radical components generated during combustion. You cannot do it.
  • each of the latter prior arts is exclusively used to recirculate exhaust gas to the intake air, that is, to reduce N 0 X by the EGR effect at the end of the latter half of the explosion (expansion) process.
  • the combustion temperature is reduced significantly.
  • most of the radial components in the combustion (expansion) gas have disappeared so that most of them become stable products, so this combustion (expansion) gas is supplied to other cylinders. Even so, it is not possible to achieve an improvement in the combustibility of the air-fuel mixture in the other cylinders.
  • An object of the present invention is to provide a multi-cylinder internal combustion engine having a plurality of cylinders, in which the combustibility of the air-fuel mixture in each of the cylinders is reliably improved by utilizing radical components generated during the combustion in each of the cylinders. It is.
  • a multi-cylinder internal combustion engine including a plurality of cylinders sharing one crankshaft, wherein an explosion in any one of the cylinders is provided between the cylinders.
  • FIG. 6 is a diagram showing a relationship between a crank angle, a cylinder pressure, and a combustion temperature at the time of 600 rpm.
  • the combustion temperature in the cylinder rises immediately after ignition at a crank angle of approximately 0 degrees immediately before and after top dead center, reaches a maximum temperature, decreases from this maximum temperature.
  • the crank angle decreases sharply from when the exhaust valve opens at approximately ⁇ 20 degrees.
  • the combustion (expansion) gas contains many active radical components with high energy levels.
  • the pressure in the cylinder also increases during the first half of the explosion (expansion) stroke, as shown by the dashed curve D, where the pressure rises immediately after ignition to the maximum pressure and then drops.
  • a part of the combustion (expansion) gas in the first half of the explosion (expansion) stroke in any one of the cylinders is taken out, and this is taken out of the other cylinders for the intake stroke or compression.
  • a part of the combustion (expansion) gas in each cylinder is taken out at a high temperature and therefore with a lot of active radical components
  • a part of the taken out combustion (expansion) gas can be introduced into one of the other cylinders during the intake stroke or the compression stroke through the communication passage.
  • the combustibility of the air-fuel mixture can be significantly and surely improved by radical components generated when the air-fuel mixture is burned in each cylinder.
  • a means is provided in which a part of the combustion (expansion) gas during the period is removed and introduced into one of the other cylinders in the intake stroke or the compression stroke through a communication passage.
  • combustion (expansion) in the first half of the explosion (expansion) stroke in any one cylinder takes out a part of the gas, so that the combustion pressure is reduced, so that abnormal combustion such as knocking occurs. Can be reliably suppressed.
  • the combustion (expansion) gas extracted during the first half of the explosion (expansion) process contains a large amount of radical components having high energy levels, which are active at high temperatures of the combustion (expansion) gas.
  • the extracted combustion (expansion) gas is introduced into one of the other cylinders during the intake stroke or the compression stroke.
  • the flammability can be greatly improved, and the output can be improved by improving the flammability.
  • the output by extracting a part of the combustion (expansion) gas in the first half of the explosion (expansion) process Can be almost completely compensated for.
  • a single common communication passage extending in the direction of each cylinder row is provided, and the combustion chamber in each cylinder is provided in the common communication passage via a communication passage provided for each cylinder.
  • An on-off valve is provided in each of the communication passages for each of the cylinders, and each of the on-off valves is connected to an arbitrary one of the cylinders during the first half of the explosion (expansion) stroke of each of the cylinders. (Expansion)
  • the opening operation is performed so that a part of the gas is introduced into one of the other cylinders during the intake stroke or the compression stroke.
  • high-temperature combustion (expansion) gas flows alternately at short time intervals in the single common communication passage for each cylinder explosion (expansion) stroke.
  • One common communication passage has a communication passage between two cylinders of each cylinder. It is at a higher temperature than if it were configured to connect via Therefore, the combustion (expansion) gas extracted from each of the cylinders at a high temperature is maintained at a high temperature without significantly lowering the temperature in the single common communication passage, that is, included in this.
  • the radical component concentration maintained at a high value, it can be introduced into one of the other cylinders during the intake stroke or the compression stroke, so that the above-mentioned effect can be promoted.
  • a single common communication passage extending in the direction of each cylinder row is provided, and the combustion chamber in each cylinder is provided in the common communication passage via a communication passage provided for each cylinder.
  • An on-off valve is provided in each of the communication passages for each of the cylinders, and an ion current value of a combustion (expansion) gas is detected in each of the cylinders during an explosion (expansion) stroke of the gas.
  • An ion current detecting means for detecting the on / off valve, and, when the ion current value in any one of the cylinders is high based on a detection signal from the ion current detecting means, a part of the combustion (expansion) gas It is characterized in that the cylinder is opened to be introduced into one of the cylinders during an intake stroke or a compression stroke. It is known that an ionic current is generated when the air-fuel mixture is burned in each cylinder, and this ionic current is approximately proportional to the pressure in the cylinder at the time of combustion (for example, Japanese Unexamined Patent Publication No. 6-299).
  • each cylinder is provided with an ion current detecting means for detecting an ion current value of a combustion (expansion) gas during an explosion (expansion) stroke of the cylinder, and based on a detection signal from the current detection means, each of the cylinders is detected.
  • an ion current detecting means for detecting an ion current value of a combustion (expansion) gas during an explosion (expansion) stroke of the cylinder, and based on a detection signal from the current detection means, each of the cylinders is detected.
  • a fuel cell system wherein a swirl flow swirling in the circumferential direction of the cylinder is provided to the combustion (expansion) gas flowing from the opening into the combustion chamber in each cylinder of the communication passage.
  • the swirl port to be provided is characterized in that the combustion (expansion) gas introduced into each cylinder can be substantially evenly dispersed throughout the mixture in the cylinder. The flammability of the air can be improved.
  • a fifth aspect of the present invention is characterized in that the communication passage for each cylinder has a plurality of openings into the combustion chamber, whereby the combustion (expansion) gas is placed in each cylinder at a plurality of locations.
  • the mixture can be dispersed almost evenly throughout the rest of the cylinder in the cylinder, so that the combustibility of the mixture can be further improved.
  • a seventh aspect of the present invention is characterized in that each cylinder is provided with a fuel injection valve for injecting and supplying fuel into a cylinder of the cylinder, and the fuel and air re-injected and supplied by the fuel injection valve are provided.
  • a fuel injection valve for injecting and supplying fuel into a cylinder of the cylinder, and the fuel and air re-injected and supplied by the fuel injection valve are provided.
  • An eighth aspect of the present invention is characterized in that the common communication passage is provided inside a cylinder head, whereby the temperature in the common communication passage can be maintained at a relatively high temperature, and the combustion ( Expansion) Reduction in gas temperature can be further reduced.
  • a ninth aspect of the present invention is characterized in that the on-off valve in the communication passage of each of the cylinders is of a port type, whereby it is possible to sufficiently withstand high in-cylinder pressure in the cylinder. As well as the reliability of opening and closing.
  • FIG. 1 is a plan view showing a three-cylinder internal combustion engine according to the first embodiment.
  • FIG. 2 is an enlarged vertical sectional front view taken along the line II--II of FIG.
  • FIG. 3 is a stroke diagram of each cylinder in the three-cylinder internal combustion engine.
  • FIG. 4 is an enlarged vertical sectional front view of a main part according to the second embodiment.
  • FIG. 5 is a plan view showing a four-cylinder internal combustion engine according to the third embodiment.
  • FIG. 6 is a stroke diagram of each cylinder in the four-cylinder internal combustion engine.
  • FIG. 7 is a plan view showing a six-cylinder internal combustion engine according to the fourth embodiment.
  • FIG. 8 is a stroke diagram of each cylinder of the six-cylinder internal combustion engine.
  • FIG. 9 is a diagram showing the relationship among the crank angle, the in-cylinder pressure, and the combustion temperature at 200 rpm per minute in a three-cylinder internal combustion engine.
  • FIG. 10 is a diagram showing the relationship between the crank angle, the in-cylinder pressure, and the combustion temperature at the time of 400 revolutions per minute in the three-cylinder internal combustion engine.
  • FIG. 11 is a diagram showing the relationship between the crank angle, the in-cylinder pressure, and the combustion temperature when the three-cylinder internal combustion engine rotates at 600 rpm.
  • FIGS. 1 to 3 show a first embodiment in which the present invention is applied to a conventionally known in-line four-cycle three-cylinder internal combustion engine.
  • This three-cylinder internal combustion engine 1 is composed of a cylinder block 2 and a cylinder head 3 fastened to its upper surface, and a first cylinder A 1 and a second cylinder A 2 which share one crankshaft (not shown). And the third cylinder A 3 are arranged in a line along the crank axis 4.
  • Each of the three cylinders A 1, A 2, A 3 has a cylinder 5 provided in a cylinder block 2, a piston 6 reciprocating in the cylinder 5, and a cylinder 5 on a lower surface of the cylinder head 3.
  • the combustion chamber 7 is recessed so as to open into the inside
  • the spark plug 8 is mounted on the cylinder head 3 so as to look at the approximate center of the combustion chamber 7, and the combustion chamber 7 is mounted on the cylinder head 3
  • the cylinder head 3 is provided with two intake ports 9 provided so as to open to the inside, and two exhaust ports 10 provided similarly to the cylinder head 3 so as to open into the combustion chamber 7.
  • each of the cylinders A 1, A 2 .A 3 is provided with an intake valve camshaft (not shown) that rotates the opening of each of the intake ports 9 to the combustion chamber 7 in conjunction with a crankshaft.
  • a port-type intake valve 11 that opens and closes and an exhaust valve camshaft (not shown) that rotates in conjunction with a crankshaft are provided with openings of the exhaust ports 10 to the combustion chamber 7.
  • a poppet-type exhaust valve 12 that opens and closes.
  • both cylinders A 1, A 2, and A 3 of the cylinder head 3 have double suction.
  • a fuel injection valve 13 is provided at a position between the air ports 9 so as to inject fuel into the cylinder 5 at an appropriate angle ⁇ ⁇ during an intake stroke in which the piston 6 moves downward. Have been.
  • the ignition order of the cylinders A 1, A 2 .A 3 is changed to the first cylinder A 1, the second cylinder A 2, and the third cylinder A 3 as is clear from the stroke diagram shown in FIG. It is set.
  • the cylinder head 3 is provided with one common communication passage 14 common to the cylinders A 1, A 2, A 3 so as to extend in the direction of the cylinder row.
  • the common communication passage 14 and the combustion chamber 7 in each of the cylinders A 1, A 2, A 3 communicate with each other through communication passages 15 provided for each cylinder.
  • Each of the openings to the combustion chamber 7 of A 1, A 2, and A 3 is formed as a single port that is tangential to the cylinder 5 in plan view (FIG. 1).
  • Each of them is provided with a port-type on-off valve 16 for opening and closing the opening, and each on-off valve 16 is provided with an exhaust valve camshaft for opening and closing the exhaust valve 12.
  • the on-off valve 16 in the second cylinder A2 is opened for an appropriate time, and at this time, the third cylinder A3 in the intake stroke is opened.
  • the on-off valve 16 in the second cylinder A 2 for an appropriate period of time, part of the combustion (expansion) gas during combustion in the second cylinder A 2 is introduced into the third cylinder A 3 via the common communication passage 14. be introduced.
  • the on-off valve 16 in the third cylinder A3 is opened for an appropriate period of time, and at this time, during the intake stroke, By opening and closing the on-off valve 16 in the first cylinder A 1 for an appropriate period of time, part of the combustion (expansion) gas during combustion in the third cylinder A 3 is transferred to the first cylinder 14 via the common communication passage 14. Introduced into cylinder A1.
  • the gas is extracted through one common communication passage 14. It can be introduced into one of the other cylinders during the intake stroke or the compression stroke. In this case, the removal of combustion (expansion) gas from each cylinder is performed in the explosion (expansion) stroke.
  • the one common communication passage 14 has a combustion (expansion) gas from the first cylinder A 1 to the second cylinder A 2 and a second communication passage 14 from the second cylinder A 2.
  • Combustion (expansion) gas into cylinder A3 and combustion (expansion) gas from third cylinder A3 to second cylinder A1 alternately flow at short time intervals, resulting in a high temperature. If it is possible to extract combustion (expansion) gas from each cylinder A 1, A 2, A 3 at high temperature Then, the removed combustion (expansion) gas is maintained at a high temperature without significantly lowering the temperature in the single communication passage 14, that is, the concentration of the radical component contained therein. Can be introduced into one of the other cylinders during the intake stroke or the compression stroke of the other cylinders in a state where is maintained at a high value.In this case, according to FIG. 9, FIG. 10 and FIG.
  • the timing to open the valve 16 during the explosion (expansion) stroke of each gas should be set in the first half of the explosion (expansion) stroke and at a time when the combustion temperature is about 1500 K or more. Particularly preferably, in the cases of FIGS. 9, 10 and 11, the setting should be made at a crank angle of about 120 degrees until the exhaust valve 12 opens.
  • the opening of the communication passage 15 to the combustion chamber 7 in each of the cylinders A 1, A 2, A 3 is formed by a cylinder 5 as shown by an arrow B in the combustion (expansion) gas flowing from the opening.
  • the swirl port that gives swirl flow that swirls in the circumferential direction of the cylinder, the combustion (expansion) gas introduced into each of the gases A 1, A 2, A 3 is mixed in the cylinder. It can be distributed almost evenly throughout the qi.
  • dispersing the combustion (expansion) gas introduced into each cylinder substantially evenly throughout the air-fuel mixture in the cylinder can be achieved by forming the communication passage ⁇ ⁇ ⁇ ⁇ 5 for each cylinder into the combustion chamber 7. This can also be achieved by providing a plurality of openings, and it goes without saying that this may be combined with the configuration of the above-mentioned spool port.
  • each of the cylinders A 1, A 2, A 3 fuel and air injected and supplied from the fuel injection valve 13 into the cylinder 5 during the intake stroke are introduced into each cylinder. It can be significantly activated by radical components in the gas.
  • the fuel is injected and supplied during the intake stroke as described above (homogeneous combustion method).
  • a cavity is formed in the top surface of the piston 6, and when the piston 6 approaches the top dead center at the end of the compression stroke, fuel is injected and supplied into the cavity at the top surface. It can also be applied to the case where it is configured so as to perform (stratified combustion method).
  • each on-off valve 16 is shown in FIG.
  • electric opening / closing means such as an electromagnetic coil 17 and the like use a predetermined crank angle, a knob, a first half of an explosion (expansion) stroke in each cylinder, and a first half of an intake stroke. At the same time, it can be configured to open only for an appropriate time.
  • each on-off valve 16 is opened and operated by an electric on-off means such as an electromagnetic coil 17 in this manner, each of the cylinders A 1, A 2, and A 3 has a (Expansion) Ion current detection means for detecting an ion current value in the combustion (expansion) gas during the process is provided. Based on a detection signal detected by the ion current detection means, each of the on-off valves 16 Opening operation to introduce a part of combustion (expansion) gas into one of the other cylinders during the intake stroke or the compression stroke when the ion current value in any one cylinder is high Can be.
  • a (Expansion) Ion current detection means for detecting an ion current value in the combustion (expansion) gas during the process is provided. Based on a detection signal detected by the ion current detection means, each of the on-off valves 16 Opening operation to introduce a part of combustion (expansion) gas into one of the other cylinders during the intake stroke or the compression stroke when the ion current value in any one
  • Japanese Patent Publication No. 54-27277 discloses an ion current detecting means using an ignition plug. Then, the ion current detecting means 18 described in Japanese Patent Publication No. 54-27277 is applied to the ignition plug 8 in each of the cylinders A 1, A 2, A 3. The detection signal of the detection means 18 is input to the electric opening / closing means such as the electromagnetic coil ⁇ 7 for each of the opening / closing valves 16, and the ions in the explosion (expansion) stroke of each cylinder A 1, A 2, A 3 When the current value exceeds a predetermined value, Each open / close valve 16 is configured to be opened.
  • the on-off valve 16 in each cylinder A 1, A 2, A 3 is configured to open when the ion current value in the explosion (expansion) stroke of each cylinder exceeds a predetermined value.
  • the ion current value in the explosion (expansion) stroke of each cylinder exceeds a predetermined value.
  • the compression ratio in each of the cylinders A ⁇ , A 2, A 3 is compared with 9 to 10 in the case of a normal four-stroke internal combustion engine burning gasoline.
  • the on-off valve in each of the cylinders A 1, A 2, A 3 is set to a high value such as 15 to 18 so that abnormal combustion such as knocking occurs in a high load range.
  • the control circuit 21 receives the signals from the load sensor 19 and the crank angle sensor 20 based on the throttle valve opening etc. By controlling the same crank angle in the high load operation range and in the first half of the explosion (expansion) stroke in each of the cylinders A 1, A 2, A 3 and the second half of the intake stroke. At the same time, it is configured to open only for an appropriate time.
  • the opening and closing valve ⁇ 6 of the first cylinder A 1 is opened for an appropriate period of time during the first half of the explosion (expansion) stroke of the first cylinder A ⁇ .
  • the on-off valve 16 in the second cylinder A2 By opening and closing the on-off valve 16 in the second cylinder A2 at the same time during the intake stroke for a suitable period of time, a part of the combustion (expansion) gas during the combustion in the second cylinder A1 passes through the communication passage 14. Through the second cylinder A2.
  • the on-off valve 16 in the second cylinder A2 is opened for an appropriate period of time, and at this time, during the intake stroke,
  • the on-off valve 16 in the third cylinder A3 is opened for an appropriate period of time, a part of the combustion (expansion) gas during combustion in the second cylinder A2 is transferred to the third cylinder A3 via the communication passage ⁇ 4. Introduced within.
  • the on-off valve 16 in the third cylinder A3 is opened for an appropriate period of time, and at this time, the first cylinder A1 in the intake stroke is opened.
  • the on-off valve 16 in the third cylinder A3 for an appropriate time, a part of the combustion (expansion) gas during the combustion in the third cylinder A3 is introduced into the first cylinder A1 through the communication passage ⁇ 4. Is done.
  • 5 and 6 show a third embodiment in which the present invention is applied to a conventionally known four-cycle four-cylinder internal combustion engine.
  • the four-cylinder internal combustion engine 1 ′ includes a first cylinder A 1 ′, a second cylinder A 2 ′, a third cylinder A 3 ′, and a fourth cylinder A 4 ′, which share one crankshaft (not shown). They are arranged in a line along 4 '.
  • Each of the four cylinders A 1 ′, A 2 ′, A 3 ′ and A 4 ′ has a cylinder, a piston, a combustion chamber, a spark plug, an intake port with an intake valve, and an exhaust port with an exhaust valve.
  • the provision of a fuel injection valve and the like is the same as in the case of the first embodiment.
  • the cylinders A 1 ′, A 2 ′, A 3 ′, and A 4 ′ in the four-cylinder internal combustion engine 1 ′ have the same ignition sequence as the first cylinder A 1, as is clear from the stroke diagram shown in FIG. '-Third cylinder A 3'-Fourth cylinder A 4 '-Second cylinder A 2'
  • a common communication passage 14 ′ common to the four cylinders A 1 ′, A 2 ′ and A 3 ′, A 4 ′ is provided so as to extend in the direction of the cylinder rows.
  • the communication passage 14 'and the combustion chamber of each of the cylinders A1', A2 ', A3', A4 ' are connected to each cylinder.
  • the on-off valve 16 ′ provided in each of the communication paths 15 ′ is linked with the crankshaft in the same manner as in the first embodiment, In the first half of the explosion (expansion) stroke in each cylinder and the second half of the compression stroke, the cylinders are configured to open at the same time as appropriate.
  • the on-off valve 16 ′ in the third cylinder A 3 ′ is opened for an appropriate time, and at this time, the fourth stroke during the compression stroke is started.
  • the on-off valve 16 ′ in the gas A 4 ′ for an appropriate period of time, a part of the combustion (expansion) gas during the combustion in the third cylinder A 3 ′ passes through the communication passage 14 ′. And is introduced into the fourth cylinder A 4 ′.
  • the on-off valve 16 ′ in the fourth cylinder A 4 ′ is opened for an appropriate time, and at this time, the second stroke during the compression stroke is started.
  • the on-off valve 16 ′ in the cylinder A 2 ′ for an appropriate period of time, a part of the combustion (expansion) gas during the combustion in the fourth cylinder A 4 ′ passes through the communication passage 14 ′. It is introduced into the second cylinder A 2 ′.
  • the on-off valve 16 ′ in the second cylinder A 2 ′ is opened for an appropriate time, and at this time, the first stroke in the compression stroke is started.
  • the on-off valve 16 ′ in the cylinder ⁇ ⁇ ⁇ for an appropriate period of time, part of the combustion (expansion) gas during the combustion in the second cylinder A 2 ′ passes through the communication passage 14 ′. And is introduced into the first cylinder A 1 ′.
  • the on-off valves 16 ′ in the four cylinders A 1 ′, A 2 ′, A 3 ′, and A 4 ′ are the same as those in the first embodiment.
  • the opening operation may be performed when the detected ion current value exceeds a predetermined value.
  • FIGS. 7 and 8 show a fourth embodiment in which the present invention is applied to a conventionally known in-line four-cycle six-cylinder internal combustion engine.
  • the six-cylinder internal combustion engine 1 "includes a first cylinder A1", a second cylinder A2 “, a third cylinder A3", a fourth cylinder A4 ", a fifth cylinder A1", which share one crankshaft (not shown). Cylinder A5 “and sixth cylinder A6" are arranged in a line along crank axis 4 ".
  • each of the six cylinders is provided with a cylinder, a piston, a combustion chamber, a spark plug, an intake port with an intake valve, an exhaust port with an exhaust valve, a fuel injection valve, and the like in the first embodiment. This is the same as the case of the embodiment.
  • the ignition order is set to the first cylinder A 1 "-the fifth cylinder A 5" -the third cylinder A 3 "-the sixth cylinder A 6" -the second cylinder A 2 "-the fourth cylinder A 4".
  • a communication passage extending in the column direction of the six cylinders A 1 ”, A 2”, A 3 ”, A 4”, A 5 ”, A 6” is formed by the first cylinder A ⁇ ”and the second cylinder A 2.
  • a branch communication passage 15 "provided for each cylinder is defined as a second communication passage 14b", and the two communication passages 14a ", 14b '" and the combustion chamber of each cylinder are connected to each other.
  • the on-off valve 16 "provided in each branch communication passage 15" is connected to the crankshaft in the same manner as in the first embodiment, so that the explosion (expansion) stroke in each cylinder is performed. In the first half of the period and the second half of the intake stroke, it is configured to open at the same time as appropriate.
  • part of the combustion (expansion) gas in the first half of the explosion (expansion) stroke in the first cylinder A 1 " is taken out of the first cylinder, and at this time, the third cylinder A 3" during the intake stroke Can be introduced through the first communication passage 14a ", and a part of the combustion (expansion) gas in the first half of the explosion (expansion) stroke in the fifth gas A5" At this time, it can be introduced into the sixth cylinder A6 "during the intake stroke via the second communication passage 14b", and the first half of the explosion (expansion) stroke in the third gas A3 " of A part of the combustion (expansion) gas is taken out of the third cylinder, and can be introduced into the second cylinder A2 "during the intake stroke through the fourth communication passage 14a" at this time.
  • a part of the combustion (expansion) gas in the first half of the explosion (expansion) stroke at A 6 " is extracted from the sixth cylinder, and then the second communication passage is passed to the fourth cylinder A 4" during the intake stroke.
  • 14b ", and a part of the combustion (expansion) gas in the first half of the explosion (expansion) stroke in the second cylinder A2" is taken out of the second cylinder, It can be introduced into the first cylinder A1 "in the stroke through the first communication passage 14a", and the combustion (expansion) in the first half of the stroke in the fourth cylinder A4 " A part of the gas is taken out of the fourth cylinder, and is then transferred to the fifth cylinder A5 "during the intake stroke via the second communication passage 14b". Can be introduced.
  • the opening operation is performed. It is possible to increase the compression ratio in each cylinder and introduce a part of fuel gas (expansion) gas into one cylinder to another cylinder in a high load operation range. Needless to say.
  • a common communication passage for three or four cylinders can be similarly applied by providing a common communication passage for both punctures.
  • the present invention can be applied not only to a four-cycle multi-cylinder internal combustion engine using gasoline as fuel, but also to a two-cycle multi-cylinder internal combustion engine, and also to a compression ignition type multi-cylinder internal combustion engine such as a diesel engine. Of course, it can be applied to

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

曰月糸田 · 多気筒内燃機関
[発明の属する技術分野]
本発明は、 一本のクランク軸を共通する複数の気筒を備えた多気筒内燃機関に 関するものである。
[背景技術と発明が解決しょうとする課題]
財団法人自動車技術会昭和 5 3年 1 0月発行の 「学術講演会前刷集 7 8 2」 に おける [ 4 5 ] ガソリンエンジンの燃焼解析一燃焼中間生成物を通じてみた一 ( 3 5 3〜 3 6 2頁) には、 ガソリンと空気との混合気の燃焼は、 先ず、 活性な中 間生成物である C H基及び 0 H基等のラジカル成分が発生し、 この活性なラジカ ル成分の燃焼連鎖によって行われるものであることが記載されているとともに、 ガソリン等の炭化水素燃料と空気との混合気中に前記した活性なラジカル成分が 存在すると、 混合気を着火するときの温度及び圧力が低くなつて、 混合気の燃焼 性を向上できるというヒン卜が記載されている。
本発明は、 このことを利用して、 ガソリン等の炭化水素燃料又は水素を燃料と する多気筒内燃機関において、 各気筒における混合気の燃焼性を向上するもので ある。
本発明に近い先行技術に関して、 先ず、 特開平 5— 1 5 7 0 0 8号公報及び特 開 2 0 0 0— 2 8 2 8 6 7号公報等は、
「燃焼室に連通する蓄圧室を設けて、 爆発 (膨張) 行程のときにおける燃焼 (膨 張) ガスの一部をこの蓄圧室に蓄え、 この蓄えた燃焼 (膨張) ガスを、 吸気行程 又は圧縮行程のときにおいて燃焼室に放出するように構成する。 」
ことを提案している。
次に、 実開平 5— 8 3 3 5 1号公報、 特開平 5— 1 8 7 3 2 6号公報及び特開 平 9— 6 8 1 0 9号公報は、
「一本のクランク軸を複数の気筒について共通にした多気筒内燃機関において、 一つの気筒における爆発 (膨張) 行程のとき、 当該一つの気筒における燃焼 (膨 張) ガスの一部を、 他の気筒のうち吸気行程又は圧縮行程中の気筒に導入する。 J
ことを提案している。
しかし、 混合気が燃焼するときに発生するラジカル成分は、 燃焼温度が高いと きに多量に生成し、 燃焼温度が低下すると直ちに一酸化炭素、 水素及びメタン等 の安定した生成物になるというように、 その活性度と温度依存性が高く温度の降 下とともに活性度の寿命が著しく短いものである。
これに対し、 前者の各先行技術のように、 爆発 (膨張) 行程のときにおける燃 焼 (膨張) ガスの一部を蓄圧室に蓄え、 この蓄えた燃焼 (膨張) ガスを吸気行程 又は圧縮行程のときにおいて噴出するという構成では、 前記蓄圧室に蓄えられて いる燃焼 (膨張) ガスは、 爆発 (膨張) 行程から排気行程を経て吸気行程又は圧 縮行程に移行するまでの間において、 その温度が急激に低下することにより、 こ れに蓄えた燃焼 (膨張) ガスに含まれているラジカル成分は、 その大部分が励起 していない生成物又は安定した生成物 (例えば、 C O . H C , H 2 , H 2 0 ) に なるというように殆ど消滅することになる。
従って、 この前者の各先行技術は、 圧縮圧力のアップと、 E G R効果による N 0 Xの低減とを目的とするに過ぎず、 燃焼時に生成するラジカル成分によって混 合気の燃焼性の改善を達成することはできないのである。
また、 後者の各先行技術は、 そのいずれも、 専ら、 吸気への排気ガスの還流、 つまり、 E G R効果による N 0 Xの低減を目的として、 爆発 (膨張) 行程のうち その後半の略終わりの時期において一部の排気ガスを取リ出して他の気筒に供給 するように構成したものであり、 爆発 (膨張) 行程のうちその略終わりの時期に おいては、 燃焼温度が可成リ低下していることにより、 燃焼 (膨張) ガス中のラ ジカル成分は、 その大部分が安定した生成物になるというように殆ど消滅してい るから、 この燃焼 (膨張) ガスを他の気筒に供給しても、 当該他の気筒における 混合気の燃焼性の改善を達成することはできないのである。
本発明は、 複数の気筒を有する多気筒内燃機関において、 その各気筒における 混合気の燃焼性を、 各気筒においてその燃焼時に生成するラジカル成分を利用し て確実に向上することを目的とするものである。
[発明の開示] 本発明の第 1 の局面は、 一本のクランク軸を共通する複数の気筒を備えた多気 筒内燃機関において、 前記各気筒の相互間に、 各気筒のうち任意の一つの気筒に おける爆発 (膨張) 行程の前半の時期における燃焼 (膨張) ガスの一部を取り出 し、 これを他の気筒のうち吸気行程又は圧縮行程中の一つの気筒に連通路を介し て導入するようにした手段を設けたことを特徴としている。
図 9、 図 1 0及び図 1 1 は、 ガソリンを燃料とする全排気量が 6 6 0 c cの四 サイクル三気筒内燃機関において、 回転数が毎分 2 0 0 0回転、 4 0 0 0回転及 び 6 0 0 0回転のときにおけるクランク角度と気筒内圧力及び燃焼温度との関係 を示す図である。
この図において、 気筒内における燃焼温度は、 実線曲線 Cで示すように、 クラ ンク角度が略 0度の上死点前後における点火直後から急上昇して最高温度に達し 、 この最高温度から低下し、 クランク角度が略〗 2 0度前後において排気弁が開 いたときから急激に低下することによリ、 爆発 (膨張) 行程中のうち上死点から 略 1 2 0度までの前半の時期においては、 燃焼温度が高いことにより、 その燃焼 (膨張) ガス中には、 活性ないわゆるエネルギー準位の高いラジカル成分を多く 含んでいる。
また、 気筒内の圧力も、 点線曲線 Dで示すうように、 点火直後から最高圧力ま で急上昇したのち低くなるという具合に、 爆発 (膨張) 行程中のうち前半の時期 において高くなる。
そこで、 前記したように、 各気筒のうち任意の一つの気筒における爆発 (膨張 ) 行程の前半の時期における燃焼 (膨張) ガスの一部を取り出し、 これを他の気 筒のうち吸気行程又は圧縮行程中の一つの気筒に導入することにより、 各気筒内 における燃焼 (膨張) ガスの一部を、 温度の高い状態で、 従って、 活性なラジカ ル成分を多く含んでいる状態で取リ出すことができ、 そして、 この取り出した一 部の燃焼 (膨張) ガスを連通路を介して他の気筒のうち吸気行程中又は圧縮行程 中の一つの気筒に導入することができるから、 各気茼における混合気の燃焼性を 、 各気筒における混合気の燃焼に際して発生するラジカル成分によって大幅に、 且つ、 確実に改善することかできる。
本発明の第 2の局面は、 各気筒における圧縮比を、 高負荷運転域においてノッ キング等の異常燃焼が発生するように高い値に設定する一方、 前記各気筒の相互 間に、 高負荷運転域において、 各気筒のうち任意の一つの気筒における爆発 (膨 張) 行程の前半の時期における燃焼 (膨張) ガスの一部を取リ出し、 これを他の 気筒のうち吸気行程又は圧縮行程中の一つの気筒に連通路を介して導入するよう にした手段を設けたことを特徴としている。
高負荷運転域において、 任意の一つの気筒における爆発 (膨張) 行程の前半の 時期の燃焼 (膨張) ガスの一部を取り出することにより、 燃焼圧力が下がるので 、 ノッキング等の異常燃焼が発生することを確実に抑制できる。
一方、 爆発 (膨張) 行程の前半の時期において取り出した燃焼 (膨張) ガス中 には、 当該燃焼 (膨張) ガスの温度が高くて活性ないわゆるエネルギー準位の高 いラジカル成分を多く含んでいることにより、 この取り出した燃焼 (膨張) ガス を他の気筒のうち吸気行程又は圧縮行程中の一つの気筒に導入することで、 導入 した燃焼 (膨張) ガス中のラジカル成分にて、 他の気筒での燃焼性を大幅に改善 でき、 この燃焼性の改善によって出力の向上を図ることができるから、 前記爆発 (膨張) 行程の前半の時期に燃焼 (膨張) ガスの一部を取り出すことによる出力 の低下を略完全に補うことができる。
従って、 使用頻度の高い低乃至中負荷運転域における出力及び燃費の向上を図 るために高い圧縮比にした場合に、 高負荷運転域においてノッキング等の異常燃 焼か発生することを、 出力の低下を招来することなく確実に抑制できる効果を有 する。
本発明の第 3の局面は、 各気筒列の方向に延びる一本の共通連通路を設けて、 この共通連通路に、 前記各気筒における燃焼室を、 各気筒ごとに設けた連通路を 介して連通し、 前記各気茼ごとの連通路の各々に開閉弁を設け、 この各開閉弁を 、 前記各気筒の爆発 (膨張) 行程中における前半の時期に、 任意の一つの気筒に おける燃焼 (膨張) ガスの一部を他の気筒のうち吸気行程中又は圧縮行程中の一 つの気筒に導入するように開き作動させることを特徴としている。
この構成によると、 前記一本の共通連通路内には、 各気筒の爆発 (膨張) 行程 ごとに高い温度の燃焼 (膨張) ガスが短い時間間隔で交互に流れていることによ リ、 この一本の共通連通路は、 各気筒のうち二つの気筒の相互間ごとに連通路を 介して接続するように構成した場合よりも高い温度になっている。 従って、 前記 各気筒から高い温度の状態で取り出した燃焼 (膨張) ガスを、 その温度を当該一 本の共通連通路内においてさほど下げることなく、 高い温度に維持した状態、 つ まり、 これに含まれているラジカル成分濃度を高い値に維持した状態で他の気筒 のうち吸気行程中又は圧縮行程中の一つの気筒に導入することができるから、 前 記した効果を助長できるし、 しかも、 複数の気筒に対して一本の共通連通路に構 成したことによリ、 各気筒間を接続する連通路の構成が簡単になるという効果を 有する。
本発明の第 4の局面は、 各気筒列の方向に延びる一本の共通連通路を設けて、 この共通連通路に、 前記各気筒における燃焼室を、 各気筒ごとに設けた連通路を 介して連通し、 前記各気筒ごとの連通路の各々に開閉弁を設ける一方、 前記各気 筒の各々に、 当該気茼の爆発 (膨張) 行程中における燃焼 (膨張) ガスのイオン 電流値を検出するイオン電流検出手段を設け、 前記各開閉弁を、 前記イオン電流 検出手段による検出信号に基づいて、 任意の一つの気筒におけるィォン電流値が 高いときにおいて燃焼 (膨張) ガスの一部を他の気筒のうち吸気行程中又は圧縮 行程中の一つの気筒に導入するように開き作動させることを特徴としている。 各気筒内での混合気の燃焼に際しては、 イオン電流が発生し、 このイオン電流 は、 燃焼時における気筒内の圧力に略比例することが知られている (例えば、 特 開平 6— 2 9 9 9 4 2号公報等参照) 一方、 燃焼時における気茼内の圧力は、 前 記図 9、 図 1 0及び図 1 1 ょリ明らかなように、 混合気の燃焼温度に略比例する そこで、 各気筒に、 当該気筒の爆発 (膨張) 行程中における燃焼 (膨張) ガス のイオン電流値を検出するィォン電流検出手段を設け、 このィ才ン電流検出手段 による検出信号に基づいて、 前記各気筒の連通路における開閉弁を開き作動する ように構成することによリ、 各気筒のうち任意の一つの気筒における燃焼 (膨張 ) ガスの一部を取り出して他の気筒のうち吸気行程中又は圧縮行程中の一つの気 筒に導入することを、 イオン電流値が高いとき、 つまリ、 気筒内の圧力が高いと き、 ひいては、 燃焼温度が高くてラジカル成分が多いときにおいてのみを行うこ とができるから、 一つの気筒における混合気の燃焼に際して生成するラジ力ル成 分によって他の一つの気筒における混合気の燃焼性を向上することを、 よリ確実 に達成できる。
本発明の第 5の局面は、 前記連通路の各気筒における燃焼室内への開口部を、 当該開口部から流入する燃焼 (膨張) ガスにシリンダの円周方向に旋回するスヮ 一ル流を付与するスワールポ一卜に構成することを特徴としておリ、 これによリ 、 各気筒内に導入した燃焼 (膨張) ガスを、 当該気筒内における混合気の全体に 略均等に分散できるから、 混合気の燃焼性をよリ向上できる。
本発明の第 5の局面は、 前記各気筒に対する連通路の燃焼室内への開口部を複 数個にしたことを特徴としておリ、 これにより、 各気筒内に燃焼 (膨張) ガスを 複数箇所が導入できて、 同様に、 当該気筒内における混合気の全休に略均等に分 散できるから、 混合気の燃焼性をより向上できる。
本発明の第 7の局面は、 各気筒に、 当該気筒におけるシリンダ内に燃料を噴射 供給する燃料噴射弁を設けることを特徴としておリ、 この燃料噴射弁よリ噴射供 給された燃料及び空気を、 各気筒内に導入する燃焼 (膨張) ガス中のラジカル成 分によって著しく活性化することができるから、 その燃焼性をよリ向上できる利 点がある。
本発明の第 8の局面は、 前記共通連通路を、 シリンダヘッ ドの内部に設けたこ とを特徴としておリ、 これにより、 この共通連通路における温度がょリ高い温度 に維持できて、 燃焼 (膨張) ガスの温度の低下をより低減できる。
本発明の第 9の局面は、 前記各気筒の連通路における開閉弁を、 ポぺッ 卜型に したことを特徴としておリ、 これにより、 気筒内における高い筒内圧力に十分に 耐えることができるとともに、 その開閉の確実性を確保できる。
[図面の簡単な説明]
図 1 は第 1 の実施の形態による三気筒内燃機関を示す平面図である。
図 2は図 1 の I I一 I I視拡大縦断正面図である。
図 3は前記三気筒内燃機関における各気筒の行程図である。
図 4は第 2実施の形態による要部拡大縦断正面図である。
図 5は第 3の実施の形態による四気筒内燃機関を示す平面図である。
図 6は前記四気筒内燃機関における各気茼の行程図である。 図 7は第 4の実施の形態による六気筒内燃機関を示す平面図である。
図 8は前記六気筒内燃機関各気筒の行程図である。
図 9は三気筒内燃機関において毎分 2 0 0 0回転のときにおけるクランク角度 と気筒内圧力及び燃焼温度との関係を示す図である。
図 1 0は三気筒内燃機関において毎分 4 0 0 0回転のときにおけるクランク角 度と気筒内圧力及び燃焼温度との関係を示す図である。
図 1 1 は三気筒内燃機関において毎分 6 0 0 0回転のときにおけるクランク角 度と気筒内圧力及び燃焼温度との関係を示す図である。
[発明を実施するための最良の形態]
以下、 本発明の実施の形態を図面について説明する。
図 1 〜図 3は、 第 1 の実施の形態で、 従来周知の直列型の四サイクル三気茼内 燃機関に適用した場合を示す。
この三気筒内燃機関 1 は、 シリンダプロック 2と、 その上面に締結したシリン ダへッ ド 3とから成り、 図示しない一本のクランク軸を共通する第 1気茼 A 1、 第 2気筒 A 2及び第 3気筒 A 3を、 クランク軸線 4に沿って一列状に配設してい る。
前記三つの各気筒 A 1 , A 2 , A 3の各々には、 シリンダブロック 2に設けた シリンダ 5、 このシリンダ 5内を往復動するピストン 6、 前記シリンダへッ ド 3 の下面に前記シリンダ 5内に開口するように凹み形成した燃焼室 7、 前記シリン ダへッ ド 3に燃焼室 7内の略中心にのぞむように装着した点火栓 8、 前記シリン ダへッ ド 3に燃焼室 7内に開口するように設けた二つの吸気ポー卜 9、 及び同じ く前記シリンダへッ ド 3に燃焼室 7内に開口するように設けた二つの排気ポ一卜 1 0を備えている。
また、 前記各気筒 A 1 , A 2 . A 3には、 前記両吸気ポート 9の燃焼室 7への 開口部をクランク軸に連動して回転する吸気弁用カム軸 (図示せず) にて開閉す るポぺッ ト型の吸気弁 1 1 と、 前記両排気ポート 1 0の燃焼室 7への開口部をク ランク軸に連動して回転する排気弁用カム軸 (図示せず) にて開閉するポペッ ト 型の排気弁 1 2とが各々設けられている。
更にまた、 前記シリンダヘッ ド 3のうち各気筒 A 1 , A 2 , A 3における両吸 気ポ一卜 9間の部位には、 前記ビストン 6が下降動する吸気行程のときにおいて 、 シリンダ 5内に燃料を適宜角度 Θの円錐状に噴射供給するようにした燃料噴射 弁 1 3が装着されている。
この場合において、 各気筒 A 1 , A 2 . A 3は、 図 3に示す行程図で明らかな ように、 その点火順序が第 1気筒 A 1 —第 2気筒 A 2 —第 3気筒 A 3に設定され ている。
そして、 前記シリンダへッ ド 3には、 前記各気筒 A 1 , A 2 , A 3に対して共 通する一本の共通連通路 1 4を、 気筒列の方向に延びるように設けて、 この共通 連通路 1 4と、 前記各気筒 A 1 , A 2 , A 3における燃焼室 7とを、 各気筒ごと に設けた連通路 1 5を介して連通し、 この各連通路 1 5における各気筒 A 1 , A 2 , A 3の燃焼室 7への開口部の各々を、 平面視 (図 1 ) において、 シリンダ 5 に対して接線方向にしたスヮ一ルポ一卜に構成し、 この開口部の各々に、 当該開 口部を開閉するポぺッ 卜型の開閉弁 1 6を設けて、 この各開閉弁 1 6を、 前記排 気弁 1 2を開閉作動するための排気弁用カム軸 (図示せす) を利用して、 クラン ク軸の回転角度 (クランク角度) に応じて、 各気筒 A 1 , A 2 , A 3における爆 発 (S彭張) 行程中の前半の時期と、 吸気行程中の後半の時期とにおいて、 当時に 適宜時間だけ開くように構成する。
この構成において、 第 1 気筒 A 1 における爆発 (膨張) 行程中の前半の時期に 当該第〗 気筒 A 1 における開閉弁 1 6が適宜時間だけ開くと同時に、 このとき吸 気行程中の第 2気筒 A 2における開閉弁 1 6が適宜時間だけ開くことによリ、 前 記第 1 気筒 A 1 における燃焼中の燃焼 (膨張) ガスの一部が、 共通連通路 1 4を 介して第 2気筒 A 2内に導入される。
次いで、 第 2気筒 A 2における爆発 (膨張) 行程中の前半の時期に当該第 2気 筒 A 2における開閉弁 1 6か適宜時間だけ開くと同時に、 このとき吸気行程中の 第 3気筒 A 3における開閉弁 1 6が適宜時間だけ開くことによリ、 前記第 2気筒 A 2における燃焼中の燃焼 (膨張) ガスの一部が、 共通連通路 1 4を介して第 3 気筒 A 3内に導入される。
次いで、 第 3気筒 A 3における爆発 (膨張) 行程中の前半の時期に当該第 3気 筒 A 3における開閉弁 1 6が適宜時間だけ開くと同時に、 このとき吸気行程中の 第 1 気筒 A 1 における開閉弁 1 6が適宜時間だけ開くことによリ、 前記第 3気筒 A 3における燃焼中の燃焼 (膨張) ガスの一部が、 共通連通路 1 4を介して第 1 気筒 A 1 内に導入される。
これにより、 前記三つの気筒 A 1 , A 2 , A 3のうち任意の一つの気筒におけ る燃焼 (膨張) ガスの一部を取り出したのち、 一本の共通連通路 1 4を介して、 他の気筒のうち吸気行程中又は圧縮行程中の一つの気筒に導入することができる のであり、 この場合において、 各気筒からの燃焼 (膨張) ガスの取リ出しは、 爆 発 (膨張) 行程中の前半の時期である一方、 前記一本の共通連通路 1 4は、 その 内部を第 1気筒 A 1 から第 2気筒 A 2への燃焼 (膨張) ガス、 第 2気筒 A 2から 第 3気筒 A 3への燃焼 (膨張) ガス及び第 3気筒 A 3から第 2気筒 A 1 への燃焼 (膨張) ガスが短い時間間隔で交互に流れることで、 高い温度になっていること により、 前記各気筒 A 1 , A 2 , A 3から高い温度の状態で燃焼 (膨張) ガスを を取り出すことができると共に、 この取リ出した燃焼 (膨張) ガスを、 その温度 を当該一本の連通路 1 4内においてさほど下げることなく、 高い温度に維持した 状態、 つまり、 これに含まれているラジカル成分濃度を高い値に維持した状態で 他の気筒のうち吸気行程中又は圧縮行程中の一つの気筒に導入することができる この場合において、 前記図 9、 図 1 0及び図 1 1 によると、 各開閉弁 1 6を、 各気茼の爆発 (膨張) 行程中において開く時期は、 爆発 (膨張) 行程の前半であ つて、 且つ、 燃焼温度が約 1 5 0 0 K以上の時期に設定することか特に好ましく 、 前記図 9、 図 1 0及び図 1 1 の場合では、 略 1 2 0度のクランク角度で排気弁 1 2が開くまでに設定すべきである。
—方、 前記各気筒 A 1 , A 2 , A 3における連通路 1 5の燃焼室 7への開口部 を、 当該開口部から流入する燃焼 (膨張) ガスに矢印 Bで示すように、 シリンダ 5の円周方向に旋回するスワール流を付与するスワールポートに構成したことに ょリ、 各気茼 A 1 , A 2 , A 3内に導入した燃焼 (膨張) ガスを、 当該気筒内に おける混合気の全体に略均等に分散することができる。
また、 各気筒内に導入した燃焼 (膨張) ガスを当該気筒内における混合気の全 体に略均等に分散することは、 前記各気筒に対する連通路〗 5の燃焼室 7内への 開口部を複数個にすることによつても達成することができ、 これと、 前記スヮー ルポ一トに構成することを組み合わせても良いことは勿論である。
更にまた、 前記各気筒 A 1 , A 2 , A 3において、 その吸気行程中にシリンダ 5内に燃料噴射弁 1 3より噴射供給された燃料及び空気を、 各気筒内に導入する 燃焼 (膨張) ガス中のラジカル成分によって著しく活性化することができる。 なお、 このように、 シリンダ 5内に燃料を噴射供給するというように筒内燃料 噴射型に構成する場合には、 前記したように、 吸気行程中において燃料を噴射供 給する (均質燃焼方式) ことに限らず、 ピストン 6の頂面にキヤビティーを凹み 形成して、 圧縮行程の終期においてピス トン 6が上死点近傍に来たとき、 その頂 面におけるキヤビティ一内に向かって燃料を噴射供給するように構成した場合 ( 成層燃焼方式) にも適用できる。
前記した実施の形態は、 各気筒 A 1 , A 2 , A 3における開閉弁 1 6の開き作 動をクランク軸の回転によって行う場合であつたが、 この各開閉弁 1 6を、 図 2 に示すように、 電磁コイル 1 7等のような電気式開閉手段にて、 所定のクランク 角度、 つまリ、 各気筒における爆発 (膨張) 行程中の前半の時期と、 吸気行程中 の時期とにおいて、 同時に、 適宜時間だけ開くように構成することができる。 このように各開閉弁 1 6を電磁コイル 1 7等のような電気式開閉手段にて開き 作動するように構成する場合においては、 各気筒 A 1 , A 2 , A 3の各々に、 爆 発 (膨張) 行程中の燃焼 (膨張) ガスにおけるイオン電流値を検出するイオン電 流検出手段を設けて、 このイオン電流検出手段にて検出した検出信号に基づいて 、 前記各開閉弁 1 6を、 任意の一つの気筒におけるイオン電流値が高いときにお いて燃焼 (膨張) ガスの一部を他の気筒のうち吸気行程中又は圧縮行程中の一つ の気筒に導入するように開き作動させる構成にできる。
例えば、 特公昭 5 4 - 2 7 2 7 7号公報には、 点火栓を利用したイオン電流検 出手段が記載されている。 そこで、 前記各気筒 A 1 , A 2 , A 3における点火栓 8に、 前記特公昭 5 4— 2 7 2 7 7号公報に記載されているイオン電流検出手段 1 8を適用し、 このイオン電流検出手段 1 8の検出信号を前記各開閉弁 1 6 に対 する電磁コイル〗 7等の電気式開閉手段に入力し、 各気筒 A 1 , A 2 , A 3の爆 発 (膨張) 行程におけるイオン電流値が所定値を越えているときにおいて、 前記 各開閉弁 1 6を開くように構成する。
前に述べたように、 混合気の燃焼によって発生するイオン電流は、 燃焼時にお ける気筒内の圧力に略比例する一方、 燃焼時における気茼内の圧力は、 混合気の 燃焼温度に略比例するから、 前記したように、 各気筒 A 1 , A 2 , A 3における 開閉弁 1 6を、 各気筒の爆発 (膨張) 行程におけるイオン電流値が所定値を越え ているときにおいて開くように構成することにょリ、 各気筒のうち任意の一つの 気筒における燃焼 (膨張) ガスの一部を取リ出して他の気筒のうち吸気行程中又 は圧縮行程中の一つの気筒に導入することを、 イオン電流値が高いとき、 つまリ 、 気筒内の圧力が高いとき、 ひいては、 燃焼温度が高くてラジカル成分が多いと きにおいてのみを行うことができる。
次に、 第 2の実施の形態においては、 前記各気筒 A 〗, A 2 , A 3における圧 縮比を、 ガソリンを燃焼とする通常の四サイクル内燃機関の場合における 9〜 1 0に対して、 例えば、 1 5〜 1 8にするというように、 高負荷域においてノツキ ング等の異常燃焼が発生するような高い値に設定する一方、 前記各気筒 A 1 , A 2 , A 3における開閉弁 1 6を、 その電磁コイル 1 7等の電気式開閉手段をスロ ッ トル弁の開度等による負荷センサ一 1 9及びクランク角度センサ一 2 0からの 信号を入力とする制御回路 2 1 にて制御することにより、 高負荷運転域で、 且つ 、 各気筒 A 1 , A 2 , A 3における爆発 (膨張) 行程中の前半の時期と、 吸気行 程中の後半の時期とにおいて、 同じクランク角度で同時に、 適宜時間だけ開くよ うに構成する。
この構成において、 内燃機関 1 の低負荷運転域及び中負荷運転域においては、 各気筒 A 1 , A 2 , A 3における開閉弁 1 6は開き作動することはない。
内燃機関 1 が高負荷運転域になると、 第 1 気筒 A 〗 における爆発 (膨張) 行程 中の前半の時期に当該第 1 気筒 A 1 における開閉弁〗 6が適宜時間だけ開くと同 時に、 このとき吸気行程中の第 2気筒 A 2における開閉弁 1 6が同時に適宜時間 だけ開くことによリ、 前記第〗 気筒 A 1 における燃焼中の燃焼 (膨張) ガスの一 部が、 連通路 1 4を介して第 2気筒 A 2内に導入される。
次いで、 第 2気筒 A 2における爆発 (膨張) 行程中の前半の時期に当該第 2気 筒 A 2における開閉弁 1 6が適宜時間だけ開くと同時に、 このとき吸気行程中の 第 3気筒 A 3における開閉弁 1 6が適宜時間だけ開くことにより、 前記第 2気筒 A 2における燃焼中の燃焼 (膨張) ガスの一部が、 連通路〗 4を介して第 3気筒 A 3内に導入される。
次いで、 第 3気筒 A 3における爆発 (膨張) 行程中の前半の時期に当該第 3気 筒 A 3における開閉弁 1 6が適宜時間だけ開くと同時に、 このとき吸気行程中の 第 1 気筒 A 1 における開閉弁 1 6が適宜時間だけ開くことによリ、 前記第 3気筒 A 3における燃焼中の燃焼 (膨張) ガスの一部が、 連通路〗 4を介して第 1 気筒 A 1 内に導入される。
これによリ、 高負荷運転域において、 前記三つの気筒 A 1 , A 2 , A 3のうち 任意の一つの気筒における燃焼 (膨張) ガスの一部を取リ出したのち、 一本の連 通路 1 4を介して、 他の気茼のうち吸気行程中の一つの気筒に導入することがで きるから、 高負荷域において、 各気筒における燃焼圧力を下げることで、 ノ ツキ ング等の異常燃焼の発生を確実に抑制できる一方、 各気茼における燃焼性を改善 して、 出力の向上を図ることができるのである。
図 5及び図 6は、 第 3の実施の形態で、 従来周知の四サイクル四気筒内燃機関 に適用した場合を示す。
この四気筒内燃機関 1 ' は、 図示しない一本のクランク軸を共通する第 1 気筒 A 1 ' 、 第 2気筒 A 2 ' 、 第 3気筒 A 3 ' 及び第 4気筒 A 4 ' を、 クランク軸線 4 ' に沿つて一列状に配設している。
なお、 この四つの各気筒 A 1 ' , A 2 ' , A 3 ' , A 4 ' の各々には、 シリン ダ、 ピストン、 燃焼室、 点火栓、 吸気弁付き吸気ポート及び排気弁付き排気ポー ト並びに燃料噴射弁等を備えていることは前記第 1 の実施の形態の場合と同様で ある。
また、 この四気筒内燃機関 1 ' における各気筒 A 1 ' , A 2 ' , A 3 ' , A 4 ' は、 図 6に示す行程図より明らかなように、 その点火順序が第 1 気筒 A 1 ' — 第 3気筒 A 3 ' —第 4気茼 A 4 ' —第 2気茼 A 2 ' に設定されている。
そして、 前記四つの気筒 A 1 ' , A 2 ' . A 3 ' , A 4 ' に対して共通する一 本の共通連通路 1 4 ' を、 気筒列の方向に延びるように設けて、 この共通連通路 1 4 ' と、 前記各気筒 A 1 ' , A 2 ' , A 3 ' , A 4 ' の燃焼室とを、 各気筒ご とに設けた連通路 1 5 ' を介して連通し、 この各連通路 1 5 ' に設けた開閉弁 1 6 ' を、 前記第 1 の実施の形態と同様に、 クランク軸に連動して、 各気筒におけ る爆発 (膨張) 行程中の前半の時期と、 圧縮行程中の後半の時期とにおいて、 同 時に、 適宜時間だけ開くように構成する。
これにより、 第 1気筒 A 1 ' における爆発 (膨張) 行程中の前半の時期に当該 第 1 気筒 A 1 ' における開閉弁 1 6 ' が適宜時間だけ開くと同時に、 このとき圧 縮行程中の第 3気筒 A 3 ' における開閉弁 1 6 ' が適宜時間だけ開くことにより 、 前記第 1気筒 A 1 ' における燃焼中の燃焼 (膨張) ガスの一部が、 連通路 1 4 ' を介して第 2気筒 A 2内に導入される。
次いで、 第 3気筒 A 3 ' における爆発 (膨張) 行程中の前半の時期に当該第 3 気筒 A 3 ' における開閉弁 1 6 ' が適宜時間だけ開くと同時に、 このとき圧縮行 程中の第 4気茼 A 4 ' における開閉弁 1 6 ' が適宜時間だけ開くことによリ、 前 記第 3気筒 A 3 ' における燃焼中の燃焼 (膨張) ガスの一部が、 連通路 1 4 ' を 介して第 4気筒 A 4 ' 内に導入される。
次いで、 第 4気筒 A 4 ' における爆発 (膨張) 行程中の前半の時期に当該第 4 気筒 A 4 ' における開閉弁 1 6 ' が適宜時間だけ開くと同時に、 このとき圧縮行 程中の第 2気筒 A 2 ' における開閉弁 1 6 ' が適宜時間だけ開くことによリ、 前 記第 4気筒 A 4 ' における燃焼中の燃焼 (膨張) ガスの一部が、 連通路 1 4 ' を 介して第 2気筒 A 2 ' 内に導入される。
そして、 第 2気筒 A 2 ' における爆発 (膨張) 行程中の前半の時期に当該第 2 気筒 A 2 ' における開閉弁 1 6 ' が適宜時間だけ開くと同時に、 このとき圧縮行 程中の第 1気茼 Α 〗 ' における開閉弁 1 6 ' が適宜時間だけ開くことによリ、 前 記第 2気筒 A 2 ' における燃焼中の燃焼 (膨張) ガスの一部が、 連通路 1 4 ' を 介して第 1気筒 A 1 ' 内に導入される。
なお、 この第 3の実施の形態においても、 四つの各気筒 A 1 ' , A 2 ' , A 3 ' , A 4 ' における開閉弁 1 6 ' を、 前記第〗 の実施の形態の場合と同様に、 各 気筒の各々に対して設けたィォン電流検出手段によるィ才ン電流値の検出に応じ て、 検出したィォン電流値が所定値を越えている場合に開き作動するように構成 することができるとともに、 各気筒における圧縮比を高く し、 一つの気筒燃料 ( 膨張) ガスの一部を他の一つの気筒に導入することを、 高負荷運転域において行 うように構成することができる。
また、 図 7及び図 8は、 第 4の実施の形態で、 従来周知の直列型の四サイクル 六気筒内燃機関に適用した場合を示す。
この六気筒内燃機関 1 " は、 図示しない一本のクランク軸を共通する第 1 気茼 A 1 " 、 第 2気筒 A 2 " 、 第 3気筒 A 3 " 、 第 4気筒 A 4 " 、 第 5気筒 A 5 " 及 び第 6気筒 A 6 " を、 クランク軸線 4 " に沿って一列状に配設している。
なお、 この六つの各気筒の各々には、 シリンダ、 ピストン、 燃焼室、 点火栓、 吸気弁付き吸気ポート及び排気弁付き排気ポー卜並びに燃料噴射弁等を備えてい ることは前記第 1 の実施の形態の場合と同様である。
また、 この六気筒内燃機関 1 " における各気筒 A 1 " . A 2 " , A 3 " , A 4 " , A 5 " , A 6 " は、 図 7に示す行程図より明らかなように、 その点火順序が 第 1 気筒 A 1 " —第 5気筒 A 5 " —第 3気筒 A 3 " —第 6気筒 A 6 " —第 2気筒 A 2 " —第 4気筒 A 4 " に設定されている。
そして、 前記六つの気筒 A 1 " , A 2 " , A 3 " . A 4 " , A 5 " , A 6 " の 列方向に延びる連通路を、 第 1 気筒 A 〗 " 、 第 2気筒 A 2 " 及び第 3気筒 A 3 " に対して共通の第 1 連通路 1 4 a " と、 第 4気茼 A 4 " 、 第 5気茼 A 5 " 及び第 6気筒 A 6 " に対して共通の第 2連通路 1 4 b " とにして、 この両連通路 1 4 a " , 1 4 b ' ' と、 前記各気筒の燃焼室とを、 各気筒ごとに設けた枝連通路 1 5 " を介して連通し、 この各枝連通路 1 5 " に設けた開閉弁 1 6 " を、 前記第 1 の実 施の形態と同様に、 クランク軸に連動して、 各気筒における爆発 (膨張) 行程中 の前半の時期と、 吸気行程中の後半の時期とにおいて、 同時に、 適宜時間だけ開 くように構成する。
これにより、 第 1 気茼 A 1 " における爆発 (膨張) 行程の前半時期の燃焼 (膨 張) ガスの一部をこの第 1 気筒から取り出して、 このとき吸気行程中の第 3気筒 A 3 " に第 1 連通路 1 4 a " を介して導入することができ、 第 5気简 A 5 " にお ける爆発 (膨張) 行程の前半時期の燃焼 (膨張) ガスの一部をこの第 5気筒から 取り出して、 このとき吸気行程中の第 6気筒 A 6 " に第 2連通路 1 4 b " を介し て導入することができ、 第 3気茼 A 3 " における爆発 (膨張) 行程の前半時期の 燃焼 (膨張) ガスの一部をこの第 3気筒から取り出して、 このとき吸気行程中の 第 2気筒 A 2 " に第〗 連通路 1 4 a " を介して導入することができ、 第 6気筒 A 6 " における爆発 (膨張) 行程の前半時期の燃焼 (膨張) ガスの一部をこの第 6 気茼から取リ出して、 このとき吸気行程中の第 4気筒 A 4 " に第 2連通路 1 4 b " を介して導入することができ、 第 2気筒 A 2 " における爆発 (膨張) 行程の前 半時期の燃焼 (膨張) ガスの一部をこの第 2気筒から取り出して、 このとき吸気 行程中の第 1 気筒 A 1 " に第 1 連通路 1 4 a " を介して導入することができ、 そ して、 第 4気筒 A 4 " における爆発 (膨張) 行程の前半時期の燃焼 (膨張) ガス の一部をこの第 4気筒から取り出して、 このとき吸気行程中の第 5気筒 A 5 " に 第 2連通路 1 4 b " を介して導入することができる。
なお、 この第 3の実施の形態においても、 六つの各気筒 A 1 " , A 2 " . A 3 " , A 4 " における開閉弁 1 6 " を、 前記第 1 の実施の形態の場合と同様に、 各 気筒の各々に対して設けたイオン電流検出手段によるィォン電流値の検出に応じ て、 検出したィ才ン電流値が所定値を越えている場合に開き作動するように構成 することができるとともに、 各気筒における圧縮比を高く し、 一つの気筒燃料 ( 膨張) ガスの一部を他の一つの気筒に導入することを、 高負荷運転域において行 うように構成することができることはいうまでない。
また、 V型の六気筒内燃機関又は八気筒内燃機関の場合には、 三つ又は四つの 気筒についての共通連通路を、 両パンクごとに設けることによリ、 同様に適用で きるのである。
更にまた、 本発明は、 ガソリンを燃料とする四サイクルの多気筒内燃機関に限 らず、 二サイクルの多気筒内燃機関に適用できるほか、 ディーゼル機関等のよう な圧縮着火式の多気筒内燃機関にも適用できることは勿論である。

Claims

言青求の範囲
1 . 一本のクランク軸を共通する複数の気筒を備えた多気筒内燃機関において、 前記各気筒の相互間に、 各気筒のうち任意の一つの気筒における爆発 (膨張) 行 程の前半の時期における燃焼 (膨張) ガスの一部を取り出し、 これを他の気筒の うち吸気行程又は圧縮行程中の一つの気茼に連通路を介して導入するようにした 手段を設けたことを特徴とする多気筒内燃機関。
2 . 一本のクランク軸を共通する複数の気筒を備えた多気筒内燃機関において、 各気筒における圧縮比を、 高負荷運転域においてノッキング等の異常燃焼が発生 するように高い値に設定する一方、 前記各気筒の相互間に、 高負荷運転域におい て、 各気筒のうち任意の一つの気茼における爆発 (膨張) 行程の前半の時期にお ける燃焼 (膨張) ガスの一部を取り出し、 これを他の気筒のうち吸気行程又は圧 縮行程中の一つの気茼に連通路を介して導入するようにした手段を設けたことを 特徴とする多気筒内燃機関。
3 . 一本のクランク軸を共通する複数の気筒を備えた多気筒内燃機関において、 各気筒列の方向に延びる一本の共通連通路を設けて、 この共通連通路に、 前記各 気筒における燃焼室を、 各気筒ごとに設けた連通路を介して連通し、 前記各気筒 ごとの連通路の各々に開閉弁を設け、 この各開閉弁を、 前記各気筒の爆発 (膨張 ) 行程中における前半の時期に、 任意の一つの気茼における燃焼 (膨張) ガスの 一部を他の気筒のうち吸気行程中又は圧縮行程中の一つの気筒に導入するように 開き作動させることを特徴とする多気筒内燃機関。
4 . 前記各気筒の各々に、 当該気筒の爆発 (膨張) 行程中における燃焼 (膨張) ガスのイオン電流値を検出するイオン電流検出手段を設ける一方、 前記各開閉弁 を、 前記イオン電流検出手段による検出信号に基づいて、 任意の一つの気筒にお けるイオン電流値が高いときにおいて開き作動させることを特徴とする特許請求 の範囲第 3項に記載した多気筒内燃機関。
5 . 前記連通路の各気筒における燃焼室内への開口部を、 当該開口部から流入す る燃焼 (膨張) ガスにシリンダの円周方向に旋回するスワール流を付与するスヮ 一ルポ一 卜に構成することを特徴とする特許請求の範囲第 1項乃至第 4項のいず れかに記載した多気筒内燃機関。
6 . 前記各気筒に対する連通路の燃焼室内への開口部を複数個にしたことを特徴 とする特許請求の範囲第 1 項乃至第 5項のいずれかに記載した多気筒内燃機関。
7 . 各気茼に、 当該気筒におけるシリンダ内に燃料を噴射供給する燃料噴射弁を 設けることを特徴とする特許請求の範囲第 1 項乃至第 6項のいずれかに記載した 多気筒内燃機関。
8 . 前記共通連通路を、 シリンダヘッ ドの内部に設けたことを特徴とする特許請 求の範囲第 3項〜第 7項のいずれかに記載した多気筒内燃機関。
9 . 前記各気筒の連通路における開閉弁を、 ポペッ ト型にしたことを特徴とする 特許請求の範囲第 3項〜第 8項のいずれかに記載した多気筒内燃機関。
PCT/JP2001/010292 2001-04-09 2001-11-26 Moteur a combustion interne a cylindres multiples WO2002084088A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10197229T DE10197229T5 (de) 2001-04-09 2001-11-26 Mehrzylinder-Verbrennungsmotor
US10/474,525 US7028648B2 (en) 2001-04-09 2001-11-26 Multiple cylinder internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-110220 2001-04-09
JP2001110220A JP2002303141A (ja) 2001-04-09 2001-04-09 直列型多気筒内燃機関
JP2001123078A JP2002317702A (ja) 2001-04-20 2001-04-20 直列多気筒内燃機関
JP2001-123078 2001-04-20

Publications (1)

Publication Number Publication Date
WO2002084088A1 true WO2002084088A1 (fr) 2002-10-24

Family

ID=26613306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010292 WO2002084088A1 (fr) 2001-04-09 2001-11-26 Moteur a combustion interne a cylindres multiples

Country Status (3)

Country Link
US (1) US7028648B2 (ja)
DE (1) DE10197229T5 (ja)
WO (1) WO2002084088A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088886A1 (ja) * 2011-12-13 2013-06-20 いすゞ自動車株式会社 ディーゼルエンジンの異常燃焼防止システム

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7469662B2 (en) * 1999-03-23 2008-12-30 Thomas Engine Company, Llc Homogeneous charge compression ignition engine with combustion phasing
US20040261774A1 (en) * 2003-06-25 2004-12-30 Eft Neil Wallace Gas-assisted internal combustion engine
WO2006043502A1 (ja) * 2004-10-20 2006-04-27 Koichi Hatamura エンジン
US7607503B1 (en) * 2006-03-03 2009-10-27 Michael Moses Schechter Operating a vehicle with high fuel efficiency
US20080087257A1 (en) * 2006-04-24 2008-04-17 Robinson Barnett J Internal combustion engine with shared holding tank in cylinder head for elevated expansion ratio
US7559317B2 (en) * 2006-04-24 2009-07-14 Barnett Joel Robinson Internal combustion engine with single-port holding tank for elevated expansion ratio
WO2008013045A1 (fr) * 2006-07-25 2008-01-31 Yamaha Hatsudoki Kabushiki Kaisha Moteur à combustion interne à quatre temps
JP2008169818A (ja) * 2007-01-15 2008-07-24 Yamaha Motor Co Ltd 4サイクル内燃機関及び車両
US7765994B2 (en) * 2007-07-12 2010-08-03 Ford Global Technologies, Llc Cylinder charge temperature control for an internal combustion engine
EP2065586A1 (en) * 2007-11-29 2009-06-03 Perkins Engines Company Limited Improved breathing for an internal combustion engine
US8646421B2 (en) 2009-10-23 2014-02-11 GM Global Technology Operations LLC Engine with internal exhaust gas recirculation and method thereof
US8671920B2 (en) 2010-08-31 2014-03-18 GM Global Technology Operations LLC Internal combustion engine
US9752531B2 (en) 2010-11-19 2017-09-05 GM Global Technology Operations LLC Engine assembly including combustion chambers with different port arrangements
US9032921B2 (en) * 2010-12-07 2015-05-19 GM Global Technology Operations LLC Engine assembly including variable valve lift arrangement
US8616173B2 (en) 2010-12-08 2013-12-31 GM Global Technology Operations LLC Engine assembly including modified intake port arrangement
US8651075B2 (en) 2010-12-08 2014-02-18 GM Global Technology Operations LLC Engine assembly including camshaft with independent cam phasing
US8544436B2 (en) * 2010-12-08 2013-10-01 GM Global Technology Operations LLC Engine assembly including camshaft with multimode lobe
US8875672B2 (en) 2012-02-28 2014-11-04 Electro-Motive Diesel, Inc. Engine system having dedicated cylinder-to-cylinder connection
US20130220287A1 (en) * 2012-02-28 2013-08-29 Teoman Uzkan Exhaust system having dedicated egr cylinder connection
US8943822B2 (en) 2012-02-28 2015-02-03 Electro-Motive Diesel, Inc. Engine system having dedicated auxiliary connection to cylinder
KR101394047B1 (ko) * 2012-12-06 2014-05-12 현대자동차 주식회사 가변 사이클 엔진

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152857U (ja) * 1980-03-21 1981-11-16
JPH0364625A (ja) * 1989-07-31 1991-03-20 Nissan Motor Co Ltd 多気筒内燃機関の吸気装置
JPH11343887A (ja) * 1998-04-27 1999-12-14 Inst Fr Petrole 制御された自己着火燃焼方法および燃焼方法に関連する、シリンダと専用の弁との間に移送管路を備えた4ストロ―クエンジン
US6075366A (en) * 1997-11-26 2000-06-13 Mitsubishi Denki Kabushiki Kaisha Ion current detection apparatus for an internal combustion engine

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4321892A (en) * 1976-03-19 1982-03-30 Anger Robert M Multiple-cycle, piston-type internal combustion engine
JPS56152857A (en) 1980-04-28 1981-11-26 Nitto Kasei Kk Stabilized halogen-contg. resin composition
US4787343A (en) * 1986-11-07 1988-11-29 Walbro Corporation Combustion enhancer for internal combustion engines
JPH0583351A (ja) 1991-09-19 1993-04-02 Nec Commun Syst Ltd 電話機
JPH05157008A (ja) 1991-11-29 1993-06-22 Mazda Motor Corp エンジン
JP3214720B2 (ja) 1992-01-08 2001-10-02 本田技研工業株式会社 内燃機関の排気還流装置
JP3092763B2 (ja) 1993-04-16 2000-09-25 ダイハツ工業株式会社 イオン電流の検出方法
US5647309A (en) * 1994-12-01 1997-07-15 Avery; Alfred J. Internal combustion engine firing system
JP3257374B2 (ja) 1995-08-31 2002-02-18 三菱自動車工業株式会社 排気還流装置付副室式エンジン
FR2768178B1 (fr) * 1997-09-11 1999-11-19 Daniel Drecq Moteur a combustion interne comportant des moyens de recirculation des gaz d'echappement et de suralimentation
JP4125441B2 (ja) 1999-03-31 2008-07-30 本田技研工業株式会社 内燃機関
AT413863B (de) * 1999-08-04 2006-06-15 Man Steyr Ag Verfahren zur abgasrückführung an einer mittels abgasturbolader aufgeladenen mehrzylindrigen hubkolbenbrennkraftmaschine
FR2800126B1 (fr) * 1999-10-26 2001-11-30 Inst Francais Du Petrole Procede de combustion par auto-allumage controle et moteur a quatre temps associe avec conduits de transfert entre conduit d'echappement et conduit d'admission
US6543398B1 (en) * 2001-07-19 2003-04-08 Southwest Research Institute High efficiency compression ignition aftertreatment devices for combined use of lean-burn combustion systems and three-way catalysts

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152857U (ja) * 1980-03-21 1981-11-16
JPH0364625A (ja) * 1989-07-31 1991-03-20 Nissan Motor Co Ltd 多気筒内燃機関の吸気装置
US6075366A (en) * 1997-11-26 2000-06-13 Mitsubishi Denki Kabushiki Kaisha Ion current detection apparatus for an internal combustion engine
JPH11343887A (ja) * 1998-04-27 1999-12-14 Inst Fr Petrole 制御された自己着火燃焼方法および燃焼方法に関連する、シリンダと専用の弁との間に移送管路を備えた4ストロ―クエンジン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013088886A1 (ja) * 2011-12-13 2013-06-20 いすゞ自動車株式会社 ディーゼルエンジンの異常燃焼防止システム
JP2013124549A (ja) * 2011-12-13 2013-06-24 Isuzu Motors Ltd ディーゼルエンジンの異常燃焼防止システム

Also Published As

Publication number Publication date
DE10197229T5 (de) 2004-04-22
US20040123820A1 (en) 2004-07-01
US7028648B2 (en) 2006-04-18

Similar Documents

Publication Publication Date Title
WO2002084088A1 (fr) Moteur a combustion interne a cylindres multiples
US7753037B2 (en) Engine
US6622690B2 (en) Direct injection type internal combustion engine and controlling method therefor
EP1406002B1 (en) Spark-ignition engine controller
US20140190458A1 (en) EGR Rate Control For Internal Combustion Engine With Dual Exhaust-Ported Cylinders
JP2001263067A (ja) 圧縮自己着火式ガソリン機関
US6513484B1 (en) Boosted direct injection stratified charge gasoline engines
JPH05141302A (ja) 4サイクルエンジン
US12044161B2 (en) Internal combustion engine
JP2001336435A (ja) 6サイクル内燃機関
JP4102268B2 (ja) 圧縮着火内燃機関
US6378488B1 (en) Direct injection spark ignition engine
JPH10252486A (ja) 内燃機関の吸排気装置
JP4168766B2 (ja) 圧縮自着火運転が可能なエンジン
JP4045867B2 (ja) 火花点火式エンジンの運転モード検出装置および同制御装置
JP3948081B2 (ja) 火花点火式内燃機関
Noyori et al. Development of a 660cc turbo-charged spark-ignition direct-injection engine
JP2005201127A (ja) 4サイクル内燃機関
JP2002303141A (ja) 直列型多気筒内燃機関
JP7354806B2 (ja) エンジンの制御装置
JP3711941B2 (ja) 火花点火式エンジンの制御装置
JP2004176620A (ja) 2サイクル運転可能な頭上弁式多気筒エンジン
JP2022047554A (ja) 内燃機関
Wu et al. Application of semi-direct injection for spark-ignition engine
JP2002317702A (ja) 直列多気筒内燃機関

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10474525

Country of ref document: US

122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8607