WO2002078164A1 - Verfahren zum regeln eines wechselrichtersystems - Google Patents

Verfahren zum regeln eines wechselrichtersystems Download PDF

Info

Publication number
WO2002078164A1
WO2002078164A1 PCT/AT2002/000074 AT0200074W WO02078164A1 WO 2002078164 A1 WO2002078164 A1 WO 2002078164A1 AT 0200074 W AT0200074 W AT 0200074W WO 02078164 A1 WO02078164 A1 WO 02078164A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter
energy
intermediate circuit
periods
control device
Prior art date
Application number
PCT/AT2002/000074
Other languages
English (en)
French (fr)
Inventor
Günter ACHLEITNER
Christoph Panhuber
Original Assignee
Fronius International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fronius International Gmbh filed Critical Fronius International Gmbh
Priority to AT02703387T priority Critical patent/ATE289126T1/de
Priority to DE50202216T priority patent/DE50202216D1/de
Priority to US10/467,882 priority patent/US6950323B2/en
Priority to EP02703387A priority patent/EP1371129B1/de
Priority to AU2002237099A priority patent/AU2002237099B2/en
Publication of WO2002078164A1 publication Critical patent/WO2002078164A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a method for regulating an inverter system and an inverter therefor, as described in the preambles of claims 1 and 18.
  • An inverter system is known from the article "A new panel-integratable inverter concept for grid-connected photovoltaic systems" by A. Lohner, T. Meyer and A. Nagel (Department for Power Electronics and Electrical Drivers, RWTH Aachen University, University of Technology) , in which an energy source, in particular a solar module, is connected to a DC-DC converter which is arranged in the energy source or in the solar module.
  • the DC is arranged in the energy source or in the solar module.
  • DC converter has a series resonance circuit and is connected to an intermediate circuit which is formed from one or more capacitors.
  • a DC-AC converter is connected to the intermediate circuit, the output of the DC-AC converter being connected to an AC voltage network for energy supply.
  • AC converter is designed to deliver pulsating power. Furthermore, the energy source, in particular the solar module, works with direct current. The article also mentions that a disadvantage is that the voltage fluctuations of the energy source are transmitted to the intermediate circuit due to the constant power supply or constant voltage or current supply of the DC-DC converter.
  • inverter systems are known in which the structure is the same as the above-mentioned inverter.
  • a method for regulating the inverter system is used in which the DC-DC converter is regulated in such a way that it has a sinusoidal current flow at constant voltage. This ensures that the intermediate voltage is kept constant in the DC link, the sinusoidal current flow being constantly adapted to the energy consumption of the DC-AC converter from the DC link. This also ensures that sufficient energy is always supplied from the DC-DC converter to the DC link and that standstill or undefined operation is not possible.
  • the invention has for its object to provide a method for controlling an inverter system and an inverter therefor, in which a conscious fluctuation of the intermediate circuit voltage or the intermediate circuit energy is accepted and at the same time a safe operation of the inverter or the inverter system is guaranteed.
  • This object of the invention is achieved in such a way that the DC-DC converter is regulated in such a way that it has an approximately constant current flow from the input of the DC-DC converter, that is to say from the energy source, to the output of the DC-DC converter for an adjustable period of time.
  • Transducer i.e. into the intermediate circuit, independently of the energy taken from the intermediate circuit, whereas the DC-AC converter takes energy from the intermediate circuit for feeding into the AC voltage network and / or for delivery to a consumer within this time period, with a controller or a control device of the DC-DC converter, in particular a setpoint for regulating the current flow through the DC-DC
  • the advantage here is that the constant losses of current or the constant energy flow via the DC-DC converter can greatly reduce the conduction losses of the DC-DC converter. This is achieved because the conduction losses of the switching devices used increase in square to the current level, with this type of control the maximum current level being significantly lower than is the case with the known inverters, since with a sinusoidal current supply via the DC DC converter very high current peaks occur to keep the DC link constant. The periods with high current or current peak values therefore have a disproportionately large impact. Another advantage is that it also ensures that there are no peak values of the power loss, since the guide losses remain approximately constant during operation, so that a very simple dissipation of the loss energy, which occurs in the form of thermal energy, is made possible.
  • a power adjustment of the energy supply to the intermediate circuit can be carried out without very high current peaks by means of a special regulating or control method, so that continuous operation with such an inverter is possible. It is also advantageous that due to the constant current draw from the energy source, no voltage fluctuations are caused at the input of the DC-DC converter, so that the input capacitances of the smoothing capacitors for the energy source can be significantly reduced. Operation at the optimum working point, in particular at the MPP point, of the energy source or of the solar module, is therefore also possible since there are no voltage fluctuations and therefore an unpredictable shifting of the working point cannot take place.
  • By regulating the DC-DC converter with constant current flow it is also achieved that a much lower maximum current level is achieved, as a result of which much smaller components can be used and thus the manufacturing costs of the DC-DC converter can be reduced.
  • Figure 1 is a block diagram of an inverter system with the essential components in a simplified, schematic representation.
  • Fig. 3 is a characteristic of a current profile at the output of a DC-DC converter
  • Fig. 4 is a characteristic curve of a current profile at the output of a DC-AC converter
  • FIG. 5 shows a characteristic curve of an intermediate circuit voltage in the intermediate circuit of the inverter system in a simplified, schematic representation.
  • FIG. 1 to 5 show a conventional structure, in particular a block diagram, of an inverter system 1 with an inverter 2 (with dash-dotted lines). Since the individual components or assemblies and functions of the inverter system 1 are already known, they will not be discussed in more detail. 2 to 5 different characteristics are shown, which explain the principle of operation of the inverter 2 in more detail.
  • the inverter 2 has, for example, a DC-DC converter 3 (with dashed lines), an intermediate circuit 4 and a DC-AC converter 5.
  • An energy source 6 or an energy generator is connected to the DC-DC converter 3 and is formed, for example, by one or more solar modules 7 connected in parallel and / or in series with one another, which are referred to as strings, or a battery (not shown).
  • the outputs of the DC-AC converter 5 are, for example, not connected to an AC voltage network 8 and / or one or more consumers, such as a refrigerator, a radio, etc.
  • the DC-DC converter 3 is formed, for example, at least from an inverter 9, a transformer 10 and a rectifier 11.
  • the intermediate circuit 4 is made up of one or more other capacitors built. So that a desired alternating voltage can be generated for the alternating voltage network 8 or the consumer, the DC-AC converter 5 is formed by a corresponding inverter, which converts the direct voltage into an alternating voltage.
  • Other components or assemblies, such as filters, smoothing capacitors, etc., are not shown in the exemplary embodiment shown.
  • the inverter 2 has a regulator or a control device 12, which can be formed, for example, by a microprocessor, a microcontroller or a computer.
  • a corresponding control of the individual assemblies, in particular the switching devices arranged therein, can be carried out via the control device 12.
  • the individual regulating or control sequences are stored in the control device 12 by means of corresponding software programs and / or data or characteristic curves.
  • measuring system 13 to 16 for detecting the current and the voltage at various points of the inverter system 1 are arranged with the control device 12.
  • the DC-DC converter 3 is operated in such a way that it provides a constant current or current value 18 predetermined by the control device 12 for supplying energy to the intermediate circuit 4 over a presettable time period 17.
  • the time period 17 over which the DC-DC converter 3 is operated with a predetermined current value 18 can be defined, for example, by an adjustable number of periods or half-periods or an arbitrarily definable period.
  • the period 17 is preferably defined by the number of periods or half-periods that can be preset, the periods or half-periods being dependent on the generated AC voltage of the DC-AC converter 5, that is, depending on the set number of periods or half-periods by the control device 12 a regulation or control of the inverter 2, in particular a change in at least one desired value, is initiated.
  • the recorded actual values are only regulated for or by the individual components or assemblies to the predetermined target values.
  • the duration 17 was set, for example, over the periods, the number of preset periods or half-periods being “one”, that is to say one period or two half-periods periods, as can be seen in FIG. 4.
  • control device 12 adjusts the energy supply, in particular the constant current flow or the current value 18, from the DC-DC converter 3 into the intermediate circuit 4 to that of the intermediate circuit 4 through the DC-AC
  • the control device 12 enters an average value 28, in particular an average current value, as schematically shown in broken lines in FIG. 4, which the DC-AC converter removed from the intermediate circuit 4 during the period 17 or the set number of periods or half-periods 5 Averaged amount of energy.
  • This mean value 28 is then used for the next time period 17 as a target value for the current flow or for the current value 18 of the DC-DC converter 3. It can thus be said that the dashed line for the mean value 28 in FIG. 4 roughly corresponds to the characteristic curve of the output current for the DC-DC converter 3 in FIG. 3, the characteristic curve in FIG. 3 by the time period 17 is shifted.
  • a new setpoint that is to say a new current value 18
  • a power adjustment of the energy supply in the intermediate circuit 4 to the last amount of energy withdrawn that is to say the amount of energy withdrawn from the just expired Period 17 is carried out.
  • Such an adjustment of the current value 18 is particularly evident in the exemplary embodiment shown in FIG. 3 at times 21 and 26, since at these times 21 and 26 in the previous time period 17 there has been a change in the energy consumption of the DC-AC converter 5 and a corresponding adjustment of the setpoint or the current value 18 for the DC-DC converter 3 was therefore necessary.
  • the DC-DC converter 3 delivers so much energy to the intermediate circuit 4 at an approximately constant current flow that an intermediate circuit average value 29, as shown with broken lines in FIG. 5, in particular the one Mean value of the intermediate circuit voltage is kept constant, the intermediate circuit voltage in the intermediate circuit 4 fluctuating due to the constant energy transmission or due to the approximately constant current supply of the DC-DC converter 3 from the energy source 6 in accordance with the energy consumption of the DC-AC converter 5, as shown schematically in Fig. 5.
  • This delayed energy adaptation makes it possible in the first place that a constant current flow with a defined setpoint or current value 18 can be carried out over the predetermined time period 17 and not, as is known from the prior art, that a constant energy adaptation and thus regulation must be carried out ,
  • the constant control effort for the components or assemblies of the inverter 2 is thus significantly reduced and several factors can thus be taken into account for the optimization of the energy supply.
  • the control device 12 can be constructed by inexpensive components in which the speed or the clock frequency is low.
  • the DC-DC converter 3 and the DC-AC converter 5 can have their own independent control device or a controller, which is interconnected with the control device 12, or that the control device 12 and the regulation can be omitted or control is carried out by the associated controllers.
  • the determined mean value 28 can be corrected or otherwise determined by the control device 12 by means of stored or determined data or values or parameters.
  • the control device 12 can determine an energy quantity value which is determined by the ratio of the energy quantity supplied, according to FIG. 3, to the energy quantity withdrawn or the amount of current from the intermediate circuit 4. 4, during a time period 17 or the set number of periods or half-periods.
  • This Regulation or control is preferably carried out independently of the set time period 17, that is to say at any time, so that the energy flow can be adapted as quickly as possible. Of course, however, it is also possible to carry out this regulation or control synchronously with the time period 17, that is to say after each time period 17.
  • the control device 12 determines an intermediate circuit mean value 29 of the amount of energy in the intermediate circuit 4 after the period 17 or after a period or half period or the specified number of periods or half periods, so that constant monitoring and adaptation of the intermediate circuit 4 is possible and thus can be reacted accordingly if the energy consumption from the intermediate circuit 4 is too high or too low.
  • the intermediate circuit average value 29 is compared by the control device 12 with stored, preferably adjustable reference values 30, 31 which, for example, can also be set independently of the reference values 30, 31 for the intermediate circuit voltage, the output power, for example, when a reference value 30, 31 is exceeded of the DC-AC converter 5 is increased and when the value falls below a reference value 30, 31, the output power of the DC-AC converter 5 is reduced.
  • adjustable reference values 30, 31 which, for example, can also be set independently of the reference values 30, 31 for the intermediate circuit voltage
  • the output power can be adjusted and thus corresponding consumers can be switched on or off or operated or more or less energy can be supplied to the AC voltage network 8.
  • the DC-AC converter 5 be adapted to the state of the intermediate circuit 4, but also the DC-DC converter 3 is controlled accordingly.
  • the defined reference value 30, 31 is undershot, which for example can also be set independently of the reference values 30, 31 for the DC-AC converter 5
  • the setpoint value or the current value 18 for the DC-DC converter is determined by an intermediate circuit value 29 3 increased from the energy source 6 when there is a sufficient amount of energy available, that is to say that the control device 12 checks, when the reference value 30, 31 is undershot, how much energy is available from the energy source 6 in order to carry out a corresponding increase in the target value. If there is too little energy available, the output power of the DC-AC converter 5 reduced to in turn supply enough energy in the intermediate circuit 4.
  • the control device 12 thus monitors the amount of energy made available by the energy source 6. It is possible that due to the generated or delivered
  • Amount of energy the output power of the DC-AC converter 5 is adjusted. This can be done in such a way that when the at least one energy characteristic value 32, according to FIG. 2, is exceeded by the generated energy or the voltage and the current from the energy source 6, the output power of the DC-AC converter 5, as can be seen at time 24, is raised or reduced if it falls below.
  • the adaptation of the DC-DC converter 3 does not have to take place at this point in time 24, since this is carried out by a changed mean value 28 after the time period 17 has elapsed. However, it is possible that, due to an unforeseen increase in the output power, the setpoint for the DC-DC converter 3 can be adjusted immediately.
  • the inverter system 1 can be operated in such a way that delivery can be made to the AC network 8 and / or to one or more consumers, the control device 12 determining on the basis of the available amount of energy whether it is connected to one or more Consumer and / or is supplied to the AC network 8. For this purpose, the operator can make a corresponding priority-dependent setting, so that the control device 12 can independently switch the connected consumers on and off based on the amount of energy available, as shown in FIG. 4.
  • the DC-DC converter 3 is regulated in such a way that an approximately constant current flow from the input of the DC-DC converter 3, that is to say from the energy source, for an adjustable period 17 regardless of the energy taken from the intermediate circuit 4 6, to the output of the DC-DC converter 3, that is to say into the intermediate circuit 4, whereas the DC-AC converter 5 supplies it within this defined time period 17
  • the controller or the control device 12 of the DC-DC converter 3 Takes energy from the intermediate circuit 4 for feeding into the AC voltage network 8 and / or for delivery to a consumer, the controller or the control device 12 of the DC-DC converter 3, in particular a setpoint value or a current value 18 for regulating the current flow , re-sets 17 after the specified period of time.
  • the control device 12 regulates the inverter system 1 in such a way that the energy supply of the DC-AC converter 5 is determined as a function of the amount of energy or power generated by the energy source 6, ie, accordingly the available amount of energy from the energy source 6 determines the output power of the DC-AC converter 5.
  • FIGS. 1, 2, 3, 4, 5 can form the subject of independent solutions according to the invention.
  • the relevant tasks and solutions according to the invention can be found in the detailed descriptions of these figures.
  • Inverter system Inverter DC-DC converter DC-AC converter energy source Solar module AC network Inverter Transformer Rectifier Control device Measuring system Measuring system Measuring system Time Current value Time Time Time Time Time Time Time Time Time Time Time Time Average value DC link average value Reference value Reference value Energy value

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

Die Erfindung beschreibt ein Verfahren zum Regeln eines Wechselrichtersystems (1), bei dem über eine Energiequelle (6) elektrische Energie erzeugt und/oder geliefert wird, die von zumindest einem DC-DC-Wandler (3) in einen Zwischenkreis (4) transferiert und von diesem über einen DC-AC-Wandler (5) in ein Wechselspannungsnetz (8) eingespeist und/oder einem Verbraucher zugeführt wird. Der DC-DC-Wander (3) wird derart geregelt, dass sich während einer einstellbaren Zeitdauer unabhängig von der Energieentnahme aus dem Zwischenkreis (4) ein annähernd konstanter Stromfluss vom Eingang des DC-DC-Wandlers (3), also von der Energiequelle (6), zum Ausgang des DC-DC-Wandlers (3), also in den Zwischenkreis (4), einstellt, wogegen der DC-AC-Wandler (5) innerhalb dieser Zeitdauer Energie aus dem Zwischenkreis (4) zum Einspeisen in das Wechselspannungsnetz (8) und/oder zur Lieferung an den Verbraucher entnimmt. Ein Regler bzw. eine Steuervorrichtung des DC-DC-Wandlers (3), insbesondere ein Sollwert für die Regelung des Stromflusses durch den DC-DC-Wandler (3), wird jeweils nach Ablauf der Zeitdauer neu eingestelt.

Description

Verfahren zum Regeln eines Wechselrichtersystems
Die Erfindung betrifft ein Verfahren zum Regeln eines Wechselrichtersystems sowie einen Wechselrichter hierfür, wie es in den Oberbegriffen der Ansprüche 1 und 18 beschrieben ist.
Aus dem Artikel "A new panel-integratable inverter concept for grid-connected photovoltaic Systems" von A. Lohner, T. Meyer und A. Nagel (Department for Power Electronics and Electrical Drivers, RWTH Aachen, University of Technology) ist ein Wechselrichtersystem bekannt, bei dem eine Energiequelle, insbesondere ein Solarmodul, an einem DC-DC-Wand- 1er, der in der Energiequelle bzw. im Solarmodul angeordnet ist, angeschlossen ist. Der DC-
DC-Wandler weist einen Serien-Resonanzkreis auf und ist mit einem Zwischenkreis, der aus einem oder mehreren Kondensatoren gebildet ist, verbunden. Am Zwischenkreis ist ein DC- AC-Wandler angeschlossen, wobei der Ausgang des DC-AC- Wandlers mit einem Wechselspannungsnetz zur Energieeinspeisung verbunden ist. Aus dem Artikel ist ein Konzept zu ent- nehmen, bei dem der DC-DC-Wandler zur Lieferung einer konstanten Leistung und der DC-
AC-Wandler zur Lieferung einer pulsierenden Leistung ausgelegt ist. Weiters arbeitet die Energiequelle, insbesondere das Solarmodul, mit Gleichstrom. Im Artikel wird weiters erwähnt, daß ein Nachteil darin besteht, daß durch die konstante Leistungslieferung bzw. konstante Spannungs- bzw. Stromlieferang des DC-DC-Wandlers die Spannungsschwankungen der Energiequelle auf den Zwischenkreis übertragen wird.
In diesem Artikel ist zwar das Grundprinzip einer konstanten Energielieferung von der Energiequelle in den Zwischenkreis erwähnt, jedoch werden keinerlei Anregungen gegeben, wie ein derartiges Wechselrichtersystem betrieben werden muß. Hierzu wird sogar erwähnt, daß dadurch der Nachteil auftritt, daß Spannungsschwankungen im Zwischenkreis auftreten. Wird bei diesem Konzept eine konstante Energielieferung von der Energiequelle über den DC-DC- Wandler mit einem fix eingestellten Strom ohne spezielles Regelverfahren durchgeführt, so kann es passieren, daß ohne entsprechende Regel- bzw. Steuerverfahren zu viel Energie aus dem Zwischenkreis entnommen wird, wodurch das Wechselrichtersystem zum Stillstand kommt bzw. ein definierter Betrieb nicht mehr möglich ist.
Andererseits sind Wechselrichtersysteme bekannt, bei denen der Aufbau dem obengenannten Wechselrichter gleicht. Hierbei wird jedoch ein Verfahren zur Regelung des Wechselrichtersystems eingesetzt, bei dem der DC-DC-Wandler derart geregelt wird, daß dieser einen sinus- ähnlichen Stromfluß bei konstanter Spannung aufweist. Damit wird erreicht, daß die Zwi- schenkreisspannung im Zwischenkreis konstant gehalten wird, wobei der sinusähnliche Stromfluß dabei ständig an die Energieentnahme des DC-AC-Wandlers aus dem Zwischenkreis angepaßt wird. Somit wird auch erreicht, daß immer ausreichend Energie vom DC-DC- Wandler in den Zwischenkreis geliefert wird und somit ein Stillstand bzw. ein undefinierbarer Betrieb nicht möglich ist.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Regeln eines Wechselrichtersystems sowie einen Wechselrichter hierfür zu schaffen, bei dem eine bewußte Schwankung der Zwischenkreisspannung bzw. der Zwischenkreisenergie in Kauf genommen wird und gleichzeitig ein sicherer Betrieb des Wechselrichters bzw. des Wechselrichtersystems gewährleistet ist.
Diese Aufgabe der Erfindung wird derartig gelöst, daß der DC-DC-Wandler derart geregelt wird, daß dieser während einer einstellbaren Zeitdauer einen annähernd konstanten Stromfluß vom Eingang des DC-DC-Wandlers, also von der Energiequelle, zum Ausgang des DC-DC-
Wandlers, also in den Zwischenkreis, unabhängig von der Energieentnahme aus dem Zwischenkreis durchfuhrt, wogegen der DC-AC-Wandler innerhalb dieser Zeitdauer Energie aus dem Zwischenkreis zum Einspeisen in das Wechselspannungsnetz und/oder zur Lieferung an einen Verbraucher entnimmt, wobei ein Regler bzw. eine Steuervorrichtung des DC-DC- Wandlers, insbesondere ein Sollwert für die Regelung des Stromflusses durch den DC-DC-
Wandler, jeweils nach Ablauf der Zeitdauer neu eingestellt wird.
Vorteilhaft ist hierbei, daß durch die konstante Stromlieferung bzw. den konstanten Energie- fluß über den DC-DC-Wandler die Leitverluste des DC-DC-Wandlers sehr stark reduziert werden können. Dies wird insofern erreicht, da die Leitverluste der eingesetzten Schaltvorrichtungen sich im Quadrat zur Stromhöhe vergrößern, wobei bei dieser Art von Regelung die maximale Stromhöhe wesentlich geringer ist, als dies bei den bekannten Wechselrichtern der Fall ist, da bei einer sinusförmigen Stromlieferung über den DC-DC-Wandler sehr hohe Stromspitzenwerte zur Konstanthaltung des Zwischenkreises auftreten. Die Zeitabschnitte mit hohem Strom bzw. Stromspitzenwerten wirken sich daher überproportional stark aus. Ein weiterer Vorteil liegt darin, daß damit auch erreicht wird, daß keine Spitzenwerte der Verlustleistung auftreten, da die Leitverluste während des Betriebes annähernd konstant bleiben, so daß eine sehr einfache Abführung der Verlustenergie, die in Form von Wärmeenergie auftritt, ermöglicht wird. Bei den aus dem Stand der Technik bekannten Wechselrichtern, bei denen Spitzenverluste auftreten, müssen für die Abführung der Spitzenverluste die entsprechenden Baukörper, insbesondere Kühlkörper, Lüfter, usw., für die maximal möglichen und erlaubten Spitzenverluste bzw. Temperaturen ausgelegt werden, so daß die Baugröße und die Herstellungskosten derartiger Wechselrichter bedeutend höher sind.
Ein wesentlicher Vorteil liegt auch darin, daß trotz konstantem Stromfluß über den DC-DC-
Wandler eine Leistungsanpassung der Energielieferung an den Zwischenkreis ohne sehr hohe Stromspitzen durch ein spezielles Regel- bzw. Steuerverfahren vorgenommen werden kann, so daß ein Dauerbetrieb mit einem derartigen Wechselrichter möglich ist. Vorteilhaft ist weiters, daß aufgrund der konstanten Stromentnahme aus der Energiequelle keinerlei Spannungs- Schwankungen am Eingang des DC-DC-Wandlers verursacht werden, so daß die Eingangskapazitäten der Glättungskondensatoren für die Energiequelle wesentlich verringert werden können. Somit ist auch ein Betrieb am optimalen Arbeitspunkt, insbesondere am MPP-Punkt, der Energiequelle bzw. des Solarmoduls möglich, da keinerlei Spannungsschwankungen auftreten und somit ein unvorhersehbares Verschieben des Arbeitspunktes nicht stattfinden kann. Durch die Regelung des DC-DC-Wandlers mit konstantem Stromfluß wird auch erreicht, daß eine wesentlich geringere maximale Stromhöhe erreicht wird, wodurch wesentlich geringer dimensionierte Bauelemente eingesetzt werden können und somit die Herstellungskosten des DC-DC-Wandlers gesenkt werden können.
Weitere vorteilhafte Maßnahmen sind in den Ansprüchen 2 bis 17 beschrieben. Die sich daraus ergebenden Vorteile sind der Beschreibung zu entnehmen.
Die Erfindung wird anschließend durch ein Ausführungsbeispiel näher beschrieben.
Es zeigen:
Fig. 1 ein Blockschaltbild eines Wechselrichtersystems mit den wesentlichen Komponenten in vereinfachter, schematischer Darstellung;
Fig. 2 eine Kennlinie eines Stromverlaufes am Ausgang einer Energiequelle des Wechselrichtersystems in vereinfachter, schematischer Darstellung;
Fig. 3 eine Kennlinie eines Stromverlaufes am Ausgang eines DC-DC-Wandlers des
Wechselrichtersystems in vereinfachter, schematischer Darstellung; Fig. 4 eine Kennlinie eines Stromverlaufes am Ausgang eines DC-AC-Wandlers des
Wechselrichtersystems in vereinfachter, schematischer Darstellung;
Fig. 5 eine Kennlinie einer Zwischenkreisspannung im Zwischenkreis des Wechselrich- tersystems in vereinfachter, schematischer Darstellung.
Einführend sei festgehalten, daß in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf glei- ehe Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unter- schiedlichen Ausführungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.
In den Fig. 1 bis 5 ist ein üblicher Aufbau, insbesondere ein Blockschaltbild, eines Wechselrichtersystems 1 mit einem Wechselrichter 2 (strichpunktiert umrandet) dargestellt. Da die einzelnen Komponenten bzw. Baugruppen und Funktionen des Wechselrichtersystems 1 bereits bekannt sind, wird auf diese nicht mehr näher eingegangen. In den Fig. 2 bis 5 sind unterschiedliche Kennlinien dargestellt, die das Funktionsprinzip des Wechselrichters 2 näher erläutern.
Der Wechselrichter 2 weist beispielsweise einen DC-DC-Wandler 3 (strichliert umrandet), einen Zwischenkreis 4 und einen DC-AC-Wandler 5 auf. Am DC-DC-Wandler 3 ist eine Energiequelle 6 bzw. ein Energieerzeuger angeschlossen, die beispielsweise durch ein oder mehrere parallel und/oder seriell zueinander geschaltete Solarmodule 7, die als String bezeichnet werden, oder einer Batterie (nicht dargestellt) gebildet ist. Der DC-AC-Wandler 5 ist mit seinen Ausgängen beispielsweise mit einem Wechselspannungsnetz 8 und/oder einem oder mehreren Verbrauchern, nicht dargestellt, wie beispielsweise einen Kühlschrank, ein Funkgerät usw., verbunden.
Der DC-DC-Wandler 3 wird beispielsweise zumindest aus einem Inverter 9, einem Transfor- mator 10 und einem Gleichrichter 11 gebildet. Der Zwischenkreis 4 wird aus einem oder meh- reren Kondensatoren aufgebaut. Damit eine gewünschte Wechselspannung für das Wechselspannungsnetz 8 oder den Verbraucher erzeugt werden kann, wird der DC-AC-Wandler 5 durch einen entsprechenden Inverter, der die Gleichspannung in eine Wechselspannung umwandelt, gebildet. Weitere Bauelemente bzw. Baugruppen, wie beispielsweise Filter, Glät- tungskondensatoren usw., sind im gezeigten Ausführungsbeispiel nicht dargestellt.
Wesentlich ist bei diesem bereits bekannten Aufbau das Regel- bzw. Steuerverfahren, mit dem der Wechselrichter 2 betrieben wird, wie dies nachstehend beschrieben ist.
Hierzu weist der Wechselrichter 2 einen Regler bzw. eine Steuervorrichtung 12, die beispielsweise durch einen Mikroprozessor, einen Mikrocontroller oder einen Rechner gebildet sein kann, auf. Über die Steuervorrichtung 12 kann eine entsprechende Steuerung der einzelnen Baugruppen, insbesondere der darin angeordneten Schaltvorrichtungen, vorgenommen werden. In der Steuervorrichtung 12 sind hierzu die einzelnen Regel- bzw. Steuerabläufe durch entsprechende Software-Programme und/oder Daten bzw. Kennlinien gespeichert. Weiters sind mit der Steuervorrichtung 12 Meßsystem 13 bis 16 zur Erfassung des Stromes und der Spannung an den verschiedensten Punkten des Wechselrichtersystems 1 angeordnet.
Bei der erfindungsgemäßen Lösung wird ein spezielles Steuer- bzw. Regelverfahren für den DC-DC-Wandler 3 des Wechselrichters 2 beschrieben. Dabei wird der DC-DC-Wandler 3 derart betrieben, daß dieser über eine voreinstellbare Zeitdauer 17 einen von der Steuervorrichtung 12 vorgegebenen konstanten Strom bzw. Stromwert 18 zur Energieversorgung des Zwischenkreises 4 bereitstellt. Die Zeitdauer 17, über die der DC-DC-Wandler 3 mit einem fix vorgegebenen Stromwert 18 betrieben wird, kann beispielsweise durch eine einstellbare Anzahl von Perioden bzw. Halbperioden oder einer beliebig festlegbaren Zeitspanne definiert werden. Bevorzugt wird die Zeitdauer 17 über die Anzahl voremstellbarer Perioden bzw. Halbperioden definiert, wobei die Perioden bzw. Halbperioden von der erzeugten Wechselspannung des DC-AC- Wandlers 5 abhängig ist, d.h., daß je nach eingestellter Anzahl von Perioden bzw. Halbperioden von der Steuervorrichtung 12 eine Regelung bzw. Steuerung des Wechselrichters 2, insbesondere eine Veränderung zumindest eines Sollwertes, eingeleitet wird. Zwischenzeitlich, also innerhalb der Zeitdauer 17, wird lediglich für die bzw. von den einzelnen Komponenten bzw. Baugruppen eine Regelung der erfaßten Istwerte auf die vorgegebenen Sollwerte durchgeführt. Bei dem gezeigten Ausführungsbeispiel wurde die Einstellung der Zeitdauer 17 beispielsweise über die Perioden getroffen, wobei die Anzahl der vor- eingestellten Perioden bzw. Halbperioden "Eins" beträgt, also eine Periode bzw. zwei Halbpe- rioden, wie dies in Fig. 4 ersichtlich ist.
Nach Ablauf der Zeitdauer 17 wird also von der Steuervorrichtung 12 eine Anpassung der Energielieferung, insbesondere des konstanten Stromflusses bzw. des Stromwertes 18, vom DC-DC-Wandler 3 in den Zwischenkreis 4 an die vom Zwischenkreis 4 durch den DC-AC-
Wandler 5 entnommene Energie durchgeführt, wie dies zu den Zeitpunkten 19 bis 27 ersichtlich ist. Hierzu wird von der Steuervorrichtung 12 ein Mittelwert 28, insbesondere ein Strommittelwert, wie strichliert in Fig. 4 schematisch eingetragen, der vom DC-AC-Wandler aus dem Zwischenkreis 4 während der Zeitdauer 17 bzw. der eingestellten Anzahl von Perioden bzw. Halbperioden 5 entnommenen Energiemenge ennittelt. Dieser Mittelwert 28 wird anschließend für die nächste Zeitdauer 17 als Sollwert für den Stromfluß bzw. für den Stromwert 18 des DC-DC-Wandlers 3 herangezogen. Damit kann gesagt werden, daß die strichliert gezeichnete Linie für den Mittelwert 28 in Fig. 4 in etwa der Kennlinie des Ausgangsstromes für den DC-DC-Wandler 3 in Fig. 3 entspricht, wobei die Kennlinie in Fig. 3 um die Zeitdau- er 17 verschoben ist.
Somit wird also jeweils nach Ablauf der Zeitdauer 17 für die nächste Zeitdauer 17 ein neuer Sollwert, also ein neuer Stromwert 18, festgelegt, d.h., daß eine Leistungsanpassung der Energielieferung in den Zwischenkreis 4 an die zuletzt entnommene Energiemenge, also der entnommenen Energiemenge der gerade abgelaufenen Zeitdauer 17, durchgeführt wird. Eine derartige Anpassung des Stromwertes 18 ist speziell bei dem dargestellten Ausführungsbeispiel in Fig. 3 zu den Zeitpunkten 21 und 26 ersichtlich, da bei diesen Zeitpunkten 21 und 26 in der vorhergehenden Zeitdauer 17 eine Veränderung der Energieentnahme des DC-AC- Wandlers 5 eingetreten ist und somit eine entsprechende Anpassung des Sollwertes bzw. des Stromwertes 18 für den DC-DC-Wandler 3 notwendig wurde.
Aufgrund der verzögerten Anpassung wird jedoch erreicht, daß von dem DC-DC-Wandler 3 bei annähernd konstanten Stromfluß so viel Energie in den Zwischenkreis 4 geliefert wird, daß ein Zwischenkreismittelwert 29, wie mit strichlierten Linien in Fig. 5 gezeigt, insbeson- dere der Mittelwert der Zwischenkreisspannung, konstant gehalten wird, wobei die Zwischen- kreisspannung im Zwischenkreis 4 durch die konstante Energieübertragung bzw. durch die annähernd konstante Stromlieferung des DC-DC-Wandlers 3 von der Energiequelle 6 entsprechend der Energieentnahme des DC-AC-Wandlers 5 schwankt, wie dies in Fig. 5 schematisch dargestellt ist. Durch diese verzögerte Energieanpassung wird es überhaupt erst ermöglicht, daß ein konstanter Stromfluß mit einem definierten Sollwert bzw. Stromwert 18 über die vorgegebene Zeitdauer 17 durchgeführt werden kann und nicht, wie aus dem Stand der Technik bekannt, eine ständige Energieanpassung und somit Regelung durchgeführt werden muß. Damit wird der ständige Regelaufwand für die Komponenten bzw. Baugruppen des Wechselrichters 2 wesentlich reduziert und es können somit mehrere Faktoren für die Optimierung der Energielieferung berücksichtigt werden. Durch die Verringerung des Regelaufwandes kann die Steuervorrichtung 12 durch kostengünstige Komponenten, bei denen die Schnelligkeit bzw. die Taktfrequenz gering ist, aufgebaut werden.
Selbstverständlich ist es möglich, daß der DC-DC-Wandler 3 und der DC-AC-Wandler 5 eine eigene unabhängige Steuervorrichtung bzw. einen Regler aufweisen können, der mit der Steuervorrichtung 12 zusammengeschaltet wird, oder daß die Steuervorrichtung 12 entfallen kann und die Regelung bzw. Steuerung jeweils von den zugehörigen Reglern durchgeführt wird.
Um eine optimale Leistungsanpassung durchführen zu können, ist es auch möglich, daß der ermittelte Mittelwert 28 von der Steuervorrichtung 12 durch hinterlegte oder ermittelten Daten bzw. Werte oder Parameter korrigiert oder anderwertig ermittelt werden kann. Dabei kann für die Korrektur des Mittelwertes 28 oder für die Festlegung des Mittelwertes 28 von der Steuervorrichtung 12 ein Energiemengenwert ermittelt werden, der durch das Verhältnis der gelieferten Energiemenge, gemäß Fig. 3, zur entnommenen Energiemenge bzw. Höhe des Stromes aus dem Zwischenkreis 4, gemäß Fig. 4, während einer Zeitdauer 17 bzw. der eingestellten Anzahl von Perioden bzw. Halbperioden festgelegt wird.
Da die Regelung bzw. Steuerung des Wechselrichters 2, insbesondere des DC-DC-Wandlers
3, während des Ablaufes der Zeitdauer 17 unabhängig von der vom DC-AC-Wandler 5 entnommenen Energie erfolgt, muß sichergestellt werden, daß immer ausreichend Energie im Zwischenkreis 4 vorhanden ist, da es ansonsten zu einem Stillstand bzw. einem undefinierbaren Betrieb des Wechselrichters 2 kommen kann. Dies kann insofern gelöst werden, indem im Zwischenkreis 4 eine Überwachung der Zwischenkreisspannung durchgeführt wird. Dabei wird bei Absinken der Zwischenkreisspannung unter zumindest einem voreinstellbaren Referenzwert 30, 31, wie mit strichpunktierten Linien in Fig. 5 dargestellt, die Energielieferung vom DC-AC-Wandler 5 in das Wechselspannungsnetz 8 oder an den Verbraucher reduziert, wobei beim Überschreiten des Referenzwertes 30, 31 durch die Zwischenkreisspannung die Energielieferung vom DC-AC-Wandler 5 in das Wechselspannungsnetz 8 erhöht wird. Diese Regelung bzw. Steuerung wird dabei bevorzugt unabhängig der eingestellten Zeitdauer 17, also zu jedem beliebigen Zeitpunkt durchgeführt, so daß eine möglichst schnelle Anpassung des Energieflusses vorgenommen werden kann. Selbstverständlich ist es jedoch auch möglich, diese Regelung bzw. Steuerung synchron mit der Zeitdauer 17, also nach jeder Zeitdauer 17, durchzuführen.
Damit ein sicherer Betrieb des Wechselrichtersystems 1 gewährleistet werden kann, wird von der Steuervorrichtung 12 nach Ablauf der Zeitdauer 17 bzw. nach einer Periode bzw. Halbperiode oder der festgelegten Anzahl von Perioden bzw. Halbperioden ein Zwischenkreismittel- wert 29 der Energiemenge im Zwischenkreis 4 ermittelt, so daß eine ständige Überwachung und Anpassung des Zwischenkreises 4 möglich ist und somit bei zu hoher oder zu geringer Energieentnahme aus dem Zwischenkreis 4 entsprechend reagiert werden kann. Dabei wird der Zwischenkreismittelwert 29 von der Steuervorrichtung 12 mit hinterlegten, bevorzugt einstellbaren Referenzwerten 30, 31, die beispielsweise auch unabhängig von den Referenzwer- ten 30, 31 für die Zwischenkreisspannung einstellbar sind, verglichen, wobei beispielsweise bei Überschreiten eines Referenzwertes 30, 31 die Ausgangsleistung des DC-AC-Wandlers 5 erhöht wird und bei Unterschreiten eines Referenzwertes 30, 31 die Ausgangsleistung des DC-AC-Wandlers 5 verringert wird.
Somit wird auf alle Fälle sichergestellt, daß nach Ablauf der Zeitdauer 17 aufgrund der zur
Verfügung stehenden Energiemenge im Zwischenkreis 4 die Ausgangsleistung angepaßt werden kann und somit entsprechende Verbraucher zu- oder abgeschaltet bzw. betrieben werden können bzw. mehr oder weniger Energie in das Wechselspannungsnetz 8 geliefert werden kann.
Es ist selbstverständlich auch möglich, daß nicht nur der DC-AC-Wandler 5 an den Zustand des Zwischenkreises 4 angepaßt werden kann, sondern auch der DC-DC-Wandler 3 entsprechend gesteuert wird. Hierzu wird bei Unterschreiten des definierten Referenzwertes 30, 31, der beispielsweise auch unabhängig von den Referenzwerten 30, 31 für den DC-AC-Wandler 5 einstellbar ist, durch einen Zwischenkreismittelwert 29 der Sollwert bzw. der Stromwert 18 für den DC-DC-Wandler 3 bei ausreichend zur Verfügung stehender Energiemenge von der Energiequelle 6 erhöht, d.h., daß von der Steuervorrichtung 12 bei Unterschreiten des Referenzwertes 30, 31 überprüft wird, wieviel Energie von der Energiequelle 6 zur Verfügung steht, um eine entsprechende Erhöhung des Sollwertes durchzuführen. Steht zu wenig Ener- gie zur Verfügung, so wird anstelle der Erhöhung des Sollwertes die Ausgangsleistung des DC-AC-Wandlers 5 verringert, um wiederum genügend Energie in den Zwischenkreis 4 zu liefern.
Somit wird von der Steuervorrichtung 12 die von der Energiequelle 6 zur Verfügung gestellte Energiemenge überwacht. Dabei ist es möglich, daß aufgrund der erzeugten bzw. gelieferten
Energiemenge die Ausgangsleistung des DC-AC-Wandlers 5 angepaßt wird. Dies kann derartig erfolgen, daß bei Überschreiten des zumindest einen Energiekennwertes 32, gemäß Fig. 2, durch die erzeugte Energie bzw. der Spannung und des Stromes von der Energiequelle 6 die Ausgangsleistung des DC-AC-Wandlers 5, wie zum Zeitpunkt 24 ersichtlich, angehoben wird bzw. bei Unterschreiten reduziert wird. Die Anpassung des DC-DC-Wandlers 3 muß zu diesem Zeitpunkt 24 noch nicht erfolgen, da diese nach Ablauf der Zeitdauer 17 durch einen veränderten Mittelwert 28 vorgenommen wird. Es ist jedoch möglich, daß aufgrund einer unvorhergesehenen Erhöhung der Ausgangsleistung eine sofortige Anpassung des Sollwertes für den DC-DC-Wandler 3 vorgenommen werden kann.
Weiters kann das Wechselrichtersystem 1 derart betrieben werden, daß sowohl eine Lieferung in das Wechselspannungsnetz 8 und/oder an einen oder mehrere Verbraucher vorgenommen werden kann, wobei von der Steuervorrichtung 12 aufgrund der zur Verfügung stehenden Energiemenge festgelegt wird, ob diese an einen oder mehrere angeschlossene Verbraucher und/oder an das Wechselspannungsnetz 8 geliefert wird. Hierzu kann vom Betreiber eine entsprechende prioritätenabhängige Einstellung vorgenommen werden, so daß von der Steuervorrichtung 12 aufgrund der zur Verfügung stehenden Energiemenge ein An- bzw. Abschalten der angeschlossenen Verbraucher selbständig durchgeführt werden kann, wie dies in Fig. 4 dargestellt ist.
Grundsätzlich kann also gesagt werden, daß der DC-DC-Wandler 3 derart geregelt wird, daß während einer einstellbaren Zeitdauer 17 unabhängig von der Energieentnahme aus dem Zwischenkreis 4 einen annähernd konstanten Stromfluß vom Eingang des DC-DC-Wandlers 3, also von der Energiequelle 6, zum Ausgang des DC-DC-Wandlers 3, also in den Zwischen- kreis 4, zuführt, wogegen der DC-AC-Wandler 5 innerhalb dieser festgelegten Zeitdauer 17
Energie aus dem Zwischenkreis 4 zum Einspeisen in das Wechselspannungsnetz 8 und/oder zur Lieferung an einen Verbraucher entnimmt, wobei der Regler bzw. die Steuervorrichtung 12 des DC-DC-Wandlers 3, insbesondere ein Sollwert bzw. ein Stromwert 18 für die Regelung des Stromflusses, jeweils nach Ablauf der festgelegten Zeitdauer 17 neu einstellt. Um eine optimale Ausnutzung des Wechselrichtersystems 1 zu erreichen, wird von der Steuervorrichtung 12 das Wechselrichtersystem 1 derart geregelt, daß die Energielieferung des DC-AC-Wandlers 5 in Abhängigkeit der von der Energiequelle 6 erzeugten Energiemenge bzw. Leistung festgelegt wird, d.h., daß entsprechend der zur Verfügung stehenden Energie- menge aus der Energiequelle 6 die Ausgangsleistung des DC-AC-Wandlers 5 festgelegt wird.
Der Ordnung halber sei abschließend darauf hingewiesen, daß zum besseren Verständnis des Aufbaus des Wechselrichtersystems dieses bzw. dessen Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.
Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.
Vor allem können die einzelnen in den Fig. 1, 2, 3, 4, 5 gezeigten Ausführungen den Gegen- stand von eigenständigen, erfindungsgemäßen Lösungen bilden. Die diesbezüglichen, erfindungsgemäßen Aufgaben und Lösungen sind den Detailbeschreibungen dieser Figuren zu entnehmen.
Bezugszeichenaufstellung
Wechselrichtersystem Wechselrichter DC-DC-Wandler Zwischenkreis DC-AC-Wandler Energiequelle Solarmodul Wechselspannungsnetz Inverter Transformator Gleichrichter Steuervorrichtung Meßsystem Meßsystem Meßsystem Meßsystem Zeitdauer Stromwert Zeitpunkt Zeitpunkt Zeitpunkt Zeitpunkt Zeitpunkt Zeitpunkt Zeitpunkt Zeitpunkt Zeitpunkt Mittelwert Zwischenkreismittelwert Referenzwert Referenzwert Energiekennwert

Claims

P a t e n t a n s p r ü c h e
1. Verfahren zum Regeln eines Wechselrichtersystems, bei dem über eine Energiequelle, insbesondere über zumindest ein Solarmodul oder über eine Batterie, elektrische Ener- gie erzeugt und/oder geliefert wird, die von zumindest einem DC-DC-Wandler in einen Zwischenkreis transferiert und von diesem über einen DC-AC-Wandler in ein Wechselspannungsnetz eingespeist und/oder einem Verbraucher zugeführt wird, dadurch gekennzeichnet, daß der DC-DC-Wandler derart geregelt wird, daß sich während einer einstellbaren Zeitdauer unabhängig von der Energieentnahme aus dem Zwischenkreis ein annähernd konstanter Strom- fluß vom Eingang des DC-DC-Wandlers, also von der Energiequelle, zum Ausgang des DC-
DC-Wandlers, also in den Zwischenkreis, ergibt, wogegen der DC-AC-Wandler innerhalb dieser Zeitdauer Energie aus dem Zwischenkreis zum Einspeisen in das Wechselspannungsnetz und/oder zur Lieferung an den Verbraucher entnimmt, wobei ein Regler bzw. eine Steuervorrichtung des DC-DC-Wandlers, insbesondere ein Sollwert für die Regelung des Strom- flusses durch den DC-DC-Wandler, jeweils nach Ablauf der Zeitdauer neu eingestellt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Zeitdauer beispielsweise durch eine einstellbare Anzahl von Perioden bzw. Halbperioden oder einer beliebig festlegbaren Zeitspanne definiert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß von dem DC-DC-
Wandler bei annähernd konstantem Stromfluß so viel Energie in den Zwischenkreis geliefert wird, daß ein Zwischenkreismittelwert des Zwischenkreises, insbesondere ein Mittelwert der Zwischenkreisspannung, konstant gehalten wird.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Anpassung der Energielieferung, insbesondere des Stromes, vom DC- DC-Wandler in den Zwischenkreis an die vom Zwischenkreis entnommene Energiemenge durch den DC-AC-Wandler jeweils nach Ablauf einer Zeitdauer bzw. nach Ablauf der einge- stellten Anzahl von Perioden bzw. Halbperioden durchgeführt wird.
5. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für die Regelung des DC-DC-Wandlers von einer Steuervorrichtung ein Mittelwert der vom DC-AC-Wandler entnommenen Energiemenge aus dem Zwischenkreis während der eingestellten Anzahl der Perioden bzw. Halbperioden ermittelt wird und an- schließend für die nächste Anzahl von Perioden bzw. Halbperioden der ermittelte Mittelwert als Sollwert für den Stromfluß des DC-DC-Wandlers herangezogen wird.
6. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß der ermittelte Mittelwert von der Steuervorrichtung durch hinterlegte oder ermittelte Daten bzw. Werte oder Parameter korrigiert wird.
7. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für die Korrektur des Mittelwertes oder für die Festlegung des Mittelwertes von der Steuervorrichtung ein Energiemengenwert ermittelt wird, der durch das Verhältnis der gelieferten Energiemenge zur entnommenen Energiemenge in bzw. aus dem Zwischenkreis während der festgelegten Anzahl von Perioden bzw. Halbperioden festgelegt wird.
8. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß die Zwischenkreisspannung im Zwischenkreis durch die konstante Energieübertragung bzw. durch die annähernd konstante Stromlieferung des DC-DC-Wandlers von der Energiequelle entsprechend der Energieentnahme des DC-AC-Wandlers schwankt.
9. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch ge- kennzeichnet, daß die Energielieferung des DC-AC-Wandlers in Abhängigkeit der von der
Energiequelle erzeugten Energiemenge bzw. Leistung festgelegt wird.
10. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei Absinken der Zwischenkreisspannung unter einen voreinstellbaren Re- ferenzwert die Energielieferung in das Wechselspannungsnetz und/oder an den Verbraucher vom DC-AC-Wandler reduziert wird.
11. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei Überschreiten zumindest eines Referenzwertes durch die Zwischen- kreisspannung die Energielieferung in das Wechselspannungsnetz und/oder an den Verbraucher vom DC-AC-Wandler erhöht wird.
12. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß von der Steuervorrichtung nach einer Periode bzw. einer Halbperiode oder der festgelegten Anzahl von Perioden bzw. Halbperioden ein Zwischenkreismittelwert der Energiemenge im Zwischenkreis ermittelt wird.
13. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Zwischenkreismittelwert von der Steuervorrichtung mit hinterlegten, bevorzugt einstellbaren Referenzwerten verglichen wird, wobei beispielsweise bei Überschreiten eines Referenzwertes die Ausgangsleistung des DC-AC-Wandlers erhöht wird und bei Unterschreiten eines Referenzwertes die Ausgangsleistung des DC-AC-Wandlers verringert wird.
14. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei Unterschreiten eines definierten Referenzwertes durch den Zwischenkreismittelwert der Sollwert für den DC-DC-Wandler, insbesondere der Sollwert für den konstanten Stromfluß, bei ausreichend zur Verfügung stehender Energiemenge von der Energiequelle erhöht wird.
15. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die von der Energiequelle zur Verfügung gestellte Energiemenge überwacht wird.
16. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß von der Steuervorrichtung aufgrund der zur Verfügung stehenden Energiemenge festgelegt wird, ob diese an einen oder mehrere angeschlossene Verbraucher oder in das Wechselspannungsnetz geliefert wird.
17. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß von der Steuervorrichtung aufgrund der zur Verfügung stehenden Energiemenge ein An- bzw. Abschalten der angeschlossenen Verbraucher selbständig durchgeführt wird.
18. Wechselrichter, der zumindest aus einem DC-DC-Wandler, einem Zwischenkreis und einem DC-AC-Wandler besteht, an den eine Energiequelle bzw. ein Energieerzeuger, insbesondere ein Solarmodul, und/oder eine Batterie anschließbar ist und dieser mit einem Wechselspannungsnetz und/oder einem oder mehreren Verbrauchern verbindbar ist, dadurch gekennzeichnet, daß der DC-DC-Wandler zur Lieferung eines konstanten Stromflusses über eine voreinstellbare Zeitdauer unabhängig der vom Zwischenkreis über den DC-AC-Wandler entnommenen Energie ausgebildet ist und ein Sollwert bzw. ein Stromwert des DC-DC- Wandlers nach Ablauf der voreingestellten Zeitdauer an die vom DC-AC-Wandler entnommene Energie aus dem Zwischenkreis anpaßbar ist.
PCT/AT2002/000074 2001-03-09 2002-03-07 Verfahren zum regeln eines wechselrichtersystems WO2002078164A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT02703387T ATE289126T1 (de) 2001-03-09 2002-03-07 Verfahren zum regeln eines wechselrichtersystems
DE50202216T DE50202216D1 (de) 2001-03-09 2002-03-07 Verfahren zum regeln eines wechselrichtersystems
US10/467,882 US6950323B2 (en) 2001-03-09 2002-03-07 Method for regulating an inverter system
EP02703387A EP1371129B1 (de) 2001-03-09 2002-03-07 Verfahren zum regeln eines wechselrichtersystems
AU2002237099A AU2002237099B2 (en) 2001-03-09 2002-03-07 Method for regulating an inverter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0038201A AT411946B (de) 2001-03-09 2001-03-09 Verfahren zum regeln eines wechselrichtersystems
ATA382/2001 2001-03-09

Publications (1)

Publication Number Publication Date
WO2002078164A1 true WO2002078164A1 (de) 2002-10-03

Family

ID=3673165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2002/000074 WO2002078164A1 (de) 2001-03-09 2002-03-07 Verfahren zum regeln eines wechselrichtersystems

Country Status (7)

Country Link
US (1) US6950323B2 (de)
EP (1) EP1371129B1 (de)
AT (1) AT411946B (de)
AU (1) AU2002237099B2 (de)
DE (1) DE50202216D1 (de)
ES (1) ES2236482T3 (de)
WO (1) WO2002078164A1 (de)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1455437A2 (de) * 2003-03-07 2004-09-08 Canon Kabushiki Kaisha Stromrichter und Stromerzeugungseinrichtung
WO2005081384A2 (de) * 2004-02-19 2005-09-01 Siemens Aktiengesellschaft Vorrichtung und verfahren zum regeln einer taktfrequenz eines stromrichters
WO2006004108A1 (ja) * 2004-07-07 2006-01-12 Seiko Epson Corporation 圧電アクチュエータおよび機器
WO2012127209A3 (en) * 2011-03-22 2013-02-21 Enecsys Limited Solar photovoltaic inverters
WO2012127208A3 (en) * 2011-03-22 2013-02-28 Enecsys Limited Arrangement for controlled and efficient infeed of photovoltaic power into the ac mains with parallely connected dc/dc converters
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309714B2 (en) 2016-11-02 2022-04-19 Tesla, Inc. Micro-batteries for energy generation systems
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US12136890B2 (en) 2023-11-14 2024-11-05 Solaredge Technologies Ltd. Multi-level inverter

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1623495B1 (de) 2003-05-06 2009-10-07 Enecsys Limited Stromversorgungsschaltungen
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
US8102144B2 (en) 2003-05-28 2012-01-24 Beacon Power Corporation Power converter for a solar panel
US20070164612A1 (en) * 2004-01-09 2007-07-19 Koninkijke Phillips Electronics N.V. Decentralized power generation system
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
WO2006048689A2 (en) * 2004-11-08 2006-05-11 Encesys Limited Integrated circuits and power supplies
US7148650B1 (en) * 2005-06-22 2006-12-12 World Water & Power Corp. Maximum power point motor control
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
GB2454389B (en) 2006-01-13 2009-08-26 Enecsys Ltd Power conditioning unit
US7656059B2 (en) * 2006-05-23 2010-02-02 Continental Automotive Systems Us, Inc. System and method for a power system micro grid
US7994657B2 (en) * 2006-12-22 2011-08-09 Solarbridge Technologies, Inc. Modular system for unattended energy generation and storage
US7755916B2 (en) 2007-10-11 2010-07-13 Solarbridge Technologies, Inc. Methods for minimizing double-frequency ripple power in single-phase power conditioners
US8039989B2 (en) * 2007-11-27 2011-10-18 International Business Machines Corporation Apparatus, system, and method for a low cost multiple output redundant power supply
US20100191489A1 (en) * 2009-01-28 2010-07-29 Uqm Technologies, Inc. Distributed Generation Power System
US8217534B2 (en) * 2009-05-20 2012-07-10 General Electric Company Power generator distributed inverter
JP2012527767A (ja) 2009-05-22 2012-11-08 ソラレッジ テクノロジーズ リミテッド 電気絶縁された熱放散接続箱
US8279642B2 (en) 2009-07-31 2012-10-02 Solarbridge Technologies, Inc. Apparatus for converting direct current to alternating current using an active filter to reduce double-frequency ripple power of bus waveform
US8462518B2 (en) 2009-10-12 2013-06-11 Solarbridge Technologies, Inc. Power inverter docking system for photovoltaic modules
US20110115300A1 (en) * 2009-11-18 2011-05-19 Du Pont Apollo Ltd. Converting device with multiple input terminals and two output terminals and photovoltaic system employing the same
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8824178B1 (en) 2009-12-31 2014-09-02 Solarbridge Technologies, Inc. Parallel power converter topology
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
EP2365599B1 (de) * 2010-03-08 2014-07-16 SMA Solar Technology AG Vorrichtung zur Wandlung elektrischer Energie und Verfahren zum Betreiben einer derartigen Vorrichtung
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
US8503200B2 (en) 2010-10-11 2013-08-06 Solarbridge Technologies, Inc. Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion
US8279649B2 (en) 2010-10-11 2012-10-02 Solarbridge Technologies, Inc. Apparatus and method for controlling a power inverter
US9160408B2 (en) 2010-10-11 2015-10-13 Sunpower Corporation System and method for establishing communication with an array of inverters
US9467063B2 (en) 2010-11-29 2016-10-11 Sunpower Corporation Technologies for interleaved control of an inverter array
US8842454B2 (en) 2010-11-29 2014-09-23 Solarbridge Technologies, Inc. Inverter array with localized inverter control
DE102011007929B4 (de) * 2011-01-03 2015-06-11 Sma Solar Technology Ag Verfahren zum Betrieb eines Wechselrichters und Steuereinrichtung
US8174856B2 (en) 2011-04-27 2012-05-08 Solarbridge Technologies, Inc. Configurable power supply assembly
US8611107B2 (en) 2011-04-27 2013-12-17 Solarbridge Technologies, Inc. Method and system for controlling a multi-stage power inverter
US9065354B2 (en) 2011-04-27 2015-06-23 Sunpower Corporation Multi-stage power inverter for power bus communication
US8922185B2 (en) 2011-07-11 2014-12-30 Solarbridge Technologies, Inc. Device and method for global maximum power point tracking
US8284574B2 (en) 2011-10-17 2012-10-09 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9276635B2 (en) 2012-06-29 2016-03-01 Sunpower Corporation Device, system, and method for communicating with a power inverter using power line communications
US9584044B2 (en) 2013-03-15 2017-02-28 Sunpower Corporation Technologies for converter topologies
US9564835B2 (en) 2013-03-15 2017-02-07 Sunpower Corporation Inverter communications using output signal
US9436201B1 (en) 2015-06-12 2016-09-06 KarmSolar System and method for maintaining a photovoltaic power source at a maximum power point
ES2626237B1 (es) * 2015-12-22 2018-05-03 Universidad De Zaragoza Sistema electrónico de potencia modular variable para la generación de pulsos eléctricos y usos asociados
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN107666153B (zh) * 2016-07-29 2020-10-13 中国电力科学研究院有限公司 一种光伏虚拟同步发电机的参数量测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780750A2 (de) * 1995-12-20 1997-06-25 Sharp Kabushiki Kaisha Wechselrichtersteuerungsverfahren und das Verfahren benutzende Wechselrichtervorrichtung
DE19937410A1 (de) * 1999-08-07 2001-02-15 Elektro & Automatisierungstech Dreiphasiger Solarwechselrichter für Netz- und Inselbetrieb

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494180A (en) * 1983-12-02 1985-01-15 Franklin Electric Co., Inc. Electrical power matching system
JP2686135B2 (ja) * 1989-03-28 1997-12-08 松下電工株式会社 定電流電源回路
JPH1014122A (ja) 1996-06-21 1998-01-16 Sony Corp バツテリパツク及びその制御方法
JP3862320B2 (ja) * 1996-06-27 2006-12-27 松下電工株式会社 系統連系型インバータ装置
JP2001161032A (ja) * 1999-12-01 2001-06-12 Canon Inc 系統連系パワーコンディショナ及びそれを用いた発電システム
JP2002165357A (ja) * 2000-11-27 2002-06-07 Canon Inc 電力変換装置およびその制御方法、および発電システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780750A2 (de) * 1995-12-20 1997-06-25 Sharp Kabushiki Kaisha Wechselrichtersteuerungsverfahren und das Verfahren benutzende Wechselrichtervorrichtung
DE19937410A1 (de) * 1999-08-07 2001-02-15 Elektro & Automatisierungstech Dreiphasiger Solarwechselrichter für Netz- und Inselbetrieb

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HERRMANN U ET AL: "Low cost DC to AC converter for photovoltaic power conversion in residential applications", PESC '93. RECORD. 24TH ANNUAL IEEE POWER ELECTRONICS SPECIALISTS CONFERENCE (CAT. NO.93CH3293-8), PROCEEDINGS OF IEEE POWER ELECTRONICS SPECIALIST CONFERENCE - PESC '93, SEATTLE, WA, USA, 20-24 JUNE 1993, 1993, New York, NY, USA, IEEE, USA, pages 588 - 594, XP002204663, ISBN: 0-7803-1243-0 *
LOHNER A ET AL: "A new panel-integratable inverter concept for grid-connected photovoltaic systems", ISIE '96. PROCEEDINGS OF THE IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (CAT. NO.96TH8192), PROCEEDINGS OF IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, WARSAW, POLAND, 17-20 JUNE 1996, 1996, New York, NY, USA, IEEE, USA, pages 827 - 831 vol.2, XP002204662, ISBN: 0-7803-3334-9 *

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1455437A2 (de) * 2003-03-07 2004-09-08 Canon Kabushiki Kaisha Stromrichter und Stromerzeugungseinrichtung
EP1455437A3 (de) * 2003-03-07 2006-03-01 Canon Kabushiki Kaisha Stromrichter und Stromerzeugungseinrichtung
KR100713709B1 (ko) * 2003-03-07 2007-05-04 캐논 가부시끼가이샤 전력변환장치 및 전원장치
CN100420140C (zh) * 2003-03-07 2008-09-17 佳能株式会社 功率变换装置和电源装置
WO2005081384A2 (de) * 2004-02-19 2005-09-01 Siemens Aktiengesellschaft Vorrichtung und verfahren zum regeln einer taktfrequenz eines stromrichters
WO2005081384A3 (de) * 2004-02-19 2009-01-15 Siemens Ag Vorrichtung und verfahren zum regeln einer taktfrequenz eines stromrichters
WO2006004108A1 (ja) * 2004-07-07 2006-01-12 Seiko Epson Corporation 圧電アクチュエータおよび機器
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12046940B2 (en) 2006-12-06 2024-07-23 Solaredge Technologies Ltd. Battery power control
US12032080B2 (en) 2006-12-06 2024-07-09 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12027849B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US12027970B2 (en) 2006-12-06 2024-07-02 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US12068599B2 (en) 2006-12-06 2024-08-20 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US12107417B2 (en) 2006-12-06 2024-10-01 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US12055647B2 (en) 2007-12-05 2024-08-06 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9584036B2 (en) 2011-03-22 2017-02-28 Solarcity Corporation Solar photovoltaic power conditioning units
WO2012127209A3 (en) * 2011-03-22 2013-02-21 Enecsys Limited Solar photovoltaic inverters
US10008858B2 (en) 2011-03-22 2018-06-26 Tesla, Inc. Solar photovoltaic power conditioning units
WO2012127208A3 (en) * 2011-03-22 2013-02-28 Enecsys Limited Arrangement for controlled and efficient infeed of photovoltaic power into the ac mains with parallely connected dc/dc converters
US10424936B2 (en) 2011-03-22 2019-09-24 Tesla, Inc. Solar photovoltaic power conditioning units
US8391031B2 (en) 2011-03-22 2013-03-05 Enecsys Limited Solar photovoltaic power conditioning units
US8542512B2 (en) 2011-03-22 2013-09-24 Enecsys Limited Solar photovoltaic inverters
US8934269B2 (en) 2011-03-22 2015-01-13 Enecsys Limited Solar photovoltaic power conditioning units
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US12094306B2 (en) 2012-01-30 2024-09-17 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US12119758B2 (en) 2013-03-14 2024-10-15 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US12132125B2 (en) 2013-03-15 2024-10-29 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US12057807B2 (en) 2016-04-05 2024-08-06 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11309714B2 (en) 2016-11-02 2022-04-19 Tesla, Inc. Micro-batteries for energy generation systems
US12136890B2 (en) 2023-11-14 2024-11-05 Solaredge Technologies Ltd. Multi-level inverter

Also Published As

Publication number Publication date
EP1371129B1 (de) 2005-02-09
EP1371129A1 (de) 2003-12-17
US6950323B2 (en) 2005-09-27
US20040076028A1 (en) 2004-04-22
AT411946B (de) 2004-07-26
ATA3822001A (de) 2003-12-15
ES2236482T3 (es) 2005-07-16
DE50202216D1 (de) 2005-03-17
AU2002237099B2 (en) 2006-03-02

Similar Documents

Publication Publication Date Title
AT411946B (de) Verfahren zum regeln eines wechselrichtersystems
EP1683258B1 (de) Verfahren zur einstellung der schaltzeiten, insbesondere totzeiten, in einem wechselrichter in abhängigkeit von der erfassten energie sowie wechselrichter
DE69737965T2 (de) Unterbrechungsfreie Stromversorgung
EP2137811A1 (de) Steuereinrichtung für stromrichterstationen bei einer hochspannungsgleichstromübertragungseinrichtung
EP2512207B1 (de) Treiberschaltung und Verfahren zum Versorgen einer LED sowie Leuchtmittel
EP0708998B1 (de) Gepuffertes gleichspannungsversorgungssystem
EP3097624B1 (de) Wechselrichter, insbesondere als teil eines energieerzeugungsverbundes, und verfahren
WO2020148313A1 (de) Windenergieanlage zum einspeisen elektrischer leistung in ein elektrisches versorgungsnetz
DE19605419B4 (de) Verfahren zur Beseitigung von Abweichungen der Ist-Spannung in einem Drehstromnetz von einer vorgegebenen Soll-Spannung
EP0254098B1 (de) Verfahren zum Regeln des Energiebezugs eines mehrere Verbraucher enthaltenden Abnehmers
EP1309063B1 (de) Anlage zur Einspeisung von Strom aus Gleichstromerzeugern in das Wechselstromnetz
DE102016107578B4 (de) Betriebsschaltung und Verfahren zum Betreiben wenigstens eines Leuchtmittels
EP1137149A2 (de) Vorrichtung und Verfahren zur Energieversorgung eines autonomen Netzes
DE69001895T2 (de) Kaelteanlage mit mehreren verdichtern.
DE19716645A1 (de) Verfahren und Vorrichtung zur Übertragung von elektrischer Leistung zwischen einem Stromerzeuger und einem Stromnetz
DE19651484A1 (de) Verfahren zur Leistungsaufnahmeoptimierung eines Verbundes elektrisch geheizter bzw. gekühlter Verbraucher
EP1380097A2 (de) Weshselrichter
DE3704756A1 (de) Verfahren zum einstellen der foerderleistung einer umwaelzpumpe
EP1560675B1 (de) Netzstromregelung für eine vielpunkt-widerstandsschweissmaschine mit einem aufladbaren energiespeicher
EP3741022A1 (de) Verfahren und vorrichtung zum regeln einer elektrischen spannung
EP2677622B1 (de) Verfahren und eine Vorrichtung zum Einspeisen von elektrischer Leistung in ein elektrisches Energieversorgungsnetz
DE2626831B2 (de) Nutzbrems-regelanordnung fuer gleichstrommotoren
EP0727859B1 (de) Verfahren zur Verbesserung der Spannungsqualität in einem Drehstromnetz und Anlage für die Durchführung des Verfahrens
DE3224301C2 (de)
EP1142665A2 (de) Lichtbogenschweissgerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002703387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002237099

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10467882

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 090462002

Country of ref document: AT

WWP Wipo information: published in national office

Ref document number: 2002703387

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002703387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP