WO2002082521A1 - Processing method and processor - Google Patents

Processing method and processor Download PDF

Info

Publication number
WO2002082521A1
WO2002082521A1 PCT/JP2002/002539 JP0202539W WO02082521A1 WO 2002082521 A1 WO2002082521 A1 WO 2002082521A1 JP 0202539 W JP0202539 W JP 0202539W WO 02082521 A1 WO02082521 A1 WO 02082521A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
gas
process gas
processing
control device
Prior art date
Application number
PCT/JP2002/002539
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Takahashi
Kenetsu Mizusawa
Jun Hirose
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2002082521A1 publication Critical patent/WO2002082521A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0658Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a single flow from a plurality of converging flows

Definitions

  • the present invention relates to a processing method and a processing apparatus, and more specifically, every time an object to be processed such as a wafer is processed one by one using a process gas, the flow rate of the process gas is adjusted in parallel with the processing of the object to be processed.
  • the present invention relates to a processing method and a processing device capable of performing a diagnosis.
  • the processing apparatus used in this process includes, for example, a gas supply source for individually supplying a plurality of types of process gases, a processing chamber connected to these gas supply sources via a gas supply line, and a gas in the processing chamber. And an exhaust device connected via an exhaust line for exhausting air.
  • a flow control device such as a mass flow controller for controlling the flow rate of the process gas is provided in the gas supply line, and the process gas is controlled at a predetermined flow rate through these flow control devices and supplied into the processing chamber. ing.
  • an object to be processed is subjected to processes such as an etching process and a film forming process using plural kinds of process gases whose flow rates are controlled.
  • the control of the flow rate of process gas in processes such as etching and film formation has become more important than ever before as integrated circuits become ultrafine and thinner. It is necessary to control the process gas with high precision.
  • the flow rate of the process gas is controlled by the flow rate control device, it is assumed that the process gas is always supplied at the set flow rate. Even during processing of the object to be processed due to disturbances even in the equipment, there is no guarantee that the gas flow rate is always controlled at the set flow rate, and the control flow rate of the process gas is checked as necessary. Diagnosis of loose flow is required.
  • An object of the present invention is to provide a processing method and a processing apparatus capable of reliably performing a self-diagnosis of a flow rate without interrupting processing of a target object and performing processing of a target object without reducing throughput.
  • a flow control device capable of self-diagnosis is provided as a device, and a branch line is provided in the gas supply line, and the gas supply line is switched to the branch line each time the process target is processed with the process gas.
  • the flow control device performs self-diagnosis of the flow rate of the process gas.
  • the gas supply line A branch line is provided and a flow detector is provided in the branch line.
  • the gas supply line is switched to the branch line, and the process gas is switched in the flow detector. It is characterized by diagnosing the flow rate.
  • a flow control device capable of self-diagnosis is provided as a device, a first valve is provided in the gas supply line, a branch line is provided from the gas supply line, and a second valve is provided in the branch line.
  • the first valve is closed and the second valve is opened to switch from the gas supply line to the branch line, and the process gas is supplied to the branch line.
  • the flow rate control device performs a self-diagnosis of the flow rate of the process gas.
  • a first valve is provided on the line and a branch line is provided for branching from the gas supply line.
  • a second valve and a flow detector are provided on the branch line, and each time the object is processed with the process gas. Close the first valve and open the second valve to switch from the gas supply line to the branch line, flow the process gas through the branch line, and diagnose the flow rate of the process gas with the flow rate detector It is characterized by doing.
  • FIG. 1 is a configuration diagram showing an embodiment of the processing apparatus of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the flow control device shown in FIG.
  • FIG. 3 is a view corresponding to FIG. 1 showing another embodiment of the processing apparatus of the present invention.
  • the processing apparatus of the present embodiment includes a gas box 10 for controlling the flow rates of a plurality of types of process gases, and a chamber connected to the gas box 10 via a gas supply line 20.
  • a plurality of process gases are controlled at a predetermined flow rate through the gas box 10 and supplied into the chamber 130, and the inside of the chamber 30 is evacuated to a predetermined vacuum level through the vacuum exhaust device 40.
  • a predetermined process for example, etching
  • FCS flow control devices
  • Each kind of process gas is controlled to a predetermined flow rate.
  • These flow rate control devices 11 are configured to be able to self-diagnose the flow rate of each of them as described later, Each is set up individually.
  • the first branch line 2 1 to 2 5 is the remaining second branch line 2 6 It branches off from the gas supply line 20 on the more upstream side.
  • a first valve 12 and a second pulp 13 are provided on the upstream and downstream sides of the flow control device 11, respectively, and each of them is branched via the first and second valves 12 and 13. Open and close lines 21-26.
  • a third branch line 27 branches from the second branch line 26, and a third valve 14 is provided in the third branch line 27.
  • the second branch line 26 supplies nitrogen gas when the amount of nitrogen gas needs to be adjusted during the process or when the flow rate of nitrogen gas needs to be adjusted appropriately (for example, when transferring a wafer).
  • the third branch line 27 is used as a pipe for supplying nitrogen gas when the flow rate adjustment is unnecessary, for example, when the atmosphere is opened to the atmosphere.
  • a fourth valve 60 is provided between the junction of the first branch lines 21 to 25 and the junction of the second branch line 26, and nitrogen gas as a process gas is supplied to the fourth valve 6 Merges with other process gas downstream of 0.
  • the gas supply line 20 has a fourth branch line 28 branched between the junction of the first branch lines 21 to 25 and the fourth valve 60.
  • the downstream end of the fourth branch line 28 is connected to the exhaust gas line 50 on the downstream side of the vacuum exhaust device 40.
  • a fifth valve 70 is provided in the fourth branch line 28, and when performing self-diagnosis of the control flow rate of the flow control device 11, the fifth valve 70 is opened, and the process gas is supplied to the gas exhaust line 50. It is designed to discharge.
  • a sixth valve 80 is provided downstream of the branch point of the second branch line 26 of the gas supply line 20, and this valve 80 is connected to the flow control device 11 similarly to the fifth valve 70. Used for self-diagnosis of control flow rate.
  • a lower electrode 31 and an upper electrode 32 are provided in the chamber 30 as conventionally known, and these two electrodes 31 and 3 2 are connected to each other. They are opposed to each other via a gap.
  • the lower electrode 31 is connected to a high-frequency power source 34 via a matching device 33, and the upper electrode 32 is grounded.
  • the upper electrode 32 is formed in a hollow shape, and a large number of holes are formed on the lower surface thereof so as to be evenly dispersed. Therefore, when a plurality of kinds of process gases are controlled to a predetermined flow rate and supplied into the upper electrode 32 through the flow rate control device 11 in the gas box ⁇ 0, the plurality of kinds of process gases are stored in the upper electrode 32. After being uniformly mixed, it is supplied into the chamber 30 through the hole on the lower surface and is evenly diffused. When high-frequency power is applied to the lower electrode 31 in this state, the wafer W on the lower electrode 31 can be subjected to predetermined etching.
  • the chamber 30 is connected to the transfer chamber via a gate valve as is conventionally known, and the wafer W is loaded and unloaded into the chamber 30 via an arm in the transfer chamber. I do.
  • the transfer of the wafer W carried by the arm is performed via the lifting pins built in the lower electrode 31.
  • An electrostatic chuck is provided on the lower electrode 31, and a wafer W is electrostatically attracted on the lower electrode 31 by applying a high DC voltage to the electrostatic chuck.
  • the lower electrode 31 has a back gas supply means and a temperature control means, and supplies a back gas having excellent heat transfer properties such as He gas between the wafer W and the static chuck via the back gas supply means. At the same time, the temperature of the wafer W on the lower electrode 31 is adjusted to a predetermined temperature via the temperature adjusting means.
  • the flow control device 11 As the flow control device 11, for example, a pressure-type flow control device proposed in Japanese Patent Application Laid-Open No. 11-222603 can be used.
  • the flow rate control device 11 includes a self-diagnosis circuit for the control flow rate as described later.
  • This self-diagnosis circuit is a diversion of the clogging detection circuit described in the above publication. Therefore, since the principle of the flow control device 11 having the self-diagnosis circuit is based on the pressure type flow control device described in the above publication, the flow control device 11 will be described below. An outline will be described.
  • the flow control device 11 is composed of a control valve 1 11, a pressure detector 1 12, a temperature detector 1 13, an orifice 1 14, an arithmetic control unit (CPU) 1 15, and an amplifier. It has 1 16, 1 17, A / D converters 1 18, 1 19, and a drive section 120, and functions assuming a pressure ratio P 1 / P 2 ⁇ 2 around the orifice 1 14. That is, the gas pressure P1 and the gas temperature T1 of the branch line 21 are detected via the pressure detector 112 and the temperature detector 113, and these detection signals are amplified via the amplifiers 116, 117.
  • the signal is converted into a digital signal via the AZD converters 118 and 119 and output to the arithmetic control unit 115.
  • the arithmetic control unit 115 corrects the gas flow rate of the branch line 21 based on the gas pressure and gas temperature detection signals, and then sets the set flow rate Qs from the flow rate setting circuit 121 and the temperature corrected Comparing the calculated flow rate Qc, outputs the calculation control signal SI based on the difference between the set flow rate Qs and the calculated flow rate Qc to the drive unit 120 via the amplifier 122, and adjusts the opening of the control valve 111. To maintain the set flow rate Qs.
  • the flow control device 11 has a self-diagnosis circuit 123 under the control of the arithmetic control unit 115.
  • the self-diagnosis circuit 123 has a test circuit 123A and an amplifier 123B.
  • This signal controls the drive unit 120 via the amplifier 123B, and controls the opening and closing of the control valve 111.
  • the steady pressure Plo corresponds to the steady set flow rate Qso
  • the fluctuating pressure ⁇ corresponds to the verification signal AQs. Therefore, a predetermined reference value is set for the test signal AQs, Based on this reference value, it can be diagnosed whether the control flow rate fluctuation is an allowable control flow rate within the reference value. Then, when the value deviates from the allowable range, a notification is made, for example, via an alarm circuit 125.
  • the self-diagnosis circuit 1 2 3 functions, the external circuit 1 2 4 outputs a self-diagnosis signal to the arithmetic control unit 1 1 5, and the arithmetic control unit 1 1 The output of the control signal to 2 is interrupted, and the flow control by the flow controller 11 is temporarily interrupted. Since the self-diagnosis of the flow rate is completed in a short time, the flow rate control during this time is guaranteed by the steady set flow rate Qso of the verification circuit 122 A.
  • the fourth valve 60 of the gas supply line 20 is closed, the valve 14 of the second branch line 27 and the sixth valve 80 of the gas supply line 20 are opened, and nitrogen gas is supplied to the chamber 13.
  • the valve 14 of the second branch line 27 and the sixth valve 80 of the gas supply line 20 are closed, the gate valve of the chamber 130 is opened, and the arm in the transfer chamber is opened.
  • the wafer W is conveyed into the chamber 30 via the, and the wafer W is transferred to and from the lift pins of the lower electrode 31.
  • the elevating pins retract into the lower electrode 31 and the electrostatic chuck operates to fix the wafer W on the lower electrode 31.
  • the arm retreats from the chamber 130 into the transfer chamber, closes the gate valve, and finishes loading the wafer W.
  • a back gas such as He gas is supplied to the back surface of the wafer W, and the pressure control in the chamber 130 is started.
  • the first and second valves 12 and 13 of the gas box 10 are opened, and the fourth and sixth valves 60 and 80 of the gas supply line 20 are opened, and the fourth branch line 28 is opened.
  • 5 valve A predetermined process gas whose flow rate is controlled via the flow control device 11 is supplied into the chamber 130 via the gas supply line 20 with the 70 closed, and the lower electrode is supplied from the high frequency power supply 34. 3 Apply high frequency power to 1 to start the etching process.
  • the wafer W is controlled to a predetermined temperature by the action of the back gas. After a lapse of a predetermined time, the application of the high-frequency power is stopped to end the etching.
  • the third valve 14 and the fourth valve in the third branch line 27 are stopped.
  • the fifth valve 70 of the branch line 28 is opened, and the process gas is exhausted from the fourth branch line 28 through the exhaust gas line 50.
  • the valve 13 of the second branch line 26 is opened, and nitrogen gas is supplied as a purge gas into the chamber 130 through the gas supply line 20 so that the nitrogen gas in the chamber 130 is purged.
  • the pressure is kept constant and the operation of the electrostatic chuck is stopped to make the wafer W replaceable.
  • the gate valve is opened, and the wafer W is transferred at the lower electrode 31 via the lifting pins and the arms, and is carried out from the chamber 130 to the transfer chamber.
  • the next unprocessed wafer W is loaded into the chamber 130 as described above.
  • the process gas flow path is changed from the gas supply line 20 to the fourth branch line 2 while the processed wafer W is replaced with the unprocessed next wafer W after the processing of the wafer W. Switch to 8 and perform self-diagnosis automatically based on the self-diagnosis program registered in advance.
  • the self-diagnosis circuit 123 performs self-diagnosis of the control flow rate of the flow control device 111 using the self-diagnosis circuit 123.
  • a self-diagnosis signal is output from the external circuit 124 to the arithmetic control unit 115.
  • the arithmetic and control unit 1 1 5 triggers this signal.
  • the output of the control signal to the amplifiers 122 as the gar signal is interrupted, and the flow control by the flow control device 11 is temporarily interrupted.
  • the flow rate control during this time is guaranteed by the steady set flow rate Qso of the test circuit 122 A. If the control flow rate deviates from the allowable range in the self-diagnosis, it can be known through the alarm circuit 125. Since the self-diagnosis is performed during the replacement of the wafer W, the replacement process of the wafer W can be effectively used as the self-diagnosis process.
  • the processing apparatus of the present embodiment supplies the process gas whose flow rate has been controlled by the flow rate control device 11 into the chamber 130 via the gas supply line 20,
  • a self-diagnosis circuit 123 is provided in the flow control device 111 to enable self-diagnosis, and a valve 60 is provided in the gas supply line 20 so that the gas supply can be performed.
  • a fourth branch line 28 branching from the line 20 is provided, and a valve 70 is provided in the branch line 28. The valve 60 is closed and the valve 7 is closed each time the wafer W is processed with the process gas.
  • the gas supply line 20 is switched to the fourth branch line 28, and the process gas flows through the fourth branch line 28.
  • the flow rate of the process gas is controlled by the self-diagnosis circuit 1 2 3 of the flow controller 11. Configured to self-diagnose .
  • the process gas flow is effectively utilized by replacing the processed wafer W with the unprocessed wafer W, and the flow rate of the process gas is determined using the self-diagnosis circuit of the flow control device 11. Since the self-diagnosis is performed by performing the self-diagnosis, the self-diagnosis of the flow rate control device 11 can be performed without interrupting the processing of the wafer W and in units of single wafers, and the throughput of etching is not reduced.
  • FIG. 3 is a configuration diagram showing a processing apparatus according to another embodiment of the present invention.
  • the flow control device 11 does not have a self-diagnosis function
  • the configuration is the same as that of the processing device shown in Fig. 1 except that a flow rate detector for flow rate diagnosis is separately provided. Therefore, the same or corresponding parts as those of the processing apparatus shown in FIG. 1 are denoted by the same reference numerals, and only the features of the present embodiment will be described.
  • a flow detector 90 is provided downstream of the fifth valve 70 of the fourth branch line 28, and the control flow of each flow controller 11 is checked by the flow detector 90. ing.
  • reference numeral 91 denotes a valve used when discharging the gas in the container of the flow detector 90.
  • the flow rate detector 90 includes, for example, a small-capacity container having a known capacity, a pressure gauge for detecting the pressure in the container, a thermometer for detecting a gas temperature in the container, And a timer for measuring a time required to fill the gas to a predetermined pressure. Then, the pressure rise ( ⁇ ⁇ ) generated within a certain time ( ⁇ ⁇ ⁇ ) when the gas is filled in the container having the constant volume V is measured, and the gas flow rate Q is obtained based on the following equation. Of course, when calculating the gas flow rate, the gas flow rate is corrected at the temperature at that time. When the control flow rate of the flow control device 11 is checked by the flow rate detector 90, it is performed for each process gas.
  • Q s c cm [V ⁇ ⁇ ⁇ / ⁇ t] ⁇ [Temperature correction coefficient]
  • control flow rate of the flow control device 11 can be checked by the flow rate detector 90 by operating the processing apparatus in the same procedure as in the above embodiment. Therefore, in the present embodiment, the same operation and effect as those in the above-described embodiment can be obtained.
  • the self-diagnosis is performed for each processing of the wafer W.
  • the timing of the self-diagnosis is independent of the processing method of the present invention.
  • the self-diagnosis can be performed by appropriately selecting or selecting an appropriate gas from a plurality of types of gases. For example, when changing the process gas ratio, the process used in the following recipe: The self-diagnosis of the process gas can be performed immediately before, or the process gas used in the immediately preceding recipe can be self-diagnosed.
  • the self-diagnosis may be selectively performed only on the process gas that greatly affects the process characteristics.
  • a self-diagnosis may be performed for each recipe, or a self-diagnosis may be performed for a plurality of types of gases at the first time when the recipe is changed, and then a self-diagnosis may be performed for a plurality of types of gases in order. .
  • the timing for performing the self-diagnosis of the control flow rate is not limited to the above embodiments.
  • the present invention only needs to be a processing method for performing a flow rate diagnosis by effectively utilizing the time for replacing the wafer W each time the wafer W is processed.
  • the wafer etching process has been described as an example.
  • the object to be processed can be widely applied to other substrates such as a liquid crystal LCD substrate other than the wafer. It goes without saying that the present invention can be widely applied to processes such as film formation.
  • the self-diagnosis of the flow rate can be reliably performed without interrupting the processing of the processing target, and the processing of the processing target can be performed without lowering the throughput.
  • the processing method and the processing apparatus according to the present invention can be used in a semiconductor manufacturing industry or the like that manufactures semiconductor devices. Therefore, it has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Measuring Volume Flow (AREA)
  • Details Of Flowmeters (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

When process gas is supplied into a chamber (30) at a specified flow rate and a wafer W is processed in the chamber (30), flow rate of process gas is self-diagnosed by a self-diagnosis circuit in a flow rate controller (11) every time when the wafer W is processed with the process gas utilizing the time for replac a processed wafer W with a wafer W to be processed effectively. Since the flow rate controller (11) can be self-diagnosed on a wafer basis without interrupting the processing operation of the wafer W, throughput of processing operation is not lowered.

Description

明 細 書 処理方法及び処理装置 · 技術分野  Description Processing method and processing equipmentTechnical field
本発明は、 処理方法及び処理装置に関し、 更に詳しくはプロセスガス を用いてウェハ等の被処理体を一枚ずつ処理する度毎に、 被処理体の処 理と並行してプロセスガスの流量を診断することができる処理方法及び 処理装置に関する。  The present invention relates to a processing method and a processing apparatus, and more specifically, every time an object to be processed such as a wafer is processed one by one using a process gas, the flow rate of the process gas is adjusted in parallel with the processing of the object to be processed. The present invention relates to a processing method and a processing device capable of performing a diagnosis.
背景技術 Background art
半導体製造工程には種々のプロセスガスを用いてウェハ等の被処理体 に対してエッチングや成膜等の種々の処理を施す工程がある。 この工程 で用いられる処理装置は、 例えば、 複数種のプロセスガスを個別に供給 するガス供給源と、 これらのガス供給源とガス供給ラインを介して連結 された処理室と、 この処理室内のガスを排気する排気ラインを介して連 結された排気装置とを備えている。 ガス供給ラインにはプロセスガスの 流量を制御するマスフローコントローラ等の流量制御装置が配設され、 これらの流量制御装置を介してそれそれのプロセスガスを所定流量に制 御して処理室内に供給している。 処理室内では流量制御された複数種の プロセスガスを用いて被処理体にエッチング処理や成膜処理等の処理を 施している。  2. Description of the Related Art In a semiconductor manufacturing process, there is a process of performing various processes such as etching and film formation on an object to be processed such as a wafer using various process gases. The processing apparatus used in this process includes, for example, a gas supply source for individually supplying a plurality of types of process gases, a processing chamber connected to these gas supply sources via a gas supply line, and a gas in the processing chamber. And an exhaust device connected via an exhaust line for exhausting air. A flow control device such as a mass flow controller for controlling the flow rate of the process gas is provided in the gas supply line, and the process gas is controlled at a predetermined flow rate through these flow control devices and supplied into the processing chamber. ing. In the processing chamber, an object to be processed is subjected to processes such as an etching process and a film forming process using plural kinds of process gases whose flow rates are controlled.
一方、 集積回路の超微細化と薄膜化に伴ってエッチング処理や成膜処 理等の処理におけるプロセスガスの流量制御が従来にも増して重要にな つて来ているため、 従来にも増してプロセスガスを高精度に制御する必 要がある。 従来の処理装置の場合には、 プロセスガスを流量制御装置で流量制御 を行っていることから、 プロセスガスは常に設定流量で供給されている との前提に立っているが、 このような流量制御装置であっても外乱の影 響で被処理体の処理中に.常に設定流量でガス流量が制御されているとの 保証はなく、 必要に応じてプロセスガスの制御流量をチェックする、 い わゆる流量診断が必要になって来る。 On the other hand, the control of the flow rate of process gas in processes such as etching and film formation has become more important than ever before as integrated circuits become ultrafine and thinner. It is necessary to control the process gas with high precision. In the case of conventional processing equipment, since the flow rate of the process gas is controlled by the flow rate control device, it is assumed that the process gas is always supplied at the set flow rate. Even during processing of the object to be processed due to disturbances even in the equipment, there is no guarantee that the gas flow rate is always controlled at the set flow rate, and the control flow rate of the process gas is checked as necessary. Diagnosis of loose flow is required.
しかしながら、 流量制御装置の流量を診断するには、 例えばロッ トの 切替時や装置の起動時等の被処理体の処理が中断した時点で流量診断専 用の工程を設けて流量診断を行わざるを得ず、 それだけスループッ 卜が 低下するという問題があった。 発明の開示  However, when diagnosing the flow rate of the flow control device, a process dedicated to the flow rate diagnosis must be provided when the processing of the object to be processed is interrupted, for example, when the lot is switched or when the device is started up. And there is a problem that the throughput decreases accordingly. Disclosure of the invention
本発明の目的は、 被処理体の処理を中断することなく流量の自己診断 を確実に行うことができ、 スループッ トを低下させることなく被処理体 の処理を行うことができる処理方法及び処理装置を提供することである ( 上述した課題を解決するために、 本発明によれば、 処理室内にプロセス ガスを所定流量で供給し、 上記処理室内で被処理体を処理する方法にお いて、 上記プロセスガスで上記被処理体を処理する度毎に上記プロセス ガスの流量を診断することを特徴とする。 An object of the present invention is to provide a processing method and a processing apparatus capable of reliably performing a self-diagnosis of a flow rate without interrupting processing of a target object and performing processing of a target object without reducing throughput. (In order to solve the above-described problems, according to the present invention, a method of supplying a process gas at a predetermined flow rate into a processing chamber and processing a target object in the processing chamber, Diagnosing the flow rate of the process gas every time the process target is processed with the process gas.
また、 本発明によれば、 流量制御装置を介して流量制御したプロセス ガスをガス供給ラインを介して処理室内に供給し、 上記処理室内で被処 理体を処理する方法において、 上記ガス流量制御装置として自己診断可 能な流量制御装置を設けると共に上記ガス供給ラインに分岐ラインを設 け、 上記プロセスガスで上記被処理体を処理する度毎に上記ガス供給ラ ィンを上記分岐ラインに切り替えて上記流量制御装置において上記プロ セスガスの流量を自己診断することを特徴とする。 また、 本発明によれば、 流量制御装置を介して流量制御したプロセス ガスをガス供給ラインを介して処理室内に供給し、 上記処理室内で被処 理体を処理する方法において、 上記ガス供給ラインに分岐ラインを設け ると共にこの分岐ラインに流量検出器を設け、 上記プロセスガスで上記 被処理体を処理する度毎に上記ガス供給ラインを上記分岐ラインに切り 替えて上記流量検出器において上記プロセガスの流量を診断することを 特徴とする。 Further, according to the present invention, in a method of supplying a process gas having a flow rate controlled through a flow rate control device to a processing chamber through a gas supply line and processing an object to be processed in the processing chamber, A flow control device capable of self-diagnosis is provided as a device, and a branch line is provided in the gas supply line, and the gas supply line is switched to the branch line each time the process target is processed with the process gas. The flow control device performs self-diagnosis of the flow rate of the process gas. Further, according to the present invention, in a method for supplying a process gas having a flow rate controlled through a flow rate control device to a processing chamber via a gas supply line, and processing an object to be processed in the processing chamber, the gas supply line A branch line is provided and a flow detector is provided in the branch line. Each time the object to be processed is processed with the process gas, the gas supply line is switched to the branch line, and the process gas is switched in the flow detector. It is characterized by diagnosing the flow rate.
また、 本発明によれば、 流量制御装置を介して流量制御したプロセス ガスをガス供給ラインを介して処理室内に供給し、 上記処理室内で被処 理体を処理する処理装置において、 上記流量制御装置として自己診断可 能な流量制御装置を設けると共に上記ガス供給ラインに第 1バルブを設 け、 また、 上記ガス供給ラインから分岐する分岐ラインを設けると共に この分岐ラインに第 2バルブを設け、 上記プロセスガスで上記被処理体 を処理する度每に上記第 1バルブを閉止すると共に上記第 2バルブを開 放して上記ガス供給ラインから上記分岐ラインに切り替えて上記分岐ラ ィンに上記プロセスガスを流し、 上記流量制御装置において上記プロセ スガスの流量を自己診断することを特徴とする。  Further, according to the present invention, in a processing apparatus for supplying a process gas having a flow rate controlled through a flow rate control device to a processing chamber through a gas supply line and processing an object to be processed in the processing chamber, A flow control device capable of self-diagnosis is provided as a device, a first valve is provided in the gas supply line, a branch line is provided from the gas supply line, and a second valve is provided in the branch line. Each time the process object is treated with the process gas, the first valve is closed and the second valve is opened to switch from the gas supply line to the branch line, and the process gas is supplied to the branch line. The flow rate control device performs a self-diagnosis of the flow rate of the process gas.
また、 本発明によれば、 流量制御装置を介して流量制御したプロセス ガスをガス供給ラインを介して処理室内に供給し、 上記処理室内で被処 理体を処理する処理装置において、 上記ガス供給ラインに第 1バルブを 設けると共に上記ガス供給ラインから分岐する分岐ラインを設け、 また、 上記分岐ラインに第 2バルブ及び流量検出器を設け、 上記プロセスガス で上記被処理体を処理する度毎に上記第 1バルブを閉止すると共に上記 第 2バルプを開放して上記ガス供給ラインから上記分岐ラインに切り替 えて上記分岐ラインに上記プロセスガスを流し、 上記流量検出器におい て上記プロセスガスの流量を診断することを特徴とする。 図面の簡単な説明 Further, according to the present invention, in a processing apparatus for supplying a process gas whose flow rate is controlled via a flow rate control device to a processing chamber via a gas supply line, and for processing an object to be processed in the processing chamber, A first valve is provided on the line and a branch line is provided for branching from the gas supply line.A second valve and a flow detector are provided on the branch line, and each time the object is processed with the process gas. Close the first valve and open the second valve to switch from the gas supply line to the branch line, flow the process gas through the branch line, and diagnose the flow rate of the process gas with the flow rate detector It is characterized by doing. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の処理装置の一実施形態を示す構成図である。  FIG. 1 is a configuration diagram showing an embodiment of the processing apparatus of the present invention.
図 2は、 図 1に示す流量制御装置の構成を示すプロック図である。 図 3は、 本発明の処理装置の他の実施形態を示す図 1に相当する図で ある。 発明を実施するための最良の形態  FIG. 2 is a block diagram showing the configuration of the flow control device shown in FIG. FIG. 3 is a view corresponding to FIG. 1 showing another embodiment of the processing apparatus of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図 1〜図 3に示す実施形態に基づいて本発明を説明する。  Hereinafter, the present invention will be described based on the embodiment shown in FIGS.
本実施形態の処理装置は、 例えば図 1に示すように、 複数種のプロセ スガスの流量を制御するガスボックス 1 0と、 このガスボックス 1 0と ガス供給ライン 2 0を介して連結されたチャンバ一 3 0と、 このチャン バー 3 0内を真空引きする真空排気装置 4 0と、 この真空排気装置 4 0 を介してチャンバ一 3 0内のガスを排出する排気ガスライン 5 0とを備 え、 ガスボックス 1 0を介して複数種のプロセスガスを所定の流量に制 御してチャンバ一 3 0内へ供給すると共に真空排気装置 4 0を介してチ ヤンバ— 3 0内を所定の真空度に保持した状態で被処理体 (例えば、 ゥ ェハ W) に対して所定の処理 (例えば、 エッチング) を行うように構成 されている。  As shown in FIG. 1, for example, the processing apparatus of the present embodiment includes a gas box 10 for controlling the flow rates of a plurality of types of process gases, and a chamber connected to the gas box 10 via a gas supply line 20. A vacuum exhaust device 40 for evacuating the chamber 30; and an exhaust gas line 50 for exhausting the gas in the chamber 130 via the vacuum exhaust device 40. A plurality of process gases are controlled at a predetermined flow rate through the gas box 10 and supplied into the chamber 130, and the inside of the chamber 30 is evacuated to a predetermined vacuum level through the vacuum exhaust device 40. A predetermined process (for example, etching) is performed on an object to be processed (for example, wafer W) while holding the substrate.
上記ガスボックス 1 0内には例えば同一構成を有する 6台の流量制御 装置 (F C S ) 1 1が配設され、 これらの流量制御装置 1 1を介して所 定のエッチング処理で必要とされる複数種のプロセスガスを所定の流量 にそれそれ制御している。 これらの流量制御装置 1 1は、 後述のように それそれの流量を自己診断可能に構成され、 ガス供給ライン 2 0から分 岐した第 1分岐ライン 2 1〜 2 5及び第 2分岐ライン 2 6にそれそれ設 けられている。 第 1分岐ライン 2 1〜 2 5は残りの第 2分岐ライン 2 6 よりも上流側でガス供給ライン 2 0から分岐している。 流量制御装置 1 1の上流側及び下流側にはそれそれ第 1バルブ 1 2及び第 2パルプ 1 3 がそれそれ設けられ、 第 1、 第 2バルブ 1 2、 1 3を介してそれそれの 分岐ライン 2 1〜2 6を開閉する。 これらの自己診断可能な流量制御装 置 1 1については後述する。 更に、 第 2分岐ライン 2 6からは第 3分岐 ライン 2 7が分岐し、 第 3分岐ライン 2 7には第 3バルブ 1 4が設けら れている。 第 2分岐ライン 2 6は、 プロセス中、 窒素ガス量を調整する 必要が生じた場合や、 その他窒素ガスの流量を適宜調整する必要がある 時 (例えば、 ウェハの搬送時) に窒素ガスを供給する配管として用いら れ、 第 3分岐ライン 2 7は例えば大気開放時等のように流量調整不要な 場合に窒素ガスを供給する配管として用いられる。 また、 第 1分岐ライ ン 2 1〜2 5の合流点と第 2分岐ライン 2 6の合流点の間には第 4バル プ 6 0が設けられ、 プロセスガスとしての窒素ガスは第 4バルブ 6 0の 下流側で他のプロセスガスと合流する。 In the gas box 10, for example, six flow control devices (FCS) 11 having the same configuration are provided, and a plurality of flow control devices 11 required for a predetermined etching process via these flow control devices 11. Each kind of process gas is controlled to a predetermined flow rate. These flow rate control devices 11 are configured to be able to self-diagnose the flow rate of each of them as described later, Each is set up individually. The first branch line 2 1 to 2 5 is the remaining second branch line 2 6 It branches off from the gas supply line 20 on the more upstream side. A first valve 12 and a second pulp 13 are provided on the upstream and downstream sides of the flow control device 11, respectively, and each of them is branched via the first and second valves 12 and 13. Open and close lines 21-26. These self-diagnosable flow control devices 11 will be described later. Further, a third branch line 27 branches from the second branch line 26, and a third valve 14 is provided in the third branch line 27. The second branch line 26 supplies nitrogen gas when the amount of nitrogen gas needs to be adjusted during the process or when the flow rate of nitrogen gas needs to be adjusted appropriately (for example, when transferring a wafer). The third branch line 27 is used as a pipe for supplying nitrogen gas when the flow rate adjustment is unnecessary, for example, when the atmosphere is opened to the atmosphere. Further, a fourth valve 60 is provided between the junction of the first branch lines 21 to 25 and the junction of the second branch line 26, and nitrogen gas as a process gas is supplied to the fourth valve 6 Merges with other process gas downstream of 0.
また、 上記ガス供給ライン 2 0は第 1分岐ライン 2 1〜 2 5の合流点 と第 4バルブ 6 0の間で分岐した第 4分岐ライン 2 8を有している。 こ の第 4分岐ライン 2 8の下流端は排気ガスライン 5 0の真空排気装置 4 0の下流側に接続されている。 第 4分岐ライン 2 8には第 5バルブ 7 0 が設けられ、 流量制御装置 1 1の制御流量を自己診断する際に第 5バル ブ 7 0を開放し、 プロセスガスをガス排気ライン 5 0へ排出するように なっている。 更に、 ガス供給ライン 2 0の第 2分岐ライン 2 6の分岐点 の下流側には第 6バルブ 8 0が設けられ、 このバルブ 8 0は第 5バルブ 7 0と同様に流量制御装置 1 1の制御流量を自己診断する際に用いられ る。  The gas supply line 20 has a fourth branch line 28 branched between the junction of the first branch lines 21 to 25 and the fourth valve 60. The downstream end of the fourth branch line 28 is connected to the exhaust gas line 50 on the downstream side of the vacuum exhaust device 40. A fifth valve 70 is provided in the fourth branch line 28, and when performing self-diagnosis of the control flow rate of the flow control device 11, the fifth valve 70 is opened, and the process gas is supplied to the gas exhaust line 50. It is designed to discharge. Further, a sixth valve 80 is provided downstream of the branch point of the second branch line 26 of the gas supply line 20, and this valve 80 is connected to the flow control device 11 similarly to the fifth valve 70. Used for self-diagnosis of control flow rate.
また、 図 1に示すように上記チャンバ一 3 0内には従来公知のように 下部電極 3 1及び上部電極 3 2が配設され、 これら両電極 3 1、 3 2は 隙間を介して互いに対向している。 下部電極 3 1には整合器 3 3を介し て高周波電源 3 4が接続され、 上部電極 3 2は接地されている。 また、 上部電極 3 2は中空状に形成され、 その下面には多数の孔が均等に分散 して形成されている。 従って、 ガスボックス ί 0内の流量制御装置 1 1 を介して複数種のプロセスガスを所定の流量に制御して上部電極 3 2内 へ供給すると、 複数種のプロセスガスが上部電極 3 2内で均一に混合さ れた後、 下面の孔からチャンバ— 3 0内に供給され均等に拡散する。 こ の状態で下部電極 3 1に高周波電力を印加すると、 下部電極 3 1上のゥ ェハ Wに所定のェヅチングを施すことができる。 As shown in FIG. 1, a lower electrode 31 and an upper electrode 32 are provided in the chamber 30 as conventionally known, and these two electrodes 31 and 3 2 are connected to each other. They are opposed to each other via a gap. The lower electrode 31 is connected to a high-frequency power source 34 via a matching device 33, and the upper electrode 32 is grounded. Further, the upper electrode 32 is formed in a hollow shape, and a large number of holes are formed on the lower surface thereof so as to be evenly dispersed. Therefore, when a plurality of kinds of process gases are controlled to a predetermined flow rate and supplied into the upper electrode 32 through the flow rate control device 11 in the gas box ί 0, the plurality of kinds of process gases are stored in the upper electrode 32. After being uniformly mixed, it is supplied into the chamber 30 through the hole on the lower surface and is evenly diffused. When high-frequency power is applied to the lower electrode 31 in this state, the wafer W on the lower electrode 31 can be subjected to predetermined etching.
また、 図示してないが、 チャンバ— 3 0は従来公知のようにゲ一トバ ルブを介して搬送室に'連結され、 搬送室内のアームを介してチャンバ— 3 0内にウェハ Wを搬入搬出する。 チャンバ一 3 0内では下部電極 3 1 に内蔵された昇降ピンを介してアームで搬送されるウェハ Wの受け渡し を行う。 下部電極 3 1には静電チャックが設けられ、 静電チャックに直 流高電圧を印加することにより下部電極 3 1上でウェハ Wを静電吸着す る。 更に、 下部電極 3 1はバックガス供給手段及び温度調節手段を有し、 バックガス供給手段を介して H eガス等の熱伝達性に優れたバックガス をウェハ Wと静鼋チャックの間に供給すると共に温度調節手段を介して 下部電極 3 1上のウェハ Wを所定温度に調節する。  Although not shown, the chamber 30 is connected to the transfer chamber via a gate valve as is conventionally known, and the wafer W is loaded and unloaded into the chamber 30 via an arm in the transfer chamber. I do. In the chamber 30, the transfer of the wafer W carried by the arm is performed via the lifting pins built in the lower electrode 31. An electrostatic chuck is provided on the lower electrode 31, and a wafer W is electrostatically attracted on the lower electrode 31 by applying a high DC voltage to the electrostatic chuck. Further, the lower electrode 31 has a back gas supply means and a temperature control means, and supplies a back gas having excellent heat transfer properties such as He gas between the wafer W and the static chuck via the back gas supply means. At the same time, the temperature of the wafer W on the lower electrode 31 is adjusted to a predetermined temperature via the temperature adjusting means.
次いで、 上記流量制御装置 1 1について図 2に基づいて説明する。 こ の流量制御装置 1 1としては例えば特開平 1 1一 2 2 6 0 2 3号公報で 提案されている圧力式流量制御装置を用いることができる。 流量制御装 置 1 1は後述のように制御流量の自己診断回路を備えている。 この自己 診断回路は上記公報に記載の目詰検出回路を転用したものである。 従つ て、 自己診断回路を備えた流量制御装置 1 1の原理は上記公報に記載の 圧力式流量制御装置に基づいているため、 以下では流量制御装置 1 1の 概要について説明する。 Next, the flow control device 11 will be described with reference to FIG. As the flow control device 11, for example, a pressure-type flow control device proposed in Japanese Patent Application Laid-Open No. 11-222603 can be used. The flow rate control device 11 includes a self-diagnosis circuit for the control flow rate as described later. This self-diagnosis circuit is a diversion of the clogging detection circuit described in the above publication. Therefore, since the principle of the flow control device 11 having the self-diagnosis circuit is based on the pressure type flow control device described in the above publication, the flow control device 11 will be described below. An outline will be described.
上記流量制御装置 1 1は、 図 2に示すように、 コントロールバルブ 1 1 1、 圧力検出器 1 1 2、 温度検出器 1 1 3、 オリフィス 1 14、 演算 制御部 ( CPU) 1 1 5、 増幅器 1 1 6、 1 1 7、 A/D変換器 1 1 8、 1 1 9及び駆動部 1 20を有し、 オリフィス 1 1 4前後の圧力比 P 1/ P 2≥ 2を前提として機能する。 即ち、 圧力検出器 1 1 2及び温度検出 器 1 1 3を介して分岐ライン 2 1のガス圧力 P1 及びガス温度 T1 を検 出し、 これらの検出信号を増幅器 1 1 6、 1 1 7を介して増幅した後、 AZD変換器 1 1 8、 1 1 9を介してデジタル信号に変換し、 演算制御 部 1 1 5へ出力する。 演算制御部 1 1 5は、 ガス圧力及びガス温度の検 出信号に基づいて分岐ライン 2 1のガス流量を温度補正した後、 流量設 定回路 1 2 1からの設定流量 Qs と温度補正後の演算流量 Qc を比較し、 設定流量 Qs と演算流量 Qc の差に基づく演算制御信号 SI を増幅器 1 2 2を介して駆動部 1 2 0に出力し、 コントロールバルブ 1 1 1の開度を 調節して設定流量 Qs を維持するようにしている。  As shown in Fig. 2, the flow control device 11 is composed of a control valve 1 11, a pressure detector 1 12, a temperature detector 1 13, an orifice 1 14, an arithmetic control unit (CPU) 1 15, and an amplifier. It has 1 16, 1 17, A / D converters 1 18, 1 19, and a drive section 120, and functions assuming a pressure ratio P 1 / P 2 ≥ 2 around the orifice 1 14. That is, the gas pressure P1 and the gas temperature T1 of the branch line 21 are detected via the pressure detector 112 and the temperature detector 113, and these detection signals are amplified via the amplifiers 116, 117. After amplification, the signal is converted into a digital signal via the AZD converters 118 and 119 and output to the arithmetic control unit 115. The arithmetic control unit 115 corrects the gas flow rate of the branch line 21 based on the gas pressure and gas temperature detection signals, and then sets the set flow rate Qs from the flow rate setting circuit 121 and the temperature corrected Comparing the calculated flow rate Qc, outputs the calculation control signal SI based on the difference between the set flow rate Qs and the calculated flow rate Qc to the drive unit 120 via the amplifier 122, and adjusts the opening of the control valve 111. To maintain the set flow rate Qs.
また、 上記流量制御装置 1 1は演算制御部 1 1 5の制御下にある自己 診断回路 1 2 3を有している。 この自己診断回路 1 2 3は検定回路 1 2 3 A及び増幅器 1 2 3 Bを有する。 検定回路 1 2 3 Aは検定用信号 の発生回路で、 定常設定流量 Qsoと検定用信号 Δ Qs からなる設定流量 Qs ( t ) ( = Qso+A QS ) を出力し、 検定用信号 AQs で自己診断を 行う。 この信号は増幅器 1 2 3 Bを介して駆動部 1 2 0を制御し、 コン トロールバルブ 1 1 1を開閉制御する。 また、 第 2分岐ライン 2 1〜2 6のオリフィス 1 1 4の上流側の圧力 P ( t ) も定常圧力 Ploと変動圧 力 Δ ΡΙ の加算値、 即ち、 P ( t ) =ΡΙΟ+Δ ΡΙ として与えられる。 定 常圧力 Ploは定常設定流量 Qsoに対応し、 変動圧力 ΔΡΙ は検定用信号 AQs に対応する。 従って、 検定用信号 AQs に所定の基準値を設定し、 この基準値に基づいて制御流量変動が基準値内の許容できる制御流量で あるか否かを診断することができる。 そして、 許容範囲を逸脱した場合 には、 例えばアラーム回路 1 2 5を介して報知するようにしてある。 ァ ラーム回路 1 2 5からの報知に基づいていずれのプロセスガスが許容値 を逸脱したかを知ることができ、 ひいてはその原因を究明することもで きる。 自己診断回路 1 2 3が機能する時には、 外部回路 1 2 4が自己診 断信号を演算制御部 1 1 5へ出力し、 演算制御部 1 1 5はこの信号をト リガ一信号として増幅器 1 2 2への制御信号の出力を中断し、 流量制御 装置 1 1による流量制御を一時的に中断する。 流量の自己診断は短時間 で終了するため、 この間の流量制御は検定回路 1 2 2 Aの定常設定流量 Q soで保証するようにしてある。 The flow control device 11 has a self-diagnosis circuit 123 under the control of the arithmetic control unit 115. The self-diagnosis circuit 123 has a test circuit 123A and an amplifier 123B. The test circuit 1 2 3 A is a test signal generation circuit that outputs the set flow rate Qs (t) (= Qso + AQ S ) consisting of the steady set flow rate Qso and the test signal ΔQs, and self-tests with the test signal AQs. Make a diagnosis. This signal controls the drive unit 120 via the amplifier 123B, and controls the opening and closing of the control valve 111. Also, the pressure P (t) on the upstream side of the orifice 1 14 of the second branch line 21 to 26 is also the sum of the steady pressure Plo and the fluctuating pressure Δ 、, that is, P (t) = ΡΙΟ + Δ ΡΙ Given as The steady pressure Plo corresponds to the steady set flow rate Qso, and the fluctuating pressure ΔΡΙ corresponds to the verification signal AQs. Therefore, a predetermined reference value is set for the test signal AQs, Based on this reference value, it can be diagnosed whether the control flow rate fluctuation is an allowable control flow rate within the reference value. Then, when the value deviates from the allowable range, a notification is made, for example, via an alarm circuit 125. Based on the notification from the alarm circuit 125, it is possible to know which process gas has deviated from the permissible value, and it is also possible to investigate the cause. When the self-diagnosis circuit 1 2 3 functions, the external circuit 1 2 4 outputs a self-diagnosis signal to the arithmetic control unit 1 1 5, and the arithmetic control unit 1 1 The output of the control signal to 2 is interrupted, and the flow control by the flow controller 11 is temporarily interrupted. Since the self-diagnosis of the flow rate is completed in a short time, the flow rate control during this time is guaranteed by the steady set flow rate Qso of the verification circuit 122 A.
次に、 上記流量制御装置 1 1を用いた被処理体の処理方法について説 明する。 まず、 ガス供給ライン 2 0の第 4バルブ 6 0を閉じ、 第 2分岐 ライン 2 7のバルブ 1 4及びガス供給ライン 2 0の第 6バルブ 8 0を開 いて窒素ガスを供給してチャンバ一 3 0内の残留ガスをパージした後、 第 2分岐ライン 2 7のバルブ 1 4及びガス供給ライン 2 0の第 6バルブ 8 0を閉じチャンバ一 3 0のゲ一トバルブを開放し、 搬送室内のアーム を介してウェハ Wをチャンバ一 3 0内に搬送し、 下部電極 3 1の昇降ピ ンとの間でウェハ Wの受け渡しを行う。 引き続き、 昇降ピンが下部電極 3 1内に退没すると共に静電チャックが働き、 ウェハ Wを下部電極 3 1 上に固定する。 この間にアームがチャンバ一 3 0から搬送室内へ後退し ゲ一トバルブを閉じてウェハ Wの搬入を終える。  Next, a method for treating an object to be treated using the flow rate control device 11 will be described. First, the fourth valve 60 of the gas supply line 20 is closed, the valve 14 of the second branch line 27 and the sixth valve 80 of the gas supply line 20 are opened, and nitrogen gas is supplied to the chamber 13. After purging the residual gas in 0, the valve 14 of the second branch line 27 and the sixth valve 80 of the gas supply line 20 are closed, the gate valve of the chamber 130 is opened, and the arm in the transfer chamber is opened. The wafer W is conveyed into the chamber 30 via the, and the wafer W is transferred to and from the lift pins of the lower electrode 31. Subsequently, the elevating pins retract into the lower electrode 31 and the electrostatic chuck operates to fix the wafer W on the lower electrode 31. During this time, the arm retreats from the chamber 130 into the transfer chamber, closes the gate valve, and finishes loading the wafer W.
その後、 H eガス等のバックガスをウェハ Wの裏面へ供給すると共に チャンパ一 3 0内の圧力制御を開始する。 圧力制御時にはガスボックス 1 0の第 1、 第 2バルブ 1 2、 1 3が開くと共にガス供給ライン 2 0の 第 4、 第 6バルブ 6 0、 8 0を開き、 第 4分岐ライン 2 8の第 5バルブ 7 0を閉じた状態で流量制御装置 1 1を介して流量を制御した所定のプ ロセスガスをガス供給ライン 2 0を介してチャンバ一 3 0内へ供給する, そして、 高周波電源 3 4から下部電極 3 1に高周波電力を印加してエツ チング処理を開始する。 この間ウェハ Wはバックガスの働きで所定の温 度に制御されている。 所定時間経過した後、 高周波電力の印加を停止し てエッチングを終了する。 After that, a back gas such as He gas is supplied to the back surface of the wafer W, and the pressure control in the chamber 130 is started. At the time of pressure control, the first and second valves 12 and 13 of the gas box 10 are opened, and the fourth and sixth valves 60 and 80 of the gas supply line 20 are opened, and the fourth branch line 28 is opened. 5 valve A predetermined process gas whose flow rate is controlled via the flow control device 11 is supplied into the chamber 130 via the gas supply line 20 with the 70 closed, and the lower electrode is supplied from the high frequency power supply 34. 3 Apply high frequency power to 1 to start the etching process. During this time, the wafer W is controlled to a predetermined temperature by the action of the back gas. After a lapse of a predetermined time, the application of the high-frequency power is stopped to end the etching.
次いで、 圧力制御を一時的に停止して第 4バルブ 6 0を閉じてチャン バー 3 0内へのプロセスガスの供給を停止した後、 第 3分岐ライン 2 7 の第 3バルブ 1 4及び第 4分岐ライン 2 8の第 5バルブ 7 0を開き、 プ ロセスガスを第 4分岐ライン 2 8から排気ガスライン 5 0を介して排気 する。 また、 第 2分岐ライン 2 6のバルブ 1 3を開き、 パージ用ガスと して窒素ガスをガス供給ライン 2 0を介してチャンバ一 3 0内へ供給し てチャンバ一 3 0内の窒素ガスの圧力を一定に保つと共に静電チヤック の動作を止めてウェハ Wを交換可能な状態にする。 引き続き、 ゲートバ ルブが開き、 下部電極 3 1において昇降ピンとアームを介してウェハ W の受け渡しを行ってチャンバ一 3 0から搬送室へ搬出する。 次いで、 次 の未処理のウェハ Wを上述したようにチャンバ一 3 0内へ搬入する。 而して、 本実施形態ではウェハ Wの処理後から処理済みのウェハ Wを 未処理の次のウェハ Wと交換する間にプロセスガスの流路をガス供給ラ イン 2 0から第 4分岐ライン 2 8に切り替え、 予め登録された自己診断 プログラムに基づいて自己診断を自動的に実施する。 即ち、 窒素ガスで チヤンバ一 3 0内の残ガスをパージしてから未処理のウェハ Wを搬入す るまでの間に、 プロセスガスを第 4分岐ライン 2 8から排気ガスライン 5 0へ排気し、 自己診断回路 1 2 3を用いて流量制御装置 1 1の制御流 量の自己診断を実施する。 そのために、 外部回路 1 2 4から自己診断信 号を演算制御部 1 1 5へ出力する。 演算制御部 1 1 5はこの信号をトリ ガー信号として増幅器 1 2 2への制御信号の出力を中断し、 流量制御装 置 1 1による流量制御を一時的に中断する。 しかし、 流量の自己診断は 短時間で終了するため、 この間の流量制御は検定回路 1 2 2 Aの定常設 定流量 Q soで保証されている。 自己診断において制御流量が許容範囲を 逸脱している場合にはアラーム回路 1 2 5を介してその旨知ることがで きる。 自己診断はウェハ Wを交換する間に行われるため、 ウェハ Wの交 換工程を自己診断工程として有効に利用することができる。 Next, after temporarily stopping the pressure control and closing the fourth valve 60 to stop the supply of the process gas into the chamber 30, the third valve 14 and the fourth valve in the third branch line 27 are stopped. The fifth valve 70 of the branch line 28 is opened, and the process gas is exhausted from the fourth branch line 28 through the exhaust gas line 50. Also, the valve 13 of the second branch line 26 is opened, and nitrogen gas is supplied as a purge gas into the chamber 130 through the gas supply line 20 so that the nitrogen gas in the chamber 130 is purged. The pressure is kept constant and the operation of the electrostatic chuck is stopped to make the wafer W replaceable. Subsequently, the gate valve is opened, and the wafer W is transferred at the lower electrode 31 via the lifting pins and the arms, and is carried out from the chamber 130 to the transfer chamber. Next, the next unprocessed wafer W is loaded into the chamber 130 as described above. Thus, in the present embodiment, the process gas flow path is changed from the gas supply line 20 to the fourth branch line 2 while the processed wafer W is replaced with the unprocessed next wafer W after the processing of the wafer W. Switch to 8 and perform self-diagnosis automatically based on the self-diagnosis program registered in advance. That is, the process gas is exhausted from the fourth branch line 28 to the exhaust gas line 50 between the time when the residual gas in the chamber 30 is purged with nitrogen gas and the time when the unprocessed wafer W is loaded. The self-diagnosis circuit 123 performs self-diagnosis of the control flow rate of the flow control device 111 using the self-diagnosis circuit 123. For this purpose, a self-diagnosis signal is output from the external circuit 124 to the arithmetic control unit 115. The arithmetic and control unit 1 1 5 triggers this signal. The output of the control signal to the amplifiers 122 as the gar signal is interrupted, and the flow control by the flow control device 11 is temporarily interrupted. However, since the self-diagnosis of the flow rate is completed in a short time, the flow rate control during this time is guaranteed by the steady set flow rate Qso of the test circuit 122 A. If the control flow rate deviates from the allowable range in the self-diagnosis, it can be known through the alarm circuit 125. Since the self-diagnosis is performed during the replacement of the wafer W, the replacement process of the wafer W can be effectively used as the self-diagnosis process.
以上説明したように本実施形態の処理装置は、 流量制御装置 1 1で流 量制御したプロセスガスをガス供給ライン 2 0を介してチャンバ一 3 0 内に供給し、 このチャンバ一 3 0内でウェハ Wを処理する処理装置にお いて、 流量制御装置 1 1に自己診断回路 1 2 3を設けて自己診断可能に するとと共に、 ガス供給ライン 2 0にバルブ 6 0を設け、 また、 ガス供 給ライン 2 0から分岐する第 4分岐ライン 2 8を設けると共にこの分岐 ライン 2 8にバルブ 7 0を設け、 そして、 プロセスガスでウェハ Wを処 理する度毎にバルブ 6 0を閉止すると共にバルブ 7 0を開放してガス供 給ライン 2 0から第 4分岐ライン 2 8に切り替えて第 4分岐ライン 2 8 にプロセスガスを流し、 流量制御装置 1 1の自己診断回路 1 2 3でプロ セスガスの流量を自己診断するよう構成されている。  As described above, the processing apparatus of the present embodiment supplies the process gas whose flow rate has been controlled by the flow rate control device 11 into the chamber 130 via the gas supply line 20, In the processing apparatus for processing the wafer W, a self-diagnosis circuit 123 is provided in the flow control device 111 to enable self-diagnosis, and a valve 60 is provided in the gas supply line 20 so that the gas supply can be performed. A fourth branch line 28 branching from the line 20 is provided, and a valve 70 is provided in the branch line 28. The valve 60 is closed and the valve 7 is closed each time the wafer W is processed with the process gas. 0 is opened, the gas supply line 20 is switched to the fourth branch line 28, and the process gas flows through the fourth branch line 28.The flow rate of the process gas is controlled by the self-diagnosis circuit 1 2 3 of the flow controller 11. Configured to self-diagnose .
そして、 ウェハ Wをプロセスガスで処理する度毎に、 処理済みウェハ Wと未処理ウェハ Wを交換する時間を有効に利用してプロセスガスの流 量を流量制御装置 1 1の自己診断回路を用いて自己診断するようにした ため、 ウェハ Wの処理を中断することなく、 しかも枚葉単位で流量制御 装置 1 1の自己診断を行うことができ、 エッチングのスループッ トを低 下させることがない。  Each time the wafer W is processed with the process gas, the process gas flow is effectively utilized by replacing the processed wafer W with the unprocessed wafer W, and the flow rate of the process gas is determined using the self-diagnosis circuit of the flow control device 11. Since the self-diagnosis is performed by performing the self-diagnosis, the self-diagnosis of the flow rate control device 11 can be performed without interrupting the processing of the wafer W and in units of single wafers, and the throughput of etching is not reduced.
また、 図 3は本発明の他の実施形態の処理装置を示す構成図である。 本実施形態の処理装置は、 流量制御装置 1 1が自己診断機能を有さず、 流量診断用の流量検出器を別途設けた点以外は、 図 1に示す処理装置と 同様に構成されている。 従って、 図 1に示す処理装置と同一または相当 部分には同一符号を附して本実施形態の特徴のみを説明する。 FIG. 3 is a configuration diagram showing a processing apparatus according to another embodiment of the present invention. In the processing device of the present embodiment, the flow control device 11 does not have a self-diagnosis function, The configuration is the same as that of the processing device shown in Fig. 1 except that a flow rate detector for flow rate diagnosis is separately provided. Therefore, the same or corresponding parts as those of the processing apparatus shown in FIG. 1 are denoted by the same reference numerals, and only the features of the present embodiment will be described.
本実施形態では第 4分岐ライン 2 8の第 5バルブ 7 0の下流側に流量 検出器 9 0が設けられ、 この流量検出器 9 0によって各流量制御装置 1 1の制御流量をチェヅクするようにしている。 尚、 図 3において、 9 1 は流量検出器 9 0の容器内のガスを放出する際に用いられるバルブであ る。  In the present embodiment, a flow detector 90 is provided downstream of the fifth valve 70 of the fourth branch line 28, and the control flow of each flow controller 11 is checked by the flow detector 90. ing. In FIG. 3, reference numeral 91 denotes a valve used when discharging the gas in the container of the flow detector 90.
上記流量検出器 9 0は、 例えば、 予め容量の判っている小容量の容器 と、 この容器内の圧力を検出する圧力計と、 容器内のガス温度を検出す る温度計と、 容器内にガスを所定圧力まで充填するのに要する時間を計 測する夕イマ一とを有している。 そして、 一定容量 Vの容器内にガスを 充填した時の一定時間 (Δ ΐ ) 内に生じる圧力上昇 (Δ Ρ ) を測定し、 下記の式に基づいてガス流量 Qを求める。 勿論、 ガス流量を求める際に はその時の温度でガス流量を補正する。 この流量検出器 9 0で流量制御 装置 1 1の制御流量をチェックする場合にはプロセスガス毎に行う。 Q s c c m = [ V ·△ ρ / Δ t ] · [温度捕正係数]  The flow rate detector 90 includes, for example, a small-capacity container having a known capacity, a pressure gauge for detecting the pressure in the container, a thermometer for detecting a gas temperature in the container, And a timer for measuring a time required to fill the gas to a predetermined pressure. Then, the pressure rise (Δ Ρ) generated within a certain time (Δ ガ ス) when the gas is filled in the container having the constant volume V is measured, and the gas flow rate Q is obtained based on the following equation. Of course, when calculating the gas flow rate, the gas flow rate is corrected at the temperature at that time. When the control flow rate of the flow control device 11 is checked by the flow rate detector 90, it is performed for each process gas. Q s c cm = [V · △ ρ / Δ t] · [Temperature correction coefficient]
本実施形態の処理装置においても上記実施形態と同様の手順で処理装 置を操作することにより流量制御装置 1 1の制御流量を流量検出器 9 0 によってチェックすることができる。 従って、 本実施形態においても前 述した実施形態と同様の作用効果を得ることができる。  Also in the processing apparatus of the present embodiment, the control flow rate of the flow control device 11 can be checked by the flow rate detector 90 by operating the processing apparatus in the same procedure as in the above embodiment. Therefore, in the present embodiment, the same operation and effect as those in the above-described embodiment can be obtained.
尚、 以上の実施形態ではウェハ Wの処理毎に自己診断を行う場合につ いて説明したが、 本発明の処理装置を用いることにより、 本発明の処理 方法とは関係なく、 自己診断のタイミングを適宜選択したり、 複数種の ガスのうち適宜のガスを選択したりして自己診断することができる。 例 えば、 プロセスガスのレシビを変更する際に、 次のレシピで使用するプ ロセスガスについて直前に白己診断したり、 直前のレシピで使用したプ ロセスガスについて自己診断することができる。 In the above embodiment, the case where the self-diagnosis is performed for each processing of the wafer W has been described. However, by using the processing apparatus of the present invention, the timing of the self-diagnosis is independent of the processing method of the present invention. The self-diagnosis can be performed by appropriately selecting or selecting an appropriate gas from a plurality of types of gases. For example, when changing the process gas ratio, the process used in the following recipe: The self-diagnosis of the process gas can be performed immediately before, or the process gas used in the immediately preceding recipe can be self-diagnosed.
また、 複数種のプロセスガスを使用する場合には、 プロセス特性に大 きく影響するプロセスガスのみについて選択的に自己診断するようにし ても良い。 同一レシピの場合にはレシピ 1回毎に自己診断したり、 レシ ピが変わった一回目に複数種のガスについて自己診断を行い以降は複数 種のガスについて順番に自己診断するようにしても良い。  When a plurality of types of process gases are used, the self-diagnosis may be selectively performed only on the process gas that greatly affects the process characteristics. In the case of the same recipe, a self-diagnosis may be performed for each recipe, or a self-diagnosis may be performed for a plurality of types of gases at the first time when the recipe is changed, and then a self-diagnosis may be performed for a plurality of types of gases in order. .
本発明では、 制御流量の自己診断行うタイミングは上記各実施形態に 何等制限されるものではない。 要は、 本発明はウェハ Wを処理する度毎 にウェハ Wを交換する時間を有効に利用して流量診断を行う処理方法で あれば良い。 また、 上記各実施形態ではウェハのエッチング処理を例に 挙げて説明したが、 被処理体はウェハ以外の液晶 L C D用基板等の他の 基板について広く適用することができ、 処理内容は、 エッチング以外の 成膜処理等の処理について広く適用することができることは云うまでも ない。  In the present invention, the timing for performing the self-diagnosis of the control flow rate is not limited to the above embodiments. In short, the present invention only needs to be a processing method for performing a flow rate diagnosis by effectively utilizing the time for replacing the wafer W each time the wafer W is processed. In each of the above embodiments, the wafer etching process has been described as an example. However, the object to be processed can be widely applied to other substrates such as a liquid crystal LCD substrate other than the wafer. It goes without saying that the present invention can be widely applied to processes such as film formation.
以上のとおり本発明によれば、 被処理体の処理を中断することなく流 量の自己診断を確実に行うことができ、 スループットを低下させること なく被処理体の処理を行うことができる。 産業上の利用可能性  As described above, according to the present invention, the self-diagnosis of the flow rate can be reliably performed without interrupting the processing of the processing target, and the processing of the processing target can be performed without lowering the throughput. Industrial applicability
本発明に係る処理方法及び処理装置は、 半導体装置の製造を行う半導 体製造産業等において使用することが可能である。 したがって、 産業上 の利用可能性を有する。  The processing method and the processing apparatus according to the present invention can be used in a semiconductor manufacturing industry or the like that manufactures semiconductor devices. Therefore, it has industrial applicability.

Claims

請 求 の 範 囲 The scope of the claims
1 . 処理室内にプロセスガスを所定流量で供給し、 上記処理室内で被処 理体を処理する方法において、 1. In a method for supplying a process gas at a predetermined flow rate into a processing chamber and processing an object to be processed in the processing chamber,
上記プロセスガスで上記被処理体を処理する度毎に上記プロセスガス の流量を診断することを特徴とする処理方法。  A processing method characterized by diagnosing the flow rate of the process gas every time the process target is processed with the process gas.
2 . 流量制御装置を介して流量制御したプロセスガスをガス供給ライン を介して処理室内に供給し、 上記処理室内で被処理体を処理する方法に おいて、  2. In the method of processing a target object in the processing chamber, supplying the process gas whose flow rate is controlled through the flow rate control device through the gas supply line into the processing chamber.
上記ガス流量制御装置として自己診断可能な流量制御装置を設けると 共に上記ガス供給ラインに分岐ラインを設け、 上記プロセスガスで上記 被処理体を処理する度毎に上記ガス供給ラインを上記分岐ラインに切り 替えて上記流量制御装置において上記プロセスガスの流量を自己診断す ることを特徴とする処理方法。  A self-diagnostic flow control device is provided as the gas flow control device, a branch line is provided in the gas supply line, and the gas supply line is connected to the branch line every time the process target is processed with the process gas. A processing method characterized by performing a self-diagnosis of the flow rate of the process gas in the flow rate control device by switching.
3 . 流量制御装置を介して流量制御したプロセスガスをガス供給ライン を介して処理室内に供給し、 上記処理室内で被処理体を処理する方法に おいて、 3. In the method of processing a target object in the processing chamber, supplying the process gas having the flow rate controlled through the flow rate control device through the gas supply line into the processing chamber.
上記ガス供給ラインに分岐ラインを設けると共にこの分岐ラインに流 量検出器を設け、 上記プロセスガスで上記被処理体を処理する度毎に上 記ガス供給ラインを上記分岐ラインに切り替えて上記流量検出器におい て上記プロセガスの流量を診断することを特徴とする処理方法。  A branch line is provided in the gas supply line, and a flow rate detector is provided in the branch line. The gas supply line is switched to the branch line each time the process target is processed with the process gas, and the flow rate is detected. Diagnosing the flow rate of the process gas in a vessel.
4 . 流量制御装置を介して流量制御したプロセスガスをガス供給ライン を介して処理室内に供給し、 上記処理室内で被処理体を処理する処理装 置において、 4. In a processing apparatus for supplying a process gas having a flow rate controlled through a flow rate control device to a processing chamber through a gas supply line and processing an object to be processed in the processing chamber,
上記流量制御装置として自己診断可能な流量制御装置を設けると共に 上記ガス供給ラインに第 1バルブを設け、 また、 上記ガス供給ラインか ら分岐する分岐ラインを設けると共にこの分岐ラインに第 2バルブを設 け、 上記プロセスガスで上記被処理体を処理する度毎に上記第 1バルブ を閉止すると共に上記第 2バルブを開放して上記ガス供給ラインから上 記分岐ラインに切り替えて上記分岐ラインに上記プロセスガスを流し、 上記流量制御装置において上記プロセスガスの流量を自己診断すること を特徴とする処理装置。 A self-diagnostic flow control device is provided as the flow control device, and a first valve is provided in the gas supply line. A second valve is provided in the branch line, and the first valve is closed and the second valve is opened each time the process target is processed with the process gas. A processing apparatus characterized by switching from a gas supply line to the branch line, flowing the process gas through the branch line, and self-diagnosing the flow rate of the process gas in the flow control device.
5 . 流量制御装置を介して流量制御したプロセスガスをガス供給ライン を介して処理室内に供給し、 上記処理室内で被処理体を処理する処理装 置において、  5. In a processing apparatus for supplying a process gas whose flow rate is controlled through a flow rate control device to a processing chamber through a gas supply line and processing an object to be processed in the processing chamber,
上記ガス供給ラインに第 1バルブを設けると共に上記ガス供給ライン から分岐する分岐ラインを設け、 また、 上記分岐ラインに第 2バルブ及 び流量検出器を設け、 上記プロセスガスで上記被処理体を処理する度毎 に上記第 1バルブを閉止すると共に上記第 2バルブを開放して上記ガス 供給ラインから上記分岐ラインに切り替えて上記分岐ラインに上記プロ セスガスを流し、 上記流量検出器において上記プロセスガスの流量を診 断することを特徴とする処理装置。  A first valve is provided in the gas supply line and a branch line is provided for branching from the gas supply line.A second valve and a flow detector are provided in the branch line, and the object to be processed is treated with the process gas. Each time the first valve is closed, the second valve is opened and the gas supply line is switched to the branch line to flow the process gas through the branch line. A processing device characterized by diagnosing the flow rate.
PCT/JP2002/002539 2001-03-30 2002-03-18 Processing method and processor WO2002082521A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-100420 2001-03-30
JP2001100420A JP2002296096A (en) 2001-03-30 2001-03-30 Processing method and processing device

Publications (1)

Publication Number Publication Date
WO2002082521A1 true WO2002082521A1 (en) 2002-10-17

Family

ID=18953863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002539 WO2002082521A1 (en) 2001-03-30 2002-03-18 Processing method and processor

Country Status (2)

Country Link
JP (1) JP2002296096A (en)
WO (1) WO2002082521A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042686B2 (en) * 2007-03-30 2012-10-03 株式会社日立ハイテクノロジーズ Plasma processing equipment
JP5205045B2 (en) * 2007-12-17 2013-06-05 株式会社日立ハイテクノロジーズ Plasma processing apparatus and plasma processing method
JP5346628B2 (en) 2009-03-11 2013-11-20 株式会社堀場エステック Mass flow controller verification system, verification method, verification program
JP6795832B2 (en) * 2016-07-05 2020-12-02 株式会社フジキン Flow control equipment, flow calibration method for flow control equipment, flow measurement equipment and flow measurement method using flow measurement equipment
JP6767232B2 (en) 2016-10-14 2020-10-14 東京エレクトロン株式会社 Method to obtain the output flow rate of gas output by the flow rate controller of the substrate processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276243A (en) * 1989-04-17 1990-11-13 Nec Kyushu Ltd Plasma etching device
JP2001051724A (en) * 1999-08-10 2001-02-23 Tadahiro Omi Flow rate abnormality detecting method of pressure type flow pate controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02276243A (en) * 1989-04-17 1990-11-13 Nec Kyushu Ltd Plasma etching device
JP2001051724A (en) * 1999-08-10 2001-02-23 Tadahiro Omi Flow rate abnormality detecting method of pressure type flow pate controller

Also Published As

Publication number Publication date
JP2002296096A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
US6916397B2 (en) Methods and apparatus for maintaining a pressure within an environmentally controlled chamber
CN109545701B (en) Method for manufacturing semiconductor device, recording medium, and substrate processing apparatus
US7750654B2 (en) Probe method, prober, and electrode reducing/plasma-etching processing mechanism
JP6837274B2 (en) Semiconductor manufacturing equipment and substrate transfer method
KR20050028943A (en) System for controling pressure of low pressure-chemical vapor deposition equipment
JP7398306B2 (en) Gas inspection method, substrate processing method and substrate processing system
US8029874B2 (en) Plasma processing apparatus and method for venting the same to atmosphere
WO2002082521A1 (en) Processing method and processor
JP5205045B2 (en) Plasma processing apparatus and plasma processing method
JP4078982B2 (en) Processing system and flow measurement method
JP2010177357A (en) Vacuum treatment device and vacuum treatment method
TWI763381B (en) Detection method of plasma processing device
US8112183B2 (en) Substrate processing apparatus and substrate processing method
JP2008205313A (en) Plasma processing apparatus and method for detecting dechucking failure
US20210257197A1 (en) Substrate processing method, gas flow evaluation substrate and substrate processing apparatus
JPH07231032A (en) Sample holder
TWI689970B (en) Substrate processing device, substrate processing method and memory medium
JP2021072405A (en) Gas supply system, substrate processing device, and control method of gas supply system
JP4248753B2 (en) Substrate treatment apparatus and substrate treatment method
EP1544909A1 (en) Probe method,prober,and electrode recucing/plasma-etching process mechanism
JP2007258632A (en) Board processing device
TW202236468A (en) Load port and methods of operation
KR20070013100A (en) Semiconductor manufacturing equipment and cooling method of showerhead using the same
KR0156311B1 (en) Gas supply line protection apparatus of vacuum system and its drive method
KR20030000599A (en) Equipment for fabricating semiconductor with gas diverting system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)