WO2002078164A1 - Verfahren zum regeln eines wechselrichtersystems - Google Patents
Verfahren zum regeln eines wechselrichtersystems Download PDFInfo
- Publication number
- WO2002078164A1 WO2002078164A1 PCT/AT2002/000074 AT0200074W WO02078164A1 WO 2002078164 A1 WO2002078164 A1 WO 2002078164A1 AT 0200074 W AT0200074 W AT 0200074W WO 02078164 A1 WO02078164 A1 WO 02078164A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- converter
- energy
- intermediate circuit
- periods
- control device
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4807—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the invention relates to a method for regulating an inverter system and an inverter therefor, as described in the preambles of claims 1 and 18.
- An inverter system is known from the article "A new panel-integratable inverter concept for grid-connected photovoltaic systems" by A. Lohner, T. Meyer and A. Nagel (Department for Power Electronics and Electrical Drivers, RWTH Aachen University, University of Technology) , in which an energy source, in particular a solar module, is connected to a DC-DC converter which is arranged in the energy source or in the solar module.
- the DC is arranged in the energy source or in the solar module.
- DC converter has a series resonance circuit and is connected to an intermediate circuit which is formed from one or more capacitors.
- a DC-AC converter is connected to the intermediate circuit, the output of the DC-AC converter being connected to an AC voltage network for energy supply.
- AC converter is designed to deliver pulsating power. Furthermore, the energy source, in particular the solar module, works with direct current. The article also mentions that a disadvantage is that the voltage fluctuations of the energy source are transmitted to the intermediate circuit due to the constant power supply or constant voltage or current supply of the DC-DC converter.
- inverter systems are known in which the structure is the same as the above-mentioned inverter.
- a method for regulating the inverter system is used in which the DC-DC converter is regulated in such a way that it has a sinusoidal current flow at constant voltage. This ensures that the intermediate voltage is kept constant in the DC link, the sinusoidal current flow being constantly adapted to the energy consumption of the DC-AC converter from the DC link. This also ensures that sufficient energy is always supplied from the DC-DC converter to the DC link and that standstill or undefined operation is not possible.
- the invention has for its object to provide a method for controlling an inverter system and an inverter therefor, in which a conscious fluctuation of the intermediate circuit voltage or the intermediate circuit energy is accepted and at the same time a safe operation of the inverter or the inverter system is guaranteed.
- This object of the invention is achieved in such a way that the DC-DC converter is regulated in such a way that it has an approximately constant current flow from the input of the DC-DC converter, that is to say from the energy source, to the output of the DC-DC converter for an adjustable period of time.
- Transducer i.e. into the intermediate circuit, independently of the energy taken from the intermediate circuit, whereas the DC-AC converter takes energy from the intermediate circuit for feeding into the AC voltage network and / or for delivery to a consumer within this time period, with a controller or a control device of the DC-DC converter, in particular a setpoint for regulating the current flow through the DC-DC
- the advantage here is that the constant losses of current or the constant energy flow via the DC-DC converter can greatly reduce the conduction losses of the DC-DC converter. This is achieved because the conduction losses of the switching devices used increase in square to the current level, with this type of control the maximum current level being significantly lower than is the case with the known inverters, since with a sinusoidal current supply via the DC DC converter very high current peaks occur to keep the DC link constant. The periods with high current or current peak values therefore have a disproportionately large impact. Another advantage is that it also ensures that there are no peak values of the power loss, since the guide losses remain approximately constant during operation, so that a very simple dissipation of the loss energy, which occurs in the form of thermal energy, is made possible.
- a power adjustment of the energy supply to the intermediate circuit can be carried out without very high current peaks by means of a special regulating or control method, so that continuous operation with such an inverter is possible. It is also advantageous that due to the constant current draw from the energy source, no voltage fluctuations are caused at the input of the DC-DC converter, so that the input capacitances of the smoothing capacitors for the energy source can be significantly reduced. Operation at the optimum working point, in particular at the MPP point, of the energy source or of the solar module, is therefore also possible since there are no voltage fluctuations and therefore an unpredictable shifting of the working point cannot take place.
- By regulating the DC-DC converter with constant current flow it is also achieved that a much lower maximum current level is achieved, as a result of which much smaller components can be used and thus the manufacturing costs of the DC-DC converter can be reduced.
- Figure 1 is a block diagram of an inverter system with the essential components in a simplified, schematic representation.
- Fig. 3 is a characteristic of a current profile at the output of a DC-DC converter
- Fig. 4 is a characteristic curve of a current profile at the output of a DC-AC converter
- FIG. 5 shows a characteristic curve of an intermediate circuit voltage in the intermediate circuit of the inverter system in a simplified, schematic representation.
- FIG. 1 to 5 show a conventional structure, in particular a block diagram, of an inverter system 1 with an inverter 2 (with dash-dotted lines). Since the individual components or assemblies and functions of the inverter system 1 are already known, they will not be discussed in more detail. 2 to 5 different characteristics are shown, which explain the principle of operation of the inverter 2 in more detail.
- the inverter 2 has, for example, a DC-DC converter 3 (with dashed lines), an intermediate circuit 4 and a DC-AC converter 5.
- An energy source 6 or an energy generator is connected to the DC-DC converter 3 and is formed, for example, by one or more solar modules 7 connected in parallel and / or in series with one another, which are referred to as strings, or a battery (not shown).
- the outputs of the DC-AC converter 5 are, for example, not connected to an AC voltage network 8 and / or one or more consumers, such as a refrigerator, a radio, etc.
- the DC-DC converter 3 is formed, for example, at least from an inverter 9, a transformer 10 and a rectifier 11.
- the intermediate circuit 4 is made up of one or more other capacitors built. So that a desired alternating voltage can be generated for the alternating voltage network 8 or the consumer, the DC-AC converter 5 is formed by a corresponding inverter, which converts the direct voltage into an alternating voltage.
- Other components or assemblies, such as filters, smoothing capacitors, etc., are not shown in the exemplary embodiment shown.
- the inverter 2 has a regulator or a control device 12, which can be formed, for example, by a microprocessor, a microcontroller or a computer.
- a corresponding control of the individual assemblies, in particular the switching devices arranged therein, can be carried out via the control device 12.
- the individual regulating or control sequences are stored in the control device 12 by means of corresponding software programs and / or data or characteristic curves.
- measuring system 13 to 16 for detecting the current and the voltage at various points of the inverter system 1 are arranged with the control device 12.
- the DC-DC converter 3 is operated in such a way that it provides a constant current or current value 18 predetermined by the control device 12 for supplying energy to the intermediate circuit 4 over a presettable time period 17.
- the time period 17 over which the DC-DC converter 3 is operated with a predetermined current value 18 can be defined, for example, by an adjustable number of periods or half-periods or an arbitrarily definable period.
- the period 17 is preferably defined by the number of periods or half-periods that can be preset, the periods or half-periods being dependent on the generated AC voltage of the DC-AC converter 5, that is, depending on the set number of periods or half-periods by the control device 12 a regulation or control of the inverter 2, in particular a change in at least one desired value, is initiated.
- the recorded actual values are only regulated for or by the individual components or assemblies to the predetermined target values.
- the duration 17 was set, for example, over the periods, the number of preset periods or half-periods being “one”, that is to say one period or two half-periods periods, as can be seen in FIG. 4.
- control device 12 adjusts the energy supply, in particular the constant current flow or the current value 18, from the DC-DC converter 3 into the intermediate circuit 4 to that of the intermediate circuit 4 through the DC-AC
- the control device 12 enters an average value 28, in particular an average current value, as schematically shown in broken lines in FIG. 4, which the DC-AC converter removed from the intermediate circuit 4 during the period 17 or the set number of periods or half-periods 5 Averaged amount of energy.
- This mean value 28 is then used for the next time period 17 as a target value for the current flow or for the current value 18 of the DC-DC converter 3. It can thus be said that the dashed line for the mean value 28 in FIG. 4 roughly corresponds to the characteristic curve of the output current for the DC-DC converter 3 in FIG. 3, the characteristic curve in FIG. 3 by the time period 17 is shifted.
- a new setpoint that is to say a new current value 18
- a power adjustment of the energy supply in the intermediate circuit 4 to the last amount of energy withdrawn that is to say the amount of energy withdrawn from the just expired Period 17 is carried out.
- Such an adjustment of the current value 18 is particularly evident in the exemplary embodiment shown in FIG. 3 at times 21 and 26, since at these times 21 and 26 in the previous time period 17 there has been a change in the energy consumption of the DC-AC converter 5 and a corresponding adjustment of the setpoint or the current value 18 for the DC-DC converter 3 was therefore necessary.
- the DC-DC converter 3 delivers so much energy to the intermediate circuit 4 at an approximately constant current flow that an intermediate circuit average value 29, as shown with broken lines in FIG. 5, in particular the one Mean value of the intermediate circuit voltage is kept constant, the intermediate circuit voltage in the intermediate circuit 4 fluctuating due to the constant energy transmission or due to the approximately constant current supply of the DC-DC converter 3 from the energy source 6 in accordance with the energy consumption of the DC-AC converter 5, as shown schematically in Fig. 5.
- This delayed energy adaptation makes it possible in the first place that a constant current flow with a defined setpoint or current value 18 can be carried out over the predetermined time period 17 and not, as is known from the prior art, that a constant energy adaptation and thus regulation must be carried out ,
- the constant control effort for the components or assemblies of the inverter 2 is thus significantly reduced and several factors can thus be taken into account for the optimization of the energy supply.
- the control device 12 can be constructed by inexpensive components in which the speed or the clock frequency is low.
- the DC-DC converter 3 and the DC-AC converter 5 can have their own independent control device or a controller, which is interconnected with the control device 12, or that the control device 12 and the regulation can be omitted or control is carried out by the associated controllers.
- the determined mean value 28 can be corrected or otherwise determined by the control device 12 by means of stored or determined data or values or parameters.
- the control device 12 can determine an energy quantity value which is determined by the ratio of the energy quantity supplied, according to FIG. 3, to the energy quantity withdrawn or the amount of current from the intermediate circuit 4. 4, during a time period 17 or the set number of periods or half-periods.
- This Regulation or control is preferably carried out independently of the set time period 17, that is to say at any time, so that the energy flow can be adapted as quickly as possible. Of course, however, it is also possible to carry out this regulation or control synchronously with the time period 17, that is to say after each time period 17.
- the control device 12 determines an intermediate circuit mean value 29 of the amount of energy in the intermediate circuit 4 after the period 17 or after a period or half period or the specified number of periods or half periods, so that constant monitoring and adaptation of the intermediate circuit 4 is possible and thus can be reacted accordingly if the energy consumption from the intermediate circuit 4 is too high or too low.
- the intermediate circuit average value 29 is compared by the control device 12 with stored, preferably adjustable reference values 30, 31 which, for example, can also be set independently of the reference values 30, 31 for the intermediate circuit voltage, the output power, for example, when a reference value 30, 31 is exceeded of the DC-AC converter 5 is increased and when the value falls below a reference value 30, 31, the output power of the DC-AC converter 5 is reduced.
- adjustable reference values 30, 31 which, for example, can also be set independently of the reference values 30, 31 for the intermediate circuit voltage
- the output power can be adjusted and thus corresponding consumers can be switched on or off or operated or more or less energy can be supplied to the AC voltage network 8.
- the DC-AC converter 5 be adapted to the state of the intermediate circuit 4, but also the DC-DC converter 3 is controlled accordingly.
- the defined reference value 30, 31 is undershot, which for example can also be set independently of the reference values 30, 31 for the DC-AC converter 5
- the setpoint value or the current value 18 for the DC-DC converter is determined by an intermediate circuit value 29 3 increased from the energy source 6 when there is a sufficient amount of energy available, that is to say that the control device 12 checks, when the reference value 30, 31 is undershot, how much energy is available from the energy source 6 in order to carry out a corresponding increase in the target value. If there is too little energy available, the output power of the DC-AC converter 5 reduced to in turn supply enough energy in the intermediate circuit 4.
- the control device 12 thus monitors the amount of energy made available by the energy source 6. It is possible that due to the generated or delivered
- Amount of energy the output power of the DC-AC converter 5 is adjusted. This can be done in such a way that when the at least one energy characteristic value 32, according to FIG. 2, is exceeded by the generated energy or the voltage and the current from the energy source 6, the output power of the DC-AC converter 5, as can be seen at time 24, is raised or reduced if it falls below.
- the adaptation of the DC-DC converter 3 does not have to take place at this point in time 24, since this is carried out by a changed mean value 28 after the time period 17 has elapsed. However, it is possible that, due to an unforeseen increase in the output power, the setpoint for the DC-DC converter 3 can be adjusted immediately.
- the inverter system 1 can be operated in such a way that delivery can be made to the AC network 8 and / or to one or more consumers, the control device 12 determining on the basis of the available amount of energy whether it is connected to one or more Consumer and / or is supplied to the AC network 8. For this purpose, the operator can make a corresponding priority-dependent setting, so that the control device 12 can independently switch the connected consumers on and off based on the amount of energy available, as shown in FIG. 4.
- the DC-DC converter 3 is regulated in such a way that an approximately constant current flow from the input of the DC-DC converter 3, that is to say from the energy source, for an adjustable period 17 regardless of the energy taken from the intermediate circuit 4 6, to the output of the DC-DC converter 3, that is to say into the intermediate circuit 4, whereas the DC-AC converter 5 supplies it within this defined time period 17
- the controller or the control device 12 of the DC-DC converter 3 Takes energy from the intermediate circuit 4 for feeding into the AC voltage network 8 and / or for delivery to a consumer, the controller or the control device 12 of the DC-DC converter 3, in particular a setpoint value or a current value 18 for regulating the current flow , re-sets 17 after the specified period of time.
- the control device 12 regulates the inverter system 1 in such a way that the energy supply of the DC-AC converter 5 is determined as a function of the amount of energy or power generated by the energy source 6, ie, accordingly the available amount of energy from the energy source 6 determines the output power of the DC-AC converter 5.
- FIGS. 1, 2, 3, 4, 5 can form the subject of independent solutions according to the invention.
- the relevant tasks and solutions according to the invention can be found in the detailed descriptions of these figures.
- Inverter system Inverter DC-DC converter DC-AC converter energy source Solar module AC network Inverter Transformer Rectifier Control device Measuring system Measuring system Measuring system Time Current value Time Time Time Time Time Time Time Time Time Time Time Time Average value DC link average value Reference value Reference value Energy value
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT02703387T ATE289126T1 (de) | 2001-03-09 | 2002-03-07 | Verfahren zum regeln eines wechselrichtersystems |
DE50202216T DE50202216D1 (de) | 2001-03-09 | 2002-03-07 | Verfahren zum regeln eines wechselrichtersystems |
US10/467,882 US6950323B2 (en) | 2001-03-09 | 2002-03-07 | Method for regulating an inverter system |
EP02703387A EP1371129B1 (de) | 2001-03-09 | 2002-03-07 | Verfahren zum regeln eines wechselrichtersystems |
AU2002237099A AU2002237099B2 (en) | 2001-03-09 | 2002-03-07 | Method for regulating an inverter system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0038201A AT411946B (de) | 2001-03-09 | 2001-03-09 | Verfahren zum regeln eines wechselrichtersystems |
ATA382/2001 | 2001-03-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002078164A1 true WO2002078164A1 (de) | 2002-10-03 |
Family
ID=3673165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2002/000074 WO2002078164A1 (de) | 2001-03-09 | 2002-03-07 | Verfahren zum regeln eines wechselrichtersystems |
Country Status (7)
Country | Link |
---|---|
US (1) | US6950323B2 (de) |
EP (1) | EP1371129B1 (de) |
AT (1) | AT411946B (de) |
AU (1) | AU2002237099B2 (de) |
DE (1) | DE50202216D1 (de) |
ES (1) | ES2236482T3 (de) |
WO (1) | WO2002078164A1 (de) |
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1455437A2 (de) * | 2003-03-07 | 2004-09-08 | Canon Kabushiki Kaisha | Stromrichter und Stromerzeugungseinrichtung |
WO2005081384A2 (de) * | 2004-02-19 | 2005-09-01 | Siemens Aktiengesellschaft | Vorrichtung und verfahren zum regeln einer taktfrequenz eines stromrichters |
WO2006004108A1 (ja) * | 2004-07-07 | 2006-01-12 | Seiko Epson Corporation | 圧電アクチュエータおよび機器 |
WO2012127209A3 (en) * | 2011-03-22 | 2013-02-21 | Enecsys Limited | Solar photovoltaic inverters |
WO2012127208A3 (en) * | 2011-03-22 | 2013-02-28 | Enecsys Limited | Arrangement for controlled and efficient infeed of photovoltaic power into the ac mains with parallely connected dc/dc converters |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11309714B2 (en) | 2016-11-02 | 2022-04-19 | Tesla, Inc. | Micro-batteries for energy generation systems |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US12136890B2 (en) | 2023-11-14 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
Families Citing this family (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1623495B1 (de) | 2003-05-06 | 2009-10-07 | Enecsys Limited | Stromversorgungsschaltungen |
US8067855B2 (en) | 2003-05-06 | 2011-11-29 | Enecsys Limited | Power supply circuits |
US8102144B2 (en) | 2003-05-28 | 2012-01-24 | Beacon Power Corporation | Power converter for a solar panel |
US20070164612A1 (en) * | 2004-01-09 | 2007-07-19 | Koninkijke Phillips Electronics N.V. | Decentralized power generation system |
GB2415841B (en) | 2004-11-08 | 2006-05-10 | Enecsys Ltd | Power conditioning unit |
WO2006048689A2 (en) * | 2004-11-08 | 2006-05-11 | Encesys Limited | Integrated circuits and power supplies |
US7148650B1 (en) * | 2005-06-22 | 2006-12-12 | World Water & Power Corp. | Maximum power point motor control |
US8324921B2 (en) | 2007-12-05 | 2012-12-04 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US8405367B2 (en) | 2006-01-13 | 2013-03-26 | Enecsys Limited | Power conditioning units |
GB2454389B (en) | 2006-01-13 | 2009-08-26 | Enecsys Ltd | Power conditioning unit |
US7656059B2 (en) * | 2006-05-23 | 2010-02-02 | Continental Automotive Systems Us, Inc. | System and method for a power system micro grid |
US7994657B2 (en) * | 2006-12-22 | 2011-08-09 | Solarbridge Technologies, Inc. | Modular system for unattended energy generation and storage |
US7755916B2 (en) | 2007-10-11 | 2010-07-13 | Solarbridge Technologies, Inc. | Methods for minimizing double-frequency ripple power in single-phase power conditioners |
US8039989B2 (en) * | 2007-11-27 | 2011-10-18 | International Business Machines Corporation | Apparatus, system, and method for a low cost multiple output redundant power supply |
US20100191489A1 (en) * | 2009-01-28 | 2010-07-29 | Uqm Technologies, Inc. | Distributed Generation Power System |
US8217534B2 (en) * | 2009-05-20 | 2012-07-10 | General Electric Company | Power generator distributed inverter |
JP2012527767A (ja) | 2009-05-22 | 2012-11-08 | ソラレッジ テクノロジーズ リミテッド | 電気絶縁された熱放散接続箱 |
US8279642B2 (en) | 2009-07-31 | 2012-10-02 | Solarbridge Technologies, Inc. | Apparatus for converting direct current to alternating current using an active filter to reduce double-frequency ripple power of bus waveform |
US8462518B2 (en) | 2009-10-12 | 2013-06-11 | Solarbridge Technologies, Inc. | Power inverter docking system for photovoltaic modules |
US20110115300A1 (en) * | 2009-11-18 | 2011-05-19 | Du Pont Apollo Ltd. | Converting device with multiple input terminals and two output terminals and photovoltaic system employing the same |
US8710699B2 (en) | 2009-12-01 | 2014-04-29 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
US8824178B1 (en) | 2009-12-31 | 2014-09-02 | Solarbridge Technologies, Inc. | Parallel power converter topology |
US8766696B2 (en) | 2010-01-27 | 2014-07-01 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
EP2365599B1 (de) * | 2010-03-08 | 2014-07-16 | SMA Solar Technology AG | Vorrichtung zur Wandlung elektrischer Energie und Verfahren zum Betreiben einer derartigen Vorrichtung |
GB2482653B (en) | 2010-06-07 | 2012-08-29 | Enecsys Ltd | Solar photovoltaic systems |
US8503200B2 (en) | 2010-10-11 | 2013-08-06 | Solarbridge Technologies, Inc. | Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion |
US8279649B2 (en) | 2010-10-11 | 2012-10-02 | Solarbridge Technologies, Inc. | Apparatus and method for controlling a power inverter |
US9160408B2 (en) | 2010-10-11 | 2015-10-13 | Sunpower Corporation | System and method for establishing communication with an array of inverters |
US9467063B2 (en) | 2010-11-29 | 2016-10-11 | Sunpower Corporation | Technologies for interleaved control of an inverter array |
US8842454B2 (en) | 2010-11-29 | 2014-09-23 | Solarbridge Technologies, Inc. | Inverter array with localized inverter control |
DE102011007929B4 (de) * | 2011-01-03 | 2015-06-11 | Sma Solar Technology Ag | Verfahren zum Betrieb eines Wechselrichters und Steuereinrichtung |
US8174856B2 (en) | 2011-04-27 | 2012-05-08 | Solarbridge Technologies, Inc. | Configurable power supply assembly |
US8611107B2 (en) | 2011-04-27 | 2013-12-17 | Solarbridge Technologies, Inc. | Method and system for controlling a multi-stage power inverter |
US9065354B2 (en) | 2011-04-27 | 2015-06-23 | Sunpower Corporation | Multi-stage power inverter for power bus communication |
US8922185B2 (en) | 2011-07-11 | 2014-12-30 | Solarbridge Technologies, Inc. | Device and method for global maximum power point tracking |
US8284574B2 (en) | 2011-10-17 | 2012-10-09 | Solarbridge Technologies, Inc. | Method and apparatus for controlling an inverter using pulse mode control |
US9870016B2 (en) | 2012-05-25 | 2018-01-16 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
US9276635B2 (en) | 2012-06-29 | 2016-03-01 | Sunpower Corporation | Device, system, and method for communicating with a power inverter using power line communications |
US9584044B2 (en) | 2013-03-15 | 2017-02-28 | Sunpower Corporation | Technologies for converter topologies |
US9564835B2 (en) | 2013-03-15 | 2017-02-07 | Sunpower Corporation | Inverter communications using output signal |
US9436201B1 (en) | 2015-06-12 | 2016-09-06 | KarmSolar | System and method for maintaining a photovoltaic power source at a maximum power point |
ES2626237B1 (es) * | 2015-12-22 | 2018-05-03 | Universidad De Zaragoza | Sistema electrónico de potencia modular variable para la generación de pulsos eléctricos y usos asociados |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
CN107153212B (zh) | 2016-03-03 | 2023-07-28 | 太阳能安吉科技有限公司 | 用于映射发电设施的方法 |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
CN107666153B (zh) * | 2016-07-29 | 2020-10-13 | 中国电力科学研究院有限公司 | 一种光伏虚拟同步发电机的参数量测方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0780750A2 (de) * | 1995-12-20 | 1997-06-25 | Sharp Kabushiki Kaisha | Wechselrichtersteuerungsverfahren und das Verfahren benutzende Wechselrichtervorrichtung |
DE19937410A1 (de) * | 1999-08-07 | 2001-02-15 | Elektro & Automatisierungstech | Dreiphasiger Solarwechselrichter für Netz- und Inselbetrieb |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4494180A (en) * | 1983-12-02 | 1985-01-15 | Franklin Electric Co., Inc. | Electrical power matching system |
JP2686135B2 (ja) * | 1989-03-28 | 1997-12-08 | 松下電工株式会社 | 定電流電源回路 |
JPH1014122A (ja) | 1996-06-21 | 1998-01-16 | Sony Corp | バツテリパツク及びその制御方法 |
JP3862320B2 (ja) * | 1996-06-27 | 2006-12-27 | 松下電工株式会社 | 系統連系型インバータ装置 |
JP2001161032A (ja) * | 1999-12-01 | 2001-06-12 | Canon Inc | 系統連系パワーコンディショナ及びそれを用いた発電システム |
JP2002165357A (ja) * | 2000-11-27 | 2002-06-07 | Canon Inc | 電力変換装置およびその制御方法、および発電システム |
-
2001
- 2001-03-09 AT AT0038201A patent/AT411946B/de not_active IP Right Cessation
-
2002
- 2002-03-07 AU AU2002237099A patent/AU2002237099B2/en not_active Expired
- 2002-03-07 WO PCT/AT2002/000074 patent/WO2002078164A1/de not_active Application Discontinuation
- 2002-03-07 US US10/467,882 patent/US6950323B2/en not_active Expired - Lifetime
- 2002-03-07 EP EP02703387A patent/EP1371129B1/de not_active Expired - Lifetime
- 2002-03-07 ES ES02703387T patent/ES2236482T3/es not_active Expired - Lifetime
- 2002-03-07 DE DE50202216T patent/DE50202216D1/de not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0780750A2 (de) * | 1995-12-20 | 1997-06-25 | Sharp Kabushiki Kaisha | Wechselrichtersteuerungsverfahren und das Verfahren benutzende Wechselrichtervorrichtung |
DE19937410A1 (de) * | 1999-08-07 | 2001-02-15 | Elektro & Automatisierungstech | Dreiphasiger Solarwechselrichter für Netz- und Inselbetrieb |
Non-Patent Citations (2)
Title |
---|
HERRMANN U ET AL: "Low cost DC to AC converter for photovoltaic power conversion in residential applications", PESC '93. RECORD. 24TH ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE (CAT. NO.93CH3293-8), PROCEEDINGS OF IEEE POWER ELECTRONICS SPECIALIST CONFERENCE - PESC '93, SEATTLE, WA, USA, 20-24 JUNE 1993, 1993, New York, NY, USA, IEEE, USA, pages 588 - 594, XP002204663, ISBN: 0-7803-1243-0 * |
LOHNER A ET AL: "A new panel-integratable inverter concept for grid-connected photovoltaic systems", ISIE '96. PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (CAT. NO.96TH8192), PROCEEDINGS OF IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, WARSAW, POLAND, 17-20 JUNE 1996, 1996, New York, NY, USA, IEEE, USA, pages 827 - 831 vol.2, XP002204662, ISBN: 0-7803-3334-9 * |
Cited By (150)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1455437A2 (de) * | 2003-03-07 | 2004-09-08 | Canon Kabushiki Kaisha | Stromrichter und Stromerzeugungseinrichtung |
EP1455437A3 (de) * | 2003-03-07 | 2006-03-01 | Canon Kabushiki Kaisha | Stromrichter und Stromerzeugungseinrichtung |
KR100713709B1 (ko) * | 2003-03-07 | 2007-05-04 | 캐논 가부시끼가이샤 | 전력변환장치 및 전원장치 |
CN100420140C (zh) * | 2003-03-07 | 2008-09-17 | 佳能株式会社 | 功率变换装置和电源装置 |
WO2005081384A2 (de) * | 2004-02-19 | 2005-09-01 | Siemens Aktiengesellschaft | Vorrichtung und verfahren zum regeln einer taktfrequenz eines stromrichters |
WO2005081384A3 (de) * | 2004-02-19 | 2009-01-15 | Siemens Ag | Vorrichtung und verfahren zum regeln einer taktfrequenz eines stromrichters |
WO2006004108A1 (ja) * | 2004-07-07 | 2006-01-12 | Seiko Epson Corporation | 圧電アクチュエータおよび機器 |
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
US9584036B2 (en) | 2011-03-22 | 2017-02-28 | Solarcity Corporation | Solar photovoltaic power conditioning units |
WO2012127209A3 (en) * | 2011-03-22 | 2013-02-21 | Enecsys Limited | Solar photovoltaic inverters |
US10008858B2 (en) | 2011-03-22 | 2018-06-26 | Tesla, Inc. | Solar photovoltaic power conditioning units |
WO2012127208A3 (en) * | 2011-03-22 | 2013-02-28 | Enecsys Limited | Arrangement for controlled and efficient infeed of photovoltaic power into the ac mains with parallely connected dc/dc converters |
US10424936B2 (en) | 2011-03-22 | 2019-09-24 | Tesla, Inc. | Solar photovoltaic power conditioning units |
US8391031B2 (en) | 2011-03-22 | 2013-03-05 | Enecsys Limited | Solar photovoltaic power conditioning units |
US8542512B2 (en) | 2011-03-22 | 2013-09-24 | Enecsys Limited | Solar photovoltaic inverters |
US8934269B2 (en) | 2011-03-22 | 2015-01-13 | Enecsys Limited | Solar photovoltaic power conditioning units |
US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
US11309714B2 (en) | 2016-11-02 | 2022-04-19 | Tesla, Inc. | Micro-batteries for energy generation systems |
US12136890B2 (en) | 2023-11-14 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
Also Published As
Publication number | Publication date |
---|---|
EP1371129B1 (de) | 2005-02-09 |
EP1371129A1 (de) | 2003-12-17 |
US6950323B2 (en) | 2005-09-27 |
US20040076028A1 (en) | 2004-04-22 |
AT411946B (de) | 2004-07-26 |
ATA3822001A (de) | 2003-12-15 |
ES2236482T3 (es) | 2005-07-16 |
DE50202216D1 (de) | 2005-03-17 |
AU2002237099B2 (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AT411946B (de) | Verfahren zum regeln eines wechselrichtersystems | |
EP1683258B1 (de) | Verfahren zur einstellung der schaltzeiten, insbesondere totzeiten, in einem wechselrichter in abhängigkeit von der erfassten energie sowie wechselrichter | |
DE69737965T2 (de) | Unterbrechungsfreie Stromversorgung | |
EP2137811A1 (de) | Steuereinrichtung für stromrichterstationen bei einer hochspannungsgleichstromübertragungseinrichtung | |
EP2512207B1 (de) | Treiberschaltung und Verfahren zum Versorgen einer LED sowie Leuchtmittel | |
EP0708998B1 (de) | Gepuffertes gleichspannungsversorgungssystem | |
EP3097624B1 (de) | Wechselrichter, insbesondere als teil eines energieerzeugungsverbundes, und verfahren | |
WO2020148313A1 (de) | Windenergieanlage zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz | |
DE19605419B4 (de) | Verfahren zur Beseitigung von Abweichungen der Ist-Spannung in einem Drehstromnetz von einer vorgegebenen Soll-Spannung | |
EP0254098B1 (de) | Verfahren zum Regeln des Energiebezugs eines mehrere Verbraucher enthaltenden Abnehmers | |
EP1309063B1 (de) | Anlage zur Einspeisung von Strom aus Gleichstromerzeugern in das Wechselstromnetz | |
DE102016107578B4 (de) | Betriebsschaltung und Verfahren zum Betreiben wenigstens eines Leuchtmittels | |
EP1137149A2 (de) | Vorrichtung und Verfahren zur Energieversorgung eines autonomen Netzes | |
DE69001895T2 (de) | Kaelteanlage mit mehreren verdichtern. | |
DE19716645A1 (de) | Verfahren und Vorrichtung zur Übertragung von elektrischer Leistung zwischen einem Stromerzeuger und einem Stromnetz | |
DE19651484A1 (de) | Verfahren zur Leistungsaufnahmeoptimierung eines Verbundes elektrisch geheizter bzw. gekühlter Verbraucher | |
EP1380097A2 (de) | Weshselrichter | |
DE3704756A1 (de) | Verfahren zum einstellen der foerderleistung einer umwaelzpumpe | |
EP1560675B1 (de) | Netzstromregelung für eine vielpunkt-widerstandsschweissmaschine mit einem aufladbaren energiespeicher | |
EP3741022A1 (de) | Verfahren und vorrichtung zum regeln einer elektrischen spannung | |
EP2677622B1 (de) | Verfahren und eine Vorrichtung zum Einspeisen von elektrischer Leistung in ein elektrisches Energieversorgungsnetz | |
DE2626831B2 (de) | Nutzbrems-regelanordnung fuer gleichstrommotoren | |
EP0727859B1 (de) | Verfahren zur Verbesserung der Spannungsqualität in einem Drehstromnetz und Anlage für die Durchführung des Verfahrens | |
DE3224301C2 (de) | ||
EP1142665A2 (de) | Lichtbogenschweissgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002703387 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002237099 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10467882 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 090462002 Country of ref document: AT |
|
WWP | Wipo information: published in national office |
Ref document number: 2002703387 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002703387 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |