WO2002070775A1 - Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central - Google Patents

Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central Download PDF

Info

Publication number
WO2002070775A1
WO2002070775A1 PCT/FR2002/000803 FR0200803W WO02070775A1 WO 2002070775 A1 WO2002070775 A1 WO 2002070775A1 FR 0200803 W FR0200803 W FR 0200803W WO 02070775 A1 WO02070775 A1 WO 02070775A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrates
gas phase
volume
enclosure
leakage
Prior art date
Application number
PCT/FR2002/000803
Other languages
English (en)
Inventor
Stéphane Goujard
Bruno Bernard
Jean-Philippe Richard
Original Assignee
Snecma Propulsion Solide
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Snecma Propulsion Solide filed Critical Snecma Propulsion Solide
Priority to CA2440063A priority Critical patent/CA2440063C/fr
Priority to JP2002570796A priority patent/JP4213471B2/ja
Priority to US10/468,031 priority patent/US7182980B2/en
Priority to EP02713017.8A priority patent/EP1370707B1/fr
Publication of WO2002070775A1 publication Critical patent/WO2002070775A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • C23C16/45508Radial flow
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/4505Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application
    • C04B41/4529Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase
    • C04B41/4531Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements characterised by the method of application applied from the gas phase by C.V.D.
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising

Definitions

  • the invention relates to the production of parts made of composite material comprising a porous substrate densified by a matrix, and more particularly the production of parts provided with a central passage.
  • the invention is applicable in particular, but not exclusively, to the production of annular or diverging brake discs or of nozzle collars of rocket engines made of thermostructural composite material.
  • thermostructural composite materials are remarkable for their high mechanical properties and their ability to maintain these properties at high temperatures.
  • Typical examples of thermostructural composite materials are carbon-carbon composites (CC) comprising a porous reinforcing substrate of carbon fibers densified by a carbon matrix and ceramic matrix composites (CMC) comprising a porous reinforcing substrate of refractory fibers (for example carbon or ceramic) densified by a ceramic matrix (for example silicon carbide).
  • CMC carbon matrix and ceramic matrix composites
  • refractory fibers for example carbon or ceramic
  • a ceramic matrix for example silicon carbide
  • FIG. 1 very schematically shows an enclosure 10 containing a load of annular preforms or substrates 20 in carbon fibers.
  • the load is in the form of a stack of substrates having their central passages aligned vertically.
  • the stack can be formed of several superimposed sections separated by one or more intermediate support plates 12.
  • the stacked substrates are separated from each other by means of spacers 30.
  • the shims 30, of which the number can vary can be arranged radially. They provide between adjacent substrates intervals 22 of substantially constant height throughout the stack while communicating the internal volume 24 of the stack, formed by the aligned central passages of the substrates, with the external volume 26 located outside the battery, in enclosure 10.
  • the enclosure contains a single stack of substrates.
  • several stacks of substrates may be placed side by side in the same enclosure.
  • the enclosure 10 is heated by means of an armature 14, for example made of graphite which defines the enclosure 10 and which is inductively coupled with an inductor 16 situated outside an envelope 17 surrounding the armature.
  • armature 14 for example made of graphite which defines the enclosure 10 and which is inductively coupled with an inductor 16 situated outside an envelope 17 surrounding the armature.
  • Other heating modes can be used, for example resistive heating (Joule effect).
  • the admission is carried out through the bottom 10a of the enclosure .
  • the gaseous phase passes through a preheating zone 18 formed by several drilled plates arranged one above the other in the lower part of the enclosure, below a plate 11 for supporting the stack of substrates.
  • the gaseous phase heated by the preheating plates which are brought to the temperature prevailing in the enclosure flows freely in the enclosure, passing through both the internal volume 24 and the external volume 26 and in the intervals 22.
  • the residual gas phase is extracted from the enclosure by suction through an outlet in the cover 10b.
  • the gaseous phase admitted into the enclosure and coming from the preheating zone 18 is channeled by a wall 19 towards the internal volume 24 of the stack of substrates 20 and the internal volume 24 is closed by a wall 25 at its end opposite to that where the gas phase is admitted.
  • the residual gas phase outlet outside the enclosure 10 communicates with the external volume 26.
  • the flow of gas phase is directed so as to flow from the internal volume 24 to the external volume 26 passing through the porosity of the substrates 20 and through the intervals 22, between the radial spacers 30 .
  • the supply of the substrates 20 in reactive gas phase is improved.
  • the intervals 22 between substrates provide passages such for the gas phase that the pressures in the internal 24 and external 26 volumes are equal.
  • a similar result can be obtained by performing a reverse circulation of the gas phase, that is to say from the external volume 26 to the internal volume 24, the external volume 26 being closed at its end opposite to that where the phase is admitted. gas and the internal volume 24 communicating with the residual gas phase outlet outside the enclosure.
  • FIGS. 5 and 6 Another arrangement as illustrated by FIGS. 5 and 6 has been proposed in document EP 0 792 385.
  • This arrangement differs from that of FIGS. 3 and 4 in that the intervals 22 between substrates are closed using annular spacers 32 arranged on the side of the internal diameter or, as illustrated, on the side of the external diameter of the substrates 20.
  • the pressure gradient mode with forced gas phase flow makes it possible to increase the kinetics of densification.
  • the process is delicate to implement.
  • the loading of the substrates 20 into the enclosure 10 must be carried out with meticulousness to avoid gas leaks at the base of the stack, at the outlet of the preheating zone, between adjacent substrates , and at the top of the stack.
  • the wall 25 can in particular be surmounted by a weight 25a allowing it to be kept applied in a sealed manner to the top of the stack despite the overpressure prevailing in the latter.
  • a threshold for densification of the substrates which results in too great a pressure in the center of the stack, a modification of the microstructure of the matrix material has been observed by the plaintiff, or even the formation of significant amounts of soot.
  • the object of the invention is to provide a densification process by chemical vapor infiltration of porous substrates having a central passage which makes it possible both to ensure good supply of the substrates in reactive gas phase and to obtain a high degree of densification, faster than in the configurations described in the aforementioned US patent 5,904,957, without risk of modification of microstructure of the matrix material densifying the substrates and without forming undesirable deposits.
  • This object is achieved by a process comprising the steps which consist in: - placing inside one enclosure one or more substrates to delimit in the enclosure an internal volume formed essentially by the central passage of the substrate or the central passages of several aligned substrates, and an external volume formed essentially by the exterior of the substrate (s), - voluntarily arranging at least one leakage passage making said volumes communicate with each other outside the substrate (s),
  • the total section of the leakage passage (s) is given a value between a minimum value, such that the maximum pressure threshold is not exceeded until the end of the densification process, and a maximum value, such that a pressure difference is established between the first volume and the second volume from the start of the densification process.
  • the process according to the invention is remarkable in that it allows the advantages of chemical infiltration processes to be combined vapor phase with directed flow and forced flow mentioned above, while not having their drawbacks.
  • the pressure difference between the internal and external volumes is capped, which makes it possible not to exceed the pressure threshold from which changes in the microstructure of the material of the matrix or parasitic deposits are likely to occur or from which battery inflation could become a concern.
  • the infiltration process can then be continued without inconvenience until a relatively high level of densification is reached, which may even possibly correspond to the final density desired for the densified substrates, so that an additional infiltration step would then be no longer required.
  • the total section of the leakage passage (s) is preferably given a value such that the pressure difference between the first and the second volume at the start of the densification process is preferably at least equal to 15% of the value pressure difference obtained in the absence of leakage passage (s). It is also necessary that the maximum pressure threshold is not exceeded at the end of the densification process.
  • the total section of the leakage passage (s) is then given a value such that the pressure difference between the first and the second volume at the start of the densification process is preferably at most equal to 85% of the pressure difference value obtained in the absence of leakage passage (s).
  • the method can be implemented by forming inside the enclosure at least one stack of substrates with their central passages aligned and by providing spaces between adjacent substrates by means of spacers, said internal and external volumes being constituted respectively by the interior and the exterior of the stack or stacks, and by arranging at least one of the spacers to form one or more leakage passages.
  • At least one annular shim provided with at least one radial passage forming a leakage passage.
  • at least one wedge in several parts, for example curved sectors, leaving between them leakage passages.
  • the sections of leakage passages between adjacent substrates can be given a variable value over the height of the or each stack.
  • the leakage section between substrates varies in increasing direction between the end of the first volume where the gas phase is admitted and the opposite end.
  • each spacer it is conceivable to arrange each spacer to form one or more escape passages.
  • maintaining the total leakage section within the desired limit requires a reduced passage section for each leakage passage, in the case of a stack of a fairly large number of substrates. As densification progresses, a partial blockage of the leakage passages may then occur.
  • the arrangement of leakage passages can lead to weakening of the spacers.
  • At least one leakage passage is arranged on the pipeline path of the gas phase between the entry of the gas phase into the enclosure and the entry into said first volume.
  • the leakage passage can be arranged at a gas phase preheating zone.
  • at least one leakage passage is arranged through a closure wall of said first volume at its end opposite to that where the gas phase is admitted.
  • spacers can be used, none of which spare leakage passages between substrates.
  • the method according to the invention can be implemented in isothermal mode, that is to say with substantially uniform heating of the substrate or substrates, or in temperature gradient mode, that is to say with part of the or of each substrate brought to a higher temperature than another part.
  • the heating of the substrate (s) with temperature gradient can be carried out by direct coupling between the substrate and an inductor.
  • FIG. 1 is a very schematic sectional view of a loading of substrates for the implementation of the known method of chemical infiltration in the vapor phase with free flow;
  • Figure 2 is a schematic sectional view of the stack of substrates of Figure 1;
  • FIG. 3 is a very schematic sectional view of a loading of substrates for the implementation of the known method of chemical infiltration in vapor phase with directed flow;
  • Figure 4 is a schematic sectional view of the stack of substrates of Figure 3;
  • FIG. 5 is a very schematic sectional view of a loading of substrates for the implementation of the known method of chemical vapor infiltration with forced flow;
  • Figure 6 is a schematic sectional view of the stack of substrates of Figure 5;
  • FIG. 7 is a very schematic sectional view of a densification installation showing a particular embodiment of a loading of substrates in a stack for the implementation of a method according to the invention, in the case of simultaneous densification of a plurality of annular substrates for brake discs of composite material;
  • FIG. 8 is a schematic sectional view of the stack of substrates of Figure 7;
  • FIG. 9 and 10 are detail views on an enlarged scale of two embodiments of a spacer suitable for loading substrates of Figures 7 and 8;
  • FIG. 11 is a detail view of another embodiment of spacers suitable for loading substrates of Figures 7 and 8;
  • FIG. 12 shows curves illustrating the variation of the pressure difference between the interior and the exterior of a stack of substrates as a function of the flow rate of a gas admitted into the internal volume of the stack and of the cross-section of flight;
  • FIG. 13 is a very schematic sectional view showing an alternative embodiment of a loading of stacked substrates for the implementation of a method according to the invention
  • Figure 14 is a schematic sectional view along the plane XIV-XIV of Figure 13;
  • FIG. 15 is a very schematic sectional view of a densification installation for the implementation of another embodiment of a method according to the invention.
  • FIG. 16 is a partial schematic sectional view along the plane XVI-XVI of Figure 15;
  • FIG. 17 is a schematic sectional view of a densification installation for the implementation of yet another embodiment of a method according to the invention.
  • FIG. 18 shows curves illustrating the variation as a function of time of the reactive gas phase pressure inside a stack of substrates in the case of the densification methods of the prior art with forced gas phase flow and directed gas phase flow, and densification methods according to the invention
  • FIG. 19 shows curves illustrating the kinetics of densification of the substrates in the case of the densification methods of the prior art with forced gas phase flow and with directed gas phase flow, and of a densification method according to invention
  • - Figure 20 is a very schematic sectional view of an installation for densifying a substrate for the implementation of a method according to the invention, in the case of the densification of a substrate for divergent nozzle rocket engine;
  • - Figure 21 is a very schematic sectional view of an installation for densification of stacked substrates for the implementation of a method according to the invention in the case of the simultaneous densification of several substrates for diverging engine nozzles rockets;
  • - Figure 22 is a very schematic sectional view of an installation for densifying a substrate for the implementation of a method according to the invention, in the case of the densification of a substrate for nozzle throat of rocket engine;
  • FIG. 23 is a very schematic sectional view of an installation for densification of stacked substrates for the implementation of a method according to the invention in the case of the simultaneous densification of several substrates for engine nozzle necks rockets.
  • FIGS. 7 and 8 FIGS. 1 to 6 having been described previously.
  • the elements common to the embodiments of Figures 1 to 8 have the same references.
  • FIG. 7 very schematically shows an enclosure 10 containing a load of annular substrates 20 such as annular preforms for brake discs made of thermostructural composite material.
  • the substrates 20 are arranged to form a vertical stack delimiting an internal volume 24 formed by the aligned central passages of the substrates.
  • the stack of substrates 20 rests on a lower support plate 11 and can be formed of several superimposed sections separated by one or more intermediate support plates 12.
  • FIG. 7 Although a single stack of substrates is shown in FIG. 7, several stacks can be placed side by side in the enclosure.
  • the enclosure is heated by means of an armature 14 which defines the side wall of the enclosure and is inductively coupled with an inductor 16 outside an envelope 17 surrounding the armature outside the enclosure.
  • the substrates can be heated by direct coupling between an inductor and the substrates, when the nature of the latter allows.
  • a method of densifying porous substrates by chemical vapor infiltration with heating of the substrates by direct inductive coupling is described in document EP 0 946 461. Still alternatively, the heating of the wall 14 may be of the resistive type.
  • a gaseous phase containing one or more gaseous precursors of the material to be deposited within the porosity of the substrates in order to densify them is introduced into the enclosure 10 through the bottom 10a thereof.
  • the gas phase passes through a preheating zone 18 located at the lower part of the enclosure and formed for example from several superimposed perforated plates.
  • the gas phase is channeled through a wall 19 to the internal volume 24, the latter being closed at its upper end by a wall 25 forming a cover which rests on the stack of substrates.
  • Each substrate 20 is separated from an adjacent substrate and, where appropriate, from a support plate 11 or 12 or from the cover 25 by one or more spacers which define intervals 22.
  • the spacers, or at at least part of them, are arranged to form leakage passages communicating the internal volume 24 of the stack with the external volume 26 located outside the stack, in the enclosure, while allowing the existence of a pressure gradient between volumes 24 and 26.
  • the overall value S of the sections of the leakage passages defined by the spacers is given a desired predetermined value. It is therefore desirable to avoid the existence of parasitic leaks which could distort the value of the overall leakage section.
  • the stack of substrates 20 is clamped by means of columns or candles 28 (only one is visible in FIG. 7) which connect the base support plate 11 to the intermediate support plate 12 with their ends passing through the plates 11 and 12 fixed by bolting, and columns or candles 29 (only one is visible in FIG. 7) which in the same way connect the plate 12 and the cover 25 and ensure the maintenance of the latter against the prevailing overpressure in the pile.
  • the gaseous phase admitted into the enclosure flows from the internal volume 24 to the external volume 26 by diffusing through the porous substrates 20 and passing through the leakage passages, outside the substrates 20.
  • the residual gas phase is extracted from the enclosure 10 through a passage formed in the upper wall 10b of the enclosure, passage in connection with suction means such as a vacuum pump (not shown).
  • suction means such as a vacuum pump (not shown).
  • the gas phase coming from the preheating zone can be channeled towards the external volume 26 which is then closed at its upper part.
  • the gas phase then flows from the outside to the inside of the cell, passing through the substrates 20 and the leakage passages formed in intervals 22, and the residual gas phase is extracted from the internal volume 24 then open to its part. higher.
  • the admission of the gaseous phase can be carried out through the enclosure cover, the preheating zone then being located at the upper part of the enclosure. That of the internal 24 and external 26 volumes into which the gas phase is channeled is then closed at its lower part while the other volume is open at its lower part to allow the extraction of the residual gas phase through a passage formed in the bottom of the enclosure.
  • the method can be implemented with a single annular substrate.
  • the gas phase circulates from the inside to the outside of the substrate, or vice versa, through the substrate and through one or more leakage passages outside the substrate.
  • the leakage passage (s) may be formed in spacers providing a gap between the opposite faces of the substrate and neighboring walls.
  • the spacers in the intervals 22 between neighboring substrates or between substrate and neighboring wall include an annular spacer 40, extending near or at the edge of the outer perimeter of the substrates, and radial wedges 44.
  • the annular wedges 40 close the intervals 22 while providing leakage passages in at least part of these intervals.
  • the radial wedges 44 contribute to ensuring satisfactory maintenance of the preforms 20 and to imparting a substantially constant height to each interval 22. They can be omitted if the rigidity of the preforms allows it.
  • the arrangement of the annular wedges 40 to form leakage passages can be achieved in different ways.
  • the shims 40 can be produced in several annular sectors 40a, 40b, ... which are not contiguous, providing leakage passages 41 between their ends (FIG. 8).
  • the annular shims 40 can be made in one piece, the leakage passages 41 being constituted by radial holes formed through the shims.
  • annular wedges 40 can be produced in a single piece, the trailing passages 41 being constituted by notches formed in their upper edge and / or in their lower edge.
  • FIG. 11 illustrates yet another possible arrangement of the spacers.
  • the spacers include a plurality of annular spacers 40 ⁇ , 40 2 , 40 3 discontinuous or having radial holes or notches.
  • an annular block in a single piece or formed of a succession of annular sectors is provided near each of the interior and exterior perimeters of the substrates 20.
  • the trailing passages 41 ⁇ are defined by the arrangement of the annular block external 40- ⁇ , that is to say either by spaces between ends of neighboring annular sectors, or by radial bores, or by notches.
  • the wedges 40 2 and 4O 3 also provide passages 41 2 and 41 3 but these are preferably of larger dimensions than the passages 41 1 . It is possible to provide decreasing dimensions for the leakage passages from the internal perimeter of the substrates, in order to sufficiently supply the intervals 22 in the gas phase.
  • the relationship between the pressure difference ⁇ P between the internal 24 and external 26 volumes and the flow rate of gas phase admitted into the enclosure is determined, for different values of overall leakage section. S, the overall leakage section being the sum of the individual sections of the leakage passages. This determination is carried out with substrates in the non-densified state, that is to say having their maximum porosity to obtain a relationship between the initial value ⁇ P 0 of the pressure difference and the overall leakage section S.
  • a maximum permissible pressure threshold P max for the gas phase or for the partial pressure of gaseous precursor (s) contained in the gas phase determines a maximum permissible pressure threshold P max for the gas phase or for the partial pressure of gaseous precursor (s) contained in the gas phase.
  • the maximum admissible pressure threshold Pm ax is in particular that beyond which an unwanted modification of the structure of the deposited matrix material is liable to occur, or the formation of undesirable parasitic deposits is liable to occur.
  • the global value S of leakage section is then chosen such that Smin ⁇ S ⁇ Smax, O ⁇
  • - Smax is the maximum leakage section value beyond which the pressure gradient is insufficient at the start of densification
  • - Smin is the minimum leakage section value below which the pressure gradient existing at the end of the densification process is such that the maximum permissible pressure threshold P max is exceeded.
  • S ax is determined from the pre-established relationships between ⁇ Po and S for different gas phase flow rates and different values of S.
  • ⁇ P 0 relative to ⁇ Pom a depends in particular on the geometry and the initial permeability of the substrates to be densified. A relatively high initial permeability imposes a value of ⁇ P 0 closer to ⁇ Pomax to guarantee a pressure gradient from the start of the densification process.
  • Example An example for determining the overall leakage section S will be given below in the case of a loading of annular substrates constituting preforms of carbon brake discs.
  • the load consisted of 23 stacked substrates free from any densification.
  • Each substrate consisted of a plurality of fibrous layers of carbon fibers needled between them.
  • the production of preforms of this type for brake discs intended for aeronautics or motor racing is well known.
  • the substrates had an internal diameter of 26 cm, an external diameter of 48 cm, a height (thickness) of 3.6 cm and a volume ratio of fibers of 23% (percentage of the volume of the disks occupied by the fibers).
  • Curves B, C, D, E show the relationships established for values of S equal to 2.4 cm 2 , 6 cm 2 , 12.6 cm 2 and 30 cm 2, respectively .
  • the overall leakage section value being chosen, its distribution into individual sections of leakage passages can be achieved in several ways.
  • the individual sections of the leakage passages may or may not be equal. It is possible to provide leakage passages at each of the intervals 22 or at only some of these intervals, for example one in two.
  • FIGS. 13 and 14 illustrate an alternative implementation of the method shown in FIGS. 7 and 8.
  • FIGS. 13 and 14 differs from that of FIGS. 7 and 8 in that leakage passages 41 are provided at the level of a single spacer 40, for example of the type of that illustrated in FIG. 9, the other spacers 42 being full, that is to say not providing leakage passages.
  • the shim 40 may have a thickness greater than that of the shims 42 in order to be able to provide one or, preferably, several leakage passages 41 offering the desired total leakage section.
  • the wedge 40 can be placed at any level of the stack, between two substrates or between a substrate and a support plate 11 or 12. It can be completed by radial wedge sections 44 (FIG. 14). However, it is not necessary for the leakage passage or passages to be formed at the level of one or more spacers.
  • one or more leakage passages 51 are formed in the wall 19 which channels the gas phase in the preheating zone between the entry into the enclosure and the entry into the internal volume of the substrate stack.
  • several passages 51 are formed by being distributed around the wall 19. A single passage could be provided.
  • FIG. 17 illustrates another embodiment according to which a leakage passage 61 is formed in the wall 25 closing off the internal volume of the stack of substrates at its upper end. Although a single passage 61 is shown, it is of course possible to provide several passages formed in the wall 25.
  • the spacers 42 are solid wedges which do not provide leakage passages, so that the voluntarily introduced leaks are located only at the level of the wall 19 or of the wall. 25.
  • the various embodiments may be combined by providing leakage passages at the level of the wall 19 and / or at the level of one or more spacers and / or at the level of the wall 25.
  • Test 1 (comparative) The loading of substrates as described above was densified by chemical vapor infiltration with forced flow, that is to say without creating a leak passage between stacked substrates, the procedure being in accordance to that described in document EP-0 792 385.
  • a reactive gas phase was used containing a mixture of methane and propane as carbon precursor.
  • the gas phase flow rate was fixed at approximately 70 l / minute and the pressure P ext in the enclosure outside the stack of substrates was approximately 14 mbar.
  • the pressure value Pj nt inside the cell was measured during the densification process of the substrates.
  • the curve F of FIG. 18 shows the variation of this pressure Pj nt as a function of time.
  • the measurements of Pj nt and P ext are carried out by means of sensors located respectively in the inlet passage of the gas phase in the enclosure and in the outlet passage of the residual gas phase outside the enclosure, through the cover. 10b.
  • a load of substrates as described above was densified by chemical vapor infiltration with directed flow in accordance with the process described in document US 5,904,957.
  • the same reactive phase was used as in test 1, with the same flow rate.
  • the pressure Pj nt in the stack remained constant and equal to P ext (curve G in FIG. 18). After 250 h, the average density of the discs obtained was 1.19.
  • Test 3 (according to the invention) A load of substrates as described above was densified by chemical vapor infiltration using spacers such as that of FIG. 9 providing leakage passages between stacked substrates, each spacer with 6 escape routes.
  • the same reactive phase was used as in test 1, with the same gas phase flow rate and the same pressure P ext in the enclosure, outside the stack of substrates.
  • the pressure value P ⁇ nt inside the cell was measured during the densification process of the substrates which was carried out for 250 h.
  • Curve H in FIG. 18 shows the variation of this pressure Pj nt as a function of time.
  • the internal pressure Pi ⁇ t increases more slowly than in test 1.
  • the average density of the discs obtained was 1.47.
  • the internal pressure Pj n t being 19.7 mbar after 250 h, it would have been possible to continue the densification, without quickly risking a change in microstructure and the formation of soot, in order to obtain a higher density.
  • Test 4 (according to the invention) The procedure was as in test 3, but using spacers each provided with two holes forming leakage passages. The overall leakage section offered was 3.6 cm 2 .
  • Curve I in FIG. 18 shows the variation of the pressure Pin t as a function of time. At 250 h, the average density of the discs obtained was 1.47.
  • Test 5 (according to the invention) The procedure was as in test 3 but using spacers between stacked substrates which do not provide a leakage passage and by making leakage passages by drilling the wall 19 of the preheating zone as in the embodiment of FIGS. 15 and 16.
  • the overall leakage section offered was 2.35 cm 2 .
  • the curve J in FIG. 18 shows the variation of the pressure Pin t as a function of time. At 250 h, the average density of the discs obtained was 1.48.
  • Tests 3, 4 and 5 show not only the superiority of the method according to the invention compared to the methods of the prior art, but also that the location and the realization of the leakage passage (s) created has practically no affecting.
  • the variation of the density of the substrates as a function of time has been evaluated during processes such as those of tests 1, 2 and 3.
  • the curves K, L and M of FIG. 19 illustrate the kinetics of densification respectively with the densification with flow forced, densification with directed flow and densification carried out in accordance with the invention.
  • the comparison of curves K, L and M also makes it possible to show the advantage of a process according to the invention. Indeed, a significant increase in the kinetics of densification compared to the densification process with directed flow is obtained.
  • the average density of the loading reaches 1.50 in 260 h with the process implemented according to the invention whereas, for the same duration, it is only 1.19 with the densification process with directed flow. It would take approximately 430 hours to achieve a density of 1.50 with this latter process. This result was obtained with the process according to the invention without encountering soot or an undesirable microstructure change.
  • the method according to the invention allows densification much faster than the densification method with directed flow and more complete although a little less faster than the forced flow densification process.
  • the method according to the invention also makes it possible to eliminate the risks of change of microstructure and formation of soot inherent in the use of the densification process with forced flow.
  • FIG. 20 illustrates a mode of application of a method according to the invention for the densification of a porous substrate constituting a diverging preform of a rocket engine nozzle.
  • the substrate 120 is disposed inside an enclosure 110 delimited by an armature 114 heated by coupling with an inductor (not shown). As indicated above, the heating of the substrate 120 may alternatively be carried out by direct inductive coupling with an inductor. Still alternatively, the heating of the wall 114 may be of the resistive type.
  • the enclosure 110 is supplied with a reactive gas phase through its bottom 110a.
  • the gas phase admitted passes through an area of preheating 118 formed of perforated trays located one above the other.
  • the gas phase is channeled towards the internal volume 124 formed by the central passage of the substrate 120.
  • the volume 124 is closed by a cover 125 resting on the substrate 120 and surmounted by 'a weight
  • the substrate 120 is supported by a plate 111 having a central passage and surmounting the preheating zone 118.
  • Annular spacers 140 provide gaps 122 between the support plate 111 and one end of the substrate 120 and between the other end of the preform and the cover 125.
  • the shims 140 are arranged to form leakage passages between the volume 124 and the volume 126 outside the substrate 120 in the enclosure 110. The gaseous phase admitted into the enclosure flows from the volume
  • the residual gas phase is extracted from volume 126 through a passage formed in the cover 110b of the enclosure and communicating with suction means (not shown).
  • the leakage passages can be arranged in different ways, for example by making the annular shims 140 in the form of several non-adjoining annular sectors, or by making the annular shims in one piece with radial holes 141 (illustrated example) or notches , in the same way as described above with reference to FIGS. 8, 9 and 10.
  • the determination of the overall leakage section offered by the leakage passages is carried out on the same principle as that described above, so as to establish a pressure gradient between the volumes 124 and 126 from the start of the densification process but without exceeding a maximum allowable pressure value in volume 124 at the end of the densification process.
  • the gas phase could be channeled to the external volume 126 and circulate from the outside to the inside of the preform, the residual gas phase being extracted from the internal volume 124.
  • the external volume 126 is then closed at its end opposite to that where the gas phase is admitted.
  • FIG. 21 illustrates yet another embodiment of a method according to the invention for the densification of porous substrates constituting preforms of diverging nozzles of rocket engines.
  • the elements corresponding to those of the embodiment of Figure 20 have the same references, for the sake of simplicity.
  • Several substrates 120 are arranged in the same enclosure with their axial passages aligned vertically.
  • the substrate disposed in the lower part rests on the plate 111, while the other substrates rest on annular intermediate plates 112.
  • the substrates are partially engaged with one another and the plates 112 surround the stack of substrates while presenting openings 113 to ensure the continuity of the volume 126 outside the substrates in the enclosure 110.
  • the gas phase from the preheating zone 118 is channeled to the external volume 126 through openings 113 of the plate 111.
  • the volume 126 is closed by a cover 127 at its end opposite to that where the gas phase is admitted.
  • the cover 127 rests on the substrate located at the top of the stack. It is provided with a central opening 128 which communicates with the interior of the stack of substrates 120.
  • the cover 127 extends to the wall 114 of the enclosure 110 and is fixed to this wall in a leaktight manner.
  • the gas phase flows from the external volume 126 to the internal volume 124 formed by the aligned central passages of the substrates passing through the porosity of the substrates 120 and, outside of these, through leakage passages.
  • Leakage passages are defined by the spaces 115 between the internal edges of the intermediate plates 112 and the external faces of the substrates 120 surrounded by these plates.
  • Additional leakage passages 141 could be arranged by means of spacers 140 interposed between the lower substrate and the support plate 111 and / or between the substrate top and cover 127, as in the embodiment of FIG. 15.
  • the residual gas phase is extracted from the internal volume 124 by suction through the opening 128 of the cover 127 and through the cover 110b of the enclosure.
  • the overall leakage section offered by the leakage passages is determined as indicated above to guarantee, on the one hand, the existence of a pressure gradient at the start of the densification process and, on the other hand, the non-overshoot of the maximum pressure for the gas phase in the external volume 126.
  • the distribution of the overall leakage section over the height of the stack may be carried out in a uniform or non-uniform manner.
  • the distribution will preferably be in an increasing direction in the general direction of flow of the gas phase in the enclosure.
  • Circulation of the gas phase from the inside to the outside of the stack of substrates could be envisaged with an admission of the gas phase to the upper part of the enclosure.
  • FIG. 22 illustrates an application of a method according to the invention for the densification of a porous substrate intended for the manufacture of a nozzle neck of a rocket engine.
  • the substrate 220 of annular cylindrical shape is disposed inside an enclosure 210 which is delimited by a wall 214 and in which is housed an inductor 216 surrounding the substrate 220.
  • the substrate 220 is supported by a plate 221 disposed above above the bottom 210a of the enclosure 210.
  • the enclosure 210 is supplied in reactive gas phase through the bottom 210a.
  • the admitted gas phase is channeled towards the internal volume 224 constituted by the central passage of the substrate 220 by passing in a conduit surrounded by a wall 219 connecting the inlet of gas phase in the enclosure at a central passage of the support plate 221.
  • the internal volume 224 is closed by a cover 225 resting on the substrate 220 and surmounted by a weight 225a enabling it to be held in place.
  • Annular spacers 240 are interposed between the support plate 221 and one end of the substrate 220 and between the other end of the substrate 220 and the cover 225.
  • the spacers 240 are arranged, for example drilled radially, to form passageways for leak 241 between volume 224 and volume 226 outside the substrate 220 in the enclosure 210.
  • the gas phase admitted into the enclosure flows from volume 224 to volume 226, passing through the porosity of the substrate 220 and, outside of this, through the leakage passages 241 of the wedges 240.
  • the residual gas phase is extracted from the volume 226 through a passage formed in the cover 210b of the enclosure 210.
  • the heating of the substrate 220 is carried out by direct inductive coupling with the inductor 216, which has the effect of generating a temperature gradient within the substrate between an internal part of the latter and its exposed external surfaces. Densification is favored initially in the warmer internal part of the preform and then progresses towards the external parts. The existence of a pressure gradient also favors the access of the gas phase towards the interior of the substrate.
  • the combination of a pressure gradient and a temperature gradient is therefore particularly favorable for achieving good densification at the core of thick annular porous substrates such as substrates intended for the production of nozzle necks. This results in an important advantage for this particular application since after densification the machining carried out to obtain the nozzle throat leaves the central part of the densified substrate (as shown in broken lines in FIG. 22).
  • FIG. 23 illustrates an application of a method according to the invention for the simultaneous densification of several porous annular substrates intended for the manufacture of necks of rocket engine nozzles.
  • the gas phase admitted to the lower part of the enclosure 210 is channeled through the wall 219 to the internal volume 224 constituted by the aligned central passages of the substrates 220 and the support plates 211, 212.
  • the volume 224 is closed by a cover 225 which can be surmounted by a weight 225a.
  • Annular spacers 240 are interposed between the ends of the substrates 220 and the plates 211, 212 or cover 225.
  • the spacers 240 are arranged, for example drilled radially, to form leakage passages 241 between the volume 224 and the volume 226 outside the stack of substrates 220 in the enclosure 210.
  • the gas phase flows from volume 224 to volume 226 through the porosity of the substrates 220 and, outside of them, through the leakage passages 241, before being evacuated from the enclosure 210 through a passage formed in the cover 210b thereof.
  • the substrates are heated by direct inductive coupling with the inductor 216 which surrounds the stack of substrates 220 in the enclosure, inside the side wall 214.
  • the inductor 216 can be divided into several sections 216a, 216b , 216c located at the different stacked substrates 220. The inductor sections can be supplied separately.
  • the densification of the substrates is carried out by combining temperature gradient and pressure gradient modes.
  • the overall leakage section is determined by applying the same principle as that described above, so as to establish a pressure gradient between the volumes 224 and 226 at the start of the densification process but without exceeding a maximum admissible pressure value in volume 224 at the end of the densification process.
  • annular wedges 240 can be given different embodiments, for example as shown in FIGS. 8 and 10.
  • the leakage passages can be provided not at the level of spacers, but in the wall 219 and / or in the cover 225.
  • the channeling of the admitted gas phase can be carried out towards the external volume 226, the gas phase then circulating from the outside to the inside of the substrate 220 or of the stack of substrates 220.
  • the external volume is then closed at its end opposite to that where the gas phase is admitted.
  • the gas phase can be circulated from the top to the bottom of the enclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Des substrats annulaires (20) sont disposés en pile dans une enceinte où ils délimitent un volume interne (24) et un volume externe (26) à la pile. Une phase gazeuse contenant au moins un précurseur d"un matériau de matrice à déposer au sein de la porosité des substrats est canalisée dans l"enceinte vers un premier (24) des deux volumes et une phase gazeuse résiduelle est extraite de l"enceinte à partir de l"autre volume (26). Un ou plusieurs passages de fuite (22) font communiquer les volumes entre eux, en dehors des substrats. La section totale des passages de fuite est comprise entre une valeur minimale telle qu"une pression maximum de phase gazeuse dans le premier volume ne soit pas dépassée jusqu"à la fin de la densification, et une valeur maximale telle qu"une différence de pression soit établie entre les deux volumes dès le début de la densification.

Description

Procédé pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central.
Arrière-plan de l'invention L'invention concerne la réalisation de pièces en matériau composite comprenant un substrat poreux densifié par une matrice, et plus particulièrement la réalisation de pièces munies d'un passage central. L'invention est applicable notamment, mais non exclusivement, à la réalisation de disques de frein annulaires ou de divergents ou de cols de tuyères de moteurs fusées en matériau composite thermostructural.
Les matériaux composites thermostructuraux sont remarquables par leurs propriétés mécaniques élevées et leur capacité à conserver ces propriétés à haute température. Des exemples typiques de matériaux composites thermostructuraux sont les composites carbone- carbone (C-C) comprenant un substrat poreux de renfort en fibres de carbone densifié par une matrice en carbone et les composites à matrice céramique (CMC) comprenant un substrat poreux de renfort en fibres réfractaires (par exemple en carbone ou céramique) densifié par une matrice céramique (par exemple en carbure de silicium). Les procédés de densification par infiltration chimique en phase vapeur sont bien connus. Un ou plusieurs substrats poreux sont placés à l'intérieur d'une enceinte. Une phase gazeuse contenant un ou plusieurs précurseurs du matériau constitutif de la matrice est introduite dans l'enceinte. Les conditions de température et de pression sont réglées pour permettre à la phase gazeuse de diffuser au sein de la porosité des substrats afin d'y déposer le matériau constitutif de la matrice par décomposition d'un constituant de la phase gazeuse ou par réaction entre plusieurs constituants. Différents précurseurs gazeux permettant d'obtenir des matrices carbone ou céramique sont bien connus. Différents procédés connus seront maintenant brièvement décrits dans le cadre de la réalisation de disques de freins annulaires en matériau composite C-C étant noté que ces procédés sont applicables à la réalisation d'autres pièces annulaires ou munies d'un passage central, en matériau composite C-C ou autre matériau composite. La figure 1 montre très schématiquement une enceinte 10 contenant un chargement de préformes annulaires ou substrats 20 en fibres de carbone. Le chargement est sous forme d'une pile de substrats ayant leurs passages centraux alignés verticalement. La pile peut être formée de plusieurs sections superposées séparées par un ou plusieurs plateaux de support intermédiaires 12. Les substrats empilés sont séparés les uns des autres au moyen de cales d'espacement 30. Comme le montre la figure 2, les cales 30, dont le nombre peut varier, peuvent être disposées radialement. Elles ménagent entre substrats adjacents des intervalles 22 de hauteur sensiblement constante dans tout l'empilement tout en faisant communiquer le volume interne 24 de la pile, formé par les passages centraux alignés des substrats, avec le volume externe 26 situé à l'extérieur de la pile, dans l'enceinte 10.
Dans l'exemple de la figure 1 , l'enceinte contient une seule pile de substrats. En variante, plusieurs piles de substrats pourront être disposées côte à côte dans la même enceinte.
L'enceinte 10 est chauffée au moyen d'un induit 14, par exemple en graphite qui définit l'enceinte 10 et qui est couplé inductivement avec un inducteur 16 situé à l'extérieur d'une enveloppe 17 entourant l'induit. D'autres modes de chauffage peuvent être utilisés, par exemple chauffage résistif (effet Joule).
Une phase gazeuse contenant un ou plusieurs précurseurs de carbone, typiquement des hydrocarbures tels que méthane et/ou propane, est admise dans l'enceinte 10. Dans l'exemple illustré, l'admission est réalisée à travers le fond 10a de l'enceinte. La phase gazeuse traverse une zone de préchauffage 18 formée de plusieurs plateaux percés disposés les uns au-dessus des autres dans la partie inférieure de l'enceinte, au-dessous d'un plateau 11 de support de la pile de substrats. La phase gazeuse réchauffée par les plateaux de préchauffage qui sont portés à la température régnant dans l'enceinte s'écoule librement dans l'enceinte en passant à la fois dans le volume interne 24 et le volume externe 26 et dans les intervalles 22.
La phase gazeuse résiduelle est extraite de l'enceinte par aspiration à travers une sortie ménagée dans le couvercle 10b.
L'inconvénient d'une telle disposition est qu'une relativement faible proportion de la phase gazeuse circule dans les intervalles 22, de sorte que les substrats 20 sont faiblement alimentés en phase gazeuse réactive, puisque leurs plus grandes faces sont adjacentes aux intervalles 22.
Afin d'éviter cet inconvénient, il a été proposé dans le brevet US 5 904 957 de modifier la disposition des figures 1 et 2 de la façon schématiquement illustrée par les figures 3 et 4.
La phase gazeuse admise dans l'enceinte et issue de la zone de préchauffage 18 est canalisée par une paroi 19 vers le volume interne 24 de la pile de substrats 20 et le volume interne 24 est obturé par une paroi 25 à son extrémité opposée à celle où est admise la phase gazeuse. La sortie de phase gazeuse résiduelle hors de l'enceinte 10 communique avec le volume externe 26.
De la sorte, le flux de phase gazeuse est dirigé de manière à s'écouler du volume interne 24 vers le volume externe 26 en passant à travers la porosité des substrats 20 et à travers les intervalles 22, entre les cales d'espacement radiales 30.
Avec ce procédé d'infiltration chimique en phase vapeur du type à flux dirigé, l'alimentation des substrats 20 en phase gazeuse réactive est améliorée. Les intervalles 22 entre substrats ménagent des passages tels pour la phase gazeuse que les pressions dans les volumes interne 24 et externe 26 sont égales.
Un résultat similaire pourra être obtenu en réalisant une circulation inverse de la phase gazeuse, c'est-à-dire du volume externe 26 vers le volume interne 24, le volume externe 26 étant obturé à son extrémité opposée à celle où est admise la phase gazeuse et le volume interne 24 communiquant avec la sortie de phase gazeuse résiduelle hors de l'enceinte.
Une autre disposition telle qu'illustrée par les figures 5 et 6 a été proposée dans le document EP 0 792 385.
Cette disposition se distingue de celle des figures 3 et 4 en ce que les intervalles 22 entre substrats sont obturés en utilisant des cales d'espacement 32 annulaires disposées du côté du diamètre intérieur ou, comme illustré, du côté du diamètre extérieur des substrats 20.
On réalise ainsi un écoulement forcé de la phase gazeuse entre le volume interne 24 et le volume externe 26 à travers la porosité des substrats 20 et une différence de pression est établie entre ces deux volumes. Le mode de densification par infiltration chimique en phase vapeur mis en oeuvre est alors du type à gradient de pression.
Par rapport au mode d'infiltration isobare tel que mis en oeuvre avec la disposition des figures 1 et 2, le mode à gradient de pression avec flux forcé de phase gazeuse permet d'augmenter la cinétique de densification.
Toutefois, le processus est délicat à mettre en oeuvre. Comme spécifié dans le document EP-0 792 385, le chargement des substrats 20 dans l'enceinte 10 doit être réalisé avec minutie pour éviter des fuites de gaz à la base de la pile, en sortie de la zone de préchauffage, entre substrats adjacents, et au sommet de la pile. La paroi 25 peut être notamment surmontée d'un poids 25a lui permettant d'être maintenue appliquée de façon étanche sur le sommet de la pile en dépit de la surpression régnant dans celle-ci. En outre, lorsque le processus est prolongé au-delà d'un seuil de densification des substrats, ce qui se traduit par une pression trop importante au centre de la pile, une modification de la microstructure du matériau de la matrice a été observée par la demanderesse, voire même la formation de quantités importantes de suies. Ces phénomènes sont indésirables car ils induisent un changement de propriété du matériau qui peut être pénalisant lors de son utilisation. Par ailleurs, ils peuvent imposer un arrêt du processus de densification avant que soit atteint le niveau de densité souhaité. Il est alors nécessaire de compléter ensuite la densification par exemple par une étape finale d'infiltration chimique en phase gazeuse en mode isobare, comme indiqué dans le document EP-0 792 384. De plus, l'augmentation de pression à l'intérieur de la pile au fur et à mesure de la densification produit un gonflage de la pile qui pourrait avoir des effets destructeurs.
Objet et résumé de l'invention
L'invention a pour but de fournir un procédé de densification par infiltration chimique en phase vapeur de substrats poreux présentant un passage central qui permet à la fois d'assurer une bonne alimentation des substrats en phase gazeuse réactive et d'obtenir un degré élevé de densification, plus rapidement que dans les configurations décrites dans le brevet US 5 904 957 précité, sans risque de modification de microstructure du matériau de la matrice densifiant les substrats et sans formation de dépôts indésirables.
Ce but est atteint grâce à un procédé comprenant les étapes qui consistent à : - disposer à l'intérieur d'une enceinte un ou plusieurs substrats pour délimiter dans l'enceinte un volume interne formé essentiellement par le passage central du substrat ou les passages centraux de plusieurs substrats alignés, et un volume externe formé essentiellement par l'extérieur du ou des substrats, - aménager volontairement au moins un passage de fuite faisant communiquer lesdits volumes entre eux en dehors du ou des substrats,
- admettre dans l'enceinte une phase gazeuse contenant au moins un précurseur gazeux d'un matériau de matrice à déposer au sein de la porosité du ou des substrats,
- canaliser la phase gazeuse vers l'un, ou premier, des volumes interne et externe, ledit premier volume étant fermé à une extrémité opposée à celle où est admise la phase gazeuse, et
- extraire la phase gazeuse résiduelle hors de l'enceinte à partir de l'autre, ou deuxième, des volumes interne et externe, de sorte que la phase gazeuse circule dans l'enceinte du premier volume au deuxième volume en diffusant à travers la porosité du ou des substrats et en passant à travers le ou chaque passage de fuite, procédé selon lequel, conformément à l'invention : - on définit un seuil maximum admissible pour la pression de la phase gazeuse, ou la pression partielle de précurseur contenu dans la phase gazeuse, dans le premier volume, et
- on confère à la section totale du ou des passages de fuite une valeur comprise entre une valeur minimale, telle que le seuil maximum de pression ne soit pas dépassé jusqu'à la fin du processus de densification, et une valeur maximale, telle qu'une différence de pression soit établie entre le premier volume et le deuxième volume dès le début du processus de densification.
Le procédé conforme à l'invention est remarquable en ce qu'il permet de combiner les avantages des procédés d'infiltration chimique en phase vapeur à flux dirigé et à flux forcé évoqués plus haut, tout en ne présentant pas leurs inconvénients.
La différence de pression entre les volumes interne et externe est plafonnée, ce qui permet de ne pas dépasser le seuil de pression à partir duquel des modifications de microstructure du matériau constitutif de la matrice ou des dépôts parasites sont susceptibles de se produire ou à partir duquel le gonflage de la pile pourrait devenir préoccupant. Le processus d'infiltration peut alors être poursuivi sans inconvénient jusqu'à atteindre un niveau de densification relativement élevé, qui peut même éventuellement correspondre à la densité finale souhaitée pour les substrats densifiés, de sorte qu'une étape d'infiltration supplémentaire ne serait alors plus requise.
Il est nécessaire de se trouver en mode d'infiltration à gradient de pression dès le début du processus. Par conséquent, on confère de préférence à la section totale du ou des passages de fuite une valeur telle que la différence de pression entre le premier et le deuxième volume au début du processus de densification soit de préférence au moins égale à 15 % de la valeur de différence de pression obtenue en l'absence de passage(s) de fuite. II est en outre nécessaire que le seuil maximum de pression ne soit pas dépassé en fin du processus de densification. On confère alors à la section totale du ou des passages de fuite une valeur telle que la différence de pression entre le premier et le deuxième volume au début du processus de densification soit de préférence au plus égale à 85 % de la valeur de différence de pression obtenue en l'absence de passage(s) de fuite.
Le procédé peut être mis en oeuvre en formant à l'intérieur de l'enceinte au moins une pile de substrats avec leurs passages centraux alignés et en ménageant des espaces entre substrats adjacents au moyen de cales d'espacement, lesdits volumes interne et externe étant constitués par respectivement l'intérieur et l'extérieur de la ou des piles, et en aménageant au moins une des cales d'espacement pour former un ou plusieurs passages de fuite.
On peut utiliser au moins une cale annulaire munie d'au moins un passage radial formant passage de fuite. En variante, on peut utiliser au moins une cale en plusieurs parties, par exemple des secteurs incurvés, ménageant entre elles des passages de fuite.
Dans le cas où des passages de fuite sont ménagés au niveau de plusieurs cales d'espacement, on pourra conférer aux sections des passages de fuite entre substrats adjacents une valeur variable sur la hauteur de la ou chaque pile. De préférence alors, la section de fuite entre substrats varie en sens croissant entre l'extrémité du premier volume où est admise la phase gazeuse et l'extrémité opposée. II est envisageable d'aménager chaque cale d'espacement pour former un ou plusieurs passages de fuite. Toutefois, le maintien de la section totale de fuite dans la limite voulue impose une section de passage réduite pour chaque passage de fuite, dans le cas d'un empilement d'un assez grand nombre de substrats. Au fur et à mesure de la densification, une obturation partielle des passages de fuite risque alors de se produire. En outre, l'aménagement de passages de fuite peut conduire à une fragilisation des cales d'espacement. Cette fragilisation peut être combattue en augmentant l'épaisseur des cales, mais cela pénalise alors la capacité de chargement en substrats à densifier. Par conséquent, pour éviter ces inconvénients, il est alors préférable de former un ou plusieurs passages de fuite dans un nombre limité de cales d'espacement, voire dans une seule d'entre elles.
Il est possible aussi d'aménager un ou plusieurs passages de fuite ailleurs qu'au niveau d'une ou plusieurs cales d'espacement. Ainsi, selon un autre mode de réalisation, on aménage au moins un passage de fuite sur le trajet de canalisation de la phase gazeuse entre l'entrée de la phase gazeuse dans l'enceinte et l'entrée dans ledit premier volume. Dans ce cas, le passage de fuite peut être aménagé au niveau d'une zone de préchauffage de la phase gazeuse. Selon encore un autre mode de réalisation, on aménage au moins un passage de fuite à travers une paroi de fermeture dudit premier volume à son extrémité opposée à celle où est admise la phase gazeuse.
Dans ces autres modes de réalisation, on peut utiliser des cales d'espacement dont aucune ne ménage de passages de fuite entre substrats. Le procédé selon l'invention peut être mis en œuvre en mode isotherme, c'est-à-dire avec chauffage sensiblement uniforme du ou des substrats, ou en mode à gradient de température, c'est-à-dire avec une partie du ou de chaque substrat portée à une température plus élevée qu'une autre partie. Le chauffage du ou des substrats avec gradient de température peut être réalisé par couplage direct entre le substrat et un inducteur.
Brève description des dessins L'invention sera mieux comprise à la lecture de la description faite ci-après à titre indicatif mais non limitatif en référence aux dessins annexés, sur lesquels :
- la figure 1 est une vue très schématique en coupe d'un chargement de substrats pour la mise en oeuvre du procédé connu d'infiltration chimique en phase vapeur à flux libre ;
- la figure 2 est une vue schématique en coupe de la pile de substrats de la figure 1 ;
- la figure 3 est une vue très schématique en coupe d'un chargement de substrats pour la mise en oeuvre du procédé connu d'infiltration chimique en phase vapeur à flux dirigé ;
- la figure 4 est une vue schématique en coupe de la pile de substrats de la figure 3 ;
- la figure 5 est une vue très schématique en coupe d'un chargement de substrats pour la mise en oeuvre du procédé connu d'infiltration chimique en phase vapeur à flux forcé ;
- la figure 6 est une vue schématique en coupe de la pile de substrats de la figure 5 ;
- la figure 7 est une vue très schématique en coupe d'une installation de densification montrant un mode particulier de réalisation d'un chargement de substrats en pile pour la mise en oeuvre d'un procédé selon l'invention, dans le cas de la densification simultanée d'une pluralité de substrats annulaires pour disques de frein en matériau composite ;
- la figure 8 est une vue schématique en coupe de la pile de substrats de la figure 7 ; - les figures 9 et 10 sont des vues de détail à échelle agrandie de deux modes de réalisation d'une cale d'espacement convenant pour le chargement de substrats des figures 7 et 8 ;
- la figure 11 est une vue de détail d'un autre mode de réalisation de cales d'espacement convenant pour le chargement de substrats des figures 7 et 8 ;
- la figure 12 montre des courbes illustrant la variation de la différence de pression entre l'intérieur et l'extérieur d'une pile de substrats en fonction du débit d'un gaz admis dans le volume interne de la pile et de la section de fuite ;
- la figure 13 est une vue très schématique en coupe montrant une variante de réalisation d'un chargement de substrats en pile pour la mise en oeuvre d'un procédé selon l'invention ;
- la figure 14 est une vue schématique en coupe selon le plan XIV-XIV de la figure 13 ;
- la figure 15 est une vue très schématique en coupe d'une installation de densification pour la mise en œuvre d'un autre mode de réalisation d'un procédé selon l'invention ;
- la figure 16 est une vue schématique partielle en coupe selon le plan XVI-XVI de la figure 15 ;
- la figure 17 est une vue schématique en coupe d'une installation de densification pour la mise en œuvre d'encore un autre mode de réalisation d'un procédé selon l'invention ;
- la figure 18 montre des courbes illustrant la variation en fonction du temps de la pression de phase gazeuse réactive à l'intérieur d'une pile de substrats dans le cas des procédés de densification de l'art antérieur à flux forcé de phase gazeuse et à flux dirigé de phase gazeuse, et de procédés de densification selon l'invention ;
- la figure 19 montre des courbes illustrant la cinétique de densification des substrats dans le cas des procédés de densification de l'art antérieur à flux forcé de phase gazeuse et à flux dirigé de phase gazeuse, et d'un procédé de densification selon l'invention ;
- la figure 20 est une vue très schématique en coupe d'une installation de densification d'un substrat pour la mise en oeuvre d'un procédé selon l'invention, dans le cas de la densification d'un substrat pour divergent de tuyère de moteur fusée ; - la figure 21 est une vue très schématique en coupe d'une installation de densification de substrats en pile pour la mise en oeuvre d'un procédé selon l'invention dans le cas de la densification simultanée de plusieurs substrats pour divergents de tuyères de moteurs fusées ; - la figure 22 est une vue très schématique en coupe d'une installation de densification d'un substrat pour la mise en œuvre d'un procédé selon l'invention, dans le cas de la densification d'un substrat pour col de tuyère de moteur fusée ; et
- la figure 23 est une vue très schématique en coupe d'une installation de densification de substrats en pile pour la mise en œuvre d'un procédé selon l'invention dans le cas de la densification simultanée de plusieurs substrats pour cols de tuyères de moteurs fusées.
Description détaillée de modes de réalisation On se réfère directement aux figures 7 et 8, les figures 1 à 6 ayant été décrites précédemment. Les éléments communs aux modes de réalisation des figures 1 à 8 portent les mêmes références.
La figure 7 montre très schématiquement une enceinte 10 contenant un chargement de substrats annulaires 20 tels que des préformes annulaires pour disques de frein en matériau composite thermostructural. Les substrats 20 sont disposés pour former une pile verticale délimitant un volume interne 24 formé par les passages centraux alignés des substrats. La pile de substrats 20 repose sur un plateau support inférieur 11 et peut être formée de plusieurs sections superposées séparées par un ou plusieurs plateaux de support intermédiaires 12.
Bien qu'une seule pile de substrats soit représentée sur la figure 7, plusieurs piles pourront être disposées côte à côte dans l'enceinte. L'enceinte est chauffée au moyen d'un induit 14 qui définit la paroi latérale de l'enceinte et est couplé inductivement avec un inducteur 16 extérieur à une enveloppe 17 entourant l'induit à l'extérieur de l'enceinte. En variante, le chauffage des substrats pourra être réalisé par couplage direct entre un inducteur et les substrats, lorsque la nature de ceux-ci le permet. Un procédé de densification de substrats poreux par infiltration chimique en phase vapeur avec chauffage des substrats par couplage inductif direct est décrit dans le document EP 0 946 461. Toujours en variante, le chauffage de la paroi 14 pourra être de type résistif.
Une phase gazeuse contenant un ou plusieurs précurseurs gazeux du matériau à déposer au sein de la porosité des substrats afin de les densifier est introduite dans l'enceinte 10 à travers le fond 10a de celle-ci. La phase gazeuse traverse une zone de préchauffage 18 située à la partie inférieure de l'enceinte et formée par exemple de plusieurs plateaux perforés superposés. Au niveau de la zone de préchauffage, la phase gazeuse est canalisée par une paroi 19 vers le volume interne 24, celui-ci étant obturé à son extrémité supérieure par une paroi 25 formant un couvercle qui repose sur la pile de substrats.
Chaque substrat 20 est séparé d'un substrat adjacent et, le cas échéant, d'un plateau support 11 ou 12 ou du couvercle 25 par une ou plusieurs cales d'espacement qui définissent des intervalles 22. Les cales d'espacement, ou au moins une partie d'entre elles, sont aménagées pour former des passages de fuite faisant communiquer le volume interne 24 de la pile avec le volume externe 26 situé à l'extérieur de la pile, dans l'enceinte, tout en permettant l'existence d'un gradient de pression entre les volumes 24 et 26.
Comme cela sera précisé plus loin, on confère à la valeur globale S des sections des passages de fuite définis par les cales d'espacement une valeur prédéterminée souhaitée. Il est alors souhaitable d'éviter l'existence de fuites parasites pouvant fausser la valeur de la section globale de fuite. A cet effet, on réalise un bridage de la pile de substrats 20 au moyen de colonnes ou chandelles 28 (une seule est visible sur la figure 7) qui relient le plateau support de base 11 au plateau support intermédiaire 12 avec leurs extrémités traversant les plateaux 11 et 12 fixées par boulonnage, et de colonnes ou chandelles 29 (une seule est visible sur la figure 7) qui relient de la même façon le plateau 12 et le couvercle 25 et assurent le maintien de celui-ci à encontre de la surpression régnant dans la pile.
La phase gazeuse admise dans l'enceinte circule du volume interne 24 vers le volume externe 26 en diffusant à travers les substrats poreux 20 et en passant à travers les passages de fuite, en dehors des substrats 20. La phase gazeuse résiduelle est extraite de l'enceinte 10 à travers un passage formé dans la paroi supérieure 10b de l'enceinte, passage en relation avec des moyens d'aspiration tels qu'une pompe à vide (non représentée). Selon une variante de réalisation, la phase gazeuse issue de la zone de préchauffage peut être canalisée vers le volume externe 26 qui est alors obturé à sa partie supérieure. La phase gazeuse circule alors de l'extérieur vers l'intérieur de la pile en traversant les substrats 20 et les passages de fuite formés dans des intervalles 22, et la phase gazeuse résiduelle est extraite à partir du volume interne 24 alors ouvert à sa partie supérieure.
Selon encore une variante, l'admission de la phase gazeuse peut être effectuée à travers le couvercle de l'enceinte, la zone de préchauffage étant alors située à la partie supérieure de l'enceinte. Celui des volumes interne 24 et externe 26 dans lequel la phase gazeuse est canalisée est alors obturé à sa partie inférieure tandis que l'autre volume est ouvert à sa partie inférieure pour permettre l'extraction de la phase gazeuse résiduelle à travers un passage formé dans le fond de l'enceinte.
On notera aussi que le procédé peut être mis en oeuvre avec un seul substrat annulaire. La circulation de la phase gazeuse s'effectue de l'intérieur vers l'extérieur du substrat, ou inversement, à travers le substrat et à travers un ou plusieurs passages de fuite extérieurs au substrat. Le ou les passages de fuite peuvent être formés dans des cales d'espacement ménageant un intervalle entre les faces opposées du substrat et des parois voisines.
Dans le mode de réalisation de la figure 8, les cales d'espacement dans les intervalles 22 entre substrats voisins ou entre substrat et paroi voisine comportent une cale annulaire 40, s'étendant à proximité ou en bordure du périmètre extérieur des substrats, et des cales radiales 44.
Les cales annulaires 40 obturent les intervalles 22 tout en ménageant des passages de fuite dans une partie au moins de ces intervalles. Les cales radiales 44 contribuent à assurer un maintien satisfaisant des préformes 20 et à conférer une hauteur sensiblement constante à chaque intervalle 22. Elles pourront être omises si la rigidité des préformes le permet. L'aménagement des cales annulaires 40 pour former des passages de fuite peut être réalisé de différentes façons.
Les cales 40 peuvent être réalisées en plusieurs secteurs annulaires 40a, 40b,... non jointifs ménageant des passages de fuite 41 entre leurs extrémités (figure 8).
En variante (figure 9), les cales annulaires 40 peuvent être réalisées en une seule pièce, les passages de fuite 41 étant constitués par des perçages radiaux formés à travers les cales.
Encore en variante (figure 10), les cales annulaires 40 peuvent être réalisées en une seule pièce, les passages de fuite 41 étant constitués par des encoches formées dans leur bord supérieur et/ou dans leur bord inférieur.
La figure 11 illustre encore une autre disposition possible des cales d'espacement. Dans chaque intervalle 22, les cales d'espacement comprennent une pluralité de cales annulaires 40ι, 402, 403 discontinues ou présentant des perçages radiaux ou encoches. De préférence, une cale annulaire en une seule pièce ou formée d'une succession de secteurs annulaires est prévue à proximité de chacun des périmètres intérieur et extérieur des substrats 20. Les passages de fuite 41 ^ sont définis par l'aménagement de la cale annulaire externe 40-ι, c'est-à-dire soit par des espaces entre extrémités de secteurs annulaires voisins, soit par des perçages radiaux, soit par des encoches. Les cales 402 et 4O3 ménagent également des passages 412 et 413 mais ceux-ci sont de préférence de plus grandes dimensions que les passages 411. On peut prévoir pour les passages de fuite des dimensions décroissantes à partir du périmètre interne des substrats, afin d'alimenter suffisamment les intervalles 22 en phase gazeuse.
Pour définir les sections du ou des passages de fuite, il peut être procédé de la façon suivante.
Pour un chargement donné de substrats poreux à densifier, on détermine la relation entre la différence de pression ΔP entre les volumes interne 24 et externe 26 et le débit de phase gazeuse admise dans l'enceinte, et ce pour différentes valeurs de section de fuite globale S, la section de fuite globale étant la somme des sections individuelles des passages de fuite. Cette détermination est effectuée avec des substrats à l'état non densifié, c'est-à-dire présentant leur porosité maximale pour obtenir une relation entre la valeur initiale ΔP0 de la différence de pression et la section de fuite globale S. Par ailleurs, selon le type particulier d'infiltration chimique en phase vapeur à réaliser, à savoir nature de la phase gazeuse réactionnelle, nature du matériau de matrice à déposer au sein de la porosité des substrats, et température à laquelle l'infiltration est réalisée, on détermine un seuil maximal de pression admissible Pmax pour la phase gazeuse ou pour la pression partielle de précurseur(s) gazeux contenu(s) dans la phase gazeuse. Le seuil maximal de pression admissible Pmax est notamment celui au-delà duquel une modification non désirée de structure du matériau de matrice déposé est susceptible de se produire, ou la formation de dépôts parasites indésirables est susceptible de se produire. La valeur globale S de section de fuite est alors choisie telle que Smin ≤ S ≤ Smax, OÙ
- Smax est la valeur maximale de section de fuite au-delà de laquelle le gradient de pression est insuffisant au début de la densification, et - Smin est la valeur minimale de section de fuite en deçà de laquelle le gradient de pression existant en fin du processus de densification est tel que le seuil maximal admissible de pression Pmax est dépassé.
S ax est déterminée à partir des relations préétablies entre ΔPo et S pour différents débits de phase gazeuse et différentes valeurs de S. On choisit de préférence pour Smaχ une valeur correspondant à un gradient de pression ΔP0 au moins égal à 15 % de la valeur maximale ΔPomax existant en l'absence de passages de fuite (S = 0).
On choisit de préférence pour S,™ une valeur correspondant à un gradient de pression ΔP0 au plus égal à 85 % de la valeur maximale ΔPomax existant en l'absence de passages de fuite (S = 0).
La valeur de ΔP0 par rapport à ΔPoma dépend notamment de la géométrie et de la perméabilité initiale des substrats à densifier. Une perméabilité initiale relativement élevée impose une valeur de ΔP0 plus proche de ΔPomax pour garantir un gradient de pression dès le début du processus de densification. Exemple Un exemple de détermination de la section de fuite globale S sera donné ci-après dans le cas d'un chargement de substrats annulaires constituant des préformes de disques de frein en carbone. Le chargement était formé de 23 substrats empilés exempts de toute densification. Chaque substrat était constitué d'une pluralité de nappes fibreuses en fibres de carbone aiguilletées entre elles. La réalisation de préformes de ce type pour des disques de frein destinés à l'aéronautique ou à la compétition automobile est bien connue. Les substrats présentaient un diamètre intérieur de 26 cm, un diamètre extérieur de 48 cm, une hauteur (épaisseur) de 3,6 cm et un taux volumique de fibres de 23 % (pourcentage du volume des disques occupé par les fibres).
Il a d'abord été réalisé une mesure du gradient de pression entre l'intérieur et l'extérieur de la pile, pour différents débits de gaz admis, en utilisant des cales d'espacement annulaires pleines ne ménageant aucun passage de fuite (S = 0), c'est-à-dire dans une situation d'infiltration avec flux forcé tel que décrit dans le document précité EP 0 792 385. La mesure a été effectuée à froid en utilisant un gaz neutre, en l'espèce de l'azote. La courbe A de la figure 12 montre la relation mesurée entre la différence de pression ΔP0 et le débit gazeux admis.
Ensuite, des mêmes mesures ont été réalisées pour différentes sections de fuite. Les courbes B, C, D, E montrent les relations établies pour des valeurs de S égales respectivement à 2,4 cm2, 6 cm2, 12,6 cm2 et 30 cm2.
Les courbes de la figure 12 montrent que, quel que soit le débit de gaz admis, la valeur de S doit être choisie inférieure à environ 25 cm2, pour avoir une valeur ΔP0 au moins égale à 15 % de la valeur maximale obtenue sans section de fuite (S = 0), et supérieure à environ 2 cm2 pour avoir une valeur ΔP0 au plus égale à 85 % de la valeur maximale obtenue sans section de fuite (S = 0).
La valeur de section de fuite globale étant choisie, sa répartition en sections individuelles de passages de fuite peut être réalisée de plusieurs façons. Les sections individuelles des passages de fuite peuvent être égales ou non. Il est possible de prévoir des passages de fuite au niveau de chacun des intervalles 22 ou au niveau de certains seulement de ces intervalles, par exemple un sur deux.
Il est possible de prévoir des sections individuelles de passages de fuite telles que la section de fuite globale soit répartie uniformément sur toute la hauteur de l'empilement.
Il pourra toutefois être préféré, pour tenir compte de la perte de charge entre l'extrémité de la pile où est introduite la phase gazeuse et l'extrémité opposée, de répartir la section de fuite globale de façon non uniforme, et plus particulièrement dans le sens croissant entre le bas et le haut de la pile. Cela pourra être réalisé en augmentant progressivement le nombre et/ou la section des passages de fuite individuels sur la hauteur de l'empilement.
Il est encore possible de ne prévoir qu'un nombre restreint de passages de fuite, voire même un seul passage de fuite ayant la section voulue.
Les figures 13 et 14 illustrent une variante de mise en œuvre du procédé montré par les figures 7 et 8.
Le chargement des figures 13 et 14 diffère de celui des figures 7 et 8 en ce que des passages de fuite 41 sont ménagés au niveau d'une seule cale d'espacement 40, par exemple du type de celle illustrée par la figure 9, les autres cales d'espacement 42 étant pleines, c'est-à-dire ne ménageant pas de passages de fuite.
La cale 40 peut avoir une épaisseur supérieure à celle des cales 42 afin de pouvoir ménager un ou, de préférence, plusieurs passages de fuite 41 offrant la section totale de fuite voulue.
La cale 40 peut être placée à n'importe quel niveau de la pile, entre deux substrats ou entre un substrat et un plateau support 11 ou 12. Elle peut être complétée par des tronçons de cale radiaux 44 (figure 14). II n'est toutefois pas nécessaire que le ou les passages de fuite soient formés au niveau d'une ou de plusieurs cales d'espacement.
Ainsi, dans le mode de réalisation des figures 15 et 16, un ou plusieurs passages de fuite 51 sont formés dans la paroi 19 qui canalise la phase gazeuse dans la zone de préchauffage entre l'entrée dans l'enceinte et l'entrée dans le volume interne de la pile de substrats. Dans l'exemple illustré, comme montré par la figure 16, plusieurs passages 51 sont formés en étant répartis autour de la paroi 19. Un seul passage pourrait être prévu.
La figure 17 illustre un autre mode de réalisation selon lequel un passage de fuite 61 est formé dans la paroi 25 obturant le volume interne de la pile de substrats à son extrémité supérieure. Bien qu'un seul passage 61 soit représenté, on pourra bien entendu prévoir plusieurs passages formés dans la paroi 25.
Dans les modes de réalisation des figures 15 et 17, les cales d'espacement 42 sont des cales pleines n'aménageant pas de passages de fuite, de sorte que les fuites volontairement introduites se situent au seul niveau de la paroi 19 ou de la paroi 25.
Bien entendu, les différents modes de réalisation pourront être combinés en prévoyant des passages de fuite au niveau de la paroi 19 et/ou au niveau d'une ou plusieurs cales d'espacement et/ou au niveau de la paroi 25.
On notera qu'en raison des problèmes mentionnés plus haut que pose la réalisation de passages de fuite au niveau de chaque cale d'espacement, le mode de réalisation de la figure 7 n'est pas préféré dans le cas d'un nombre relativement grand de substrats empilés.
Essai 1 (comparatif) Le chargement de substrats tel que décrit ci-avant a été densifié par infiltration chimique en phase vapeur avec flux forcé, c'est-à- dire sans aménager de passage de fuite entre substrats empilés, le mode opératoire étant conforme à celui décrit dans le document EP-0 792 385. On a utilisé une phase gazeuse réactive contenant un mélange de méthane et propane en tant que précurseur de carbone. Le débit de phase gazeuse était fixé à environ 70 l/minute et la pression Pext dans l'enceinte à l'extérieur de la pile de substrats était d'environ 14 mbar. La valeur de pression Pjnt à l'intérieur de la pile a été mesurée pendant le processus de densification des substrats. La courbe F de la figure 18 montre la variation de cette pression Pjnt en fonction du temps.
Après 200 h, le processus a été interrompu car la pression interne P|nt avait atteint le seuil maximal de pression admissible Pmaχ au- delà de laquelle se produit un changement de microstructure et la formation de suies. Le disques obtenus étaient incomplètement densifiés, leur densité moyenne étant de 1 ,44 et pouvant localement descendre à 1 ,2.
Les mesures de Pjnt et Pext sont effectuées au moyen de capteurs situés respectivement dans le passage d'entrée de la phase gazeuse dans l'enceinte et dans le passage de sortie de phase gazeuse résiduelle hors de l'enceinte, à travers le couvercle 10b.
Essai 2 (comparatif)
Un chargement de substrats tel que décrit précédemment a été densifié par infiltration chimique en phase vapeur avec flux dirigé conformément au procédé décrit dans le document US 5 904 957. On a utilisé la même phase réactive que dans l'essai 1 , avec le même débit de phase gazeuse et la même pression Pext dans l'enceinte à l'extérieur de la pile de substrats. La pression Pjnt dans la pile est restée constante et égale à Pext (courbe G de la figure 18). Après 250 h, la densité moyenne des disques obtenus était de 1 ,19.
Essai 3 (selon l'invention) Un chargement de substrats tel que décrit précédemment a été densifié par infiltration chimique en phase vapeur en utilisant des cales d'espacement telles que celle de la figure 9 aménageant des passages de fuite entre substrats empilés, chaque cale présentant 6 passages de fuite. La section globale de fuite offerte par les passages de fuite était de 11 cm2 pour que le gradient de pression ΔPo corresponde à 50 % de la valeur maximale ΔPmaχ existant en l'absence de fuite (S=0). On a utilisé la même phase réactive que dans l'essai 1 , avec le même débit de phase gazeuse et la même pression Pext dans l'enceinte, à l'extérieur de la pile de substrats.
La valeur de pression Pιnt à l'intérieur de la pile a été mesurée pendant le processus de densification des substrats qui a été conduit pendant 250 h. La courbe H de la figure 18 montre la variation de cette pression Pjnt en fonction du temps. Pendant les 250 h du processus, la pression interne Piπt augmente plus lentement que dans l'essai 1. A 250 h, la densité moyenne des disques obtenus était de 1 ,47. La pression interne Pjnt étant de 19,7 mbar au bout de 250 h, il aurait été possible de poursuivre la densification, sans risquer rapidement un changement de microstructure et la formation de suies, afin d'obtenir une densité plus élevée.
Essai 4 (selon l'invention) On a procédé comme dans l'essai 3, mais en utilisant des cales d'espacement munies chacune de deux trous formant passages de fuite. La section globale de fuite offerte était de 3,6 cm2.
La courbe I de la figure 18 montre la variation de la pression Pint en fonction du temps. A 250 h, la densité moyenne des disques obtenus était de 1 ,47.
Essai 5 (selon l'invention) On a procédé comme dans l'essai 3 mais en utilisant des cales d'espacement entre substrats empilés ne ménageant pas de passage de fuite et en réalisant des passages de fuite par perçage de la paroi 19 de la zone de préchauffage comme dans le mode de réalisation des figures 15 et 16. La section globale de fuite offerte était de 2,35 cm2.
La courbe J de la figure 18 montre la variation de la pression Pint en fonction du temps. A 250 h, la densité moyenne des disques obtenus était de 1 ,48.
Les essais 3, 4 et 5 montrent non seulement la supériorité du procédé selon l'invention par rapport aux procédés de l'art antérieur, mais aussi que la localisation et la réalisation du ou des passages de fuite créés n'a pratiquement pas d'influence. La variation de la densité des substrats en fonction du temps a été évaluée lors de processus tels que ceux des essais 1 , 2 et 3. Les courbes K, L et M de la figure 19 illustrent les cinétiques de densification respectivement avec la densification à flux forcé, la densification à flux dirigé et la densification réalisée conformément à l'invention. La comparaison des courbes K, L et M permet aussi de montrer l'intérêt d'un procédé selon l'invention. En effet, une augmentation importante de la cinétique de densification par rapport au procédé de densification à flux dirigé est obtenue. La densité moyenne du chargement atteint 1 ,50 en 260 h avec le procédé mis en oeuvre selon l'invention alors que, pour la même durée, elle n'est que de 1 ,19 avec le procédé de densification à flux dirigé. Il faudrait environ 430 h pour atteindre une densité de 1 ,50 avec ce dernier procédé. Ce résultat a été obtenu avec le procédé conforme à l'invention sans rencontrer de suies ni de changement de microstructure indésirable.
La comparaison avec le procédé de densification à flux forcé montre que la cinétique de densification est légèrement plus lente avec le procédé conforme à l'invention. Cependant, il est possible d'atteindre une densité plus élevée avec le procédé selon l'invention car le seuil de pression maximal Pmaχ n'est jamais dépassé contrairement à ce qui est rencontré avec le procédé de densification à flux forcé. Pour ce dernier procédé, la densité maximale atteinte est de 1 ,44.
En conclusion, à phase gazeuse, pression à l'extérieur de la pile, débit et température égaux, le procédé selon l'invention permet une densification beaucoup plus rapide que le procédé de densification à flux dirigé et plus complète bien qu'un peu moins rapide que le procédé de densification à flux forcé. Le procédé selon l'invention permet de plus de supprimer les risques de changement de microstructure et de formation de suies inhérents à l'utilisation du procédé de densification à flux forcé.
Bien que l'exemple décrit ci-avant concerne un type particulier de substrat et un type particulier de phase gazeuse réactive pour obtenir un matériau de matrice particulier souhaité, il apparaîtra immédiatement à l'homme de l'art que le processus de détermination des valeurs Smjn et Smax est aisément transposable à tout type de substrat présentant un passage central et tout processus de densification par infiltration chimique en phase vapeur. La figure 20 illustre un mode d'application d'un procédé conforme à l'invention pour la densification d'un substrat poreux constituant une préforme de divergent de tuyère de moteur fusée.
Le substrat 120 est disposé à l'intérieur d'une enceinte 110 délimitée par un induit 114 chauffé par couplage avec un inducteur (non représenté). Comme indiqué plus haut, le chauffage du substrat 120 pourra en variante être réalisé par couplage inductif direct avec un inducteur. Toujours en variante, le chauffage de la paroi 114 pourra être de type résistif.
L'enceinte 110 est alimentée en phase gazeuse réactive à travers son fond 110a. La phase gazeuse admise traverse une zone de préchauffage 118 formée de plateaux perforés situés les uns au-dessus des autres.
En sortie de la zone de préchauffage 118, la phase gazeuse est canalisée vers le volume interne 124 constitué par le passage central du substrat 120. A son extrémité supérieure, le volume 124 est obturé par un couvercle 125 reposant sur le substrat 120 et surmonté d'un poids
125a permettant de le maintenir en place.
Le substrat 120 est supporté par un plateau 111 présentant un passage central et surmontant la zone de préchauffage 118. Des cales d'espacement annulaires 140 ménagent des intervalles 122 entre le plateau support 111 et une extrémité du substrat 120 et entre l'autre extrémité de la préforme et le couvercle 125. Les cales 140 sont aménagées pour former des passages de fuite entre le volume 124 et le volume 126 extérieur au substrat 120 dans l'enceinte 110. La phase gazeuse admise dans l'enceinte circule du volume
124 vers le volume 126, en passant à travers la porosité du substrat 120 et à travers les passages de fuite ménagés dans les intervalles 122.
La phase gazeuse résiduelle est extraite à partir du volume 126 à travers un passage formé dans le couvercle 110b de l'enceinte et communiquant avec des moyens d'aspiration (non représentés).
Les passages de fuite pourront être aménagés de différentes façons, par exemple en réalisant les cales annulaires 140 sous forme de plusieurs secteurs annulaires non jointifs, ou en réalisant les cales annulaires en une seule pièce avec des perçages radiaux 141 (exemple illustré) ou des encoches, de la même façon que décrit plus haut en référence aux figures 8, 9 et 10.
La détermination de la section de fuite globale offerte par les passages de fuite est réalisée sur le même principe que celui décrit plus haut, de manière à établir un gradient de pression entre les volumes 124 et 126 dès le début du processus de densification mais sans excéder une valeur de pression maximale admissible dans le volume 124 en fin du processus de densification.
En variante, la phase gazeuse pourra être canalisée vers le volume externe 126 et circuler de l'extérieur vers l'intérieur de la préforme, la phase gazeuse résiduelle étant extraite à partir du volume interne 124. Le volume externe 126 est alors obturé à son extrémité opposée à celle où la phase gazeuse est admise.
Encore en variante, la circulation de la phase gazeuse pourra être réalisée du haut vers le bas de l'enceinte. La figure 21 illustre encore un autre mode de mise en oeuvre d'un procédé selon l'invention pour la densification de substrats poreux constituant des préformes de divergents de tuyères de moteurs fusées. Les éléments correspondant à ceux du mode de réalisation de la figure 20 portent les mêmes références, par souci de simplicité. Plusieurs substrats 120 sont disposés dans la même enceinte avec leurs passages axiaux alignés verticalement. Le substrat disposé en partie inférieure repose sur le plateau 111 , tandis que les autres substrats reposent sur des plateaux intermédiaires annulaires 112. Les substrats sont partiellement engagés les uns dans les autres et les plateaux 112 entourent la pile de substrats tout en présentant des ouvertures 113 pour assurer la continuité du volume 126 extérieur aux substrats dans l'enceinte 110.
La phase gazeuse issue de la zone de préchauffage 118 est canalisée vers le volume extérieur 126 à travers des ouvertures 113 du plateau 111. Le volume 126 est obturé par un couvercle 127 à son extrémité opposée à celle où la phase gazeuse est admise. Le couvercle 127 repose sur le substrat situé en haut de la pile. Il est muni d'une ouverture centrale 128 qui communique avec l'intérieur de la pile de substrats 120. Le couvercle 127 s'étend jusqu'à la paroi 114 de l'enceinte 110 et est fixé à cette paroi de façon étanche.
La phase gazeuse circule du volume extérieur 126 vers le volume intérieur 124 formé par les passages centraux alignés des substrats en passant à travers la porosité des substrats 120 et, en dehors de ceux-ci, à travers des passages de fuite. Des passage de fuite sont définis par les espaces 115 entre les bords internes des plateaux intermédiaires 112 et les faces extérieures des substrats 120 entourés par ces plateaux.
Des passages de fuite supplémentaires 141 pourront être aménagés au moyen de cales d'espacement 140 intercalées entre le substrat inférieur et le plateau de support 111 et/ou entre le substrat supérieur et le couvercle 127, comme dans le mode de réalisation de la figure 15.
La phase gazeuse résiduelle est extraite hors du volume interne 124 par aspiration à travers l'ouverture 128 du couvercle 127 et à travers le couvercle 110b de l'enceinte.
La section globale de fuite offerte par les passages de fuite est déterminée comme indiqué précédemment pour garantir, d'une part, l'existence d'un gradient de pression au début du processus de densification et, d'autre part, le non-dépassement de la pression maximale pour la phase gazeuse dans le volume externe 126.
La répartition de la section globale de fuite sur la hauteur de l'empilement pourra être réalisée de façon uniforme ou non uniforme.
Dans ce dernier cas, la répartition sera de préférence en sens croissant dans la direction générale d'écoulement de la phase gazeuse dans l'enceinte.
On notera qu'avec la disposition illustrée des substrats 120, et une admission de la phase gazeuse à la partie inférieure de l'enceinte, il est préférable de faire circuler la phase gazeuse de l'extérieur vers l'intérieur de la pile pour qu'elle parcoure l'intégralité des faces des substrats.
Une circulation de la phase gazeuse de l'intérieur vers l'extérieur de la pile de substrats pourrait être envisagée avec une admission de la phase gazeuse à la partie supérieure de l'enceinte.
La figure 22 illustre une application d'un procédé selon l'invention pour la densification d'un substrat poreux destiné à la fabrication d'un col de tuyère de moteur fusée.
Le substrat 220 de forme cylindrique annulaire est disposé à l'intérieur d'une enceinte 210 qui est délimitée par une paroi 214 et dans laquelle est logé un inducteur 216 entourant le substrat 220. Le substrat 220 est supporté par un plateau 221 disposé au-dessus du fond 210a de l'enceinte 210.
L'enceinte 210 est alimentée en phase gazeuse réactive à travers le fond 210a. La phase gazeuse admise est canalisée vers le volume interne 224 constitué par le passage central du substrat 220 en passant dans un conduit entouré par une paroi 219 reliant l'entrée de phase gazeuse dans l'enceinte à un passage central du plateau support 221.
A son extrémité supérieure, le volume interne 224 est obturé par un couvercle 225 reposant sur le substrat 220 et surmonté d'un poids 225a permettant de le maintenir en place.
Des cales d'espacement annulaires 240 sont interposées entre le plateau support 221 et une extrémité du substrat 220 et entre l'autre extrémité du substrat 220 et le couvercle 225. Les cales 240 sont aménagées, par exemple percées radialement, pour former des passages de fuite 241 entre le volume 224 et le volume 226 extérieur au substrat 220 dans l'enceinte 210.
La phase gazeuse admise dans l'enceinte circule du volume 224 vers le volume 226 en passant à travers la porosité du substrat 220 et, en dehors de celui-ci, à travers les passages de fuite 241 des cales 240. La phase gazeuse résiduelle est extraite du volume 226 à travers un passage formé dans le couvercle 210b de l'enceinte 210.
Le chauffage du substrat 220 est réalisé par couplage inductif direct avec l'inducteur 216, ce qui a pour effet d'engendrer un gradient de température au sein du substrat entre une partie interne de celui-ci et ses surfaces externes exposées. La densification est favorisée initialement dans la partie interne plus chaude de la préforme et progresse ensuite vers les parties externes. L'existence d'un gradient de pression favorise aussi l'accès de la phase gazeuse vers l'intérieur du substrat.
La combinaison d'un gradient de pression et d'un gradient de température est donc particulièrement favorable pour réaliser une bonne densification à cœur de substrats poreux annulaires épais tels que des substrats destinés à la réalisation de cols de tuyère. Il en résulte un avantage important pour cette application particulière puisque après densification l'usinage réalisé pour obtenir le col de tuyère laisse subsister la partie centrale du substrat densifié (comme montré en traits interrompus sur la figure 22).
On notera que les processus de densification de substrats poreux annulaires avec chauffage par couplage direct entre inducteur et substrats sont connus. On peut se référer aux documents WO 98/17599 et WO 95/11869 par exemple. La figure 23 illustre une application d'un procédé selon l'invention pour la densification simultanée de plusieurs substrats poreux annulaires destinés à la fabrication de cols de tuyères de moteurs fusées.
Les éléments correspondants à ceux du mode de réalisation de la figure 22 portent les mêmes références, par souci de simplicité.
Plusieurs substrats 220 de forme cylindrique annulaire sont disposés dans la même enceinte 210 avec leurs passages axiaux alignés verticalement. Le substrat disposé en partie inférieure repose sur le plateau 211 tandis que les autres substrats reposent sur des plateaux intermédiaires annulaires 212.
La phase gazeuse admise à la partie inférieure de l'enceinte 210 est canalisée par la paroi 219 vers le volume intérieur 224 constitué par les passages centraux alignés des substrats 220 et des plateaux supports 211 , 212. A son extrémité supérieure, le volume 224 est obturé par un couvercle 225 qui peut être surmonté d'un poids 225a. Des cales d'espacement annulaires 240 sont interposées entre les extrémités des substrats 220 et les plateaux 211 , 212 ou couvercle 225. Les cales 240 sont aménagées, par exemple percées radialement, pour former des passages de fuite 241 entre le volume 224 et le volume 226 extérieur à la pile de substrats 220 dans l'enceinte 210.
La phase gazeuse circule du volume 224 vers le volume 226 à travers la porosité des substrats 220 et, en dehors de ceux-ci, à travers les passages de fuite 241 , avant d'être évacuée hors de l'enceinte 210 à travers un passage formé dans le couvercle 210b de celle-ci. Le chauffage des substrats est assuré par couplage inductif direct avec l'inducteur 216 qui entoure la pile de substrats 220 dans l'enceinte, à l'intérieur de la paroi latérale 214. L'inducteur 216 peut être partagé en plusieurs sections 216a, 216b, 216ç situées aux niveaux des différents substrats 220 empilés. Les sections d'inducteurs peuvent être alimentées séparément.
Comme dans le mode de réalisation de la figure 22, la densification des substrats est effectuée en combinant des modes à gradient de température et à gradient de pression.
Dans les modes de réalisation des figures 22 et 23, la section globale de fuite est déterminée en appliquant le même principe que celui décrit plus haut, de manière à établir un gradient de pression entre les volumes 224 et 226 au début du processus de densification mais sans excéder une valeur de pression maximale admissible dans le volume 224 en fin du processus de densification.
Bien entendu, on pourra conférer aux cales annulaires 240 différentes formes de réalisation, par exemple comme montré par les figures 8 et 10. En outre, les passages de fuite pourront être ménagés non pas au niveau de cales d'espacement, mais dans la paroi 219 et/ou dans le couvercle 225.
On notera encore que la canalisation de la phase gazeuse admise pourra être réalisée vers le volume externe 226, la phase gazeuse circulant alors de l'extérieur vers l'intérieur du substrat 220 ou de la pile de substrats 220. Le volume externe est alors fermé à son extrémité opposée à celle où la phase gazeuse est admise.
En outre, la circulation de la phase gazeuse pourra être réalisée du haut vers le bas de l'enceinte.

Claims

REVENDICATIONS
1. Procédé pour la densification par infiltration chimique en phase gazeuse d'au moins un substrat présentant un passage central, le procédé comportant les étapes qui consistent à :
- disposer à l'intérieur d'une enceinte un ou plusieurs substrats pour délimiter dans l'enceinte un volume interne formé essentiellement par le passage central du substrat ou les passages centraux de plusieurs substrats alignés, et un volume externe formé essentiellement par l'extérieur du ou des substrats,
- aménager volontairement au moins un passage de fuite faisant communiquer lesdits volumes entre eux en dehors du ou des substrats,
- admettre dans l'enceinte une phase gazeuse contenant au moins un précurseur gazeux d'un matériau de matrice à déposer au sein de la porosité du ou des substrats,
- canaliser la phase gazeuse vers l'un, ou premier, des volumes interne et externe, ledit premier volume étant fermé à une extrémité opposée à celle où est admise la phase gazeuse, et - extraire la phase gazeuse résiduelle hors de l'enceinte à partir de l'autre, ou deuxième, des volumes interne et externe, de sorte que la phase gazeuse circule dans l'enceinte du premier volume au deuxième volume en diffusant à travers la porosité du ou des substrats et en passant à travers le ou chaque passage de fuite, caractérisé en ce que :
- on définit un seuil maximum admissible pour la pression de la phase gazeuse, ou la pression partielle de précurseur contenu dans la
- phase gazeuse, dans le premier volume, et
- on confère à la section totale du ou des passages de fuite une valeur comprise entre une valeur minimale, telle que le seuil maximum de pression ne soit pas dépassé jusqu'à la fin du processus de densification, et une valeur maximale, telle qu'une différence de pression soit établie entre le premier volume et le deuxième volume dès le début du processus de densification.
2. Procédé selon la revendication 1 , caractérisé en ce que l'on confère à la section totale du ou des passages de fuite une valeur telle que la différence de pression entre le premier et le deuxième volume au début du processus de densification soit au moins égale à 15 % de la valeur de différence de pression obtenue en l'absence de passages de fuite.
3. Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce que l'on confère à la section totale du ou des passages de fuite une valeur telle que la différence de pression entre le premier et le deuxième volume au début du processus de densification soit au plus égale à 85 % de la valeur de différence de pression obtenue en l'absence de passages de fuite.
4. Procédé selon l'une quelconque des revendications 1 et 3, caractérisé en ce que l'on forme à l'intérieur de l'enceinte au moins une pile de substrats avec leurs passages centraux alignés en ménageant des espaces entre substrats adjacents au moyen de cales d'espacement, lesdits volumes interne et externe étant constitués par respectivement l'intérieur et l'extérieur de la ou des piles, et l'on aménage au moins une des cales d'espacement pour former le ou les passages de fuite.
5. Procédé selon la revendication 4, caractérisé en ce que l'on utilise au moins une cale annulaire munie d'au moins un passage radial formant passage de fuite.
6. Procédé selon la revendication 4, caractérisé en ce que l'on utilise au moins une cale en plusieurs parties ménageant entre elles des passages de fuite.
7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que l'on aménage plusieurs cales d'espacement pour former des passages de fuite, et l'on répartit la section totale des passages de fuite de façon non uniforme sur la hauteur de la ou chaque pile.
8. Procédé selon la revendication 7, caractérisé en ce que la section de fuite entre substrats varie en sens croissant entre l'extrémité du premier volume où est admise la phase gazeuse et l'extrémité opposée.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on aménage au moins un passage de fuite sur le trajet de canalisation de la phase gazeuse entre l'entrée de la phase gazeuse dans l'enceinte et l'entrée dans ledit premier volume.
10. Procédé selon la revendication 9, caractérisé en ce que l'on aménage au moins un passage de fuite au niveau d'une zone de préchauffage de la phase gazeuse.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'on aménage au moins un passage de fuite à travers une paroi de fermeture dudit premier volume à son extrémité opposée à celle où est admise la phase gazeuse.
12. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que le ou chaque substrat est chauffé dans l'enceinte de façon sensiblement uniforme.
13 Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que le ou chaque substrat est chauffé dans l'enceinte avec établissement d'un gradient de température au sein du substrat.
14. Procédé selon la revendication 13, caractérisé en ce que le ou chaque substrat est chauffé par couplage inductif direct avec un inducteur.
15. Procédé selon l'une quelconque des revendications 4 à 14, caractérisé en ce que l'on dispose à l'intérieur de l'enceinte des substrats annulaires fibreux constituant des préformes de disques de frein.
16. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que l'on dispose à l'intérieur de l'enceinte un ou plusieurs substrats fibreux constituant une ou plusieurs préformes de divergent de tuyère.
17. Procédé selon l'une quelconque des revendications 1 à 14, caractérisé en ce que l'on dispose à l'intérieur de l'enceinte un ou plusieurs substrats fibreux destinés à la réalisation de cols de tuyère.
PCT/FR2002/000803 2001-03-06 2002-03-06 Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central WO2002070775A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2440063A CA2440063C (fr) 2001-03-06 2002-03-06 Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central
JP2002570796A JP4213471B2 (ja) 2001-03-06 2002-03-06 中央通路を有する多孔性基材を高密度化するための化学蒸気浸透法
US10/468,031 US7182980B2 (en) 2001-03-06 2002-03-06 Chemical vapor infiltration method for densifying porous substrates having a central passage
EP02713017.8A EP1370707B1 (fr) 2001-03-06 2002-03-06 Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/03004 2001-03-06
FR0103004A FR2821859B1 (fr) 2001-03-06 2001-03-06 Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central

Publications (1)

Publication Number Publication Date
WO2002070775A1 true WO2002070775A1 (fr) 2002-09-12

Family

ID=8860767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000803 WO2002070775A1 (fr) 2001-03-06 2002-03-06 Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central

Country Status (6)

Country Link
US (1) US7182980B2 (fr)
EP (1) EP1370707B1 (fr)
JP (1) JP4213471B2 (fr)
CA (1) CA2440063C (fr)
FR (1) FR2821859B1 (fr)
WO (1) WO2002070775A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216641B2 (en) * 2007-11-30 2012-07-10 Messier Bugatti Method of fabricating carbon fiber reinforced composite material parts
CN104428443A (zh) * 2012-07-04 2015-03-18 赫拉克勒斯公司 装料装置以及用于使可堆叠的截头圆锥形多孔预制体致密化的设备

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA84862C2 (en) 2003-03-03 2008-12-10 Месье-Бугатти Substrate
US7335397B2 (en) * 2004-02-16 2008-02-26 Goodrich Corporation Pressure gradient CVI/CVD apparatus and method
FR2882064B1 (fr) * 2005-02-17 2007-05-11 Snecma Propulsion Solide Sa Procede de densification de substrats poreux minces par infiltration chimique en phase vapeur et dispositif de chargement de tels substrats
US20060194059A1 (en) * 2005-02-25 2006-08-31 Honeywell International Inc. Annular furnace spacers and method of using same
US20060194060A1 (en) * 2005-02-25 2006-08-31 Honeywell International Furnace spacers for spacing preforms in a furnace
US7811085B2 (en) * 2006-05-04 2010-10-12 Honeywell International Inc. Gas preheater for chemical vapor processing furnace
WO2010042436A1 (fr) * 2008-10-07 2010-04-15 Dow Global Technologies Inc. Chambre chauffante et procédés de criblage
US10655219B1 (en) * 2009-04-14 2020-05-19 Goodrich Corporation Containment structure for creating composite structures
US20110064891A1 (en) * 2009-09-16 2011-03-17 Honeywell International Inc. Methods of rapidly densifying complex-shaped, asymmetrical porous structures
KR101346069B1 (ko) * 2011-12-05 2013-12-31 주식회사 데크 화학증기 침투장치
DE102012100176B4 (de) * 2012-01-10 2016-11-17 Cvt Gmbh & Co. Kg Verfahren zur chemischen Gasphaseninfiltration von wenigstens einem refraktären Stoff
US10648075B2 (en) 2015-03-23 2020-05-12 Goodrich Corporation Systems and methods for chemical vapor infiltration and densification of porous substrates
US9938618B2 (en) * 2015-03-23 2018-04-10 Goodrich Corporation Method for rapid and efficient chemical vapor infiltration and densification of carbon fiber preforms, porous substrates and close packed particulates
US9834842B2 (en) 2015-05-15 2017-12-05 Goodrich Corporation Slotted seal plates and slotted preforms for chemical vapor deposition densification
TWI624554B (zh) * 2015-08-21 2018-05-21 弗里松股份有限公司 蒸發源
WO2017033053A1 (fr) 2015-08-21 2017-03-02 Flisom Ag Source d'évaporation linéaire homogène
US9963779B2 (en) 2016-02-29 2018-05-08 Goodrich Corporation Methods for modifying pressure differential in a chemical vapor process
US10407769B2 (en) * 2016-03-18 2019-09-10 Goodrich Corporation Method and apparatus for decreasing the radial temperature gradient in CVI/CVD furnaces
FR3053403B1 (fr) 2016-06-29 2018-07-27 Arianegroup Sas Moteur-fusee a divergent composite
FR3083229B1 (fr) 2018-06-27 2020-09-11 Safran Ceram Procede de densification par infiltration chimique en phase gazeuse de substrats annulaires poreux
FR3084672B1 (fr) 2018-08-03 2020-10-16 Safran Ceram Procede de densification par infiltration chimique en phase gazeuse de substrats annulaires poreux
FR3084892B1 (fr) 2018-08-10 2020-11-06 Safran Ceram Procede de densification par infiltration chimique en phase gazeuse de substrats annulaire poreux
US10837109B2 (en) * 2018-11-15 2020-11-17 United Technologies Corporation CVI/CVD matrix densification process and apparatus
CN114606476A (zh) * 2020-12-03 2022-06-10 长鑫存储技术有限公司 薄膜的炉管沉积方法
FR3132718A1 (fr) 2022-02-16 2023-08-18 Safran Landing Systems Procédé de densification par infiltration chimique en phase gazeuse avec des plateaux monopiles pour un flux semi-forcé
FR3132717B1 (fr) 2022-02-16 2024-02-16 Safran Landing Systems Outillage des plateaux multipiles pour un flux semi-forcé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
FR2754813A1 (fr) * 1996-10-18 1998-04-24 Europ Propulsion Densification de substrats poreux disposes en piles annulaires par infiltration chimique en phase vapeur a gradient de temperature
US5904957A (en) * 1995-04-18 1999-05-18 Societe Europeenne De Propulsion Vapour phase chemical infiltration process for densifying porous substrates disposed in annular stacks
US6109209A (en) * 1994-11-16 2000-08-29 Rudolph; James W. Apparatus for use with CVI/CVD processes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB419949A (en) 1933-05-19 1934-11-19 G N Haden & Sons Ltd Improvements in or relating to burners for liquid fuel
BE757208A (fr) 1969-10-08 1971-04-07 Monsanto Co Structure composite entierement en carbone
JPS5361591U (fr) * 1976-10-25 1978-05-25
FR2711645B1 (fr) 1993-10-27 1996-01-26 Europ Propulsion Procédé d'infiltration chimique en phase vapeur d'un matériau au sein d'un substrat fibreux avec établissement d'un gradient de température dans celui-ci.
KR100389502B1 (ko) 1994-11-16 2003-10-22 굿리치 코포레이션 압력구배화학기상침투및화학기상증착장치,방법및이에의한생성물
US6083560A (en) * 1995-11-16 2000-07-04 Alliant Techsystems Inc Process for controlled deposition profile forced flow chemical vapor infiltration
US6284969B1 (en) * 1997-05-15 2001-09-04 Jx Crystals Inc. Hydrocarbon fired thermophotovoltaic furnace
US6364958B1 (en) 2000-05-24 2002-04-02 Applied Materials, Inc. Plasma assisted semiconductor substrate processing chamber having a plurality of ground path bridges

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348774A (en) * 1993-08-11 1994-09-20 Alliedsignal Inc. Method of rapidly densifying a porous structure
US6109209A (en) * 1994-11-16 2000-08-29 Rudolph; James W. Apparatus for use with CVI/CVD processes
US5904957A (en) * 1995-04-18 1999-05-18 Societe Europeenne De Propulsion Vapour phase chemical infiltration process for densifying porous substrates disposed in annular stacks
FR2754813A1 (fr) * 1996-10-18 1998-04-24 Europ Propulsion Densification de substrats poreux disposes en piles annulaires par infiltration chimique en phase vapeur a gradient de temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8216641B2 (en) * 2007-11-30 2012-07-10 Messier Bugatti Method of fabricating carbon fiber reinforced composite material parts
CN104428443A (zh) * 2012-07-04 2015-03-18 赫拉克勒斯公司 装料装置以及用于使可堆叠的截头圆锥形多孔预制体致密化的设备
CN104428443B (zh) * 2012-07-04 2016-08-31 赫拉克勒斯公司 装料装置以及用于使可堆叠的截头圆锥形多孔预制体致密化的设备

Also Published As

Publication number Publication date
FR2821859B1 (fr) 2004-05-14
EP1370707B1 (fr) 2019-12-04
FR2821859A1 (fr) 2002-09-13
CA2440063A1 (fr) 2002-09-12
US20040071877A1 (en) 2004-04-15
US7182980B2 (en) 2007-02-27
EP1370707A1 (fr) 2003-12-17
JP4213471B2 (ja) 2009-01-21
CA2440063C (fr) 2010-06-01
JP2004527655A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
EP1370707B1 (fr) Procede pour la densification par infiltration chimique en phase vapeur de substrats poreux ayant un passage central
EP0821744B1 (fr) Procede d'infiltration chimique en phase vapeur pour la densification de substrats poreux disposes en piles annulaires
EP1217093B1 (fr) Densification de substrats poreux creux par infiltration chimique en phase vapeur
EP1458902B1 (fr) Procede et installation de densification de substrats poreux par infiltration chimique en phase gazeuse
EP0946461B1 (fr) Densification de substrats poreux disposes en piles annulaires par infiltration chimique en phase vapeur a gradient de temperature
EP1851358B1 (fr) Procede de densification de substrats poreux minces par infiltration chimique en phase vapeur et dispositif de chargement de tels substrats
WO2003060183A1 (fr) Procede et installation pour la densification de substrats par infiltration chimique en phase vapeur
EP2875167B1 (fr) Installation d'infiltration chimique en phase vapeur à haute capacité de chargement
EP0418122B1 (fr) Réacteur d'oxydation à différentiel de perte de charge et son utilisation.
EP0604279A1 (fr) Injecteur avec paroi poreuse pour chambre de combustion d'une fusée
EP2110458B1 (fr) Four de traitement thermique avec chauffage inductif
EP0820424B1 (fr) Procede pour l'infiltration chimique en phase vapeur d'un materiau compose de carbone et de silicium et/ou bore
EP0401107B1 (fr) Chambre de statoréacteur à combustion supersonique
EP0401106B1 (fr) Chambre de réacteur et procédé pour sa fabrication
FR3114107A1 (fr) Cales pour substrats densifiés par infiltration chimique en phase vapeur
WO2020212168A1 (fr) Installation de densification cvi
WO2024189276A1 (fr) Fabrication de pièces en matériau composite par infiltration chimique modulée puis densification dune préforme fibreuse consolidée
WO2024161078A1 (fr) Preforme pour densification cvi a flux dirige
WO2023156740A1 (fr) Procede de densification par infiltration chimique en phase gazeuse avec des plateaux monopiles pour un flux semi-force
WO2022029377A1 (fr) Procédé de fabrication d'une structure par fabrication additive
FR3132717A1 (fr) Outillage des plateaux multipiles pour un flux semi-forcé
FR3132719A1 (fr) Outillage amovible pour l’infiltration en phase gazeuse
FR2663562A2 (fr) Reacteurs d'oxydation a differentiel de perte de charge et son utilisation.
FR2663561A2 (fr) Procede d'oxydation d'une charge oxydable et sa mise en óoeuvre.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10468031

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2440063

Country of ref document: CA

Ref document number: 2002570796

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002713017

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002713017

Country of ref document: EP