WO2002082679A1 - Recepteur d'antenne reseau - Google Patents
Recepteur d'antenne reseau Download PDFInfo
- Publication number
- WO2002082679A1 WO2002082679A1 PCT/JP2002/001661 JP0201661W WO02082679A1 WO 2002082679 A1 WO2002082679 A1 WO 2002082679A1 JP 0201661 W JP0201661 W JP 0201661W WO 02082679 A1 WO02082679 A1 WO 02082679A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calibration
- signal
- multiplexed
- predetermined number
- array antenna
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
- H04B1/7117—Selection, re-selection, allocation or re-allocation of paths to fingers, e.g. timing offset control of allocated fingers
Definitions
- the present invention mainly employs a code division multiple access (hereinafter referred to as CDMA) communication method and an array antenna capable of performing a highly accurate path search in compensating for differences in characteristics between receiving circuits (calibration).
- CDMA code division multiple access
- control is performed by directing the peak of the directivity pattern to a desired wave to be received, or by directing the null of the directivity pattern to an interference wave generated at the time of reception.
- Communication is performed after maximizing SIR (signal power to interference power ratio) and SINR (signal power to interference and noise power ratio).
- SIR signal power to interference power ratio
- SINR signal power to interference and noise power ratio
- the phase is independent of each other due to variations in the characteristics of analog elements such as amplifiers, and time variations due to temperature characteristics and aging.
- the difference in characteristic of the amplitude and the amplitude causes the addition of unknown amplitude fluctuations and phase rotation, resulting in the directional pattern being formed differently than desired.
- Such a difference in the characteristics of the respective receiving circuits causes a decrease in the reception gain, which leads to a deterioration in the communication quality.
- the array antenna receiver needs to calculate the difference in the characteristics of the phases and amplitudes in each receiving circuit and perform calibration. Calculate the phase and amplitude characteristic differences to determine the calibration coefficient, and multiply the phase and amplitude of the received communication signal by the calculated phase and amplitude components of the calibration coefficient, respectively. Compensates for characteristic differences. By performing calibration as needed in this way, the array antenna receiver can always perform accurate directivity pattern control. It is possible to maximize the advantages of the receiving device.
- a calibration device which calculates a characteristic difference between receiving circuits based on a calibration signal.
- a calibration device of a wireless reception device uses a spread signal in the same frequency band as a spread signal used for communication as a calibration signal. ing.
- FIG. 6 is a circuit block diagram showing a basic configuration of an array antenna receiver using a conventional CDMA communication method.
- This array antenna receiving apparatus adopts the CDMA communication system, and includes a calibration apparatus (a calibration apparatus of an array antenna wireless receiving apparatus disclosed in Japanese Patent Application Laid-Open No. H11-48080). It is used to compensate for characteristic differences between receiving circuits.
- the array antenna receiver is integrated with the calibration device. If the basic configuration is divided into functional blocks, the same signal as the communication signal is obtained after performing spread modulation on the calibration signal generated in the baseband.
- a calibration signal transmitting unit that converts the frequency into a radio band and transmits the multiplexed radio signal; and a multiplexed radio that multiplexes a communication signal and a calibration signal of the radio band received by each receiving circuit corresponding to a predetermined number of antenna elements.
- a radio processing unit that converts a signal into a baseband band by receiving processing to generate a predetermined number of multiplexed baseband signals, and a calibration signal included in the predetermined number of multiplexed baseband signals in the baseband band.
- the detection result of this synchronization timing is A calibration processing unit for calculating a predetermined number of calibration coefficients for each of the calibration signals; and a predetermined number of calibration coefficients for a communication signal contained in a predetermined number of multiplexed baseband signals in the baseband band.
- the calibration signal transmission unit includes a calibration signal generation unit 300 that outputs a baseband calibration signal 301 that generates a calibration signal in a baseband band; and a baseband calibration unit.
- a baseband signal that outputs a calibration signal 303 by multiplying the spread signal by the spreading signal and spreading modulation processing, and a baseband signal that outputs a calibration signal 3003 and a baseband signal that is spread modulated A wireless transmission section 304 that converts the frequency of the calibration signal 303 into a wireless band and outputs a wireless calibration signal 105, and a wireless calibration signal 300 that is N (N is a natural number of 2 or more) )
- a distributor 306 that outputs the wireless calibration signals 307-1 to 307 -N.
- N indicating the number of distributions in the distributor 303 is equal to the number of antenna elements constituting the antenna section 308 for receiving a communication signal, and the number of Ns does not matter here.
- the wireless processing section includes an antenna section 308 composed of N antenna elements for receiving a communication signal, and N wireless communication signals 309-1 to 310 received by the antenna section 308.
- 9—N and N radio calibration signals 3 07—1 to 3 07—N are multiplexed to output N multiplexed radio signals 3 1 1—1 to 311_N
- the calibration processing unit detects the synchronization timing of the calibration signal included in the N multiplexed baseband signals 3 13 3-1 to 3 13 3 -N, and outputs the N synchronization timing signals 3 15 -1 Searcher section 314 that outputs ⁇ 315_N and N synchronization timing signals 315— :! N carrier signals indicating the results of calculating the calibration coefficients for the calibration signals included in N baseband multiplexed signals 3 13 -1 to 3 13 3 -N using 3 15 — N N calibration signals that output the braking coefficient signal 3 1 7—1 to 3 17—N Section coefficient calculator 3 1 6— :! ⁇ 3 16-N.
- the communication processing unit performs N calibration coefficient signals 3 17-:! for the communication signals included in the N multiplexed baseband signals 3 13-1 to 3 13 3 -N.
- N 3 demodulated signals 3 19 _ 1 to 3 19 _N by performing demodulation processing while compensating for characteristic differences between receiver circuits by multiplying by the calibration coefficients indicated by N communication signal demodulators 3 1 8— :! ⁇ 3 18—N and N demodulated signals 3 1 1 To 3 1 9—Addition unit that adds and synthesizes N and performs reception output by array antenna
- the search processing section 31 1 is used in the calibration processing section. 4, a path search is performed to detect the synchronization timing in the calibration signal contained in the N multiplexed baseband signals 313-1 to 313_N.
- a normal receiving circuit is used in the case of the searcher section 3 14 to which the CDMA communication method is applied. It is configured to include a delay port file generation circuit and a path search circuit that can output several minutes of synchronization timing.
- FIG. 7 is a circuit block diagram showing a detailed configuration of the searcher section 314 provided in the above-described array antenna receiving apparatus.
- the searcher section 3 14 has N multiplexed baseband signals 4 0— :! 4 400 -N (N multiple baseband signals 3 13 _ 1 to 3 13 _ N described above) and the spread modulation section 30 2 when generating and transmitting the N calibration signals contained therein
- a delay port file which is a correlation value obtained by correlating with a known spreading code sequence used in the spreading modulation process (in this case, a multiplied spreading code)
- the N calibration signals are generated.
- N path search circuits 4 0 3 — 1 to 4 0 3 _N the above-mentioned N synchronization timing signals 3 1 5—1 to 3 15—N .
- the calibration signal transmitted from the calibration signal transmitting unit is processed by the calibration processing unit, the calibration signal is used as an interference source with respect to the communication signal from the wireless processing unit. Therefore, it is required to keep the transmission level of the calibration signal as low as possible.However, if the transmission level of the calibration signal is low, the transmission level of the multiplexed baseband signal by the searcher unit provided in the calibration processing unit is reduced. When the synchronization timing in the calibration signal included in the file is detected, the level of the path on the delay file shown in the delay file signal also becomes low, so that the synchronization timing cannot be accurately detected at such a low path level. The problem of going A.
- the calibration coefficient including information on the characteristic difference between the receiving circuits of the phase and amplitude required for calibration is accurately calculated. Cannot be performed, the calibration accuracy will be degraded. As a result, the directivity pattern formed by the antenna receiver will be shifted by the error of the calibration coefficient, and the communication quality will be degraded. Will cause it.
- An object of the present invention is to provide an array antenna receiving device capable of detecting synchronization timing in a calibration signal included in a multiplexed baseband signal with high accuracy.
- an array antenna receiving apparatus to which a CDMA communication method is applied. Then, after performing a spread modulation process on a communication signal in a radio band and a baseband band received by each reception circuit corresponding to a predetermined number of antenna elements, the frequency is converted to the same radio band as the communication signal and transmitted and transmitted. Detection of synchronization timing in the calibration signal included in a predetermined number of multiplexed baseband signals obtained by frequency-converting a multiplexed radio signal obtained by multiplexing the obtained calibration signal into a baseband band by reception processing.
- the delay opening files for the number of receiving circuits obtained by taking the correlation value between the predetermined number of multiplexed baseband signals and the known spreading code sequence used in the spreading modulation process are added and synthesized.
- the path search method for calibration of the array antenna receiver in the path search, it is preferable to search only the maximum path with respect to the delay profile obtained by addition and combining.
- an array antenna receiving apparatus to which the CDMA communication method is applied, wherein a communication signal of a radio band received for each receiving circuit corresponding to a predetermined number of antenna elements and a spread modulation in a baseband band.
- a predetermined number obtained by frequency-converting a multiplex radio signal, which is obtained by multiplexing the communication signal and a calibration signal transmitted and transmitted after being frequency-converted into the same radio band as the communication signal, into a baseband band by a reception process.
- a searcher unit for detecting synchronization timing in the calibration signal included in the multiplexed baseband signal a correlation value between a predetermined number of multiplexed baseband signals and a known spreading code sequence used in the spreading modulation process And add the delay port file generation circuit that generates the delay profile and the delay port files for the number of receiving circuits.
- a searcher unit for calibration of an array antenna receiving device which includes a delay opening file synthesizing circuit to be formed and a path search circuit for performing a path search for a delay opening file obtained by addition and synthesis, is obtained.
- the path 'search circuit searches only the maximum path for the delay opening file obtained by adding and combining in the delay opening file combining circuit as a path search.
- a calibration signal transmitting unit that performs spread modulation on a calibration signal generated in a baseband band, converts the frequency to the same wireless band as a communication signal, and transmits and transmits the same, and a predetermined number of antennas
- a searcher unit for detecting a synchronization timing of a calibration signal included in a predetermined number of multiplexed baseband signals in a baseband band, and using a detection result of the synchronization timing. For calculating a predetermined number of calibration coefficients for each of the calibration signals. A demodulation process is performed on a communication signal included in a predetermined number of multiplexed baseband signals in a baseband band while compensating for characteristic differences between receiving circuits using a predetermined number of calibration coefficients.
- an array antenna receiving apparatus to which the CDMA communication system is applied, which includes a communication processing section for adding and combining a predetermined number of obtained demodulated signals and performing reception output by the array antenna
- the searcher section detects the synchronization timing in a predetermined manner.
- the number of multiplexed baseband signals and the known spreading code sequence used in the spreading modulation process are added and synthesized for the number of receiving circuits obtained by taking the correlation value, and the obtained sum is obtained by the adding and combining.
- An array antenna receiving device having a path / search circuit for performing a path / search for the delay profile can be obtained.
- the path search circuit searches only the maximum path for the delegate file obtained by addition and synthesis as the path search.
- FIG. 1 is a circuit block diagram showing a basic configuration of an array antenna receiving device using a CDMA communication system according to an embodiment to which a calibration path search method for an array antenna receiving device of the present invention is applied. .
- FIG. 2 is a circuit block diagram showing a detailed configuration of a searcher unit provided in the array antenna receiver shown in FIG.
- FIG. 3 shows a comparison between input and output signal waveforms in the delay opening file synthesizing circuit of the searcher unit shown in FIG.
- FIG. 4 is a waveform diagram schematically showing a state of path assignment at the time of multipath in a delay profile signal output from the delay port file synthesizing circuit of the searcher unit shown in FIG.
- FIG. 5 is a waveform diagram schematically showing a state of path assignment when a calibration signal is input in a delay opening file signal output from the delay profile synthesizing circuit of the searcher unit shown in FIG.
- FIG. 6 is a circuit block diagram showing a basic configuration of an array antenna receiving apparatus using a conventional CDMA communication system.
- FIG. 7 is a circuit block diagram showing a detailed configuration of a searcher unit provided in the array antenna receiving device shown in FIG. Detailed description of the embodiment
- This path search method is an array antenna receiver to which the CDMA communication method is applied, and spreads a radio band communication signal and a baseband band received by each reception circuit corresponding to a predetermined number of antenna elements. After a modulation process, a predetermined number of signals obtained by frequency-converting a communication signal and a calibration signal transmitted and transmitted after being frequency-converted to the same wireless band and multiplexed into a baseband band by a reception process.
- a path search is performed for the delay profile obtained by addition and synthesis. Since the calibration signal at this time has only a single synchronization timing, the path search is performed. Can be performed only for the maximum path, which enables accurate and accurate multi-baseband signal transmission even when the path level is low under the condition that the transmission level of the calibration signal is kept as low as possible. It is possible to detect the synchronization timing in the calibration signal included in the signal. As described above, if the synchronization timing can be accurately detected, the calibration coefficient including the information on the characteristic difference between the receiving circuits of the phase and the amplitude required for the calibration can be accurately calculated, so that the calibration accuracy is improved and the result is improved. As a result, it is possible to improve the communication quality without causing the error of the calibration coefficient to occur in the directivity pattern formed by the antenna receiver.
- FIG. 1 is a circuit block diagram showing a basic configuration of an array antenna receiving apparatus using the CDMA communication system according to an embodiment to which the above-described path search method for calibration of the array antenna receiving apparatus of the present invention is applied. is there.
- This array antenna receiver also applies the CDMA communication method, as in the conventional device described with reference to Fig. 6, and when the basic configuration is divided into function blocks, the calibration signal generated in the baseband band is used.
- the signal After performing spread modulation processing, the signal is converted into the same wireless band as the communication signal and transmitted for transmission, and the communication in the wireless band received by each receiving circuit corresponding to a predetermined number of antenna elements
- a radio processing unit that frequency-converts a multiplexed radio signal obtained by multiplexing a signal and a calibration signal into a baseband band by receiving processing to generate a predetermined number of multiplexed baseband signals, and a predetermined number of multiplexed baseband signals in the baseband band.
- a calibration processing unit for calculating a predetermined number of calibration coefficients for each of the calibration signals using the detection result of the synchronization timing, and a communication signal included in a predetermined number of multiplexed baseband signals in the baseband band
- the calibration signal transmitting unit includes a calibration signal generating unit 100 that outputs a baseband calibration signal 101 that generates a calibration signal in the baseband band, and a baseband calibration unit.
- a spread modulation section 102 that outputs a spread-span calibration signal 103 by multiplying the signal 101 by a spread code and performing spread modulation processing, and a spread-band baseband calibration.
- the radio transmitter 104 that converts the frequency of the calibration signal 103 into a wireless band and outputs the wireless calibration signal 105, and the wireless calibration signal 105 that is N (N is a natural number of 2 or more)
- a distributor 106 for distributing the signals into individual pieces and outputting wireless calibration signals 107_1-1 to 107-N.
- N indicating the number of distributions in the distributor 106 is equal to the number of antenna elements constituting the antenna unit 108 for receiving a communication signal, and the number of Ns does not matter here.
- the radio processing unit includes an antenna unit 108 composed of N antenna elements for receiving a communication signal, and N radio communication signals 109-1 to 10 received by the antenna unit 108.
- N and N wireless calibration signals 1 0 7—:! To 1 10 7—N are multiplied to output N multiplexed wireless signals 1 1 1 1 1 1 to 1 1 1 1 N
- Combiners 1 1 0 _ :! to 1 1 0—N and N multiplexed radio signals 1 1 1— 1 to: 1 1 1—N are converted to a baseband band by N Multiple baseband signals 1 1 3— :! ⁇ 1 1 3 _ N output N radio receivers 1 1 2— :! ⁇ 1 1 2-N.
- the calibration processing unit detects the synchronization timing of the calibration signals included in the N multiplexed baseband signals 113_1-1 to 113_N, and obtains N synchronization timing signals 115- ;! 11 15—N and N baseband multiplexed signals 1 1 3— :! using searcher section 1 14 and N synchronization timing signals 1 15—1 to 1 15—N.
- 1 to 13—N shows the result of calculating the calibration coefficient for each of the calibration signals included in the N calibration signal N 1 1 7— :! ⁇ 1 17 _N output N calibration coefficient calculators 1 16 _ :! ⁇ 1 16_N.
- the N synchronization timing signals output from the searcher section 1 14 here 1 1 5— :! 1 to 15—N is a basic configuration for detecting the synchronization timing in the searcher section 114, as suggested by the configuration that is branched from one system and configured as N systems. Is different from the conventional searcher section 3 14. That is, the searcher section 114 has N multiplexed baseband signals 113- :! When detecting the synchronization timing of the calibration signal included in ⁇ 13-N, the spread modulation unit 102 in the multiplexed baseband signal and calibration signal transmission unit used the known modulation method used in the spread modulation process.
- a delay profile for the number of receiving circuits obtained by taking a correlation value with a spread code sequence (here, a spread code multiplied in this case) is added and synthesized, and a path is searched for the delay opening file obtained by the addition and synthesis.
- a synchronization timing signal of a calibration signal having only a single synchronization timing is output as one system.
- the searcher section 114 here is the one to which the above-described path search method for calibration of the array antenna receiving apparatus is applied, that is, the array antenna receiving apparatus to which the CDMA communication method is applied.
- Radio band communication signals 1 09 received by each of the receiving circuits corresponding to a predetermined number of antenna elements of the unit 1 108::!
- the communication signal 109-1-1 to 1109-N after being spread-modulated in the baseband band with the radio-frequency calibration signal 1 0 7 _ 1-
- a delay port file generation circuit for generating a delay port file by obtaining a correlation value between 1 to 13—N and a known spreading code sequence (multiplied spreading code) used in the spread signal modulation processing of the calibration signal, and a receiving circuit It has a configuration that includes a delay opening file synthesis circuit that adds and synthesizes several minutes of delay opening files, and a path search circuit that performs a path search for the delay opening file obtained by the addition synthesis. Then, in the searcher section 114, the path search circuit, as described later as a path search, only outputs the maximum path to the delay opening file obtained by the addition synthesis in the delay profile synthesis circuit. It has a search function.
- FIG. 2 is a circuit block diagram showing a detailed configuration of the searcher section 114 here.
- the searcher section 1 14 includes a multiplexed baseband signal 2 0 0— :! to 2 0—N (N multiplexed baseband signals 1 13 _ 1 to 1 1 3—N described above) and the A delay port, which is a correlation value obtained by correlating with a known spreading code sequence (multiplied spreading code) subjected to spread modulation processing in the spreading modulation section 102 when generating and transmitting the included N calibration signals.
- 0 6 the above-mentioned N synchronization timing signals 1 15-1 to 1 15-N are provided.
- the path search circuit 205 performs a path search from the delay opening file signal 204 added and synthesized by the delay profile synthesis circuit 203 to detect the synchronization timing of the calibration signal. Since the calibration signal at that time has only a single synchronization timing, the path search circuit 205 detects only the maximum path.
- FIG. 3 shows a comparison between input and output signal waveforms in the delay opening file synthesizing circuit 203 of the searcher section 114.
- the delay opening file synthesizing circuit 203 adds and synthesizes these signals and delays the signals. If output as a mouth file signal 204, the shape changes as shown in the waveform shown, the noise level is averaged, and the SN ratio of the delay mouth file can be improved.
- the path search circuit 205 can detect even paths that appear to be buried in noise in each of the derailleur opening files that could not be detected by the searcher section 3 Indicates that a more accurate path search can be performed. Therefore, the noise level is averaged in the delay opening file after the addition and synthesis, and the SN ratio is improved, so that a more accurate path search can be performed.
- FIG. 4 is a waveform diagram schematically showing a state of path assignment in a delay port file signal at the time of multipath.
- an array antenna receiver when the base station receives a communication signal from a terminal device, many reflected waves other than a direct wave are usually included in the received signal due to a radio propagation environment. Assuming that a communication state called multipath is included, and a delayed opening file signal 204 is generated from such a received signal, some of the delayed opening file signals 204 shown in FIG. Paths P1 to P5 exist.
- a searcher unit generally used for receiving a communication signal has a configuration that can normally search a plurality of paths.
- FIG. 5 shows a multiplexed baseband signal 200——!
- FIG. 9 is a waveform diagram schematically showing how a path is assigned when a calibration signal included in 2200-N is input.
- the operation corresponding to each of the paths P1 to P5 in 204 may be performed so that only the maximum path P1 is searched as shown in FIG.
- the calibration coefficient calculation sections 1 16-1 to 1 16 -N in the calibration processing section can calculate the calibration coefficients using more accurate synchronization timing.
- each delay port file signal 2 0 2— :! The reason that it is not necessary to carry out path search independently for each of the signals 2 to 2 ⁇ N is that the calibration signals generated and transmitted from the same calibration signal transmitting unit differ in the radio processing unit.
- the difference in synchronization timing when the signal arrives at the searcher section 114 through the receiving circuit can be regarded as a level that can be ignored.
- the chip rate adopted in the CDMA communication system is 3.84 M chip / s, one chip is about 78 m, so the cable used to construct the array antenna receiver is Even if the error of the length and the transmission path difference on the circuit can be suppressed to lm, the calculation results in only an error of 0.01 chip. This is enough considering that the resolution of the delay file generated by the searcher unit 114 in the calibration processing unit of the array antenna receiver actually used is a fraction of a chip. It can be ignored.
- the communication processing unit performs N multiplexed baseband signals 1 1 3— :! 1 1 1 3—N communication coefficients included in N Calibration coefficient signals 1 1 7— :!
- the demodulation process is performed by multiplying each of the calibration coefficients represented by 11 to _N to compensate for the characteristic difference between the receiving circuits, and the N demodulated signals 1 9-1 :! 1 1 1 N ⁇ N N 1 1 1 1 1 N 1 1 1 N N ⁇ 1 N 1 ⁇ N 1 N N N
- an adder 120 that performs reception output by the array antenna.
- the calibration signal generation section 100 transmits and outputs the baseband calibration signal 101 generated by generating the calibration signal in the baseband band to the spread modulation section 102,
- the spread modulation section 102 modulates the baseband calibration signal 101 with a spreading code to generate a baseband calibration signal 103 subjected to spread modulation processing to the radio transmission section 104. Transmit and output.
- the baseband carrier The frequency of the vibration signal 103 is converted in the wireless band and passed to the distributor 106 as the wireless calibration signal 105, and the distributor 106 distributes N wireless calibration signals 105
- the wireless calibration signal 1107_1 to 1077-1N obtained is delivered to the coupler 110-1 to 110-0-N in the wireless processing unit.
- a communication signal is received by the N antenna elements in the antenna unit 108, and the wireless communication signal 109— :! 1109_N to the combiner 110_1-1 ⁇ 110-N.
- the wireless calibration signal 1 0 7 _ 1 to 1 0 7 — N delivered from the distributor 10 6 in the calibration signal transmitter and the antenna N multiplexed radio signals 1 1 1 _ 1 to 1 1 1 -N multiplexed with the radio communication signal 1 09 _ 1 to 1 0 9 -N from the unit 108 are wirelessly received.
- Unit 1 1 2 _ 1 1-11_N, and the radio receivers 1 1 2—1 to 1 1 12_N multiplex the multiplexed radio signals 1 1 1 1 1 to 1 1 1-N to the baseband band by reception processing.
- N multiplexed baseband signals obtained by wave number conversion 1 1 3— :! 1 1 1 3—N is the searcher section 114 in the calibration processing section and the calibration coefficient calculation section 1 16— :! To 1 16—N and the communication signal demodulation unit in the communication processing unit 1 18 _ :! ⁇ 1 1 8—N distributed and delivered.
- the searcher unit 114 uses the above-mentioned function to detect the synchronization timing of the calibration signal contained in the multiplexed baseband signals 113-1-1 to 113-N by a single synchronization.
- a calibration signal that has only timing is output as one synchronization timing signal 206 by accurately performing a calibration signal.However, one synchronization timing signal 206 is branched into N parts in the system configuration.
- Synchronous timing signal 1 1 5 _ :! 11 115—N are output and transmitted to the calibration coefficient calculation unit 61 66 11 ⁇ 1 616 ⁇ ⁇ ⁇ ⁇ N.
- 1 1 17 _N is transferred to the communication signal demodulation unit 1 18— :! to 1 18—N in the communication processing unit.
- the baseband multiplexed signal 1 13 3 By performing correlation with the spread code multiplied by the spread modulator 102 during transmission of the calibration signal contained in .
- the calibration coefficient calculated by the calibration coefficient calculator 1 16 _ 1 to 1 16 —N indicates a characteristic variation of the phase and amplitude of the calibration signal with respect to the reference value.
- the reference value is, for example, the value of an antenna element serving as a reference or an arbitrarily set value.
- the setting method is not specified here.
- the calibration coefficient is for both the phase value and the amplitude value.
- N demodulated signals obtained by performing demodulation processing while compensating for the characteristic differences between the receiving circuits by multiplying by the calibration coefficients represented by 11—17—N, respectively.
- One N is output and transmitted to the addition unit 120.
- the adder 120 adds and synthesizes the N demodulated signals 1 191-1 to 1 191 -N, and performs reception output by the array antenna.
- the communication signal demodulation sections 1 18—1 to 1 18—N perform multiplication on the N multiplexed baseband multiplexed signals 1 1 3— :!
- the communication signal can be code-separated
- the calibration coefficient signal 1 1 7 _ :! By multiplying by 1 to 117_N to perform demodulation, demodulation can be performed while compensating for the characteristic difference between the receiving circuits.
- the calibration processing unit can calculate the calibration coefficient more accurately and accurately with the calibration processing unit, and the calculated calibration coefficient is transmitted to the communication processing unit.
- the calibration can be performed with high accuracy as a whole device. Therefore, in this array antenna receiver, if the calibration is performed at any time with high accuracy, the directivity pattern can always be controlled with high accuracy. It is possible to receive a communication signal while maintaining the communication quality to the maximum.
- the calibration signal frequency-converted to the same wireless band as the communication signal is received and received by each of the receiving circuits corresponding to the predetermined number of antenna elements.
- a synchronization signal in a calibration signal included in a predetermined number of multiplexed baseband signals obtained by frequency-converting a multiplexed radio signal multiplexed with a communication signal in a radio band to a baseband band by a reception process.
- add the number of delay ports as many as the number of receiving circuits obtained by taking the correlation value between a predetermined number of multiplexed baseband signals and the known spreading code sequence used in the spread modulation processing of the calibration signal.
- the synthesis is performed, and a path is searched for the de-lep opening file obtained by the addition synthesis, and the carrier at this time is searched. Since the synchronization signal has only a single synchronization timing, the path search can be performed only for the maximum path, and thus the path level can be maintained under the condition that the transmission level of the calibration signal is kept as low as possible. Even if the signal is low, the synchronization timing in the calibration signal included in the multiplex baseband signal can be detected accurately and accurately. As a result, the synchronization timing can be accurately detected, so that the calibration coefficient including the information on the characteristic difference between the receiving circuits of the phase and amplitude required for the calibration can be accurately calculated, and the accuracy of the calibration can be improved. As a result, the communication quality can be improved without causing a deviation of the calibration coefficient error in the directivity pattern formed by the array antenna receiver.
- the searcher section for calibration of the array antenna receiving apparatus is suitable mainly for use in an array antenna receiving apparatus to which a code division multiple access communication system is applied.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Radio Transmission System (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Noise Elimination (AREA)
- Mobile Radio Communication Systems (AREA)
Description
明 細 書 アレーアンテナ受信装置 発明の背景
本発明は、 主として符号分割多元接続 (以下、 C D MAとする) 通信方式を適 用すると共に、 受信回路間の特性差の補償 (キャリブレーション) において高精 度なパス ·サーチが可能なアレーアンテナ受信装置に関する。
従来、 この種のアレーアンテナ受信装置では、 受信すべき電波である希望波に 指向性パターンのピークを向けたり、 或いは受信に際して発生する干渉波に指向 性パターンのヌルを向けるように制御することによって、 S I R (信号電力対干 渉電力比) や S I N R (信号電力対干渉及び雑音電力比) 等を最大化した上で通 信を行っている。 例えばアレーアンテナ受信装置が携帯電話の基地局であるとし た場合、 端末装置が発する希望波へと指向性パターンが向くように制御すること で通信品質を改善することが可能となる。
ところが、 こうした制御に際してアレーアンテナ受信装置では、 各アンテナ素 子に対応した受信回路において、 増幅器等のアナログ素子の特性のばらつき、 並 びに温度特性や経年劣化による時間的な変動によりそれぞれ独立して位相や振幅 の特性差が生じ、 未知の振幅変動や位相回転が加わることにより、 指向性パター ンが希望するものとは異なつて形成されてしまう。 このような各受信回路の特性 差は、 受信利得の低下を引き起こし、 通信品質の劣化を招くことになる。
そこで、 アレーアンテナ受信装置では、 こうした問題を防止するために、 各受 信回路での位相や振幅の特性差を計算してキヤリブレーションを行う必要があり、 具体的には各受信回路毎の位相や振幅の特性差を計算してキャリブレーション係 数を求め、 受信された通信信号の位相や振幅に算出されたキャリブレーション係 数の位相成分及び振幅成分をそれぞれ乗算することで受信回路間の特性差を補償 している。 このような方法で随時キャリブレーションを行うことにより、 アレー アンテナ受信装置は常に正確な指向性パターン制御ができるため、 アレーアンテ
ナ受信装置の長所を最大限に引き出すことが可能となる。
このようなキヤリブレーシヨンを正確に行うためには、 キヤリブレーシヨン信 号に基づいて受信回路間の特性差を算出するキヤリブレーション装置を使用する 必要がある。 例えば特開平 1 1—4 6 1 8 0号公報に開示されたアレーアンテナ 無線受信装置のキヤリブレーション装置では、 通信に使用する拡散信号と同一の 周波数帯の拡散信号をキャリブレーション信号として使用している。 又、 随時キ ャリブレーシヨンを行うためには、 通信中にキヤリブレーシヨンを行うための構 成を具備する必要があるが、 ここでのキャリブレーション装置では、 キヤリブレ ーシヨン信号を通信信号に多重させて通信中にキヤリブレーシヨンを行うことを 可能としており、 これによつて常に受信回路間の特性差を補償しながら通信でき るようになっている。
図 6は、 従来の C D MA通信方式によるアレーアンテナ受信装置の基本構成を 示した回路ブロック図である。
このアレーアンテナ受信装置は、 C D MA通信方式を適用したもので、 キヤリ ブレーション装置 (特開平 1 1—4 6 1 8 0号公報に開示されたアレーアンテナ 無線受信装置のキヤリブレーション装置) を用いて受信回路間の特性差を補償し ている。 アレーアンテナ受信装置は、 キャリブレーション装置と一体化されてお り、 その基本構成を機能ブロックとして分けた場合、 ベースバンド帯域で生成し たキヤリブレ一シヨン信号を拡散変調処理した後に通信信号と同一の無線帯域に 周波数変換して送信伝送するキャリブレーション信号送信部と、 所定数のアンテ ナ素子に対応した受信回路毎に受信された無線帯域の通信信号とキヤリブレーシ ョン信号とを多重化した多重無線信号を受信処理によりベースバンド帯域に周波 数変換して所定数の多重ベースバンド信号を生成する無線処理部と、 ベースバン ド帯域で所定数の多重ベースバンド信号中に含まれるキヤリブレーシヨン信号に おける同期タイミングの検出を行うサーチャー部を含むと共に、 この同期タイミ ングの検出結果を用いてキヤリブレーション信号についてそれぞれ所定数のキヤ リブレーシヨン係数を算出するキヤリブレーション処理部と、 ベースバンド帯域 で所定数の多重ベースバンド信号中に含まれる通信信号に対して所定数のキヤリ ブレーション係数を用いて受信回路間の特性差を補償しながら復調処理を行って
得られる所定数の復調信号を加算合成してアレーアンテナによる受信出力を行う 通信処理部とを備えた構成となっている。
このうち、 キャリブレーション信号送信部は、 キャリブレーション信号をべ一 スバンド帯域で生成したベースバンド ·キャリブレーション信号 3 0 1を出力す るキヤリブレ一ション信号生成部 3 0 0と、 ベースバンド ·キヤリブレーション 信号 3 0 1に拡散符号を乗算して拡散変調処理を行うことで拡散変調されたべ一 スバンド ·キャリブレーション信号 3 0 3を出力する拡散変調部 3 0 2と、 拡散 変調されたベースバンド ·キャリブレーション信号 3 0 3を無線帯域へ周波数変 換して無線キャリブレーション信号 3 0 5を出力する無線送信部 3 0 4と、 無線 キャリブレーション信号 3 0 5を N (Nは、 2以上の自然数) 個に分配して無線 キャリブレーション信号 3 0 7— 1〜3 0 7— Nを出力する分配器 3 0 6とから 構成される。 但し、 分配器 3 0 6における分配数を示す Nは、 通信信号を受信す るためのアンテナ部 3 0 8を構成するアンテナ素子数と等しく、 ここでは Nの数 を問わない。
無線処理部は、 通信信号を受信するための N個のアンテナ素子から成るアンテ ナ部 3 0 8と、 アンテナ部 3 0 8で受信された N個の無線通信信号 3 0 9— 1〜 3 0 9—Nと N個の無線キヤリブレーシヨン信号 3 0 7— 1〜3 0 7— Nとを多 重して N個の多重無線信号 3 1 1— 1〜3 1 1 _ Nを出力する N個の結合器 3 1 0— 1〜3 1 0— Nと、 受信処理として N個の多重無線信号 3 1 1— 1〜3 1 1 一 Nをベースバンド帯域に周波数変換して N個の多重ベースバンド信号 3 1 3— 1〜3 1 3—Nを出力する N個の無線受信部 3 1 2 _ 1〜3 1 2—Nとから構成 される。
キャリブレーション処理部は、 N個の多重ベースバンド信号 3 1 3— 1〜3 1 3—N中に含まれるキャリブレーション信号における同期タイミングの検出を行 つて N個の同期タイミング信号 3 1 5— 1〜3 1 5 _ Nを出力するサーチャー部 3 1 4と、 N個の同期タイミング信号 3 1 5—:!〜 3 1 5— Nを用いて N個のベ ースバンド多重信号 3 1 3— 1〜3 1 3—N中に含まれるキャリブレーション信 号についてそれぞれキャリブレーション係数を算出した結果を示す N個のキヤリ ブレーシヨン係数信号 3 1 7— 1〜3 1 7—Nを出力する N個のキヤリブレーシ
ョン係数算出部 3 1 6—:!〜 3 1 6—Nとから構成される。
通信処理部は、 N個の多重ベースバンド信号 3 1 3— 1〜3 1 3— N中に含ま れる通信信号に対して N個のキャリブレーション係数信号 3 1 7—:!〜 3 1 7— Nで示されるキヤリブレーシヨン係数をそれぞれ乗算することで受信回路間の特 性差を補償しながら復調処理を行って N個の復調信号 3 1 9 _ 1〜3 1 9 _ Nを 出力する N個の通信信号復調部 3 1 8—:!〜 3 1 8— Nと、 N個の復調信号 3 1 9一:!〜 3 1 9— Nを加算合成してアレーアンテナによる受信出力を行う加算部
3 2 0とから構成される。
このアレーアンテナ受信装置の場合、 キヤリブレ一ション信号送信部における 拡散変調部 3 0 2で拡散変調されたベースバンド ·キャリブレーション信号 3 0 3を用いることにより、 キヤリブレーション処理部ではサーチャー部 3 1 4によ つてパス ·サーチを行って N個の多重ベースバンド信号 3 1 3— 1〜3 1 3 _ N 中に含まれるキヤリブレーシヨン信号における同期タイミングの検出を要する構 成となっている。 尚、 上述した特開平 1 1一 4 6 1 8 0号公報では、 サーチャー 部 3 1 4の細部を説明していないが、 C D MA通信方式を適用したサーチャー部 3 1 4の場合、 通常受信回路数分の同期タイミングを出力可能とするためのディ レイプ口ファイル生成回路とパス ·サーチ回路とを備えて構成される。
図 7は、 上述したアレーアンテナ受信装置に備えられるサーチャー部 3 1 4の 細部構成を示した回路ブロック図である。
このサーチャー部 3 1 4は、 N個の多重ベースバンド信号 4 0 0—:!〜 4 0 0 - N (上述した N個の多重ベースバンド信号 3 1 3 _ 1〜3 1 3 _ N) とその中 に含まれる N個のキャリブレーション信号の生成伝送時に拡散変調部 3 0 2にお いて拡散変調処理で用いた既知の拡散符号系列 (ここでは乗算した拡散符号) と の相関を取ることで得られる相関値であるディレイプ口ファイルを生成して N個 のキヤリブレーシヨン信号に対する N個のディレイプ口ファイル信号 4 0 2 - 1 〜4 0 2 _ Nを出力する N個のディレイプ口ファイル生成回路 4 0 1 _:!〜 4 0 1一 Nと、 N個のディレイプ口ファイル信号 4 0 2—:!〜 4 0 2—Nに対してそ れぞれパス ·サーチを行った結果を示す N個の同期タイミング信号 4 0 4—:!〜
4 0 4— N (上述した N個の同期タイミング信号 3 1 5— 1〜3 1 5—Nとなる
もの) を出力する N個のパス ·サーチ回路 4 0 3— 1〜4 0 3 _ Nとを備えて構 成されている。
因みに、 上述したアレーアンテナ受信装置に関連するその他の周知技術として は、 特開平 1 1一 3 1 2 9 1 7号公報ゃ特開 2 0 0 0— 2 9 5 1 5 2号公報に開 示されたアレーアンテナ無線通信装置が挙げられる。
上述したァレーアンテナ受信装置の場合、 キヤリブレーション信号送信部から 伝送されたキヤリブレーシヨン信号をキヤリブレーシヨン処理部で処理する際、 キャリブレーション信号が無線処理部からの通信信号に対して干渉源となるため、 キヤリブレーション信号の伝送レベルを可能な限り低く抑えることが要求されて いるが、 キヤリブレーション信号の伝送レベルが低ければキヤリブレーション 処理部に備えられるサーチャー部による多重ベースバンド信号中に含まれるキヤ リブレーシヨン信号における同期タイミングの検出時にディレイプ口ファイル信 号に示されるディレイプ口ファイル上のパスのレベルも低くなつてしまうため、 こうした低いパスのレベルでは同期タイミングを正確に検出できなくなってしま うという問題がある。
このようにキヤリブレ一シヨン処理部におけるサーチャー部により正確に同期 タイミングを検出できなければ、 キヤリブレーションに必要な位相や振幅の受信 回路間の特性差の情報を含むキャリブレーション係数を正確に算出することがで きないため、 キャリブレーションの精度が劣化することになり、 結果としてァレ —アンテナ受信装置が形成する指向性パターンにキヤリブレーシヨン係数の誤差 分のずれが生じて通信品質の劣化を引き起こしてしまうことになる。 発明の概要
本発明は、 このような問題点を解決すべくなされたもので、 その技術的課題は、 キヤリブレーション信号の伝送レベルを可能な限り低く抑えた条件下でパスのレ ベルが低くても適確にして高精度に多重ベースバンド信号中に含まれるキヤリブ レーシヨン信号における同期タイミングの検出が可能なアレーアンテナ受信装置 を提供することにある。
本発明によれば、 C D MA通信方式を適用したアレーアンテナ受信装置にあつ
て、 所定数のアンテナ素子に対応した受信回路毎に受信される無線帯域の通信信 号とベースバンド帯域で拡散変調処理した後に該通信信号と同一の無線帯域に周 波数変換されて送信伝送されたキヤリブレーション信号とを多重化した多重無線 信号を受信処理によりベースバンド帯域に周波数変換して得られる所定数の多重 ベースバンド信号中に含まれる該キヤリブレーション信号における同期タイミン グの検出を行う際、 該所定数の多重ベースバンド信号と該拡散変調処理で用いた 既知の拡散符号系列との相関値を取ることによって求められる該受信回路数分の ディレイプ口ファイルを加算合成し、 該加算合成により得られたディレイプロフ アイルに対してパス ·サーチすることを特徴とするアレーアンテナ受信装置のキ ャリブレーシヨン用パス ·サーチ方法が得られる。
このアレーアンテナ受信装置のキヤリブレーシヨン用パス ·サーチ方法におい て、 パス ·サーチでは、 加算合成により得られたディレイプロファイルに対して 最大パスのみをサーチすることは好ましい。
一方、 本発明によれば、 C D MA通信方式を適用したアレーアンテナ受信装置 にあって、 所定数のアンテナ素子に対応した受信回路毎に受信された無線帯域の 通信信号とベースバンド帯域で拡散変調処理した後に該通信信号と同一の無線帯 域に周波数変換されて送信伝送されたキヤリブレーション信号とを多重化した多 重無線信号を受信処理によりベースバンド帯域に周波数変換して得られる所定数 の多重ベースバンド信号中に含まれる該キヤリブレーション信号における同期夕 ィミングの検出を行うサーチャー部において、 所定数の多重ベースバンド信号と 該拡散変調処理で用いた既知の拡散符号系列との相関値を取りディレイプロファ ィルを生成するディレイプ口ファイル生成回路と、 受信回路数分のディレイプ口 ファイルを加算合成するディレイプ口ファイル合成回路と、 加算合成により得ら れたディレイプ口ファイルに対してパス ·サーチするパス ·サーチ回路とを備え たアレーアンテナ受信装置のキヤリブレーシヨン用サーチャー部が得られる。 このアレーアンテナ受信装置のキヤリブレーション用サーチャー部において、 パス'サーチ回路は、 パス ·サーチとしてディレイプ口ファイル合成回路で加算合 成により得られたディレイプ口ファイルに対して最大パスのみをサーチすること は好ましい。
他方、 本発明によれば、 ベースバンド帯域で生成したキャリブレーション信号 を拡散変調処理した後に通信信号と同一の無線帯域に周波数変換して送信伝送す るキャリブレーション信号送信部と、 所定数のアンテナ素子に対応した受信回路 毎に受信された無線帯域の通信信号とキヤリブレーシヨン信号とを多重化した多 重無線信号を受信処理によりベースバンド帯域に周波数変換して所定数の多重べ 一スパンド信号を生成する無線処理部と、 ベースバンド帯域で所定数の多重べ一 スバンド信号中に含まれるキヤリブレーシヨン信号における同期タイミングの検 出を行うサーチャー部を含むと共に、 該同期タイミングの検出結果を用いて該キ ャリブレーシヨン信号についてそれぞれ所定数のキヤリブレーシヨン係数を算出 するキヤリブレーション処理部と、 ベースバンド帯域で所定数の多重ベースバン ド信号中に含まれる通信信号に対して所定数のキヤリブレーション係数を用いて 受信回路間の特性差を補償しながら復調処理を行って得られる所定数の復調信号 を加算合成してアレーアンテナによる受信出力を行う通信処理部とを備えた C D MA通信方式を適用したアレーアンテナ受信装置において、 サーチャー部は、 同 期タイミングの検出を所定数の多重ベースバンド信号と該拡散変調処理で用いた 既知の拡散符号系列との相関値を取ることによって求められる受信回路数分のデ ィレイプ口ファイルを加算合成し、 該加算合成により得られたディレイプロファ ィルに対してパス ·サーチするパス ·サーチ回路を備えたアレーアンテナ受信装 置が得られる。
このアレーアンテナ受信装置において、 パス ·サーチ回路は、 パス ·サーチと して加算合成により得られたディレイプ口ファイルに対して最大パスのみをサー チすることは好ましい。 図面の簡単な説明
図 1は、 本発明のアレーアンテナ受信装置のキヤリブレーション用パス ·サ一 チ方法を適用した一実施例に係る C D MA通信方式によるァレーアンテナ受信装 置の基本構成を示した回路ブロック図である。
図 2は、 図 1に示すァレーアンテナ受信装置に備えられるサーチャー部の細部 構成を示した回路プロック図である。
図 3は、 図 2に示すサーチャー部のディレイプ口ファイル合成回路における入 出力信号波形を対比して示したものである。
図 4は、 図 2に示すサーチャー部のディレイプ口ファイル合成回路から出力さ れるディレイプロファイル信号におけるマルチパス時のパスの割り当ての様子を 模式的に示した波形図である。
図 5は、 図 2に示すサーチャー部のディレイプロフアイル合成回路から出力さ れるディレイプ口ファイル信号におけるキヤリブレーション信号入力時のパスの 割り当ての様子を模式的に示した波形図である。
図 6は、 従来の C D M A通信方式によるァレーアンテナ受信装置の基本構成を 示した回路プロック図である。
図 7は、 図 6に示すァレーアンテナ受信装置に備えられるサーチャー部の細部 構成を示した回路ブロック図である。 実施例の詳細な説明
以下に実施例を挙げ、 本発明のアレーアンテナ受信装置について、 図面を参照 して詳細に説明する。
最初に、 本発明のアレーアンテナ受信装置に適用されるアレーアンテナ受信装 置のキャリブレーション用パス ·サーチ方法の技術的概要を簡単に説明する。 こ のパス ·サーチ方法は、 C D MA通信方式を適用したアレーアンテナ受信装置に あって、 所定数のアンテナ素子に対応した受信回路毎に受信される無線帯域の通 信信号とベースバンド帯域で拡散変調処理した後に通信信号と同一の無線帯域に 周波数変換されて送信伝送されたキヤリブレーション信号とを多重化した多重無 線信号を受信処理によりベースバンド帯域に周波数変換して得られる所定数の多 重べ一スパンド信号中に含まれるキヤリブレーシヨン信号における同期タイミン グの検出を行う際、 所定数の多重ベースバンド信号とキャリブレーション信号の 拡散変調処理で用いた既知の拡散符号系列との相関値を取ることによつて求めら れる受信回路数分のディレイプ口ファイルを加算合成し、 加算合成により得られ たディレイプロファイルに対してパス 'サーチするものである。 但し、 ここでの パス ·サーチは、 加算合成により得られたディレイプ口ファイルに対して最大パ
スのみをサーチする。
このパス ·サーチ方法に従えば、 加算合成により得られたディレイプロフアイ ルに対してパス ·サーチしており、 このときのキヤリブレーシヨン信号は単一の 同期タイミングしか持たないため、 パス ·サーチを最大パスについてのみ行うこ とができ、 これによつてキヤリブレーション信号の伝送レベルを可能な限り低く 抑えた条件下でパスのレベルが低くても適確にして高精度に多重ベースバンド信 号中に含まれるキヤリブレーション信号における同期タイミングの検出が可能と なる。 このように、 正確に同期タイミングを検出できれば、 キャリブレーション に必要な位相や振幅の受信回路間の特性差の情報を含むキャリブレーション係数 を正確に算出できるため、 キャリブレーションの精度が向上し、 結果としてァレ 一アンテナ受信装置が形成する指向性パターンにキヤリブレーション係数の誤差 分のずれが生じること無く通信品質を向上させることができる。
図 1は、 上述した本発明のアレーアンテナ受信装置のキヤリブレーシヨン用パ ス ·サーチ方法を適用した一実施例に係る C D MA通信方式によるアレーアンテ ナ受信装置の基本構成を示した回路ブロック図である。
このアレーアンテナ受信装置の場合も、 図 6で説明した従来装置と同様に、 C D M A通信方式を適用したもので、 その基本構成を機能プロックとして分けた場 合、 ベースバンド帯域で生成したキャリブレーション信号を拡散変調処理した後 に通信信号と同一の無線帯域に周波数変換して送信伝送するキヤリブレーション 信号送信部と、 所定数のアンテナ素子に対応した受信回路毎に受信された無線帯 域の通信信号とキヤリブレーシヨン信号とを多重化した多重無線信号を受信処理 によりベースバンド帯域に周波数変換して所定数の多重ベースバンド信号を生成 する無線処理部と、 ベースバンド帯域で所定数の多重ベースバンド信号中に含ま れるキヤリブレーシヨン信号における同期タイミングの検出を行うサーチャー部 を含むと共に、 この同期タイミングの検出結果を用いてキヤリブレーシヨン信号 についてそれぞれ所定数のキヤリブレーシヨン係数を算出するキヤリブレーショ ン処理部と、 ベースバンド帯域で所定数の多重ベースバンド信号中に含まれる通 信信号に対して所定数のキヤリブレーション係数を用いて受信回路間の特性差を 補償しながら復調処理を行って得られる所定数の復調信号を加算合成してアレー
アンテナによる受信出力を行う通信処理部とを備えた構成となっている。
このうち、 キャリブレーション信号送信部は、 キャリブレーション信号をべ一 スバンド帯域で生成したベースバンド ·キャリブレーション信号 1 0 1を出力す るキャリブレーション信号生成部 1 0 0と、 ベースバンド ·キヤリブレーション 信号 1 0 1に拡散符号を乗算して拡散変調処理を行うことで拡散変調されたべ一 スパンド ·キャリブレーション信号 1 0 3を出力する拡散変調部 1 0 2と、 拡散 変調されたベースバンド ·キャリブレーション信号 1 0 3を無線帯域へ周波数変 換して無線キャリブレーション信号 1 0 5を出力する無線送信部 1 0 4と、 無線 キャリブレーション信号 1 0 5を N (Nは、 2以上の自然数) 個に分配して無線 キヤリブレーシヨン信号 1 0 7 _ 1〜 1 0 7—Nを出力する分配器 1 0 6とから 構成される。 但し、 分配器 1 0 6における分配数を示す Nは、 通信信号を受信す るためのアンテナ部 1 0 8を構成するアンテナ素子数と等しく、 ここでは Nの数 を問わない。
無線処理部は、 通信信号を受信するための N個のアンテナ素子から成るアンテ ナ部 1 0 8と、 アンテナ部 1 0 8で受信された N個の無線通信信号 1 0 9— 1〜 1 0 9—Nと N個の無線キャリブレーション信号 1 0 7—:!〜 1 0 7— Nとを多 重して N個の多重無線信号 1 1 1 一 1〜1 1 1 一 Nを出力する N個の結合器 1 1 0 _:!〜 1 1 0— Nと、 N個の多重無線信号 1 1 1— 1〜: 1 1 1—Nをべ一スバ ンド帯域に周波数変換して N個の多重ベースバンド信号 1 1 3—:!〜 1 1 3 _ N を出力する N個の無線受信部 1 1 2—:!〜 1 1 2— Nとから構成される。
キャリブレーション処理部は、 N個の多重ベースバンド信号 1 1 3 _ 1〜1 1 3—N中に含まれるキヤリブレーシヨン信号における同期タイミングの検出を行 つて N個の同期タイミング信号 1 1 5—;!〜 1 1 5—Nを出力するサーチャー部 1 1 4と、 N個の同期タイミング信号 1 1 5— 1〜1 1 5— Nを用いて N個のベ ースバンド多重信号 1 1 3—:!〜 1 1 3—N中に含まれるキャリブレーション信 号についてそれぞれキヤリブレーシヨン係数を算出した結果を示す N個のキヤリ ブレーシヨン係数信号 1 1 7—:!〜 1 1 7 _ Nを出力する N個のキヤリブレーシ ヨン係数算出部 1 1 6 _:!〜 1 1 6 _ Nとから構成される。
但し、 ここでのサーチャー部 1 1 4から出力される N個の同期タイミング信号
1 1 5—:!〜 1 1 5— Nは、 一系統のものから分岐されて N系統のものとして構 築されている構成で示唆されるように、 サーチャー部 1 1 4で同期タイミングの 検出を行うための基本構成が従来のサーチャー部 3 1 4と比べて異なっている。 即ち、 このサーチャー部 1 1 4は、 N個の多重ベースバンド信号 1 1 3—:!〜 1 1 3—N中に含まれるキヤリブレーシヨン信号における同期タイミングの検出を 行う際、 多重ベースバンド信号とキャリブレーション信号送信部における拡散変 調部 1 0 2で拡散変調処理に用いた既知の拡散符号系列 (ここでは乗算した拡散 符号) との相関値を取ることによって求められる受信回路数分のディレイプロフ アイルを加算合成し、 この加算合成により得られたディレイプ口ファイルに対し てパスをサーチすることで得られる単一の同期タイミングだけを持ったキヤリブ レ一シヨン信号の同期タイミング信号を一系統として出力する。
因みに、 ここでのサーチャー部 1 1 4を上述したアレーアンテナ受信装置のキ ヤリブレ一シヨン用パス ·サーチ方法を適用したもの、 即ち、 C D MA通信方式 を適用したアレーアンテナ受信装置にあって、 アンテナ部 1 0 8の所定数のアン テナ素子に対応した受信回路毎に受信された無線帯域の通信信号 1 0 9— :!〜 1 0 9— Nとベースバンド帯域で拡散変調処理された後に通信信号 1 0 9— 1〜 1 0 9一 Nと同一の無線帯域に周波数変換された無線キャリブレーション信号 1 0 7 _ 1〜 1 0 7—Nとを多重化した多重無線信号 1 1 1一 1〜 1 1 1一 Nを受信 処理によりベースバンド帯域に周波数変換して得られる所定数の多重ベースバン ド信号 1 1 3—:!〜 1 1 3—N中に含まれるキャリブレーション信号における同 期タイミングの検出を行うものみなした場合、 サーチャー部 1 1 4は、 所定数の 多重ベースバンド信号 1 1 3—:!〜 1 1 3—Nとキャリブレーション信号の拡散 変調処理で用いた既知の拡散符号系列 (乗算した拡散符号) との相関値を取りデ ィレイプ口ファイルを生成するディレイプ口ファイル生成回路と、 受信回路数分 のディレイプ口ファイルを加算合成するディレイプ口ファイル合成回路と、 加算 合成により得られたディレイプ口ファイルに対してパス ·サーチするパス ·サー チ回路とを備えた構成となる。 そして、 このサーチャー部 1 1 4において、 パス •サーチ回路は、 パス 'サーチとして後述するように、 ディレイプロファイル合 成回路で加算合成により得られたディレイプ口ファイルに対して最大パスのみを
サーチする機能を有する。
図 2は、 ここでのサーチャー部 1 1 4の細部構成を示した回路ブロック図であ る。
このサーチャー部 1 1 4は、 多重ベースバンド信号 2 0 0—:!〜 2 0 0— N (上述した N個の多重ベースバンド信号 1 1 3 _ 1〜 1 1 3— N) とその中に含 まれる N個のキャリブレーション信号の生成伝送時に拡散変調部 1 0 2において 拡散変調処理した既知の拡散符号系列 (乗算した拡散符号) との相関を取ること で得られる相関値であるディレイプ口ファイルを生成して N個のディレイプロフ アイル信号 2 0 2—:!〜 2 0 2—Nを出力する N個のディレイプ口ファイル生成 回路 2 0 1— 1〜 2 0 1— Nと、 N個のディレイプ口ファイル信号 2 0 2—:!〜 2 0 2—Nを加算合成してディレイプ口ファイル信号 2 0 4を出力するディレイ プロファイル合成回路 2 0 3と、 ディレイプ口ファイル信号 2 0 4に対してパス •サーチして同期タイミングを検出した結果を示す同期タイミング信号 2 0 6 (上述した N個の同期タイミング信号 1 1 5— 1〜 1 1 5— Nとなるもの) を出 力するパス ·サーチ回路 2 0 5とを備えて構成されている。
但し、 ここでは、 パス ·サーチ回路 2 0 5がディレイプロファイル合成回路 2 0 3で加算合成されたディレイプ口ファイル信号 2 0 4からパス ·サーチしてキ ャリブレーシヨン信号の同期タイミングを検出するが、 このときのキヤリブレー シヨン信号は単一の同期タイミングしか持たないため、 パス ·サーチ回路 2 0 5 は最大パスについてのみ検出する。
図 3は、 このサーチャー部 1 1 4のディレイプ口ファイル合成回路 2 0 3にお ける入出力信号波形を対比して示したものである。
ここでは、 例えばディレイプ口ファイル信号 2 0 2— 1〜2 0 2— 3の波形が 図示されるような形状である場合、 ディレイプ口ファイル合成回路 2 0 3でこれ' らを加算合成してディレイプ口ファイル信号 2 0 4として出力すれば、 図示され る波形のように形状変化してノィズレベルが平均化されてディレイプ口ファイル の S N比を向上させることができるため、 図 7に示したような従来のサーチャー 部 3 1 4では検出不可能であった各ディレイプ口ファイルにおいてノイズに埋れ ているように見えるパスについても検出可能となり、 パス ·サーチ回路 2 0 5で
は一層高精度なパス 'サーチを行うことができることを示している。 従って、 加 算合成後のディレイプ口ファイルは、 ノイズレベルが平均化されて S N比が向上 し、 より高精度なパス 'サーチが可能となる。
図 4は、 マルチパス時のディレイプ口ファイル信号におけるパスの割り当ての 様子を模式的に示した波形図である。
一般に、 例えばアレーアンテナ受信装置を基地局とした場合、 基地局が端末装 置からの通信信号を受信するとき、 通常無線伝搬環境によつて直接波以外にも多 くの反射波が受信信号に含まれるマルチパスと呼ばれる通信状態となり、 このよ うな受信信号からディレイプ口ファイル信号 2 0 4が生成されたと仮定すれば、 ディレイプ口ファイル信号 2 0 4には図 4に示したような幾つかのパス P 1〜P 5が存在する。 このように、 一般的に通信信号の受信に用いられるサーチャー部 の場合には、 通常複数のパスをサーチできるような構成になっている。
ところが、 ここでのアレーアンテナ受信装置の場合、 キャリブレーション信号 は通信信号のような空中伝搬をしないため、 マルチパスが発生しない。
図 5は、 このサ一チヤ一部 1 1 4のディレイプ口ファイル合成回路 2 0 3から 出力されるディレイプ口ファイル信号 2 0 4における多重ベースバンド信号 2 0 0—:!〜 2 0 0—N中に含まれるキヤリブレーション信号入力時のパスの割り当 ての様子を模式的に示した波形図である。 ここでは、 パス 'サーチ回路 2 0 5に より同期タイミング信号 2 0 6を出力する際、 最大パス P 1のみをサーチした上 で出力することを示している。 即ち、 サーチャー部 1 1 4では、 入力されたキヤ リブレーシヨン信号の同期タイミングの検出に際して、 単一パスのみを検出すれ ば十分であるので、 図 4に示されるようにマルチパス時のディレイプ口ファイル 信号 2 0 4における各パス P 1〜P 5に相当するものから図 5に示されるように 最大パス P 1のみについてサーチするよう動作させれば良い。 これによつて、 キ ヤリブレーシヨン係数算出部 1 1 6— 1〜1 1 6—Nには、 常時キヤリブレーシ ョン信号の同期タイミングのみが入力される (キヤリブレーション信号以外の同 期タイミングがキャリブレーション係数算出部 1 1 6—:!〜 1 1 6—Nに出力さ れなくなる) ため、 キャリブレーション係数の算出精度が向上する。
従って、 このようなサーチャー部 1 1 4を用いれば、 高精度なパス 'サーチを
行うことができるため、 キヤリブレーション処理部におけるキヤリブレーシヨン 係数算出部 1 1 6— 1〜 1 1 6— Nでは、 一層適確な同期タイミングを用いてキ ャリブレーシヨン係数が算出できる。
ところで、 各ディレイプ口ファイル信号 2 0 2—:!〜 2 0 2—Nをそれぞれ独 立してパス ·サーチを行わなくても良い理由としては、 同一のキヤリブレーショ ン信号送信部から生成伝送されたキヤリブレーシヨン信号がそれぞれ無線処理部 における異なる受信回路を通ってサーチャー部 1 1 4へ到達したときの同期タイ ミングの差を無視できるレベルであるとみなせることが挙げられる。 即ち、 C D MA通信方式で採用されているチップレートを 3 . 8 4 M c h i p / sとしたと き、 1 c h i pは約 7 8 mであるから、 アレーアンテナ受信装置を構成するとき に用いるケーブルの長さや、 回路上の伝送路差の誤差を l mに抑えられるとして も、 0 . 0 1 c h i pの誤差しか生じない計算になる。 これは、 実際に使われて いるアレーアンテナ受信装置のキヤリブレ一シヨン処理部におけるサーチャー部 1 1 4で生成するディレイプ口ファイルの解像度が数分の一 c h i p単位である ことを考慮すれば、 十分に無視できるレベルと言える。
通信処理部は、 N個の多重ベースバンド信号 1 1 3—:!〜 1 1 3— N中に含ま れる通信信号に対して N個のキャリブレーション係数信号 1 1 7—:!〜 1 1 7 _ Nで示されるキヤリブレーシヨン係数をそれぞれ乗算することで受信回路間の特 性差を補償しながら復調処理を行って N個の復調信号 1 1 9一:!〜 1 1 9一 Nを 出力する N個の通信信号復調部 1 1 8 _ 1〜 1 1 8— Nと、 N個の復調信号 1 1 9一 ι〜 ι 1 9一 Nを加算合成してアレーアンテナによる受信出力を行う加算部 1 2 0とから構成される。
以下は、 このアレーアンテナ受信装置の動作を説明する。 キャリブレーション 信号送信部において、 キャリブレーション信号生成部 1 0 0がキヤリブレーショ ン信号をベースバンド帯域で生成したベースバンド ·キヤリブレーシヨン信号 1 0 1を拡散変調部 1 0 2へ伝送出力し、 拡散変調部 1 0 2ではベースバンド ·キ ヤリブレーシヨン信号 1 0 1を拡散符号によって変調することで拡散変調処理さ れたベースバンド ·キヤリブレ一ション信号 1 0 3として無線送信部 1 0 4へ伝 送出力する。 無線送信部 1 0 4では、 拡散変調処理されたベースバンド 'キヤリ
ブレーション信号 1 0 3を無線帯域で周波数変換して無線キヤリブレーシヨン信 号 1 0 5として分配器 1 0 6へ引き渡し、 分配器 1 0 6では無線キヤリブレーシ ョン信号 1 0 5を N個分配した無線キヤリブレーシヨン信号 1 0 7 _ 1〜 1 0 7 一 Nを無線処理部における結合器 1 1 0 _ 1〜 1 1 0—Nへ引き渡す。
無線処理部において、 アンテナ部 1 0 8では通信信号が N個のアンテナ素子で 受信され、 無線通信信号 1 0 9—:!〜 1 0 9 _ Nとして結合器 1 1 0 _ 1〜1 1 0—Nへ引き渡される。 結合器 1 1 0— 1〜 1 1 0— Nでは、 キヤリブレ一ショ ン信号送信部における分配器 1 0 6から引き渡された無線キャリブレーション信 号 1 0 7 _ 1〜1 0 7— Nとアンテナ部 1 0 8からの無線通信信号 1 0 9 _ 1〜 1 0 9—Nとを多重した N個の多重無線信号 1 1 1 _ 1〜1 1 1—Nを無線受信 部 1 1 2 _ 1〜 1 1 2 _ Nへ伝送出力し、 無線受信部 1 1 2— 1〜 1 1 2 _ Nで は受信処理により多重無線信号 1 1 1 _ 1〜1 1 1—Nをベースバンド帯域に周 波数変換することにより得られる N個の多重ベースバンド信号 1 1 3—:!〜 1 1 3— Nをキャリブレーション処理部におけるサーチャー部 1 1 4及びキヤリブレ ーシヨン係数算出部 1 1 6— :!〜 1 1 6— Nと通信処理部における通信信号復調 部 1 1 8 _:!〜 1 1 8—Nとに対して分配して引き渡す。
キャリブレーション処理部において、 サーチャー部 1 1 4では、 多重ベースバ ンド信号 1 1 3— 1〜 1 1 3—Nに含まれるキヤリブレーシヨン信号における同 期タイミングの検出を上述した機能により単一の同期タイミングしか持たないキ ャリブレーション信号を対象に精度良く行うことで一つの同期タイミング信号 2 0 6として出力するが、 装置構成上において一系統の同期タイミング信号 2 0 6 が N個に分岐された同期タイミング信号 1 1 5 _:!〜 1 1 5— Nとしてそれぞれ キャリブレーション係数算出部 1 1 6— 1〜1 1 6— Nへ出力伝送される。 キヤ リブレ一ション係数算出部 1 1 6—:!〜 1 1 6—Nでは、 同期タイミング信号 1 1 5—:!〜 1 1 5—Nを用いて無線処理部における無線受信部 1 1 2— 1〜 1 1 2— Nから伝送されたベースバンド多重信号 1 1 3—:!〜 1 1 3—N中のキヤリ ブレーシヨン信号について受信回路毎の位相や振幅の特性差を算出して得られる キヤリブレ一シヨン係数信号 1 1 7—:!〜 1 1 7 _ Nを通信処理部における通信 信号復調部 1 1 8—:!〜 1 1 8— Nへ引き渡す。
但し、 サ一チヤ一部 1 1 4では、 ベースバンド多重信号 1 1 3—;!〜 1 1 3 _ Nに含まれるキャリブレーション信号に対し、 その伝送時に拡散変調部 1 0 2に おいて乗算された拡散符号と相関を取ることでキャリブレーション信号のみを符 号分離することができる。 又、 キャリブレーション係数算出部 1 1 6 _ 1〜1 1 6— Nで算出されるキヤリブレ一シヨン係数は、 キヤリブレーシヨン信号の位相 や振幅の基準値に対する特性変動のことを示す。 この基準値は、 例えば基準とす るアンテナ素子の値や、 任意に設定された値である場合が多いが、 ここではその 設定方法については問わないものとする。 更に、 キャリブレーション係数が位相 値と振幅値との両方についてのものか、 何れのものについてかもここでは問わな いものとする。
通信処理部において、 通信信号復調部 1 1 8— :!〜 1 1 8— Nでは、 N個の多 重ベースバンド信号 1 1 3— 1〜1 1 3—N中に含まれる通信信号に対して N個 のキャリブレーション係数信号 1 1 7—:!〜 1 1 7—Nで示されるキヤリブレー ション係数をそれぞれ乗算することで受信回路間の特性差を補償しながら復調処 理を行って得られる N個の復調信号 1 1 9 _ 1〜1 1 9一 Nを加算部 1 2 0へ出 力伝送する。 加算部 1 2 0では、 N個の復調信号 1 1 9— 1〜1 1 9一 Nを加算 合成してアレーアンテナによる受信出力を行う。
但し、 通信信号復調部 1 1 8— 1〜1 1 8— Nでは、 N個の多重ベースバンド 多重信号 1 1 3— :!〜 Nに対して通信信号送信時に拡散変調処理を行うために乗 算された拡散符号と相関を取ることで通信信号を符号分離することができ、 通信 信号に対してキャリブレーション係数信号 1 1 7 _:!〜 1 1 7 _ Nを乗算して復 調することにより、 各受信回路での特性差を補償しながら復調を行うことができ る。
このような動作にあって、 アレーアンテナ受信装置では、 キャリブレーション 処理部で一層適確にして精度良くキヤリブレーション係数を算出することができ、 算出されたキヤリブレーション係数が通信処理部に伝送され、 通信処理部で通信 信号の補償を行うことで、 装置全体として高い精度でキヤリブレーシヨンを行う ことができる。 従って、 このアレーアンテナ受信装置において、 随時高精度なキ ャリブレ一シヨンを行えば、 指向性パターンを常に高い精度で制御できるため、
通信品質を最大限に保ちながら通信信号を受信することが可能となる。
上述した実施例によれば、 ベースバンド帯域で拡散変調処理後、 通信信号と同 一の無線帯域に周波数変換されたキヤリブレーション信号と所定数のアンテナ素 子に対応した受信回路毎に受信される無線帯域の通信信号とを多重化した多重無 線信号を受信処理によりベースバンド帯域に周波数変換して得られる所定数の多 重ベースバンド信号中に含まれるキヤリブレーション信号における同期タイミン グの検出を行う際、 所定数の多重ベースバンド信号とキヤリブレーション信号の 拡散変調処理で用いた既知の拡散符号系列との相関値を取ることによって求めら れる受信回路数分のディレイプ口ファイルを加算合成し、 この加算合成により得 られたディレイプ口ファイルに対してパスをサーチするようにしており、 このと きのキャリブレーション信号は単一の同期タイミングしか持たないため、 パス · サーチを最大パスについてのみ行うことができ、 これによつてキヤリブレーショ ン信号の伝送レベルを可能な限り低く抑えた条件下でパスレベルが低くても適確 にして高精度に多重べ一スバンド信号中に含まれるキヤリブレーシヨン信号にお ける同期タイミングの検出が可能となる。 これにより、 正確に同期タイミングを 検出できるため、 キヤリブレ一ションに必要な位相や振幅の受信回路間の特性差 の情報を含むキヤリブレ一シヨン係数を正確に算出可能になり、 キヤリブレーシ ョンの精度が向上し、 結果としてアレーアンテナ受信装置が形成する指向性パタ ーンにキャリブレーション係数の誤差分のずれが生じること無く通信品質を向上 させることができるようになる。
以上のように、 本発明にかかるアレーアンテナ受信装置のキヤリブレ一シヨン 用サーチャー部は、 主として符号分割多元接続通信方式を適用したアレーアンテ ナ受信装置に用いるのに適している。
Claims
1 . 符号分割多元接続通信方式を適用したアレーアンテナ受信装置にあって、 所 定数のアンテナ素子に対応した受信回路毎に受信される無線帯域の通信信号とベ —スパンド帯域で拡散変調処理した後に該通信信号と同一の無線帯域に周波数変 換されて送信伝送されたキヤリブレーション信号とを多重化した多重無線信号を 受信処理によりベースバンド帯域に周波数変換して得られる所定数の多重ベース バンド信号中に含まれる該キヤリブレーシヨン信号における同期タイミングの検 出を行う際、 該所定数の多重ベースバンド信号と該拡散変調処理で用いた既知の 拡散符号系列との相関値を取ることによって求められる該受信回路数分のディレ ィプロファイルを加算合成し、 該加算合成により得られたディレイプ口ファイル に対してパス ·サーチすることを特徴とするアレーアンテナ受信装置のキヤリブ レ一シヨン用パス ·サーチ方法。
2 . 請求項 1記載のアレーアンテナ受信装置のキヤリブレーション用パス ·サー チ方法において、 前記パス ·サーチでは、 前記加算合成により得られた前記ディ レイプ口ファイルに対して最大パスのみをサーチすることを特徴とするアレーァ ンテナ受信装置のキヤリブレーション用パス ·サーチ方法。
3 . 符号分割多元接続通信方式を適用したアレーアンテナ受信装置にあって、 所 定数のアンテナ素子に対応した受信回路毎に受信された無線帯域の通信信号とベ —スバンド帯域で拡散変調処理した後に該通信信号と同一の無線帯域に周波数変 換されて送信伝送されたキヤリブレーション信号とを多重化した多重無線信号を 受信処理によりベースバンド帯域に周波数変換して得られる所定数の多重ベース バンド信号中に含まれる該キヤリブレーション信号における同期タイミングの検 出を行うサーチャー部において、 前記所定数の多重ベースバンド信号と前記拡散 変調処理で用いた既知の拡散符号系列との相関値を取りディレイプ口ファイルを 生成するディレイプ口ファイル生成回路と、 前記受信回路数分のディレイプロフ アイルを加算合成するディレイプ口ファイル合成回路と、 前記加算合成により得 られたディレイプ口ファイルに対してパス ·サーチするパス ·サーチ回路とを備
えたことを特徴とするアレーアンテナ受信装置のキヤリブレーシヨン用サ一チヤ 一部。
4 . 請求項 3記載のアレーアンテナ受信装置のキヤリブレーション用サーチャー 部において、 前記パス ·サーチ回路は、 前記パス ·サーチとして前記ディレイプ 口ファイル合成回路で前記加算合成により得られた前記ディレイプ口ファイルに 対して最大パスのみをサーチすることを特徴とするアレーアンテナ受信装置のキ ャリブレーシヨン用サーチャー部。
5 . ベースバンド帯域で生成したキヤリブレーシヨン信号を拡散変調処理した 後に通信信号と同一の無線帯域に周波数変換して送信伝送するキヤリブレーショ ン信号送信部と、 所定数のアンテナ素子に対応した受信回路毎に受信された無線 帯域の前記通信信号と前記キヤリブレーション信号とを多重化した多重無線信号 を受信処理によりベースバンド帯域に周波数変換して所定数の多重ベースバンド 信号を生成する無線処理部と、 前記ベースバンド帯域で前記所定数の多重ベース バンド信号中に含まれる前記キヤリブレーシヨン信号における同期タイミングの 検出を行うサーチャー部を含むと共に、 該同期タイミングの検出結果を用いて該 キヤリブレーション信号についてそれぞれ所定数のキヤリブレーシヨン係数を算 出するキヤリブレーシヨン処理部と、 前記ベースバンド帯域で前記所定数の多重 ベースバンド信号中に含まれる前記通信信号に対して前記所定数のキヤリブレー シヨン係数を用いて受信回路間の特性差を補償しながら復調処理を行って得られ る所定数の復調信号を加算合成してアレーアンテナによる受信出力を行う通信処 理部とを備えた符号分割多元接続通信方式を適用したアレーアンテナ受信装置に おいて、 前記サーチャー部は、 前記所定数の多重ベースバンド信号と前記拡散変 調処理で用いた既知の拡散符号系列との相関値を取りディレイプ口ファイルを生 成するディレイプ口ファイル生成回路と、 前記受信回路数分のディレイプロファ ィルを加算合成するディレイプロフアイル合成回路と、 前記加算合成により得ら れたディレイプ口ファイルに対してパス ·サーチするパス ·サーチ回路とを備え たことを特徴とするァレーアンテナ受信装置。
6 . 請求項 5記載のアレーアンテナ受信装置において、 前記パス 'サーチ回路は、 前記パス ·サーチとして前記加算合成により得られた前記ディレイプ口ファイル
に対して最大パスのみをサーチすることを特徴とするアレーアンテナ受信装置。
7 . ベースバンド帯域で生成したキヤリブレーション信号を拡散変調処理した 後に通信信号と同一の無線帯域に周波数変換して送信伝送し、 所定数のアンテナ 素子に対応した受信回路毎に受信された無線帯域の前記通信信号と前記キヤリブ レーシヨン信号とを多重化した多重無線信号を受信処理によりベースバンド帯域 に周波数変換して所定数の多重ベースバンド信号を生成し、 前記ベースバンド帯 域で前記所定数の多重べ一スパンド信号中に含まれる前記キヤリブレーシヨン信 号における同期タイミングの検出を行うと共に、 該同期タイミングの検出結果を 用いて該キヤリブレーシヨン信号についてそれぞれ所定数のキヤリブレーシヨン 係数を算出し、 前記ベースバンド帯域で前記所定数の多重ベースバンド信号中に 含まれる前記通信信号に対して前記所定数のキャリブレーション係数を用いて受 信回路間の特性差を補償しながら復調処理を行って得られる所定数の復調信号を 加算合成してアレーアンテナによる受信出力を行う符号分割多元接続通信方式を 適用したアレーアンテナ受信装置の受信方法において、 前記所定数の多重ベース バンド信号と前記拡散変調処理で用いた既知の拡散符号系列との相関値を取るこ とによって求められる該受信回路数分のディレイプ口ファイルを加算合成し、 該 加算合成により得られたディレイプ口ファイルに対してパス ·サーチすることを 特徴とするアレーアンテナ受信装置の受信方法。
8 . 請求項 7記載のアレーアンテナ受信装置の受信方法において、 前記パス *サ ーチでは、 前記加算合成により得られた前記ディレイプ口ファイルに対して最大 パスのみをサーチすることを特徴とするアレーアンテナ受信装置の受信方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001098330A JP3498796B2 (ja) | 2001-03-30 | 2001-03-30 | アレーアンテナ受信装置 |
JP2001-98330 | 2001-03-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002082679A1 true WO2002082679A1 (fr) | 2002-10-17 |
Family
ID=18951986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/001661 WO2002082679A1 (fr) | 2001-03-30 | 2002-02-25 | Recepteur d'antenne reseau |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3498796B2 (ja) |
WO (1) | WO2002082679A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998042093A1 (fr) * | 1997-03-18 | 1998-09-24 | Matsushita Electric Industrial Co., Ltd. | Dispositif d'etalonnage pour recepteur sans fil d'antenne reseau |
WO2000065750A1 (fr) * | 1999-04-23 | 2000-11-02 | Matsushita Electric Industrial Co., Ltd. | Recepteur radio et procede de detection du moment de reception |
EP1069708A2 (en) * | 1999-07-16 | 2001-01-17 | Nec Corporation | Circuit for simultaneously performing path search and antenna directivity control |
-
2001
- 2001-03-30 JP JP2001098330A patent/JP3498796B2/ja not_active Expired - Fee Related
-
2002
- 2002-02-25 WO PCT/JP2002/001661 patent/WO2002082679A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1998042093A1 (fr) * | 1997-03-18 | 1998-09-24 | Matsushita Electric Industrial Co., Ltd. | Dispositif d'etalonnage pour recepteur sans fil d'antenne reseau |
WO2000065750A1 (fr) * | 1999-04-23 | 2000-11-02 | Matsushita Electric Industrial Co., Ltd. | Recepteur radio et procede de detection du moment de reception |
EP1069708A2 (en) * | 1999-07-16 | 2001-01-17 | Nec Corporation | Circuit for simultaneously performing path search and antenna directivity control |
Non-Patent Citations (1)
Title |
---|
AOYAMA AKIO, YOSHIDA NAOMASA, ATOKAWA AKIHISA: "Antenna gosei chien profile riyogata CDMA path search hoshiki no teian", THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS GIJYUTSU KENKYU HOKOKU, SHADAN HOJIN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 99, no. 220, 23 July 1999 (1999-07-23), pages 25 - 30, XP002956315 * |
Also Published As
Publication number | Publication date |
---|---|
JP2002300086A (ja) | 2002-10-11 |
JP3498796B2 (ja) | 2004-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5186748B2 (ja) | 無線通信装置および無線通信方法 | |
JP4531607B2 (ja) | キャリブレーション装置 | |
US7391371B2 (en) | Radio transceiver and method of controlling direction of radio-wave emission | |
JP3369466B2 (ja) | アレーアンテナ無線受信装置のキャリブレーション装置 | |
JP3300252B2 (ja) | 適応送信ダイバーシチ装置及び適応送信ダイバーシチ方法 | |
JP3519276B2 (ja) | キャリブレーション装置 | |
JP2003218621A (ja) | アレーアンテナの校正装置及び校正方法 | |
WO1998042093A1 (fr) | Dispositif d'etalonnage pour recepteur sans fil d'antenne reseau | |
JPH10336149A (ja) | アレーアンテナ無線cdma通信装置 | |
JP3442156B2 (ja) | 多重伝搬特性測定装置 | |
US7145508B2 (en) | Radio frequency signal receiving apparatus, a radio frequency signal transmitting apparatus, and a calibration method | |
JP2000059278A (ja) | 無線通信装置 | |
JP3105871B2 (ja) | 無線装置とその無線受信方法 | |
WO2000060698A1 (fr) | Radioemetteur et procede de reglage de la directivite d'emission | |
WO2001063799A1 (fr) | Procede et dispositif de radiocommunication utilisant une antenne reseau | |
JP5446343B2 (ja) | アレイアンテナ通信装置およびその制御方法ならびにプログラム | |
JP2002232385A (ja) | ダイバーシティ・アダプティブアレーを用いたofdm受信装置 | |
WO2002082679A1 (fr) | Recepteur d'antenne reseau | |
JP2003348025A (ja) | 受信レベル測定回路 | |
JP4012520B2 (ja) | アレイアンテナ通信装置及び制御方法 | |
JP4171444B2 (ja) | アレイアンテナ通信装置及び制御方法 | |
GB2396501A (en) | Directing radio beam | |
JP4012519B2 (ja) | アレイアンテナ通信装置及び制御方法 | |
JP2004172683A (ja) | スペースダイバシティ同相合成回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CA CN KR NO SG US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |