WO2002065817A1 - Organic field light emitting element - Google Patents

Organic field light emitting element Download PDF

Info

Publication number
WO2002065817A1
WO2002065817A1 PCT/JP2002/000967 JP0200967W WO02065817A1 WO 2002065817 A1 WO2002065817 A1 WO 2002065817A1 JP 0200967 W JP0200967 W JP 0200967W WO 02065817 A1 WO02065817 A1 WO 02065817A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
intermediate layer
organic electroluminescent
layer
electroluminescent device
Prior art date
Application number
PCT/JP2002/000967
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Imanishi
Sukekazu Aratani
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002565396A priority Critical patent/JPWO2002065817A1/en
Publication of WO2002065817A1 publication Critical patent/WO2002065817A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a novel organic electroluminescent device, and more particularly to an organic electroluminescent device that injects both positive and negative charges and generates light by recombination of holes and electrons generated by the two charges.
  • Examples of such a flat display include a liquid crystal display (LCD), a plasma display (PD), and a field emission display. (Field Emission Display: FED) is being studied. In addition to these various flat displays, in recent years, a new type of flat display called an organic electroluminescent device (0 ELD) or an organic light emitting diode (0LED) has attracted attention. It is getting.
  • LCD liquid crystal display
  • PD plasma display
  • FED Field Emission Display: FED
  • ELD organic electroluminescent device
  • LED organic light emitting diode
  • An organic electroluminescent device is a device that displays by emitting a fluorescent or phosphorescent organic molecule contained therein by passing a current through an organic compound sandwiched between a cathode and an anode.
  • Such an organic electroluminescent device is driven by the following principle.
  • a thin film of a fluorescent or photoluminescent organic light emitting material is formed between a pair of electrodes, and electrons and holes are injected from positive and negative electrodes.
  • the injected electrons become one-electronized organic molecules (simply referred to as electrons) in the lowest unoccupied molecular orbital (LUM 0) of the luminescent molecule.
  • the injected holes become one-hole organic molecules (simply called holes) in the highest occupied molecular orbital (HOMO) of the luminescent molecule, and they face each other in the organic material. Move toward the electrode. When electrons and holes meet on the way, a singlet or triplet excited state of a luminescent molecule is formed, which is deactivated while radiating light, thereby emitting light.
  • HOMO occupied molecular orbital
  • the thin film that transports charges (holes) and the thin film that emits light are functionally separated to emit light.
  • the two-layer type organic electroluminescent device of Tang described above is an improvement.
  • the source of the light emission is still the light radiation in the process of deactivating the excited state from the organic light emitting molecules contained in the organic light emitting layer.
  • organic light emitting materials are used for organic electroluminescent elements.
  • the types When classified by molecular weight, the types are classified into low-molecular type and high-molecular type.
  • the low-molecular type is formed by a dry process such as vacuum evaporation, and the high-molecular type is formed by a cast method.
  • Thin film (100 nm level) can be manufactured by vacuum evaporation method.
  • the light-emitting material may be divided into a light-emitting material that emits light by direct recombination of electrons and holes, and a fluorescent material (or dopant material) that emits light by light excitation generated from the light-emitting material. . ⁇
  • metal complex-type luminescent materials eg, 8-quinolinol, benzoxazole, azomethine, flavones, etc. as ligands.
  • fluorescent dye-based light emitting materials oxaziazol, villazolin, dis.
  • 77 0 (int) is the internal quantum efficiency which represents the number of emitted photons per electron or Hall flowing element inside the element,? ? ext indicates the light extraction efficiency to the outside of the device after the light generated inside the device is reduced by reflection and absorption at the device interface.
  • a is a charge balance corresponding to the ratio of the number of electrons and holes injected into the device
  • 77r is a singlet exciton that indicates a ratio of generation of a singlet exciton that contributes to light emission from the injected charge.
  • the production efficiency, Vt represents the luminescence quantum efficiency, which indicates the rate at which light is generated and deactivated in singlet excitons.
  • External quantum efficiency 77 which corresponds to a light emission amount in these devices external (ext) is, 7? R and on the nature of the luminescent material itself? ? f , depends on the injection ratio of electrons and holes into the device, and depends on the device structure? ? It can be broadly divided into ext and ext .
  • P and 77 f are effectively related to the physical properties of the luminescent material itself is uniquely determined by the luminescent materials used. Further, the amount is determined by the electric potential difference between the electrode and the organic layer in contact with the electrode, the interfacial potential, the mobility of electrons and holes in the organic layer, and the like. This efficiency is uniquely determined by the physical properties of the electrode material and the organic material inside the device.
  • organic electroluminescent device For practical use of the organic electroluminescent device, it is essential to improve the external quantum efficiency. However, since the external quantum efficiency of the above-mentioned conventional organic electroluminescent device has an upper limit, a different function is required. The development of organic electroluminescent devices having the following features is underway.
  • One of the methods is the luminescence quantum efficiency of the luminescent material itself.
  • singlet excitons are generated at a rate of 0.25 and triplet excitons at a rate of 0.75.
  • the spin-orbit of organic light-emitting materials containing heavy metals Spinning of triplet excitons into singlet excitons by intersystem crossing due to angular momentum interaction, conversion to singlet excitons by collision of triplet excitons confined in the nanoscale region, etc.
  • it is intended to increase the ratio of excitons that contribute to light emission by converting the generated triplet excitons into singlet excitons.
  • An organic electroluminescent device capable of emitting light with high efficiency using fac ris (2-phenylpyridine) iridium [Ir ⁇ ppy) 3] has been developed by MA Bald, S. Laman sky, P. E. Burr. ow s, M.E.T.li, mp son, S.R.Forrest, Ap 1. Phys.Lett. 75, 4-16, 1999.
  • Another method is to improve the external quantum efficiency outside the device by improving the extraction efficiency 7 ext .
  • a uniform thin film structure in which no crystal is precipitated has been regarded as a necessary condition for manufacturing an organic electroluminescent device.
  • the organic light-emitting material constituting the light-emitting layer is in a spatially random orientation state, so that light is emitted isotropically in all directions inside the device.
  • the light-emitting layer is formed in a vacuum by a dry process, and the organic molecules constituting the light-emitting layer are oriented parallel to the light-emitting surface by a photoisomerization reaction.
  • Japanese Patent Application Laid-Open No. 11-107283 describes that an anisotropic light-emitting characteristic inside a light-emitting layer can be similarly obtained in an organic electroluminescent element formed by the above method.
  • Another proposed method is to convert the component of light randomly generated inside the light-emitting layer, which propagates in the plane of the film, to the direction perpendicular to the film plane by devising the structure of the device.
  • the lateral end face of the light emitting layer is processed and formed by dry etching, and the end face of the film functions as a translucent reflecting mirror.
  • a method is proposed that reduces the loss by returning a certain percentage of light to the inside of the film, increases the total amount of effective light emitted to the front surface of the film, and improves the output light emission per input energy of the light emitting element. Have been.
  • an organic light-emitting device having a resonator structure in the direction perpendicular to the film surface and having a fine periodic structure utilizing near-field light in the direction parallel to the film.
  • a method has been proposed in which a fine periodic structure is formed and performs a reflection function in a direction parallel to the film surface, and the emitted light is modulated by the fine periodic structure.
  • this method also has a problem with the processability of the film, and in particular, the processing accuracy for forming the resonator structure in the film surface has become even more severe.
  • the thickness of the organic light emitting layer itself is about 100 nm at most, and it is extremely difficult to process this end face at an optical level.
  • a thin film electroluminescent element is formed on the inner surface of a concave portion of a curved transparent substrate to improve the efficiency of light emission from the transparent substrate to the outside.
  • a method has been proposed.
  • it is extremely difficult to form a functional thin film such as a pixel electrode, a light emitting layer, a hole transport layer, etc., capable of displaying a complex image on a flexible substrate.
  • a functional thin film such as a pixel electrode, a light emitting layer, a hole transport layer, etc.
  • the present invention is based on this external quantum Improving efficiency is essential.
  • the external quantum efficiency of the above-mentioned conventional organic electroluminescent device there is an upper limit to the external quantum efficiency of the above-mentioned conventional organic electroluminescent device, and one of the methods is to improve the luminescence quantum efficiency of the luminescent material itself and the efficiency of generating singlet excitons 7 to r , and It is intended to improve the external quantum efficiency outside the device by improving the extraction efficiency 7? Ext . Among them, it improves the extraction efficiency of the latter, 77 ext , and provides a wider range of efficiency improvement means.
  • the purpose of such efficiency is to reduce the required power, optimize the pixel size, increase the definition, and extend the life of the device.
  • the gist of the present invention that achieves the above object to improve the light extraction efficiency of the organic electroluminescent device is as follows.
  • Both positive and negative charges can be injected and transported, and light can be generated by recombination of holes and electrons generated by the positive and negative charges.
  • An organic electroluminescent element having a light-emitting layer containing a light-emitting substance contained in the organic electroluminescent element by recombination or a fluorescent substance capable of receiving light from the light-emitting substance and generating light secondarily.
  • organic electroluminescent devices In organic electroluminescent devices,
  • the shape of the first type intermediate layer or the shape of the partition wall divided for each pixel facing the takeout interface is a polygon, and at least two of the shape surfaces forming the polygon are parallel.
  • the organic light-emitting device wherein the light extraction interface and the interface not in contact with the light-emitting layer of the first-type intermediate layer or the partition wall separated for each pixel facing the extraction interface can reflect or refract light.
  • electroluminescent devices In electroluminescent devices.
  • the cross-sectional shape of the first type intermediate layer is a shape in which the opening is enlarged from the light emitting surface side to the light extraction surface side, and light can be reflected on the side surface of the first type intermediate layer.
  • the cross-sectional shape of the first type intermediate layer is a shape in which the opening is enlarged from the light emitting surface side to the light extraction surface side, and light can be reflected on the side surface of the first type intermediate layer.
  • the taper angle on the side of the intermediate layer with respect to the total reflection angle ⁇ c on the light extraction surface side of the type 1 intermediate layer? 7 is 4 5 ° — ⁇ . / 2 to ⁇ .
  • the thickness d of the first type intermediate layer is not more than a a2 tan 77 on the same cross section with respect to the width a of the light emitting surface side opening.
  • the organic electroluminescent device described above further comprising an optical waveguide layer having a cross-sectional area equal to or less than the area of the light-emitting layer between the first-type intermediate layer and the light-transmitting electrode layer related to the light-emitting layer. It is in. [14] An optical waveguide layer having a sectional area equal to or less than the area of the light emitting layer without contacting the light transmitting electrode layer is provided between the first type intermediate layer and the light transmitting electrode layer related to the light emitting layer. In the organic electroluminescent device.
  • the organic field emission device wherein the light emitting layer is formed on a substrate on which an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor is formed, or formed on a substrate on which an organic thin film transistor is formed. It is in. '--[19] The light emitting layer is formed separately from the substrate on which the amorphous silicon thin film transistor or the polycrystalline silicon thin film transistor is formed or the substrate on which the organic thin film transistor is formed and then integrated. In organic electroluminescent devices.
  • the organic electroluminescent device mentioned here is capable of injecting holes from an anode electrode and electrons from a cathode electrode into a light emitting layer containing organic light emitting molecules, and by recombination of holes and electrons inside the light emitting layer.
  • An organic electroluminescent device capable of emitting light, and the light-emitting layer may be a single layer or a multilayer.
  • the light emitting layer can absorb light generated from the organic light emitting molecule and generate another light in addition to the organic light emitting molecule that emits light by recombination of holes and electrons. Contains fluorescent (or phosphorescent) materials You may go out.
  • the light emitting layer may include a hole transporting substance or an electron transporting substance capable of increasing the mobility of holes or electrons inside the light emitting layer.
  • the light emitting layer may contain a hole-trapping substance or an electron-trapping substance for trapping holes or electrons at a specific spatial position or reducing transportability.
  • these organic light-emitting molecules, fluorescent substances (or phosphorescent substances), hole transport substances, electron transport substances, hole trap substances, and electron trap substances may be contained in the same layer, or may be separated. It may be separated into layers. Even when a layer containing these constituent materials is formed by being separated into a plurality of layers, it is collectively referred to as a light emitting layer in the present invention.
  • a hole injection layer or an electron injection for improving hole or electron injection efficiency is provided between the light emitting layer of the present invention and an anode or a cathode for injecting holes or electrons into the light emitting layer.
  • a layer may be provided.
  • a substrate for holding the light emitting layer, the anode, the cathode, the hole injection layer, and the electron injection layer may be provided, and an intermediate layer other than these may be provided as appropriate.
  • Such intermediate layers include reflectors and partial transmission mirrors for modulating the reflection characteristics of light, filters for transmitting specific light, light switches for adjusting light emission timing, and light phase. Examples include a wavelength plate for adjusting the characteristics, a diffusion plate for diffusing the light emission direction, and a protective film for preventing a substance constituting the element from being deteriorated by external light, heat, oxygen, moisture, or the like.
  • These intermediate layers can be suitably provided between the light emitting layer, the anode, the cathode, the hole injection layer, the electron injection layer, and the substrate, or outside thereof, with specifications that do not significantly degrade the device characteristics.
  • the organic electroluminescence The layer that is the outermost surface from which light is extracted from the device to the outside is referred to as the extraction outermost layer.
  • electroluminescent material examples include various metal complex type luminescent materials (8-quinolinol, benzoxazole, azomethine, flavone, etc. as ligands).
  • metal complex type luminescent materials (8-quinolinol, benzoxazole, azomethine, flavone, etc. as ligands).
  • a 1, Be, Zn, Ga, Eu, Ru, Pt, etc. can be used.
  • fluorescent dye-based light-emitting materials oxazidazole, pyrazoline, distyrylarylene, cyclopentene, tetraphenylbutadiene, bisstyrylanthracene, perylene, phenanthrene, oligothiophene, pyrazoguchi quinoline, thiadiazolopirene
  • Resin layered perovskite, p-sexiphenyl, spiro compounds, etc.
  • various polymer materials are used as the light-emitting material, or non-light-emitting polymer materials (polyethylene, polystyrene, polyoxyethylene, polyvinylalcohol, polymer) are used.
  • non-light-emitting polymer materials polyethylene, polystyrene, polyoxyethylene, polyvinylalcohol, polymer.
  • various organic hole or electron transport materials such as triphenylamine
  • various hole or electron injection layers for example, Li, Ca, Mg, Cs, CuPc, etc.
  • materials can be appropriately selected according to the element configuration. You can choose.
  • Means for producing the organic electroluminescent device of the present invention include various thin film forming techniques, for example, a spin coating method, a coating method, a casting method, and a spa method.
  • Method vacuum evaporation method, molecular beam evaporation method, liquid phase epitaxy method, atomic layer epitaxy method, roll method, screen printing method, ink jet method, electropolymerization method, rubbing method, spraying method , Water surface spreading method, Langmuir project film method, etc. can be used.
  • a crystalline substrate having an alignment regulating force on the substrate itself, an alignment film-coated substrate, or a physical or chemical surface treatment is performed.
  • a substrate or the like can be used.
  • a molecular skeleton in a compound suitable for such an alignment treatment one having liquid crystallinity during the alignment treatment is desirable.
  • the sample is cooled to a temperature below the glass transition temperature, and a new chemical bond is formed between the molecules by the reaction of light, heat, etc., thereby fixing the alignment state. This is also effective. ⁇
  • Substrates made of inorganic substances such as glass, silicon, gallium arsenide, etc., and substrates made of organic substances such as polycarbonate, polyethylene, polystyrene, polypropylene, and polymethyl methacrylate.
  • substrates made of organic substances such as polycarbonate, polyethylene, polystyrene, polypropylene, and polymethyl methacrylate.
  • a substrate in which both are combined can be used.
  • These substrates can be formed by methods such as cutting and polishing from the base material, injection molding, sand, stamping, and dicing.
  • a substrate on which a thin film transistor is formed in order to control the light emitting state.
  • An organic electroluminescent layer is formed on the substrate on which such a thin film transistor is formed.
  • the substrate on which the thin-film transistor is formed and the substrate on which the organic electroluminescent layer is formed are separately formed, and then the two are joined to form a single unit. It is also possible to let them.
  • various precision processing techniques can be used in order to produce a required optical device structure in the process of forming the device. Examples include precision diamond cutting, laser processing, etching, photolithography, reactive ion etching, and focused ion beam etching.
  • a plurality of organic electroluminescent elements that have been processed in advance can be arranged, multi-layered, coupled between them by an optical waveguide, or sealed in that state.
  • the element can be stored in a container filled with an inert gas or an inert liquid. Further, a cooling or heating mechanism for adjusting the operating environment can coexist.
  • Materials that can be used for these containers include various metals such as copper, silver, stainless steel, aluminum, brass, iron, and chromium, and alloys thereof, and polymer materials such as polyethylene and polypropylene.
  • composite materials and ceramic materials in which the above metals are dispersed can be used.
  • styrene foam porous ceramics, glass fiber sheets, paper, etc.
  • inert liquid to be filled therein liquids such as low-melting wax and mercury, and mixtures thereof can be used.
  • Helium, argon, nitrogen and the like can be cited as the inert gas to be filled inside. It is also possible to add a desiccant to reduce the humidity inside the container.
  • the organic electroluminescent device of the present invention may be subjected to a process for improving the appearance and characteristics and prolonging the life after forming the product.
  • This post-processing and Examples include thermal annealing, radiation irradiation, electron beam irradiation, light irradiation, radio wave irradiation, magnetic field line irradiation, and ultrasonic irradiation.
  • the organic electroluminescent device may be formed into various types of composites, for example, by means such as adhesion, fusion, electrodeposition, vapor deposition, pressure bonding, dyeing, melt molding, kneading, press molding, coating, etc., depending on the purpose or purpose. Can be combined.
  • the organic electroluminescent device of the present invention can be mounted in high density in the vicinity of an electronic circuit for driving, and can be integrated with an external interface for transmitting and receiving signals to the outside, an antenna, and the like. It can also be converted.
  • FIG. 1 shows a basic element configuration of an organic electroluminescent element for extracting light from the substrate side of the present invention.
  • FIG. 2 shows the basic structure of an organic electroluminescent device that extracts light from the cathode side of the present invention.
  • FIG. 3 is an example of the geometric shape of the first type intermediate layer of the present invention.
  • FIG. 4 is a structural diagram of a reflecting mirror inside the first kind intermediate layer of the present invention.
  • FIG. 5 is an example of a manufacturing procedure of an organic electroluminescent device having a first type intermediate layer of the present invention.
  • FIG. 6 is an example of a procedure for producing an organic electroluminescent device having a first type intermediate layer of the present invention.
  • FIG. 7 is a configuration diagram of a device manufacturing apparatus in an embodiment of the organic electroluminescent device of the present invention.
  • FIG. 8 shows a test for confirming the effect of the first class intermediate layer of the present invention.
  • FIG. 9 is a system for measuring the characteristics of a test element for confirming the effect of the first type intermediate layer of the present invention.
  • FIG. 10 is a drawing for explaining the type 1 intermediate layer pixel arrangement of the present invention.
  • FIG. 11 is a drawing for explaining the optimum pixel size of the type 1 intermediate layer of the present invention. ⁇
  • FIG. 12 is an example of a first type intermediate layer for display pixels of the present invention.
  • FIG. 13 is an example of a first type intermediate layer for display pixels of the present invention.
  • FIG. 2 is an explanatory diagram of a case where a first-type intermediate layer is used for an image display element in a thin film transistor of the present invention.
  • FIG. 1 is a basic structural diagram of the organic electroluminescent device of the present invention.
  • Organic electroluminescent devices are organic electroluminescent devices that can inject and transport both positive and negative charges and can generate light by recombination of holes and electrons generated by the two charges. . ''
  • an organic electroluminescent element including a luminescent substance due to recombination contained in the organic electroluminescent element or a fluorescent substance capable of receiving light from the luminescent substance and generating light secondarily
  • a first type intermediate layer is provided between the light emitting layer that emits light and the light extraction surface to the outside of the organic electroluminescent element, and the intensity orientation distribution of light extracted from the light emitting layer is: Expanding after passing through the Type 1 intermediate layer It is characterized by.
  • an organic electroluminescent element has an organic electroluminescent material sandwiched between a pair of electrodes, and injects electrons from a cathode and holes from an anode to recombine in the luminescent material, thereby emitting light. It has occurred.
  • the light emitting layer 2 is sandwiched between the cathode 1 and the transparent anode 3, and in FIG. 1 (b), it is sandwiched between the cathode 1 ′ and the transparent anode 3 ′. Light is generated from the light emitting layer 2 ′.
  • organic electroluminescent materials can be used for the light emitting layers 2 and 2 '.
  • functionalized layers such as a hole transport layer and an electron transport layer, and a hole injection layer and an electron injection layer can be multilayered as necessary. '
  • electroluminescent portions are thin films having a thickness of at most 100 nm, they are formed on substrates 4 and 4 ′ such as glass and transparent plastics.
  • the device interface from which light is finally extracted to the outside of the device is referred to as the light extraction interface 6, 6 'here.
  • the basic structure which is a feature of the present invention is that the first type intermediate layers 5 and 5 ′ are provided outside the light emitting layers 2 and 2 ′ and between the light extraction interfaces 6 and 6 ′. That is, an area is formed.
  • FIG. 1 (a) shows the case where such a type 1 intermediate layer is formed inside 5 of the substrate 4
  • FIG. 1 (b) shows the case where the intermediate layer is formed inside the holding medium 7 outside the substrate 4 '. 1st intermediate layer 5 'formed
  • FIG. 2 shows a structure in which the bonded parts are joined.
  • FIG. 2 shows a structure of an element from which light is extracted from the upper surface side opposite to the substrate 11.
  • the order of stacking the anode 8, the light emitting layer 9, and the transparent anode 10 on the substrate 11 is reversed, and the light generated inside the light emitting layer 9 is guided to the upper part of the element.
  • the first type intermediate layer 12 formed inside the holding medium 14 is joined to the upper part of the transparent anode 10, and the light inside passes through this intermediate layer 12 to collect light. It reaches the outgoing interface 13 and reaches the outside of the device.
  • FIG. 1 (a) shows the first type intermediate layer in the in-plane direction inside the substrate
  • FIG. 1 (b) and FIG. 2 show the first type in the in-plane direction inside the holding medium.
  • the inside of the first intermediate layer is a uniform optical medium.
  • Light generated inside the light emitting layer generally generates light isotropically, and is reflected at the interface of each thin film up to the light extraction interface, and a large amount of light is lost without being extracted outside the device.
  • the loss due to the reflection increases as the difference in the refractive index between the thin films increases, and the loss at the interface between the substrate and air is particularly large.
  • Such reflection generally increases as the angle of the interface with respect to the normal direction increases, and light emitted at an azimuth angle equal to or greater than the so-called total reflection angle cannot be taken out of the device forever.
  • the total reflection angle ec sin- 1 (1 / 1.50) 41.8 °, which is emitted at a wider angle.
  • the light propagates only in the in-plane direction of the substrate, resulting in complete loss.
  • the type 1 intermediate layer specific layers are included in the film surface of one layer.
  • the optical path of the light propagating in the in-plane direction can be changed, and the light can be guided in the out-of-plane direction.
  • the first type intermediate layer in order to effectively perform such light scattering or light path diffusion by the first type intermediate layer, it is necessary to minimize reflection at the interface between the transparent anode of the light emitting layer and the first type intermediate layer. is necessary. That is, it is desirable to reduce the refractive index difference, or to increase the refractive index on the side of the type 1 intermediate layer.
  • separate anti-reflection means may be required because the difference in refractive index from air at the final light extraction interface becomes larger.
  • the first type intermediate layer is formed for each pixel which is a light emitting unit of the electroluminescent device. That is, the first type intermediate layer is separated for each pixel having a specific shape, or is separated for each pixel by a partition made of a material having a property different from that of the intermediate layer. And features.
  • FIG. 3 shows an example of such a geometric shape of the type 1 intermediate layer.
  • 3 (a) to 3 (d) show the cross-sectional structure on the left and the three-dimensional structure on the right.
  • the upper side was the light emitting layer side
  • the lower side was the light extraction interface side.
  • -Fig. 3 (a) shows a trapezoidal shape with four sides, and the light entering from the upper light emitting layer is reflected by the four sides and changes its traveling direction, and the lower light extraction Reach the interface. Therefore, light can be reflected and diffused in four directions.
  • Fig. 3 (b) shows that the cross section is trapezoidal, but the whole is conical and the shape of the reflecting surface is circular as viewed from the light extraction interface, so that the reflection and diffusion of light in the in-plane direction is uniform.
  • Fig. 3 (c) shows a rectangular parallelepiped structure in which the light is simply reflected on the side surface, and the light incident and exit angles on the light emitting layer side and the light extraction interface side are the same. The structure needs to be improved in the light extraction area. However, if the side surface is light scattering, it is possible to increase the light extraction amount.
  • Fig. 3 (d) shows a hemispherical shape.
  • the shape of the first type intermediate layer or the shape of the partition walls divided for each pixel approaching the extraction interface by a special optical design is a plane or curved surface that is not parallel to the light extraction interface. By doing so, it is possible to design to change the light in the in-plane direction out of the plane.
  • the shape of the first type intermediate layer or the shape of the partition wall divided for each pixel facing the extraction interface is a polygon, and the polygon forms a polygon. It is sufficient that at least two of the shaped surfaces are parallel.
  • At least one set of pairs of parallel-shaped surfaces forming a polygon should have a length of 0.25 to 2 wavelengths of the wavelength of the generated light. Set to. This makes it possible to impart light amplifying property due to the micro-cavity effect to light reflected between the surfaces.
  • Fig. 4 shows how light of the first type intermediate layer or partition, which is separated for each pixel facing the light extraction interface, is reflected or refracted at the light extraction interface and the interface not in contact with the light emitting layer. The specific structure of the first class intermediate layer having functions is shown.
  • FIG. 4 (a) shows an example in which a reflecting mirror is formed on the side surface of the type 1 intermediate medium, and the side surface of the trapezoidal type 1 type intermediate layer 18 formed in the holding medium 15 is reflected.
  • Mirror 16 is formed.
  • the central portion is filled with a light guiding medium 17 whose refractive index has been adjusted.
  • Fig. 4 (b) shows a type 1 intermediate medium 18 'formed in the holding medium 15', in which a scattering mirror 19 is formed instead of the reflecting mirror 16 in Fig. (A).
  • the central part is filled with a light guiding medium 17 whose refractive index has been adjusted.
  • Such a reflection or scattering function is possible even when the difference in the refractive index between the first type intermediate layer and its holding medium is large.
  • a type 1 intermediate medium 18 ′ ′′ having the same shape as that of FIG. 4 (a) formed in the holding medium 15 of FIG. 4 ′ (c), and the refractive index is also adjusted at the center.
  • a similar function can be obtained even with a structure filled with the light guiding medium 173 3 .
  • a part of the light reaching the side surface may escape to the holding medium 1 '5'. ''
  • the light guiding medium in the center is a part that guides light from the light emitting layer to the outside. By dispersing various functional dyes in the medium, it is possible to enhance the function of the organic electroluminescent device. is there. .
  • each pixel is assigned a responsible color so that light of the three primary colors of red, green, and blue can be generated, and some of the light is converted to light in the light-emitting layer. With this, simple and efficient color display can be achieved.
  • Such a first type intermediate layer is desirably a layer sufficiently thicker than the wavelength of light from the viewpoint of preventing a change in emission color outside the element due to interference due to multiple reflections inside.
  • the light emitting layer side of the surface of the contact portion is covered with the first type intermediate layer side. This is because, if the light emitting layer side is large, a light emitting portion is generated outside the first type intermediate layer, and it is difficult to sufficiently guide the generated light. .
  • the pixel size is desirably about the area of the light extraction interface side of the first type intermediate layer. For this reason, it is desirable that the area on the light emitting layer side be smaller.
  • the area of the light emitting layer portion per pixel may be 1/5.
  • the transparent substrate 4 ′ is interposed between the transparent anode 3 ′ and the first kind intermediate layer 5 ′, the light generated from the light emitting layer 2 ′ is Since they diffuse before reaching the seed intermediate layer, the shorter the distance between them, the better. Practically, it needs to be larger than the wavelength of light and about 1 mm or less.
  • the number of layers can be increased. More light can be guided to the outside of the device.
  • Borosilicate glass (size 40 X 40 X 0.8 mm, double-side polished) was used for the glass substrate 20 on which the organic electroluminescent element was formed.
  • the sandblast method (a method of high-speed injection of fine sand-like particles) is applied to the glass substrate.
  • the injection area is 100 x 60 mm, and the upper hole is 295.5 jum.
  • the refractive index adjusting resin 23 As the refractive index adjusting resin, a resin close to the refractive index of the organic electroluminescent layer to be used is selected. In this example, a material selected from polymethyl methacrylate, polystyrene, polyvinyl alcohol, and polyamide was used.
  • IZ0 'Indium Zinc Oxide: InZnO
  • the film thickness of IZ 0 was 100 nm, and the sheet resistance was 60 ⁇ / port. This was washed in running pure water for 1 hour, and then ultrasonically washed twice in pure water for 15 minutes, and then ultrasonically washed in acetone (special grade reagent manufactured by Wako Pure Chemical Industries) for 15 minutes. Then, it was dried by blowing dry nitrogen.
  • acetone special grade reagent manufactured by Wako Pure Chemical Industries
  • An organic electroluminescent layer 26 was formed in the molecular beam deposition apparatus, and a cathode 27 was formed via a patterning mask.
  • a two-layer structure including a hole transport layer and an organic light emitting material layer was adopted as the light emitting layer.
  • One NPD (4,4-bis-CN- (l-naphthyl) -N-phenylamino) biphenyl) was used for the hole transport layer, and Alq3 (aluminiium tris) was used for the organic luminescent material. (8-hydroquinoline)) was used.
  • Each film thickness was 60 nm, and a hole transport layer and an organic luminescent material were vacuum-deposited on IZO in this order. On top of that, 0.5 nm of LiF was deposited as an electron injection layer. The region from the hole transport layer to the electron injection layer corresponds to the organic electroluminescent layer 26. Further, A1 was deposited as a cathode.
  • FIG. 7 shows an apparatus configuration of a molecular beam evaporation apparatus used for preparing a sample of this example.
  • the hole transport layer, light emitting layer and cathode were formed by vapor deposition in a molecular beam deposition apparatus (models OMB E, IMBE-620, manufactured by Nidec ANELVA).
  • the molecular beam deposition apparatus includes an exchange chamber for exchanging and mounting a substrate holder, a pretreatment chamber capable of transporting a substrate in the exchange chamber and heating the substrate up to a maximum of 130 ° C., a hole transport layer, and an organic luminescent material layer. It consists of a first growth chamber for forming an inorganic barrier layer, a second growth chamber for forming metal electrodes, and an analysis chamber for analyzing the surface condition of the formed thin film by ESCA and AES.
  • each chamber The base pressure of each chamber is 10 to 1 Q Torr units except for the exchange room, and 10 to 9 Torr units for the exchange room.
  • a gate valve is used between each room.
  • the structure is such that the substrate can be moved together with the substrate holder under ultra-high vacuum if necessary.
  • the mounting of the substrate in the exchange chamber and the removal of the film-formed sample are performed at atmospheric pressure through a glove box (manufactured by Miwa Seisakusho), which is separated by a gate valve, but with dry nitrogen from which oxygen and moisture have been removed. It is possible to perform under the environment.
  • the substrate was moved to the first and second growth chambers as necessary.
  • the raw material previously mounted in each growth chamber was heated and sublimated or evaporated to form a thin film on the substrate.
  • Raw materials are stored in a crucible made of quartz (made by Nidec ANELVA) for organic substances and in a crucible made of boron nitride (made by Shin-Etsu Chemical) for inorganic substances. The raw material is vaporized.
  • a mechanical shut down is provided, and when the shut down is opened for a predetermined time, the vaporized raw material is deposited on the substrate, and the film thickness of the deposited raw material is placed near the substrate.
  • a thin film having a predetermined thickness was formed by measurement using a quartz crystal film thickness gauge. The temperature of the substrate can be maintained at a predetermined temperature within a range of ⁇ 90 ° C. to 150 ° C. ⁇
  • the deposition rate was set so that the crucible temperature was about 0.1 nm Zs for the organic and inorganic barrier layers and about 30 nm / s for the cathode material.
  • a hole transport layer was formed to have a predetermined thickness in the first growth chamber, and then a light emitting layer including an organic light emitting material layer and an inorganic barrier layer was formed to have a predetermined thickness in the same chamber. This is once transported to the exchange room.
  • the sample was placed on a substrate holder with a stainless steel metal mask. After the replacement, the sample was transported to the second growth chamber to form a cathode.
  • the mixing ratio of the alloy cathode was determined from the abundance ratio of each element by XPS in the analysis room.
  • the substrate temperature during the formation of the cathode was set to a predetermined temperature in the range of 190 to 30 ° C.
  • the sample formed up to the cathode was moved to an exchange room, taken out of the glove box, covered with a glass plate inside the glove box, and the end was sealed with an ultraviolet curable resin.
  • the light emitting layer area is sealed, and the anode and cathode are drawn out of the area.
  • a voltage can be applied to these electrodes from outside using a prober.
  • FIG. 6 shows a part of a procedure for fabricating an organic electroluminescent device having a transparent anode which is difficult to form a film at a low temperature.
  • the transparent resin encapsulated in FIG. 5 (4) was used as a substrate, and then a transparent anode such as IZO was formed.
  • a transparent anode such as IT0 (Indium Tin Oide: InSn)
  • IT0 Indium Tin Oide: InSn
  • the substrate temperature must be 100 ° C or higher. Therefore, it is not possible to use a substrate in which a refractive index adjusting resin is sealed in advance as a substrate.
  • sputter deposition was performed using IT ⁇ as a transparent anode 30 separately on a glass substrate 31 having a thickness of 50 m, and the hole transport layer and the organic luminescence were similarly formed using a molecular beam deposition apparatus.
  • the light-emitting layer 29 was obtained by sequentially depositing the material and the electron injection layer.
  • A1 cathode 2 8 After the attachment, a glass-sealed one was used as a basic organic electroluminescent element part 32.
  • the basic organic electroluminescent element 32 was bonded to the bonding surface 33 of the substrate. At this time, it was effective to preliminarily join the adhesive surface 33 by thinly penetrating a dilute solution of the refractive index adjusting resin.
  • a refractive index adjusting resin 33 was sealed in the processed hole, and the protruding resin was polished and removed to complete the element. These operations were performed while aligning the two outside the glove box.
  • electrode patterning as a display pixel is necessary for the transparent anode and the cathode, but they are not shown here.
  • FIG. 8 shows a device configuration of the test organic electroluminescent device.
  • FIG. 8 (a) shows a device having the first kind intermediate layer
  • FIG. 8 (b) shows a device without the first kind intermediate layer.
  • the portions causing organic electroluminescence were the same in all cases, and were manufactured by the method shown in FIG. 6 of Example 2. That is, in FIG. 8 (a), a cathode 35, an electron injection layer 36, an organic luminescent material 37, a hole transport layer 38, and a transparent anode 39 are formed on a glass substrate 40 from the top.
  • the organic electroluminescent device section was designated as 41.
  • a hole for forming a first-class intermediate layer was formed, and a holding medium 43 on which a reflecting mirror was deposited was joined.
  • a light shielding mask 42 for preventing light from leaking was formed in a portion other than the processing hole on the upper surface.
  • the glass of the holding medium part 43 and the glass substrate 40 on which the basic element part 41 is formed are made of the same kind of glass material, and the refractive index adjustment resin has the same refractive index as the glass. Selected. '
  • the organic electroluminescent device for comparison also has the same portion that causes organic electroluminescence, and was manufactured by the method shown in FIG. 6 of Example 2. That is, in FIG. 8 (b), the cathode 35 5 ′, the electron injection layer 36 ′, the organic luminescent material 37 ′, the hole transport layer 38 ′, and the transparent anode 39 ′ are placed on the glass substrate 40 ′ from the top. The element formed above was used as a basic organic electroluminescent element section 41 '. On the other hand, as the holding medium 4 3 ′ having no type 1 intermediate layer to be bonded, The previous glass plate itself was used.
  • a light-shielding mask 42 ′ was formed on a part of the light-shielding mask so that light was transmitted only in an area having the same size as the upper surface hole of the first type intermediate layer in FIG. 8A.
  • the thus-obtained holding medium 43 ' was similarly joined to obtain a comparative element.
  • Fig. 9 shows an evaluation system diagram of the device that evaluated differences in light diffusion characteristics.
  • a voltage is supplied to the fabricated organic electroluminescent device 45, and at the same time a current is measured.
  • a current measuring device 48 Hewlett-Packard, p AMeter / DCVoltageSource 4
  • a voltage was applied from 140 B), and a current was caused to flow from the anode to the cathode inside the device, thereby causing the device to emit light.
  • the amount of generated light is measured by a brightness meter camera 46 installed in front of the center of the element and a brightness meter controller 47 controlling the brightness meter (Spectra Pritchard P hotometer, Model 1998, manufactured by P hotoresearch). 0 A— by PL)
  • the luminance was measured.
  • the azimuth of the element with respect to the normal direction of the light extraction interface of the element with respect to the luminance meter camera was set at 0 using a rotary stage 5 (manufactured by Chuo Seiki) driven by a pulse motor.
  • the control and measurement of the luminance meter controller 47, the voltage supply and current measuring device 48 and the rotary stage 50 were controlled by a control personal computer 49. All measurements were performed at room temperature, and no temperature control was performed.
  • each organic electroluminescent element When used as an image display element, the light emitting portion of each organic electroluminescent element is divided into regions called pixels, and the light emission amount and the light emission time of each pixel are controlled by a control circuit of the image display element.
  • the pixels in the image display device are two-dimensionally arranged, and the number of pixels is standardized according to the resolution of the image display device.
  • the size of each pixel in the image display element is determined according to the screen size and the resolution.
  • the screen size is 123 ⁇ 31 mm
  • the resolution XGA the number of pixels is 10 24 ⁇ 7 In the case of 6 8
  • the size must be in the area of less than 120 x 40 m.
  • FIG. 10 shows the arrangement between pixels of an image display element using a general organic electroluminescent element (a), and the arrangement between pixels of an image display element incorporating the structure of the organic electroluminescent element of the present invention.
  • the relationship with (b) was shown.
  • the portion above the substrate of the organic electroluminescent device is collectively displayed as pixels.
  • pixels 1, 2, and 3 formed on a substrate with a substrate thickness d if the pixel size is L i and the pixel pitch indicating the distance between pixels is L 2 , the size occupied by one pixel is light.
  • pixel unit for generating the pixel pitch portion and. it, its length is L i + L 2.
  • the length thereof is also the sum of the pixel size and the pixel pitch.
  • the light emitted from each pixel is emitted from the substrate side to the outside, the light emitted from the interface between the pixel and the substrate diffuses while reaching the light extraction interface at the bottom of the substrate, and partially diffuses at the interface between the substrate and air.
  • the light arriving at an angle wider than the critical angle is totally reflected and propagates in the lateral direction of the substrate. For this reason, if the pixel is too close to the adjacent pixel, the adjacent light will be mixed, and in the case of full color image display, color mixture will occur.
  • incorporating an optical resonator structure in the pixel itself or providing a tapered surface in the lateral direction of each pixel enhances the directivity of light traveling in the substrate, and suppresses propagation in the lateral direction of the substrate.
  • the light directivity remains, and the viewing angle as an image display device is narrowed, and the light interference color due to the resonator effect is mixed, resulting in display color unevenness.
  • FIG. 11 is an explanatory diagram for determining the optimum size of the first type intermediate layer of the organic electroluminescent device of the present invention used as such an image display device.
  • Light entering the substrate from the pixel is emitted at various azimuthal angles because the pixel itself is a two-dimensional light emitter, and is reflected at the interface of the type 1 intermediate layer that restricts the lateral direction of the substrate. Finally, it reaches the light extraction interface at various angles. For this reason, part of the light is reflected at the light extraction interface. In particular, when light having a wider angle than the total reflection angle exists, the light returns to the pixel again and cannot be extracted. Therefore, it is necessary to estimate the optimal taper angle of the first type intermediate layer, and its thickness and refractive index. '
  • the taper angle is 7 ⁇ ⁇ 2—? ?
  • W is the position where the light emitted from P in the direction ⁇ reaches the tapered surface
  • V is the position where the light is reflected by W and reaches the top surface of the substrate
  • G is the point corresponding to the height of point W on the z-axis.
  • F be the intersection of the z-axis with the normal to the taper plane at point W
  • E be the intersection of the tapered surface and the X-axis.
  • the incident angle of the emitted light to the taper surface is ZPWF
  • the direction of the reflected light is the point W
  • the direction of the reflected light is the one rotated in the positive direction by twice this angle, and the azimuth vector of the reflected light is
  • the angle is 48 °, making it difficult to determine the optimal taper angle.
  • both direct radiation and reflected light can be kept at a slightly smaller angle than the sea angle.
  • FIG. 12 shows an example of a device structure incorporating a type 1 intermediate layer having such an optimum thickness.
  • FIG. 12 (a) shows a case where the first type intermediate layer, which is sufficiently thinner than the thickness of the entire substrate, directly contacts the lower part of the pixel. Such an arrangement is less effective because there is room for light to diffuse before reaching the final light extraction interface.
  • FIG. 12 (b) shows a case where the thickness of the entire substrate is the same as the thickness of the first type intermediate layer.
  • the light extraction gain is obtained as described above, but the substrate thickness is small.
  • the pixels as shown in Fig. Substrates with a certain distance dw between them and the intermediate layer are also possible. In this case, the value of dw should not be too large in order to avoid mixing of light with adjacent pixels during the time when the light reaches the first type intermediate layer from the pixel.
  • FIG. 13 shows an element structure in which a type 1 intermediate layer and a pixel are separated from each other and a waveguide layer is formed in a substrate under the condition that they are connected to each other.
  • the pixel unit and the first type intermediate layer are directly connected by the waveguide layer as shown in Fig. 13 (a), and the first type is connected through the distance dw as shown in Fig. 13 (b).
  • the intermediate layers are coupled by a waveguide layer.
  • the value of d w should not be too large.
  • the cross-sectional shape of the first type intermediate layer is a shape in which the opening portion expands from the light-emitting surface side to the light extraction surface side, and Light can be reflected on the side surface of the intermediate layer, and the total reflection angle on the light extraction surface side of the type 1 intermediate layer
  • the taper angle 7? Of the side surface of the intermediate layer is 0 C or less with respect to ⁇ C. In particular, 7? — / 2 or more,.
  • the element structure is designed so that the thickness d of the first type intermediate layer is equal to or less than / 2 tan ?? with respect to the width a of the light emitting surface side opening a on the same cross section, the light generated in the pixel portion is Most can be taken out of the device while maintaining the limitation on the pixel size as a display device.
  • an image is formed on a substrate on which an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor is formed, or is formed on a substrate on which an organic thin film transistor is formed.
  • the element structure and drive circuit of the image display element will be described with reference to FIG.
  • an organic electroluminescent device When an organic electroluminescent device is used as an image display device, it is necessary to control the light emitting state of each pixel. As the screen size increases, it is effective to form a thin film transistor for each pixel inside the device that can drive each pixel independently.
  • FIG. 14 (a) shows the structure of one pixel section incorporating such a thin film transistor.
  • a thin film transistor layer is formed on the upper surface of the substrate opposite to the light extraction surface.
  • T sw switching transistor
  • T dr drain transistor
  • the transparent anode, light-emitting layer, and cathode of the organic electroluminescent device were formed on the thin-film transistor layer.
  • Part of the transparent anode and part of the cathode are connected to the transistor via A1 wiring.
  • An intermediate layer of the first type is formed under the light emitting layer, and the structure can take various structures as shown in Example 4.
  • Fig. 14 (b.) Shows a circuit diagram of a transistor for driving each pixel ', gate wiring (G1 to G4) for driving switching transistors, and a drain. Drain wires (D1 to D4) for driving the transistors are formed between the pixels.
  • these two types of wiring are selected, a transistor at a specific pixel position is driven, and light is generated by the light emitting unit.
  • the generated light is guided to the first type intermediate layer formed below the layer containing the thin film transistor, where light is extracted while the optical path is diffused. Reach the interface.
  • a transistor portion and a wiring portion coexist in addition to a light-emitting pixel portion, so that a non-light-emitting region is necessarily included.
  • those drive circuit portions on the tapered portion of the type 1 intermediate layer, it becomes possible to make the device more dense and to maximize the light extraction efficiency.
  • the organic electroluminescent device of the present invention can improve the extraction efficiency 7 ext by a simpler method without changing the basic structure of the light-emitting portion of the organic electroluminescent device, which has been reported in many cases, and achieves more Light can be extracted outside the device.
  • a thin-film, light-weight, high-definition and high-efficiency organic electroluminescent device and a thin-film flat display using the same
  • a small portable projection display a mobile phone display device, a three-dimensional display, electronic paper, Portable personal computer evening display, real evening
  • various new opto-electronic devices such as electronic bulletin boards, light-emitting diodes, lasers, two-dimensional light pattern generators, optical computers, optical cross connectors, optical routers, etc., and systems and services using them. Becomes possible.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic field light emitting element in which the light take out efficiency, electrical characteristics, lifetime, and the like, of the element are enhanced. An organic field light emitting element which can inject and transport both positive and negative charges and can emit light through recombination of holes and electrons generated by both positive and negative charges and having a light emitting layer containing a recombined light emitting substance contained in the organic field light emitting element or a fluorescent substance which can emit secondary light upon receiving light from the light emitting substance, characterized in that, a first class intermediate layer is provided between an interface for taking out light to the outside of the organic field light emitting element and the outside of the light emitting layer and the intensity orientation distribution of light taken out from the light emitting layer is enlarged after passing through the first class intermediate layer.

Description

明 細 書 有機電界発光素子 技術分野  Description Organic electroluminescent device Technical field
本発明は新規な有機電界発光素子に係り、 特に、 正負の両電荷 を注入し、 該両電荷によ り生成された正孔と電子の再結合によ り 光を発生する有機電界発光素子に関する。 背景技術  The present invention relates to a novel organic electroluminescent device, and more particularly to an organic electroluminescent device that injects both positive and negative charges and generates light by recombination of holes and electrons generated by the two charges. . Background art
昨今、 各種携帯電話や移動体端末、 モバイルコ ンピュー夕、 力 —ナビゲ一シヨ ン等の普及によ り、 軽量, 高精彩, 高輝度でかつ 安価な小型平面ディ スプレイへの要求は高まつてい'る。 また、 家 庭内やオフィスにおいても、 省スペース型のデスク ト ヅプディ プ レイや壁掛けテレビ等の平面ディ スプレイが、 従来の C R T管デ イ スプレイから置き換わ りつつある。  In recent years, with the spread of various mobile phones, mobile terminals, mobile computers, and power navigation, the demand for lightweight, high-definition, high-brightness, and inexpensive small-sized flat displays is increasing. You. In homes and offices, flat displays such as space-saving desktop displays and wall-mounted TVs are replacing conventional CRT tube displays.
特に、 高速イ ンタ一ネッ トの普及やデジタル放送の進展によ り 、 数百〜数ギガビッ ト /秒級のデジタル信号伝送が有線、 無線の 双方で実用化され、 一般利用者が極めて大容'量の情報を リ アル夕 ィムにやり取りする時代に移りつつある。 このこ とから、 これら 平面ディ プレイ に対する要求は従来以上の軽量性, 高精彩, 高輝 度, 低価格に加えて、 デジタル信号処理可能な高速表示性が求め られている。  In particular, with the spread of high-speed Internet and the progress of digital broadcasting, digital signal transmission of several hundreds to several gigabits / second has been put to practical use in both wired and wireless, and general users have been extremely large. We are moving to an era where real-time information is exchanged. For this reason, demands for these flat displays require not only lighter weight than before, but also high definition, high brightness, and low price, as well as high-speed display performance capable of digital signal processing.
このような平面ディスプレイ と しては、 液晶ディ スプレイ ( L iquid C rystal D i sp lay : L C D ) やプラズマディ スプレイ ( P lasma D isolay: P D )、 フ ィ一ル ドエミ ッショ ンディ スプレ ィ ( F ield Emission D isplay : F E D) 等が検討されている 。 これら各種平面ディスプレイに加えて、 近年有機電界発光素子 (Organic E lectro L uminescense Device : 0 E L D ) また は有機発光ダイオード ( Organic Light E mitted D iode: 0 L E D) と呼ばれる新しい型の平面ディスプレイが着目されつつ ある。 Examples of such a flat display include a liquid crystal display (LCD), a plasma display (PD), and a field emission display. (Field Emission Display: FED) is being studied. In addition to these various flat displays, in recent years, a new type of flat display called an organic electroluminescent device (0 ELD) or an organic light emitting diode (0LED) has attracted attention. It is getting.
有機電界発光素子とは、 陰極と陽極の間に挟んだ有機化合物に 電流を流すことにより、 その中に含まれる蛍光性または燐光性の 有機分子を発光させることで表示する素子である。  An organic electroluminescent device is a device that displays by emitting a fluorescent or phosphorescent organic molecule contained therein by passing a current through an organic compound sandwiched between a cathode and an anode.
有機エレク トロニクス材料研究会編、 『有機 L E D素子の残さ れた重要な課題と実用化戦略』、 ぶんしん出版、 1 9 9 9年中、 第 1〜 1 1頁、 佐藤佳晴著、 『序章 : 材料 · デバイスめ現状と課 題』 によると、 有機電界発光素子の研究は、 古くはアン トラセン やペリ レ ン等の有機半導体単結晶を中心に検討が進めちれてい た。 そして'、 1 9 8 7年に T a n gらが発光性'の有機化合物薄膜 と正孔輸送性の有機化合物薄膜とを積層した 2層型の有機電界 発光素子を提案 ( C . W. T a n g a n d S . A . V a n S l y k e, A p 1. P h y s . L e t t . 5 1 . 9 1 3 , 1 9 8 7年) し、 発光特性の大幅な向上が可能 (発光効率 l .'5' l m /Wヽ 駆動電圧 1 0 V、 輝度 1 0 0 0 c d/m2 ) になったこと がその研究の出発点である。 Organic Electronics Materials Research Group, “Key Issues Remaining in Organic LED Devices and Strategies for Practical Use”, Bunshin Publishing, 1999, pp. 1-11, pp. 1-111, Yoshiharu Sato, “Introduction : Materials and Devices: Current Status and Issues ”, research on organic electroluminescent devices has long been focused on organic semiconductor single crystals such as anthracene and perylene. In 1987, Tang et al. Proposed a two-layer organic electroluminescent device in which an organic compound thin film emitting light and a thin film of an organic compound capable of transporting holes were laminated (C. W. Tangand S.A.Van Slyke, Ap 1. Phys.Lett. 5 1.913, 1989), and the luminescence characteristics can be greatly improved (luminous efficiency l.'5 ' The starting point of the research is that the driving voltage is 10 V and the brightness is 100 cd / m 2 ).
その後、 色素 ドープ技術や、 高分子 0 L E D、 低仕事関数電極 、 マスク蒸着法等の要素技術が研究開発され、 1 9 9 7年に単純 マ ト リ ックス方式と呼ばれる電荷注入方式での有機電界発光素 子が一部実用化されている。 更に、 アクティブマ ト リ ックス方式 と呼ばれる新しい電荷注入方式での有機電界発光素子の開発も 検討されつつある。 After that, elemental technologies such as dye doping technology, polymer 0 LED, low work function electrode, and mask evaporation method were researched and developed.In 1997, organic electric field by the charge injection method called simple matrix method was developed. Some light-emitting elements have been put into practical use. Furthermore, the development of organic electroluminescent devices using a new charge injection method called the active matrix method has also been developed. It is being considered.
このような有機電界発光素子は、 以下のような原理で駆動され ている。  Such an organic electroluminescent device is driven by the following principle.
蛍光性または憐光性の有機発光材料を一対の電極間に薄膜化 させて、 正負の電極から電子と正孔を注入させる。 有機発光材料 中において、 注入電子は発光性分子の最低非占有分子軌道 ( Lo west Unoccupied Molecular 0 rbital: L U M 0 ) に入った 1 電子化有機分子 (単に電子と云う) となる。  A thin film of a fluorescent or photoluminescent organic light emitting material is formed between a pair of electrodes, and electrons and holes are injected from positive and negative electrodes. In the organic light-emitting material, the injected electrons become one-electronized organic molecules (simply referred to as electrons) in the lowest unoccupied molecular orbital (LUM 0) of the luminescent molecule.
また、 注入正孔は発光性分子の最高占有分子軌道 ( H ighest Occupied Molecular 0 rbital : H O M O ) に入った 1正孔化 有機分子 (単にホールと云う) となって、 有機材料中をそれそれ 対向電極に向けて移動する。その途中で電子とホールが出会う と 発光性分子の一重項または三重項励起状態が形成され、それが光 を輻射しながら失活することで、 光を放出する。  Also, the injected holes become one-hole organic molecules (simply called holes) in the highest occupied molecular orbital (HOMO) of the luminescent molecule, and they face each other in the organic material. Move toward the electrode. When electrons and holes meet on the way, a singlet or triplet excited state of a luminescent molecule is formed, which is deactivated while radiating light, thereby emitting light.
一般に有機発光材料には各種レーザ色素のように光励起に対 する量子効率の高い材料が数多く知られている。それらを電荷注 入により発光させよう とすると、 多くの有機化合物は、 絶縁体で あるために電子とホールの電荷輸送性が低く、 従って、 数百 V級 の高電圧が初期の有機電界発光素子には必要であつた。  In general, many organic light emitting materials having high quantum efficiency for photoexcitation such as various laser dyes are known. When attempting to emit light by charge injection, many organic compounds have low charge transport properties of electrons and holes because they are insulators. Was necessary.
しかし、 複写機の感光体として用いられている有機電子写真 感光体の電荷輸送性能の高さを利用し、 電荷 (ホール) を輸送 する薄膜と、 発光する薄膜とに機能分離することで発光特性を 向上させたものが、 前述の T a n gの 2層型の有機電界発光素 子である。  However, taking advantage of the high charge transport performance of the organic electrophotographic photoreceptor used as a photoreceptor in copiers, the thin film that transports charges (holes) and the thin film that emits light are functionally separated to emit light. The two-layer type organic electroluminescent device of Tang described above is an improvement.
今日では、 も う一つの電荷の電子の輸送性を別の有機薄膜に 担わせた 3層型の有機電界発光素子が報告されている。 これ以外に、 ホールと電子の有機材料への注入特性を向上させ るための電荷注入層や、 両者の再結合確率を上げるためのホール 停止層等、 各種機能を担わせた薄膜を追加することで、 機能分離 型、 多層膜型の有機電界発光素子が提案されている。 Today, a three-layer organic electroluminescent device has been reported in which another organic thin film has the property of transporting another charge of electrons. In addition, a thin film with various functions, such as a charge injection layer to improve the injection characteristics of holes and electrons into the organic material, and a hole stop layer to increase the recombination probability of both, should be added. Thus, a function-separated or multilayer organic electroluminescent device has been proposed.
しかし、 その発光の元となる部分は、 有機発光層に含まれる有 機発光分子からの励起状態の失活過程における光輻射であるこ とには変りがない。  However, the source of the light emission is still the light radiation in the process of deactivating the excited state from the organic light emitting molecules contained in the organic light emitting layer.
有機エレク トロニクス材料研究会編、 『有機 L E D素子の残さ れた重要な課題と実用化戦略』、 ぶんしん出版、 1 9 9 9年中、 第 2 5〜 3 8頁、 浜田裕次著、 『第 2節 : 発光材料の現状と課題 』 によると、 蛍光または燐光を発する有機発光材料は、 インキ, 染料, シンチレ一夕等、 様々な用途で開発されたものが数多く知 られている。  Organic Electronics Materials Research Group, “Key Issues Remaining in Organic LED Devices and Strategies for Practical Use”, Bunshin Publishing, 1999, pp. 25-38, Yuji Hamada, Section 2: Current Status and Issues of Light-Emitting Materials], many organic light-emitting materials that emit fluorescence or phosphorescence have been developed for various uses such as inks, dyes, and scintillators.
有機電界発光素子にはこれらの有機発光材料が利用されてい る。 その種類は分子量で分けると、 低分子系と高分子系に分類さ れ、 低分子系は真空蒸着法等の ドライプロセスで、 高分子系はキ ヤス ト法で薄膜形成されている。  These organic light emitting materials are used for organic electroluminescent elements. When classified by molecular weight, the types are classified into low-molecular type and high-molecular type. The low-molecular type is formed by a dry process such as vacuum evaporation, and the high-molecular type is formed by a cast method.
初期 ( T a n g以前) の有機電界発光素子で高効率な素子を得 られなか た理由の一つが、良質な有機薄膜を"形成することがで きなかったことによると云われている。 特に、 低分子系で必要な 条件として、  It is said that one of the reasons why high-efficiency organic electroluminescent devices in the early stage (before Tang) could not be obtained was that a high-quality organic thin film could not be formed. As a necessary condition for a low molecular system,
( 1 ) 真空蒸着法で薄膜 ( 1 0 0 n mレベル) の作製が可能、 (1) Thin film (100 nm level) can be manufactured by vacuum evaporation method.
( 2 ) 製膜後均一薄膜構造維持可能 (結晶の析出なし)、(2) Uniform thin film structure can be maintained after film formation (no crystal precipitation),
( 3 ) 固体状態での高蛍光量子収率、 (3) High fluorescence quantum yield in the solid state,
( 4 ) 適度なキヤ リァ輸送性、  (4) Moderate carrier transportability,
( 5 ) 耐熱性、 ( 6 ) 精製容易、 (5) heat resistance, (6) Easy purification,
( 7 ) 電気化学的に安定、  (7) electrochemically stable,
等が挙げられている。 And the like.
また、 発光過程の分類から、 直接電子とホールの再結合によつ て発光する発光材料と、発光材料から発生した光励起によって発 光する蛍光材料 (または ドーパン ト材料) 等に分けられる場合も ある。 ·  In addition, depending on the classification of the light-emitting process, the light-emitting material may be divided into a light-emitting material that emits light by direct recombination of electrons and holes, and a fluorescent material (or dopant material) that emits light by light excitation generated from the light-emitting material. . ·
また、 化学構造上の違いからは、 金属錯体型発光材料 (配位子 と して 8 —キノ リ ノール, ベンゾォキサゾ一ル, ァゾメチン, フ ラボン等がある。 中心金属としては A 1 , B e, Z n , G a , E u , P t等) と、 蛍光色素系発光材料 (ォキサジァゾ一ル, ビラ ゾリ ン, ジス.チリ レアリ レーン, シクロペン夕ジェン, テ トラフ ェニルブタジエン, ビススチ リルアン トラセン, ペリ レン, フエ ナン ト レン, ォリ ゴチオフェン, ピラゾ口キノ リ ン, チアジアゾ 口ピリ ジン, 層状べ Oプスカイ ト , p —セキシフエニル, スピロ 化合物等) 等が知られている。 '  Also, due to differences in chemical structure, metal complex-type luminescent materials (eg, 8-quinolinol, benzoxazole, azomethine, flavones, etc. as ligands. A 1, Be, Zn, Ga, Eu, Pt, etc.) and fluorescent dye-based light emitting materials (oxaziazol, villazolin, dis. Chili reale lane, cyclopentene, tetraphenyl butadiene, bisstyrylanthracene, perylene) , Phenanthrene, oligothiophene, pyrazolipid quinoline, thiadiazolipid pyridine, layered beta-askite, p-sexiphenyl, spiro compounds, etc.) are known. '
このよう に有機電界発光素子の発光材料及び素子化プロセス については、 多種多様な材料及び手法が検討されてきた。 このよ うな有機電界発光素子から、 最大でどの程度の効率で発光量 'を得 ることができるかについては、 未だ明確でない点が多い。  As described above, a wide variety of materials and methods have been studied for the light-emitting materials of the organic electroluminescent device and the process of forming the device. It is still unclear how much efficiency can be obtained from such organic electroluminescent devices at the maximum.
有機エレク トロニクス材料.研究会編、 『有機 L E D素子の残さ れた重要な課題と実用化戦略』、 ぶんしん出版、 1 9 9 9年中、 第 1 0 5〜 1 1 8頁、 筒井哲夫著、 『第 1節 発光効率の解釈と 限界』 によると、 有機電界発光素子の外部に取り出される光エネ ルギ一は、素子を流れる電子またはホール 1個当たりの放出光子 数で与えられる。 これを電界発光の外部量子効率 77 0 ( ext) で表 わすと、 以下の関係があることが知られている。 Organic Electronics Materials, Study Group, “The Remaining Important Issues of Organic LED Devices and Strategies for Practical Use”, Bunshin Publishing, 1999, pp. 105-118, Tetsuo Tsutsui According to Section 1, Interpretation and Limitations of Luminous Efficiency, the photoenergy extracted outside the organic electroluminescent device is given by the number of emitted photons per electron or hole flowing through the device. Table external quantum efficiency 77 0 (ext) of this electroluminescent In other words, the following relationships are known.
〔数 1〕  (Equation 1)
?7 ?1(ext) = ?? e x t X 7? iiunt) = 7? e x t x(7 X 7? r x ?7 f ) Ext X 7? Ii unt) = 7? Ext x (7 X 7? R x? 7 f)? 7 ? 1 (ext) = ??
… ( 1 ) ここで、 770(int)は素子内部での素子を流れる電子またはホー ル 1個当たりの放出光子数を表わす内部量子効率、 ?? e x tは素子 内部で発生した光が素子界面での反射や吸収よ り減少させられ た後の素子外部への光の取り出し効率を示す。 ... (1) Here, 77 0 (int) is the internal quantum efficiency which represents the number of emitted photons per electron or Hall flowing element inside the element,? ? ext indicates the light extraction efficiency to the outside of the device after the light generated inside the device is reduced by reflection and absorption at the device interface.
また、 ァは素子内部に注入される電子とホールの数の比率に相 当するチャージバランス、 77 rは注入された電荷から発光に寄与 する重項励起子を発生する割合を示す一重項励起子生成効率、 V tは一重項励起子の中で光を発生して失活する割合を示す発光量 子効率を表わす。  In addition, a is a charge balance corresponding to the ratio of the number of electrons and holes injected into the device, and 77r is a singlet exciton that indicates a ratio of generation of a singlet exciton that contributes to light emission from the injected charge. The production efficiency, Vt, represents the luminescence quantum efficiency, which indicates the rate at which light is generated and deactivated in singlet excitons.
これら素子外部への発光量に相当する外部量子効率 77 (ext) は、 発光材料自身の性質によって決まる 7? r及び?? f と、 素子へ の電子とホールの注入比によって決まるァ、 及び、 素子の構造に よって決まる?? e x tとに大きく分けることができる。 External quantum efficiency 77, which corresponds to a light emission amount in these devices external (ext) is, 7? R and on the nature of the luminescent material itself? ? f , depends on the injection ratio of electrons and holes into the device, and depends on the device structure? ? It can be broadly divided into ext and ext .
7? P及び 77 f は、 発光材料自身の物性に関係する効率であり、 用いる発光材料によって一義的に決定される。 また、 ァは電極と それに接する有機層との電気的ポテンシャル差や界面ポテンシ ャル、有機層中の電子とホールの易動度等によって決まる量であ る。 これは、 電極材料と素子内部の有機材料の物性によって一義 的に決まる効率である。 7? P and 77 f are effectively related to the physical properties of the luminescent material itself is uniquely determined by the luminescent materials used. Further, the amount is determined by the electric potential difference between the electrode and the organic layer in contact with the electrode, the interfacial potential, the mobility of electrons and holes in the organic layer, and the like. This efficiency is uniquely determined by the physical properties of the electrode material and the organic material inside the device.
これら因子のうち、 チャージバランスァ 1である。 一重項励 起子生成効率? 7 pは、 電荷のスピンの関係から 7? P≤ 0 . 2 5であ る と云われる。 発光量子効率?? f は超放射的過程以外は 77 f < 1である。 従つ て、素子内部の有機材料及び電極材料によって決定される因子の 部分 〔式 ( 1 ) の(ァ x?? r x?? f )の部分〕 は 0.2 5以下である と云われる。 One of these factors is charge balancer 1. Singlet excitation Gene generation efficiency? 7 p is said to be 7? P ≤ 0.25 from the relation of charge spin. Emission quantum efficiency? ? f is 77 f <1 except for the superradiative process. Therefore, it can be said that the part of the factor (the part of (x ?? rx ?? f ) in equation (1)) determined by the organic material and the electrode material inside the device is 0.25 or less.
一方、 取り出し効率は、 N. C . G r e e n h am, R . H . F r i e n d , D . D . C . B r a d l e y, Ad v. Ma t e r . 4 9 1 , 1 9 94年によると、 古典光学の反射と屈折の 法則によって決定され、 発光層の屈折率を nとすると、  On the other hand, according to N.C.Greenh am, R.H.Friend, D.D.C.Bradley, Ad v. Mater. Determined by the law of reflection and refraction, where n is the refractive index of the light-emitting layer,
〔数 2〕  (Equation 2)
7? e x t = 1 / ( 2 n 2 ) ( 2 ) で与えられる。 _ 7? Ext = 1 / (2 n 2) is given by (2). _
多くの有機電界発光素子の発光層、 または、 それらを保持する ガラス基板の屈折率は 1.6程度であり、 これから 77 e x t = 0. 2とされている。 ' The refractive index of the light-emitting layer of many organic electroluminescent elements or the glass substrate that holds them is about 1.6, and it is set to 77 ext = 0.2 from this. '
これらのことから、 全体としての電界発光の外部量子効率 7? ø (ext) ≤ 0.2 X 0 .2 5 = 0.0 5 となり、 その外部量子効率は 高々 5 %であると云われている。  From these facts, the external quantum efficiency of electroluminescence as a whole is 7 7 ø (ext) ≤ 0.2 X 0.25 = 0.05, and it is said that the external quantum efficiency is at most 5%.
有機電界発光素子を実用化する上で、 この外部量子効率を向上 させるこどが必須ではあるが、 上記従来の有機電界発光素子の外 部量子効率には上限があるため、 これとは異なる機能を有する有 機電界発光素子の開発が進められつつある。  For practical use of the organic electroluminescent device, it is essential to improve the external quantum efficiency. However, since the external quantum efficiency of the above-mentioned conventional organic electroluminescent device has an upper limit, a different function is required. The development of organic electroluminescent devices having the following features is underway.
その一つの方法は、発光材料自身の発光量子効率一重項励起子 生成効率?? rを向上させよう とするものである。 従来の電荷注入 及び再結合の過程では一重項励起子が 0.2 5、 三重項励起子が 0.7 5の割合で発生する。 One of the methods is the luminescence quantum efficiency of the luminescent material itself. Singlet exciton generation efficiency? ? The goal is to improve r . In the conventional charge injection and recombination processes, singlet excitons are generated at a rate of 0.25 and triplet excitons at a rate of 0.75.
これに対して、 重金属を含有する有機発光材料のスピン—軌道 角運動量相互作用による項間交差によって、 三重項励起子を一重 項励起子にス ピン反転させたり、 ナノスケール領域に閉じ込めら れた三重項励起子同士の衝突による一重項励起子への転換等に よって、発生した三重項励起子を一重項励起子に転化することで 、発光に寄与する励起子の割合を増大させよう とするものである このような新しい励起子発生機構を有する材料として: f ac t ris( 2 - phenylpyr idine ) iridium〔 I r ^ p p y ) 3〕 を用いた 高効率発光可能な有機電界発光素子が、 M. A. B a l dひ , S . L aman s k y, P . E . B u r r ow s , M. E . T liひ mp s o n, S . R . F o r r e s t , A p 1. P h y s . L e t t . 7 5 , 4一 6 , 1 9 9 9年に紹介されている。 On the other hand, the spin-orbit of organic light-emitting materials containing heavy metals Spinning of triplet excitons into singlet excitons by intersystem crossing due to angular momentum interaction, conversion to singlet excitons by collision of triplet excitons confined in the nanoscale region, etc. Thus, it is intended to increase the ratio of excitons that contribute to light emission by converting the generated triplet excitons into singlet excitons. As a material having such a new exciton generation mechanism: An organic electroluminescent device capable of emitting light with high efficiency using fac ris (2-phenylpyridine) iridium [Ir ^ ppy) 3] has been developed by MA Bald, S. Laman sky, P. E. Burr. ow s, M.E.T.li, mp son, S.R.Forrest, Ap 1. Phys.Lett. 75, 4-16, 1999.
もう一つの方法は、.取り出し効率 7 e x tを改善することにより 素子外部での外部量子効率を向上させよう どするものであ'る。即 ' ち、 これまで結晶析出しない均一薄膜構造であることが、 有機電 界発光素子作製上の必要条件とされていた。 しかし、 この場合発 光層を構成する有機発光材料は、空間的にランダムな配向状態と なっているために、発光は素子内部において全方位に対して等方 的に出射されていだ。' ' これに対し、素子の発光面に対して平行な方向への発光を制御 し、 かつ、 垂直方向への発光を増大させる手段として、 例えば、 ラビング法によって 1軸的に配向させた分子からなる発光層を 有する有機電界発光素子について、特開平 4一 4 0 4 1 3号公報 に記載されている。 Another method is to improve the external quantum efficiency outside the device by improving the extraction efficiency 7 ext . In other words, a uniform thin film structure in which no crystal is precipitated has been regarded as a necessary condition for manufacturing an organic electroluminescent device. However, in this case, the organic light-emitting material constituting the light-emitting layer is in a spatially random orientation state, so that light is emitted isotropically in all directions inside the device. '' On the other hand, as a means to control light emission in the direction parallel to the light emitting surface of the device and to increase light emission in the vertical direction, for example, from a molecule uniaxially oriented by the rubbing method An organic electroluminescent device having a light-emitting layer is described in Japanese Patent Application Laid-Open No. H4-144013.
真空中で発光層を ドライプロセスによって形成し、発光層を構 成する有機分子を光異性化反応によって発光面に平行に配向さ せて形成した有機電界発光素子においても、 同様に発光層内部で の異方的な発光特性が得られるこ とが特開平 1 1一 1 0 2 7 8 3号公報に記載されている。 The light-emitting layer is formed in a vacuum by a dry process, and the organic molecules constituting the light-emitting layer are oriented parallel to the light-emitting surface by a photoisomerization reaction. Japanese Patent Application Laid-Open No. 11-107283 describes that an anisotropic light-emitting characteristic inside a light-emitting layer can be similarly obtained in an organic electroluminescent element formed by the above method.
しかし、 これらは配向化による取出し効率の向上については具 体的には記載されておらず、 唯一、 特開平 1 1— 1 0 2 7 8 3号 公報において、 素子外部での発光効率が 0.5 l m/Wから 0. 8 l mZWへと 1.6倍程度向上したことが記載されているに過 ぎない。  However, these publications do not specifically describe the improvement of the extraction efficiency due to the orientation. Only Japanese Patent Application Laid-Open No. 11-10783 discloses that the luminous efficiency outside the device is 0.5 lm. It is merely stated that the improvement was about 1.6 times from / W to 0.8 l mZW.
それよ り以前の M. H ama g u c h i a n d K. Y o s h i n o , J p n. J . A p p 1. : P h y s .第 3 4卷, 第 L 7 Previously, M. Hamaguchianid K. Yoshhino, Jpn. J. App1: Phys. Volume 34, Volume L7
1 2頁, 1 9 9 5年には、 配向させた有機電界発光素子の発光異 方性と、 取り出し効率についてよ り詳細な測定がなざれている。 On page 12, 1995, a more detailed measurement of the emission anisotropy and the extraction efficiency of an oriented organic electroluminescent device was required.
その第 1図によると、配向方向に平行な方向と垂直な方向.とで は、 取り出し光量に著しい差が認められるのに対し.、 配向'させた 試料と無配'向な試料との間には、取り出し光量の顕著な差が見出 されていない。  According to Fig. 1, there is a remarkable difference in the amount of light taken out between the direction parallel to the orientation direction and the direction perpendicular to the orientation direction. No significant difference in the amount of light taken out was found.
もう一つの方法は、発光層内部においてランダムに発生した光 の内、 膜の面内に伝播する成分を、 素子の構造上の工夫により膜 面に垂直な方向に変換させようとする方法が提案されている。例 えば、 特開平 1 0— 1 7 2 7 6 6号公報によれば、 発光層の横端 面を ドライエッチングにより加工形成し、膜端面を半透明反射鏡 として機能させる。そして一定の割合の光を膜内部に戻す作用に よって損失を低減し、膜前面に出る有効な光の総量を増大させて 、発光素子の入力エネルギー当 りの出力発光量を向上させる方法 が提案されている。  Another proposed method is to convert the component of light randomly generated inside the light-emitting layer, which propagates in the plane of the film, to the direction perpendicular to the film plane by devising the structure of the device. Have been. For example, according to Japanese Patent Application Laid-Open No. 10-172726, the lateral end face of the light emitting layer is processed and formed by dry etching, and the end face of the film functions as a translucent reflecting mirror. A method is proposed that reduces the loss by returning a certain percentage of light to the inside of the film, increases the total amount of effective light emitted to the front surface of the film, and improves the output light emission per input energy of the light emitting element. Have been.
しかし、 この方法では、 本来機械的強度に劣る有機薄膜に対し て ドライエッチングを施すために、膜そのものへのダメージや反 射鏡として作用可能な光学的に優れた端面を、形成することが極 めて困難であった。 However, this method is not suitable for organic thin films that are originally poor in mechanical strength. Therefore, it is extremely difficult to form an optically superior end face that can act as a reflector or damage the film itself due to dry etching.
同様に、 特開平 1 0— 2 2 9 2 4 3号公報によれば、 膜面垂直 方向に共振器構造を有する有機発光素子で、膜平行方向に近接場 光を利用して微細周期構造を作成し、反射機能を果たす微細周期 構造を膜面平行方向に有し、 それによつて出射される発光を変調 する方法が提案されている。  Similarly, according to Japanese Patent Application Laid-Open No. 10-229432, an organic light-emitting device having a resonator structure in the direction perpendicular to the film surface and having a fine periodic structure utilizing near-field light in the direction parallel to the film. A method has been proposed in which a fine periodic structure is formed and performs a reflection function in a direction parallel to the film surface, and the emitted light is modulated by the fine periodic structure.
しかし、 この手法では同様に膜の加工性に問題があり、 特に、 膜面内に共振器構造を形成させるための加工精度は一段と厳し いものがあつた。およそ有機発光層自身の厚みは高々 1 0 0 n m 前後であり、 この端面を光学的レベルで加工することは極めて困 難であった。  However, this method also has a problem with the processability of the film, and in particular, the processing accuracy for forming the resonator structure in the film surface has become even more severe. The thickness of the organic light emitting layer itself is about 100 nm at most, and it is extremely difficult to process this end face at an optical level.
また、 特開平 1 0— 3 9 8 1 1号公報によれば、 わん曲透明基 板の凹部内側面に'薄膜電界発光素子を形成し、透明基板から'外部 へ光が出る効率を向上させる方法が提案されている。 しかし、 わ ん曲性基板に複雑な画像表示が可能な画素電極や発光層、 正孔輸 送層等の機能性薄膜を形成することは極めて困難である。 また、 表示素子として見た場合に、表示部全体が大き'くわん曲している ために、利用者の視野特性に著しい制限が生じる等の問題があつ た。  According to Japanese Patent Application Laid-Open No. 10-39811, a thin film electroluminescent element is formed on the inner surface of a concave portion of a curved transparent substrate to improve the efficiency of light emission from the transparent substrate to the outside. A method has been proposed. However, it is extremely difficult to form a functional thin film such as a pixel electrode, a light emitting layer, a hole transport layer, etc., capable of displaying a complex image on a flexible substrate. In addition, when viewed as a display element, there is a problem in that the entire display portion is largely curved, which significantly limits the viewing characteristics of the user.
以上のように、 有機電界発光素子において、 その発光効率を従 来以上に向上させるための手法が検討されているが、 これら多数 の因子が含まれるために、 明確な指針が出されていないのが実情 である。  As described above, methods for improving the luminous efficiency of organic electroluminescent devices more than ever have been studied.However, since these many factors are included, no clear guidelines have been issued. This is the situation.
本発明は、 有機電界発光素子を実用化する上で、 この外部量子 効率を向上させることが必須ではある。 しかし、 上記従来の有機 電界発光素子の外部量子効率には上限があり、 その一つの方法は 発光材料自身の発光量子効率一重項励起子生成効率 7? rを向上さ せよう とするもの、及び取り出し効率 7? e x tを改善することによ り素子外部での外部量子効率を向上させよう とするものである。 その中で、 特に後者の取り出し効率 77 e x tを改善し、 よ り広範 な効率向上手段を提供するものである。 The present invention is based on this external quantum Improving efficiency is essential. However, there is an upper limit to the external quantum efficiency of the above-mentioned conventional organic electroluminescent device, and one of the methods is to improve the luminescence quantum efficiency of the luminescent material itself and the efficiency of generating singlet excitons 7 to r , and It is intended to improve the external quantum efficiency outside the device by improving the extraction efficiency 7? Ext . Among them, it improves the extraction efficiency of the latter, 77 ext , and provides a wider range of efficiency improvement means.
即ち、 よ り簡便に形成可能な素子構造を取ることにより、 取り 出し効率 77 e x tを改善し、従来報告されてきた同じ組成の有機電 界発光素子に対しても、 同じ駆動条件でありながら、 より多くの 光を素子外部に取り出す手法を提案するものである。 In other words, by adopting an element structure that can be formed more easily, the extraction efficiency has been improved by 77 ext . It proposes a method to extract more light out of the device.
このような効率化によって、 必要とする電力の低減や画素サイ ズの最適化, 高精細化を図り、 加えて素子の長寿命化を図ること を目的とする。  The purpose of such efficiency is to reduce the required power, optimize the pixel size, increase the definition, and extend the life of the device.
特に、 1 0イ ンチ以上の大画面表示素子や'、 小面積でも高精細 な画像表示素子として駆動させる場合に、有機材料を用いる上で の本質的な事柄と考えられてきたため、高密度な画像表示素子と しての利用は制限され、高々 8ィ ンチまでの画像表示素子が提案 されたにすぎなかづた。 これら次世代の有機電界発光素子に、 必 要な基本構成を提案するものである。 発明の開示  In particular, when driving as a large-screen display element of 10 inches or more, or a high-definition image display element even with a small area, it has been considered to be an essential matter in using an organic material. The use as an image display device was limited, and only an image display device of up to 8 inches was proposed. It proposes the basic configuration required for these next-generation organic electroluminescent devices. Disclosure of the invention
上記目的である有機電界発光素子の光取り出し効率向上を達 成する本発明の要旨は以下の通りである。  The gist of the present invention that achieves the above object to improve the light extraction efficiency of the organic electroluminescent device is as follows.
〔 1〕 正負の両電荷の注入, 輸送が可能で、 該正負の両電荷 によ り生成された正孔と電子の再結合によ り光の発生が可能な 有機電界発光素子であり、 該有機電界発光素子に含まれる再結合 による発光物質または該発光物質からの光を受けて二次的に光 を発生させることが可能な蛍光物質を含む発光層を有する有機 電界発光素子において、 [1] Both positive and negative charges can be injected and transported, and light can be generated by recombination of holes and electrons generated by the positive and negative charges. An organic electroluminescent element having a light-emitting layer containing a light-emitting substance contained in the organic electroluminescent element by recombination or a fluorescent substance capable of receiving light from the light-emitting substance and generating light secondarily. In organic electroluminescent devices,
光を発生する発光層外部にあって、 有機電界発光素子外部への 光の取り出し界面との間に第 1種中間層を有し、 かつ、 前記発光 層から取り出される光の強度方位分布が第 1種中間層を通過し た後に拡大することを特徴とする有機電界発光素子にある。  A light-emitting layer outside the light-emitting layer, a first-type intermediate layer between the light-emitting layer outside the organic electroluminescent element, and an intensity azimuth distribution of light extracted from the light-emitting layer. An organic electroluminescent device characterized in that it expands after passing through one kind of intermediate layer.
〔 2〕 第 1種中間層が光散乱が可能であるか、 または、 光路 の拡散が可能である前記の有機電界発光素子にある。  [2] The organic electroluminescent device according to the above, wherein the first type intermediate layer is capable of scattering light or diffusing an optical path.
〔 3〕 第 1種中間層が特定の形状を有する画素毎に区切られ ているか、 または、 該中間層とは異なる性状の物質からなる隔壁 によって画素毎に区切られている前記の有機電界発光素子にあ る。  [3] The organic electroluminescent device, wherein the first type intermediate layer is separated for each pixel having a specific shape, or is separated for each pixel by a partition made of a material having a property different from that of the intermediate layer. It is in.
〔 4〕 取り出し界面から臨む画素毎に区切られた第 1種中間 層の形状または該隔壁の形状が多角形であり、 該多角形を形成す る形状面のうちの少なく とも 2つが平行である前記の有機電界 発光素子にある。  [4] The shape of the first type intermediate layer or the shape of the partition wall divided for each pixel facing the takeout interface is a polygon, and at least two of the shape surfaces forming the polygon are parallel The above-mentioned organic electroluminescent device is provided.
〔 5〕 多角形を形成する平行な形状面の対のうち、 少なく と も一組が発生する光の波長の 0 . 2 5〜 2波長分の長さである前 記の有機電界発光素子にある。  [5] In the organic electroluminescent device described above, which is at least 0.25 to 2 wavelengths of the wavelength of the light generated by at least one of the pairs of parallel shaped surfaces forming a polygon. is there.
〔 6〕 取り出し界面から臨む画素毎に区切られた第 1種中間 層の形状または隔壁の形状が円形である前記の有機電界発光素 子にある。  [6] The organic electroluminescent device according to the above, wherein the shape of the first type intermediate layer or the shape of the partition wall divided for each pixel facing the takeout interface is circular.
〔 7〕 円形の第 1種中間層または隔壁の直径が、 発生する光 の波長の 0 . 2 5〜 2波長分である前記の有機電界発光素子にあ る。 [7] The organic electroluminescent device as described above, wherein the diameter of the circular first type intermediate layer or the partition wall is 0.25 to 2 wavelengths of the wavelength of the generated light. You.
〔 8〕 取り出し界面から臨む画素毎に区切られた第 1種中間 層の断面形状または隔壁の断面形状が、 光の取り出し界面に対し て平行でない平面構造または曲面構造を有している前記の有機 電界発光素子にある。  [8] The organic layer described above, wherein the cross-sectional shape of the first-type intermediate layer or the cross-sectional shape of the partition wall divided for each pixel facing the light extraction interface has a plane structure or a curved surface structure that is not parallel to the light extraction interface. In electroluminescent devices.
〔 9〕 取り出し界面から臨む画素毎に区切られた第 1種中間 層または隔壁の光の取り出し界面及び光発光層に接していない 界面が、 光を反射または屈折させることが可能である前記の有機 電界発光素子にある。  [9] The organic light-emitting device, wherein the light extraction interface and the interface not in contact with the light-emitting layer of the first-type intermediate layer or the partition wall separated for each pixel facing the extraction interface can reflect or refract light. In electroluminescent devices.
〔 1 0〕 界面での反射が正反射でない前記の有機電界発光素 子にある。  [10] The organic electroluminescent device according to the above, wherein the reflection at the interface is not regular reflection.
〔 1 1〕 第 1種中間層の断面形状が発光面側から光取り出し 面側に向けて開口部が拡大する形状であって、 該第 1種中間層の 側面において光を反射させることが可能であり、 第 1種中間層の 光取り出し面側における全反射角 Φ cに対して中間層の側面のテ ーパ角 7?が 以下である前記の有機電界発光素子にある。  [1 1] The cross-sectional shape of the first type intermediate layer is a shape in which the opening is enlarged from the light emitting surface side to the light extraction surface side, and light can be reflected on the side surface of the first type intermediate layer. The organic electroluminescent device according to the above, wherein the taper angle 7? On the side surface of the intermediate layer is below the total reflection angle? C on the light extraction surface side of the first type intermediate layer.
〔 1 2〕 第 1種中間層の断面形状が発光面側から光取り出し 面側に向けて開口部が拡大する形状であって、 該第 1種中間層の 側面において光を反射させることが可能であり、 第 1種中間層の 光取り出し面側における全反射角 Φ cに対して中間層の側面のテ —パ角?7が 4 5 ° — Φ 。 / 2から φ。であり、 同一断面上で該発 光面側開口部の幅 aに対して第 1種中間層の厚み dが a Ζ 2 t an 77以下である前記の有機電界発光素子にある。 [1 2] The cross-sectional shape of the first type intermediate layer is a shape in which the opening is enlarged from the light emitting surface side to the light extraction surface side, and light can be reflected on the side surface of the first type intermediate layer. The taper angle on the side of the intermediate layer with respect to the total reflection angle Φ c on the light extraction surface side of the type 1 intermediate layer? 7 is 4 5 ° — Φ. / 2 to φ. Wherein the thickness d of the first type intermediate layer is not more than a a2 tan 77 on the same cross section with respect to the width a of the light emitting surface side opening.
〔 1 3〕 第 1種中間層と、 発光層に係る光透過性の電極層と の間に、 発光層の面積以下の断面積を有する光導波層を有してい る前記の有機電界発光素子にある。 〔 1 4〕 第 1種中間層と、 発光層に係る光透過性の電極層と の間に、光透過性電極層に接することなく発光層の面積以下の断 面積を有する光導波層を有している前記の有機電界発光素子に ある。 [13] The organic electroluminescent device described above, further comprising an optical waveguide layer having a cross-sectional area equal to or less than the area of the light-emitting layer between the first-type intermediate layer and the light-transmitting electrode layer related to the light-emitting layer. It is in. [14] An optical waveguide layer having a sectional area equal to or less than the area of the light emitting layer without contacting the light transmitting electrode layer is provided between the first type intermediate layer and the light transmitting electrode layer related to the light emitting layer. In the organic electroluminescent device.
〔 1 5〕 第 1種中間層が発光層で発生する光を吸収して別の 色の光を発生し得る物質を含む前記の有機電界発光素子にある。  [15] The organic electroluminescent device as described above, wherein the first type intermediate layer contains a substance capable of absorbing light generated in the light emitting layer and generating light of another color.
〔 1 6〕 第 1種中間層が発光層を担持する基板内部に形成さ れている前記の有機電界発光素子にある。  [16] The organic electroluminescent device according to the above, wherein the first type intermediate layer is formed inside the substrate supporting the light emitting layer.
〔 1 7〕 第 1種中間層が発光層を担持する光透過性基板の外 部に形成されている前記の有機電界発光素子にある。  [17] The organic electroluminescent device according to the above, wherein the first type intermediate layer is formed outside the light-transmitting substrate that carries the light-emitting layer.
〔 1 8〕 発光層がアモルファスシリコン薄膜卜ランジス夕ま たは多結晶シリコン薄膜トランジスタを形成した基板に形成、 ま たは、有機薄膜トランジスタを形成した基板上に形成されている 前記の有機鼋界発光素子にある。 ' - - 〔 1 9〕 発光層がアモルファスシリコン薄膜ドランジス夕ま たは多結晶シリコン薄膜トランジスタを形成した基板、 または、 有機薄膜トランジス夕を形成した基板と別個に形成後、一体化さ れた前記の有機電界発光素子にある。  [18] The organic field emission device, wherein the light emitting layer is formed on a substrate on which an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor is formed, or formed on a substrate on which an organic thin film transistor is formed. It is in. '--[19] The light emitting layer is formed separately from the substrate on which the amorphous silicon thin film transistor or the polycrystalline silicon thin film transistor is formed or the substrate on which the organic thin film transistor is formed and then integrated. In organic electroluminescent devices.
ここで云う有機電界発光素子とは、有機発光分子を含む発光層 に対して、 陽極電極から正孔を、 陰極電極から電子を注入可能で 、該発光層内部で正孔と電子の再結合によって光を放出すること が可能な有機電界発光素子であり、該発光層は単一層であっても 、 または多層であってもよい。  The organic electroluminescent device mentioned here is capable of injecting holes from an anode electrode and electrons from a cathode electrode into a light emitting layer containing organic light emitting molecules, and by recombination of holes and electrons inside the light emitting layer. An organic electroluminescent device capable of emitting light, and the light-emitting layer may be a single layer or a multilayer.
また、 該発光層は、 該正孔と電子の再結合によ り光を放射する 有機発光分子以外に、該有機発光分子から発生した光を吸収して 別の光を発生することが可能な蛍光物質 (または燐光物質) を含 んでいてもよい。 In addition, the light emitting layer can absorb light generated from the organic light emitting molecule and generate another light in addition to the organic light emitting molecule that emits light by recombination of holes and electrons. Contains fluorescent (or phosphorescent) materials You may go out.
また、該発光層は正孔または電子の該発光層内部での易動度を 高めることが可能な正孔輸送物質または電子輸送物質を含んで いてもよい。  Further, the light emitting layer may include a hole transporting substance or an electron transporting substance capable of increasing the mobility of holes or electrons inside the light emitting layer.
また、 該発光層は、 特定の空間的位置に正孔または電子を補足 するまたは輸送性を低下させるための正孔捕捉物質または電子 捕捉物質を含んでいてもよい。 更に、 これら有機発光分子、 蛍光 物質 (または燐光物質)、 正孔輸送物質、 電子輸送物質、 正孔捕 捉物質、 電子捕捉物質は、 同一の層に含まれていてもよく、 また は別個の層に分離されていてもよい。複数の層に分離されてこれ らの構成物質を含む層が形成されている場合も、 本発明において は一括して発光.層と呼ぶことにする。  Further, the light emitting layer may contain a hole-trapping substance or an electron-trapping substance for trapping holes or electrons at a specific spatial position or reducing transportability. Further, these organic light-emitting molecules, fluorescent substances (or phosphorescent substances), hole transport substances, electron transport substances, hole trap substances, and electron trap substances may be contained in the same layer, or may be separated. It may be separated into layers. Even when a layer containing these constituent materials is formed by being separated into a plurality of layers, it is collectively referred to as a light emitting layer in the present invention.
また、 本発明の該発光層と、 該発光層に正孔または電子を注入 する陽極または陰極との間には、正孔または電子の注入効率を向 上させるための正孔注入層または電子注入層を設けてもよい。  Further, a hole injection layer or an electron injection for improving hole or electron injection efficiency is provided between the light emitting layer of the present invention and an anode or a cathode for injecting holes or electrons into the light emitting layer. A layer may be provided.
また、 該発光層や、 陽極、 陰極、 正孔注入層、 電子注入層を保 持するための基板を設けていてもよく、 それら以外の中間層を適 宜設けていてもよい。 そのような中間層としては、 光の反射特性 を変調するための反射鏡や部分透過鏡、特定光を透過するフィル 夕、 光の出射タイ ミ ングを調整する光スィ ッチ、 '光の位相特性を 調整するために波長板、 光の出射方向を拡散するための拡散板、 素子を構成する物質の外部光や熱、 酸素、 水分等による劣化を防 ぐための保護膜等が挙げられる。  Further, a substrate for holding the light emitting layer, the anode, the cathode, the hole injection layer, and the electron injection layer may be provided, and an intermediate layer other than these may be provided as appropriate. Such intermediate layers include reflectors and partial transmission mirrors for modulating the reflection characteristics of light, filters for transmitting specific light, light switches for adjusting light emission timing, and light phase. Examples include a wavelength plate for adjusting the characteristics, a diffusion plate for diffusing the light emission direction, and a protective film for preventing a substance constituting the element from being deteriorated by external light, heat, oxygen, moisture, or the like.
これら中間層は該発光層、 陽極、 陰極、 正孔注入層、 電子注入 層、 基板との間、 またはその外部に素子特性を著しく劣化させな いような仕様で適宜設けることができる。 特に、 該有機電界発光 素子から外部に光が取り出される最表面に当たる層を、取り 出し 最表層と呼ぶこ とにする。 These intermediate layers can be suitably provided between the light emitting layer, the anode, the cathode, the hole injection layer, the electron injection layer, and the substrate, or outside thereof, with specifications that do not significantly degrade the device characteristics. In particular, the organic electroluminescence The layer that is the outermost surface from which light is extracted from the device to the outside is referred to as the extraction outermost layer.
また、 本発明に用いることが可能な電界発光材料と しては、 各 種金属錯体型発光材料 (配位子と して 8 —キノ リ ノール, ペンゾ ォキサゾ一ル, ァゾメチン, フラボン等。 中心金属としては A 1 , B e , Z n , G a , E u , R u , P t等) を用いることができ る。 また、 蛍光色素系発光材料 (ォキサジァゾール, ピラゾ リ ン , ジスチリルァリ レーン, シクロペン夕ジェン, テ トラフェニル ブタジエン, ビススチリルアン トラセン, ペリ レン, フエナン ト レン, オリゴチォフェン, ピラゾ口キノ リ ン, チアジアゾロ ピ リ ジン, 層状べロプスカイ ト, p —セキシフエニル, スピロ化合物 等) を用いるこ とができる。  Examples of the electroluminescent material that can be used in the present invention include various metal complex type luminescent materials (8-quinolinol, benzoxazole, azomethine, flavone, etc. as ligands). For example, A 1, Be, Zn, Ga, Eu, Ru, Pt, etc. can be used. In addition, fluorescent dye-based light-emitting materials (oxazidazole, pyrazoline, distyrylarylene, cyclopentene, tetraphenylbutadiene, bisstyrylanthracene, perylene, phenanthrene, oligothiophene, pyrazoguchi quinoline, thiadiazolopirene) Resin, layered perovskite, p-sexiphenyl, spiro compounds, etc.) can be used.
あるいは、 各種高分子材料 (ポリ フ ヱニレンビニレン, ポリ ビ 二ルカルバゾ一ル, ポリ'フルオレン等) を発光材料とし、 または 、 非発光性の高分子材料 (ポリエチレン, ポリスチレン, ポリオ キシエチレン, ポリ ビニルアルコール, ポリメ夕ク リル酸メチル , ポリ アク リル酸メチル, ポリイ ソプレン, ポリイ ミ ド, ポリ 力 ーボネー ト等) をマ ト リ ックスと して、 各種発光材料または蛍光 材料を混合した り共重合した りするこ とも可能で'ある。  Alternatively, various polymer materials (polyvinylenevinylene, polyvinylcarbazole, poly'fluorene, etc.) are used as the light-emitting material, or non-light-emitting polymer materials (polyethylene, polystyrene, polyoxyethylene, polyvinylalcohol, polymer) are used. Mixing or copolymerizing various luminescent or fluorescent materials using methyl acrylate, polymethyl acrylate, polyisoprene, polyimide, polycarbonate, etc. as a matrix. Both are possible.
また、 各種有機正孔または電子輸送材料 ( ト リ フヱニルアミ'ン 等) を介在させるこ ともできる。 更には、 各種正孔または電子注 入層 (例えば L i , C a, M g , C s , C u P c等) を介在させ るこ とも可能であ り、 素子構成に合わせて適宜材料を選ぶことが できる。  In addition, various organic hole or electron transport materials (such as triphenylamine) can be interposed. Furthermore, various hole or electron injection layers (for example, Li, Ca, Mg, Cs, CuPc, etc.) can be interposed, and materials can be appropriately selected according to the element configuration. You can choose.
本発明の有機電界発光素子を作成する手段としては、各種薄膜 形成技術、 例えば、 スピンコー ト法, 塗布法, キャス ト法, スパ ッ夕法, 真空蒸着法, 分子線蒸着法, 液相ェピタキシャル法, 原 子層ェピタキシャル法, ロール法, スク リーン印刷法, イ ンクジ エツ ト法, 電界重合法, ラ ビング法, 吹き付け法, 水面展開法, ラングミュア · ブロジェヅ ト膜法等を用いるこ とができる。 Means for producing the organic electroluminescent device of the present invention include various thin film forming techniques, for example, a spin coating method, a coating method, a casting method, and a spa method. Method, vacuum evaporation method, molecular beam evaporation method, liquid phase epitaxy method, atomic layer epitaxy method, roll method, screen printing method, ink jet method, electropolymerization method, rubbing method, spraying method , Water surface spreading method, Langmuir project film method, etc. can be used.
また、 これら製膜中または製膜後の配向化を促進させるために 、 基板自身に配向規制力を有するような結晶性基板や、 配向膜塗 布基板、 物理的または化学的な表面処理を施した基板等を用いる こ とができる。  In order to promote orientation during or after film formation, a crystalline substrate having an alignment regulating force on the substrate itself, an alignment film-coated substrate, or a physical or chemical surface treatment is performed. A substrate or the like can be used.
また、 このような配向処理に適した化合物中の分子骨格と して は、 配向処理過程で液晶性を示すものが望ま しい。 配向処理を施 した後に、 試料温度のガラス転移温度以下への冷却や、 光や熱等 による反応によ り分子間に新たな化学結合を形成する.こ とによ り、 その配向状態を固定するこ とも有効である。. ·  Further, as a molecular skeleton in a compound suitable for such an alignment treatment, one having liquid crystallinity during the alignment treatment is desirable. After the alignment treatment, the sample is cooled to a temperature below the glass transition temperature, and a new chemical bond is formed between the molecules by the reaction of light, heat, etc., thereby fixing the alignment state. This is also effective. ·
また、 基板としてはガラス, シ リ コン, ガリ ウム砒素等の無機 物質からなる基板や、 ポリ カーボネー ト, ポ''リエチレン, ポリス チレン, ポリプロピレン, ポリメ夕ク リル酸メチル等の有機物質 からなる基板、 あるいは、 両者を複合化させた基板を用いるこ と ができる。  Substrates made of inorganic substances such as glass, silicon, gallium arsenide, etc., and substrates made of organic substances such as polycarbonate, polyethylene, polystyrene, polypropylene, and polymethyl methacrylate. Alternatively, a substrate in which both are combined can be used.
これら基板は、 その母材からの切り出し研磨, 射出成形, サ、ン ドプラス ト法, ダイ シング法等の手法によって形成することがで きる。  These substrates can be formed by methods such as cutting and polishing from the base material, injection molding, sand, stamping, and dicing.
また、 発光状態を制御するために、 薄膜 トランジス夕を形成し た基板を用いるこ とも可能である。 こう した薄膜 トランジスタを 形成した基板上に有機電界発光層を形成する。 あるいは、 薄膜ト ランジス夕を形成した基板と有機電界発光層を形成した基板と をそれそれ別々に形成後、 両者を接合させることによって一体化 させるこ とも可能である。 It is also possible to use a substrate on which a thin film transistor is formed in order to control the light emitting state. An organic electroluminescent layer is formed on the substrate on which such a thin film transistor is formed. Alternatively, the substrate on which the thin-film transistor is formed and the substrate on which the organic electroluminescent layer is formed are separately formed, and then the two are joined to form a single unit. It is also possible to let them.
また、 本発明の有機電界発光素子は、 その素子形成の過程で、 必要とする光学的素子構造を作製するために、各種精密加工技術 を用いるこ とができる。 例えば、 精密ダイ アモン ド切断加工, レ —ザ加工, エッチング加工, フォ ト リ ソグラフィ , 反応性イオン エッチング, 集束イオンビームェヅチング等が挙げられる。  Further, in the organic electroluminescent device of the present invention, various precision processing techniques can be used in order to produce a required optical device structure in the process of forming the device. Examples include precision diamond cutting, laser processing, etching, photolithography, reactive ion etching, and focused ion beam etching.
また、 予め、 加工された有機電界発光素子を複数個配列させた り、 多層化した り、 その間を光導波路で結合した り、 または、 そ の状態で封止した りするこ ともできる。  In addition, a plurality of organic electroluminescent elements that have been processed in advance can be arranged, multi-layered, coupled between them by an optical waveguide, or sealed in that state.
また、 素子を不活性ガスまたは不活性液体を充填させた容器に 保存するこ とも可能である。 更に、 その動作環境を調整するため の冷却または加熱機構を共存させることもできる。 これらめ容器 に用いるこ とができる素材と しては銅, 銀, ステンレス, アルミ 二ゥム, 真鍮, 鉄, クロム等の各種金属やその合金、' あるいは、 ポリエチレン, ポリスヂレン等の高分子材料等に '上記金属を分散 させた複合材料, セラ ミ ック材料等を用いるこ とができる。  Also, the element can be stored in a container filled with an inert gas or an inert liquid. Further, a cooling or heating mechanism for adjusting the operating environment can coexist. Materials that can be used for these containers include various metals such as copper, silver, stainless steel, aluminum, brass, iron, and chromium, and alloys thereof, and polymer materials such as polyethylene and polypropylene. In addition, composite materials and ceramic materials in which the above metals are dispersed can be used.
また、 断熱層には発泡スチロール, 多孔質セラ ミ ックス, ガラ ス繊維シー ト, 紙等を用いるこ とができる。 特に、 結露を防止す るためのコーティ ングを行う こ とも可能である。  In addition, styrene foam, porous ceramics, glass fiber sheets, paper, etc. can be used for the heat insulating layer. In particular, it is possible to apply a coating to prevent condensation.
また、 内部に充填する不活性液体としては低融点ワ ックス, 水 銀等の液体や、 その混合物を用いることができる。 また、 内部に 充填する不活性ガス としては、 ヘリ ウム, アルゴン, 窒素等を挙 げることができる。 また、 容器内部の湿度低減のために、 乾燥剤 を入れることも可能である。  In addition, as the inert liquid to be filled therein, liquids such as low-melting wax and mercury, and mixtures thereof can be used. Helium, argon, nitrogen and the like can be cited as the inert gas to be filled inside. It is also possible to add a desiccant to reduce the humidity inside the container.
本発明の有機電界発光素子は、 製品の形成後に、 外観、 特性の 向上や長寿命化のための処理を行ってもよい。 こう した後処理と しては熱アニーリング, 放射線照射, 電子線照射, 光照射, 電波 照射, 磁力線照射, 超音波照射等が挙げられる。 The organic electroluminescent device of the present invention may be subjected to a process for improving the appearance and characteristics and prolonging the life after forming the product. This post-processing and Examples include thermal annealing, radiation irradiation, electron beam irradiation, light irradiation, radio wave irradiation, magnetic field line irradiation, and ultrasonic irradiation.
さらに、 該有機電界発光素子を各種の複合化、 例えば接着, 融 着, 電着, 蒸着, 圧着, 染着, 溶融成形, 混練, プレス成形, 塗 ェ等その用途または目的に応じた手段を用いて、複合化させるこ とができる。  Further, the organic electroluminescent device may be formed into various types of composites, for example, by means such as adhesion, fusion, electrodeposition, vapor deposition, pressure bonding, dyeing, melt molding, kneading, press molding, coating, etc., depending on the purpose or purpose. Can be combined.
また、 本発明の有機電界発光素子は、 駆動させるための電子回 路と近接させて高密度実装させることも可能であり、外部との信 号の授受のィ ン夕一フェースやアンテナ等と一体化するこ とも できる。 図面の簡単な説明  Further, the organic electroluminescent device of the present invention can be mounted in high density in the vicinity of an electronic circuit for driving, and can be integrated with an external interface for transmitting and receiving signals to the outside, an antenna, and the like. It can also be converted. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の基板側から光を取り出す有機.電界発光素子 の基本的素子構成である。 ·. 第 2図は、'本発明の'陰極側から光を取り出す有機電界発光素子 の基本的素子構成である。  FIG. 1 shows a basic element configuration of an organic electroluminescent element for extracting light from the substrate side of the present invention. · FIG. 2 shows the basic structure of an organic electroluminescent device that extracts light from the cathode side of the present invention.
第 3図は、 本発明の第 1種中間層の幾何学形状の一例である。 第 4図は、 本発明の第 1種中間層内部の反射鏡の構成図である ο  FIG. 3 is an example of the geometric shape of the first type intermediate layer of the present invention. FIG. 4 is a structural diagram of a reflecting mirror inside the first kind intermediate layer of the present invention.
第 5図は、 本発明の第 1種中間層を有する有機電界発光素子の 作製手順の一例である。  FIG. 5 is an example of a manufacturing procedure of an organic electroluminescent device having a first type intermediate layer of the present invention.
第 6図は、本発明の第 1種中間層を有する有機電界発光素子の 作製手順の一例である。  FIG. 6 is an example of a procedure for producing an organic electroluminescent device having a first type intermediate layer of the present invention.
第 7図は、本発明の有機電界発光素子の実施例での素子作製装 置の構成図である。  FIG. 7 is a configuration diagram of a device manufacturing apparatus in an embodiment of the organic electroluminescent device of the present invention.
第 8図は、 本発明の第 1種中間層の効果を確認するための試験 用素子の構成図である。 FIG. 8 shows a test for confirming the effect of the first class intermediate layer of the present invention. FIG.
第 9図は、本発明の第 1種中間層の効果を確認するための試験 用素子の特性測定系である。  FIG. 9 is a system for measuring the characteristics of a test element for confirming the effect of the first type intermediate layer of the present invention.
第 1 0図は、 本発明の第 1種中間層画素配置を説明するための 図面である。  FIG. 10 is a drawing for explaining the type 1 intermediate layer pixel arrangement of the present invention.
第 1 1図は、 本発明の第 1種中間層の最適画素サイズを説明す るための図面である。 ·  FIG. 11 is a drawing for explaining the optimum pixel size of the type 1 intermediate layer of the present invention. ·
第 1 2図は、 本発明の表示画素用の第 1種中間層の一例である 第 1 3図は、 本発明の表示画素用の第 1種中間層の一例である 第 1 4図は、 本発明の薄膜トランジスタ内:蔵の画像表示素子に 第 1種中間層を用いた場合の説明図である。 発明を実施するための最良の形態 "  FIG. 12 is an example of a first type intermediate layer for display pixels of the present invention. FIG. 13 is an example of a first type intermediate layer for display pixels of the present invention. FIG. 2 is an explanatory diagram of a case where a first-type intermediate layer is used for an image display element in a thin film transistor of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION "
〔実施例 1〕  (Example 1)
第 1図は、 本発明の有機電界発光素子の基本構造図である。 有 機電界発光素子は、 正負の両電荷の注入, 輸送が可能で、 該両電 荷によ り生成された正孔と電子の再結合によ り光を発生可能な 有機電界発光素子である。 ' ' 該有機電界発光素子に含まれる再結合による発光物質、 または 、該発光物質からの光を受けて二次的に光を発生させることが可 能な蛍光物質を含む有機電界発光素子において、光を発生する発 光層外部にあって、該有機電界発光素子外部への光の取り出し界 面との間に第 1種中間層を含み、該発光層から取り出される光の 強度方位分布が、第 1種中間層を通過した後に拡大していること を特徴とする。 FIG. 1 is a basic structural diagram of the organic electroluminescent device of the present invention. Organic electroluminescent devices are organic electroluminescent devices that can inject and transport both positive and negative charges and can generate light by recombination of holes and electrons generated by the two charges. . '' In an organic electroluminescent element including a luminescent substance due to recombination contained in the organic electroluminescent element or a fluorescent substance capable of receiving light from the luminescent substance and generating light secondarily, A first type intermediate layer is provided between the light emitting layer that emits light and the light extraction surface to the outside of the organic electroluminescent element, and the intensity orientation distribution of light extracted from the light emitting layer is: Expanding after passing through the Type 1 intermediate layer It is characterized by.
通常、 有機電界発光素子は、 一対の電極間に挟まれた有機電界 発光材料があり、 陰極から電子、 陽極から正孔を注入して、 該発 光材料中で再結合させることにより、 光を発生している。  Ordinarily, an organic electroluminescent element has an organic electroluminescent material sandwiched between a pair of electrodes, and injects electrons from a cathode and holes from an anode to recombine in the luminescent material, thereby emitting light. It has occurred.
5 例えば、 第 1図 ( a ) においては陰極 1 と透明陽極 3の間に挟 まれた発光層 2から、 また、 第 1図 ( b ) においては陰極 1 ' と 透明陽極 3 ' の間に挟まれた発光層 2 ' から、 光が発生させられ る。  5 For example, in FIG. 1 (a), the light emitting layer 2 is sandwiched between the cathode 1 and the transparent anode 3, and in FIG. 1 (b), it is sandwiched between the cathode 1 ′ and the transparent anode 3 ′. Light is generated from the light emitting layer 2 ′.
これら発光層 2 , 2 ' には、 既に知られている各種有機電界発0 光材料を用いることができる。 ここでは特に図示していないが、 必要に応じて、 正孔輸送層や電子輸送層、 正孔注入層や電子注入 層等の機能化層を多層化することができる。 '  Various known organic electroluminescent materials can be used for the light emitting layers 2 and 2 '. Although not specifically illustrated here, functionalized layers such as a hole transport layer and an electron transport layer, and a hole injection layer and an electron injection layer can be multilayered as necessary. '
これらの電界発光する部分は高々数 1 0 0 n mの薄膜である ため、 ガラスや透明プラスチヅクスのような基板 4 , 4 ' 上に形5 成されている。 発光層 2 , 2 ' 内で発生した光は透明陽極 3 , 3 ' を透過し、 更に基板 4 , 4 f を透過して、 素子外部に取り出さ れる。 この最終的に光が素子外部に取り出される素子界面を、 こ こでは光取り出し界面 6 , 6 ' と呼ぶことにする。 Since these electroluminescent portions are thin films having a thickness of at most 100 nm, they are formed on substrates 4 and 4 ′ such as glass and transparent plastics. Emitting layer 2, 2 'light generated in the transparent anode 3, 3' through the further transmitted through the substrate 4, 4 f, taken out to the outside of the device. The device interface from which light is finally extracted to the outside of the device is referred to as the light extraction interface 6, 6 'here.
• ' 本発明の特徴となる基本構成は、 この発光層 2 , 2 ' 外部にあ0 つて、 光取り出し界面 6 , 6 ' との間の部分に、 第 1種中間層 5 , 5 ' と呼ぶ領域が形成されていることである。 • The basic structure which is a feature of the present invention is that the first type intermediate layers 5 and 5 ′ are provided outside the light emitting layers 2 and 2 ′ and between the light extraction interfaces 6 and 6 ′. That is, an area is formed.
この領域を通過して光が外部に誘導される過程で、 光の強度方 位分布が、 第 1種中間層 5を通過した後に拡大していることが特 徴となる。 第 1図 ( a ) ではそのような第 1種中間層が基板 4の5 内部に形成されている場合を、 また、 第 1図 ( b ) では基板 4 ' の外部の保持媒体 7内部に形成された第 1種中間層 5 ' が形成 されたものが接合された構造を示す。 In the process in which light passes through this region and is guided to the outside, the characteristic is that the intensity distribution of light expands after passing through the first type intermediate layer 5. FIG. 1 (a) shows the case where such a type 1 intermediate layer is formed inside 5 of the substrate 4, and FIG. 1 (b) shows the case where the intermediate layer is formed inside the holding medium 7 outside the substrate 4 '. 1st intermediate layer 5 'formed FIG. 2 shows a structure in which the bonded parts are joined.
また、 第 2図は、 基板 1 1 とは反対の上面側から光が取り出さ れる素子の構造について示す。 陽極 8 , 発光層 9 , 透明陽極 1 0 の基板 1 1上への積層順序が逆になつており、発光層 9内部で発 生した光は素子上部へ誘導される。 このような場合は、 透明陽極 1 0の上部に保持媒体 1 4の内部に形成された第 1種中間層 1 2が接合され、 内部の光はこの中間層 1 2を経由して、 光取り出 し界面 1 3に達し、 素子外部に至る。  FIG. 2 shows a structure of an element from which light is extracted from the upper surface side opposite to the substrate 11. The order of stacking the anode 8, the light emitting layer 9, and the transparent anode 10 on the substrate 11 is reversed, and the light generated inside the light emitting layer 9 is guided to the upper part of the element. In such a case, the first type intermediate layer 12 formed inside the holding medium 14 is joined to the upper part of the transparent anode 10, and the light inside passes through this intermediate layer 12 to collect light. It reaches the outgoing interface 13 and reaches the outside of the device.
本発明の第 1種中間層は、 例えば、 第 1図 ( a ) は基板内部の 面内方向、 また、 第 1図 ( b ) や第 2図では保持媒体内部の面内 方向での第 1種中間層の境界面において、 光を反射または拡散で きるような構造で、 その第 1種中間層の内部は均一な光学媒体と なっている。  For example, FIG. 1 (a) shows the first type intermediate layer in the in-plane direction inside the substrate, and FIG. 1 (b) and FIG. 2 show the first type in the in-plane direction inside the holding medium. At the interface of the seed intermediate layer, light can be reflected or diffused, and the inside of the first intermediate layer is a uniform optical medium.
発光層内部で発生した光は、 一般に等方的に光を発生するため 、 光取り出し界面までの各薄膜での界面において反射され、 多く の光が素子外部に取り出されることなく損失する。その反射によ る損失は、 各薄膜間の屈折率の差が大きい程拡大し、 特に、 大き な損失となるのは基板と空気との界面における損失である。 この ような反射ば、一般に界面の法線方向に対する角度が大きくなる に伴い増大し、 所謂、 全反射角以上の方位角で放出された光は永 久に素子外部に取り出すことができなくなる。  Light generated inside the light emitting layer generally generates light isotropically, and is reflected at the interface of each thin film up to the light extraction interface, and a large amount of light is lost without being extracted outside the device. The loss due to the reflection increases as the difference in the refractive index between the thin films increases, and the loss at the interface between the substrate and air is particularly large. Such reflection generally increases as the angle of the interface with respect to the normal direction increases, and light emitted at an azimuth angle equal to or greater than the so-called total reflection angle cannot be taken out of the device forever.
例えば、 基板の屈折率を 1 .5 0、 空気の屈折率を 1 とすると 全反射角 e c sin— 1 ( 1 / 1 .5 0 ) = 4 1 .8 ° となり、 これ よ り広角に放出された光は基板面内方向にのみ伝播し、完全な損 失となる。 For example, assuming that the refractive index of the substrate is 1.50 and the refractive index of air is 1, the total reflection angle ec sin- 1 (1 / 1.50) = 41.8 °, which is emitted at a wider angle. The light propagates only in the in-plane direction of the substrate, resulting in complete loss.
そこで、 第 1種中間層のように、 一つの層の膜面内に特定の幾 何学的構造を有する第 1種中間層を形成することにより、 この面 内方向に伝播する光の光路を変更し、面外方向に光を誘導するこ とができる。 Therefore, as in the case of the type 1 intermediate layer, specific layers are included in the film surface of one layer. By forming the first type intermediate layer having a geometric structure, the optical path of the light propagating in the in-plane direction can be changed, and the light can be guided in the out-of-plane direction.
更に、 このような第 1種中間層による光散乱または光路拡散を 効果的に実施するためには、発光層ノ透明陽極と第 1種中間層と の界面における反射をなるベく少なくすることが必要である。即 ち、 屈折率差をなるぺ.く小さくするか、 第 1種中間層側の屈折率 をよ り大きくすることが望ましい。 但し、 後者の場合、 最終的な 光取り 出し界面における空気との屈折率差がよ り大き く なるた めに、 別途反射防止手段が必要となる場合がある。  Further, in order to effectively perform such light scattering or light path diffusion by the first type intermediate layer, it is necessary to minimize reflection at the interface between the transparent anode of the light emitting layer and the first type intermediate layer. is necessary. That is, it is desirable to reduce the refractive index difference, or to increase the refractive index on the side of the type 1 intermediate layer. However, in the latter case, separate anti-reflection means may be required because the difference in refractive index from air at the final light extraction interface becomes larger.
第 1種中間層はその電界発光素子の発光単位となる画素毎に 形成されていることが望ましい。 即ち、 第 1種中間層が特定の形 状を有する画素毎に区切られているか、 または、 該.中間層とは異 なる性状の物質からなる隔壁によ り、画素毎に区切られているこ とを特徴とする。  It is preferable that the first type intermediate layer is formed for each pixel which is a light emitting unit of the electroluminescent device. That is, the first type intermediate layer is separated for each pixel having a specific shape, or is separated for each pixel by a partition made of a material having a property different from that of the intermediate layer. And features.
第 3図は、 このような第 1種中間層の幾何学的形状の例を示す 。 なお、 第 3図 ( a ) 〜 ( d ) は、 左側は断面構造'、 右側は立体 構造を示す。 いずれも上側が発光層側、 下側が光取り出し界面側 とした。 - 第 3図 ( a ) は、 4つの側面からなる台形型をしており、 上側 の発光層から侵入した光は、 4つの側面で反射されてその進行方 向を変え、 下側の光取り出し界面に達する。 従って、 4つの方向 に対して光の反射拡散が可能である。  FIG. 3 shows an example of such a geometric shape of the type 1 intermediate layer. 3 (a) to 3 (d) show the cross-sectional structure on the left and the three-dimensional structure on the right. In each case, the upper side was the light emitting layer side, and the lower side was the light extraction interface side. -Fig. 3 (a) shows a trapezoidal shape with four sides, and the light entering from the upper light emitting layer is reflected by the four sides and changes its traveling direction, and the lower light extraction Reach the interface. Therefore, light can be reflected and diffused in four directions.
第 3図 ( b ) は、 断面は台形型であるが全体は円錐形状で、 光 取り出し界面から見た反射面の形状は円形であるため、面内方向 への光の反射拡散は一様となる。 第 3図 ( c ) は、 直方体構造でその側面において単純に反射さ れ、発光層側と光取り出し界面側の光の入出射角は同じとなるた め、 その反射損失を低減する別の界面構造の工夫が光取り出し界 面において必要となる。 しかし、 その側面が光散乱性であると、 光取り出し量を増やすことが可能となる。 Fig. 3 (b) shows that the cross section is trapezoidal, but the whole is conical and the shape of the reflecting surface is circular as viewed from the light extraction interface, so that the reflection and diffusion of light in the in-plane direction is uniform. Become. Fig. 3 (c) shows a rectangular parallelepiped structure in which the light is simply reflected on the side surface, and the light incident and exit angles on the light emitting layer side and the light extraction interface side are the same. The structure needs to be improved in the light extraction area. However, if the side surface is light scattering, it is possible to increase the light extraction amount.
第 3図 ( d ) は、 半球形状であり、 パラボラ型の反射構造を第 1種中間層に持たせることで、 よ り面内に伝播する光をよ り多く 素子外部の取り出し方向に変更させることが可能となる。  Fig. 3 (d) shows a hemispherical shape. By providing a parabolic reflection structure in the first type intermediate layer, more light propagating in the plane can be changed to the extraction direction outside the element. It becomes possible.
上記以外にも、 特殊な光学設計によって、 取り出し界面かち臨 む画素毎に区切られた第 1種中間層の形状または隔壁の形状が、 光の取り出し界面に対して平行でない平面または曲面構造とす ることにより、面内方向の光を面外方向に.変化させる設計が可能 である。 特に、 第 3図 ( b ) の構造においては、 取り出し界面か ら臨む画素毎に区切られた第 1種中間層の形状または隔壁の形 状が多角形であり、 かつ、 多角形を形成す'る形状面のうち少なく とも 2つが平行であるような面であればよい。  In addition to the above, the shape of the first type intermediate layer or the shape of the partition walls divided for each pixel approaching the extraction interface by a special optical design is a plane or curved surface that is not parallel to the light extraction interface. By doing so, it is possible to design to change the light in the in-plane direction out of the plane. In particular, in the structure shown in FIG. 3 (b), the shape of the first type intermediate layer or the shape of the partition wall divided for each pixel facing the extraction interface is a polygon, and the polygon forms a polygon. It is sufficient that at least two of the shaped surfaces are parallel.
この平行である面に対しては、多角形を形成する平行な形状面 の対の内、 少なく とも一組が、 発生する光の波長の 0 . 2 5 〜 2 波長分の長さであるように設定する。 とれによ りその面の間で反 射する光に対しては、微小共振器効果による光増幅性を付与する ことが可能となる。  For this parallel surface, at least one set of pairs of parallel-shaped surfaces forming a polygon should have a length of 0.25 to 2 wavelengths of the wavelength of the generated light. Set to. This makes it possible to impart light amplifying property due to the micro-cavity effect to light reflected between the surfaces.
このような効果は、 特に、 光誘導媒体にレーザ発振可能な色素 を併せて分散させることで実現される。同様に図示は省略したが 、 第 1種中間媒体の形状が円柱状であって、 円形の直径が発生す る光の波長の 0 . 2 5 〜 2波長分の長さである場合にも、 同様に 微小共振器効果をその内部に持たせることが可能となる。 第 4図には、 このような取り出し界面から臨む画素毎に区切ら れた第 1種中間層または隔壁の、 光の取り出し界面及び光発光層 に接していない界面での光を、反射または屈折させる機能を有す る第 1種中間層の具体的構造を示した。 Such an effect is particularly realized by dispersing a dye capable of laser oscillation in a light-guiding medium. Similarly, although not shown in the drawings, even when the type 1 intermediate medium has a cylindrical shape and the circular diameter is 0.25 to 2 wavelengths of the wavelength of the generated light, Similarly, it becomes possible to have a micro-resonator effect inside. Fig. 4 shows how light of the first type intermediate layer or partition, which is separated for each pixel facing the light extraction interface, is reflected or refracted at the light extraction interface and the interface not in contact with the light emitting layer. The specific structure of the first class intermediate layer having functions is shown.
第 4図 ( a ) は、 第 1種中間媒体の側面に反射鏡が形成されて いる一例で、保持媒体 1 5の中に形成した台形型の第 1種中間層 1 8の側面に、 反射鏡 1 6が形成されている。 中央部は屈折率が 調整された光誘導媒体 1 7が充填されている。  FIG. 4 (a) shows an example in which a reflecting mirror is formed on the side surface of the type 1 intermediate medium, and the side surface of the trapezoidal type 1 type intermediate layer 18 formed in the holding medium 15 is reflected. Mirror 16 is formed. The central portion is filled with a light guiding medium 17 whose refractive index has been adjusted.
第 4図 ( b ) は、 保持媒体 1 5 ' 中に形成された第 1種中間媒 体 1 8 ' で、 図 ( a ) の反射鏡 1 6の代わりに散乱鏡 1 9が形成 されており、 中央部は屈折率が調整された光誘導媒体 1 7〃 が充 填されている。  Fig. 4 (b) shows a type 1 intermediate medium 18 'formed in the holding medium 15', in which a scattering mirror 19 is formed instead of the reflecting mirror 16 in Fig. (A). The central part is filled with a light guiding medium 17 whose refractive index has been adjusted.
このような反射または散乱機能は、第 1種中間層とその保'持媒 体との屈折率差が大きい場合にも可能である。 例えば、 第 4'図 ( c ) の保持媒体 1 5 中に形成された第 4図 ( a ) と同様の形状' の第 1種中間媒体 1 8 ' 'で、 中央部は同じく屈折率が調整された 光誘導媒体 1 7 3 3が充填されている構造でも、 同様の機能を得る ことが可能である。 但し、 この場合は、 側面に到達した光の一部 が保持媒体 1 '5 ',へ抜け出る可能性がある。 ' ' Such a reflection or scattering function is possible even when the difference in the refractive index between the first type intermediate layer and its holding medium is large. For example, a type 1 intermediate medium 18 ′ ″ having the same shape as that of FIG. 4 (a) formed in the holding medium 15 of FIG. 4 ′ (c), and the refractive index is also adjusted at the center. A similar function can be obtained even with a structure filled with the light guiding medium 173 3 . However, in this case, a part of the light reaching the side surface may escape to the holding medium 1 '5'. ''
中央部の光誘導媒体は、発光層からの光を外部に導く部分であ るが、 その中に各種機能性色素を分散させることにより、 有機電 界発光素子を高機能化させることが可能である。.  The light guiding medium in the center is a part that guides light from the light emitting layer to the outside. By dispersing various functional dyes in the medium, it is possible to enhance the function of the organic electroluminescent device. is there. .
特に、 発光層で発生する光を吸収し、 別の色の光を発生するこ とが可能な物質を含有することで、発光の色変換を行うことが可 能となる。 各画素毎に赤, 綠, 青の三原色等の光発生が可能とな るよう担当色を分担させ、 その幾つかの光を発光層の光の色変換 によって実現することによ り、簡便で高効率なカラ一表示が可能 となる。 In particular, by containing a substance that can absorb light generated in the light-emitting layer and generate light of another color, color conversion of light emission can be performed. Each pixel is assigned a responsible color so that light of the three primary colors of red, green, and blue can be generated, and some of the light is converted to light in the light-emitting layer. With this, simple and efficient color display can be achieved.
このような第 1種中間層は、 その内部での多重反射による干渉 によって、 素子外部での発光色の変化を防止する観点から、 光の 波長より も十分厚い層であることが望ましい。  Such a first type intermediate layer is desirably a layer sufficiently thicker than the wavelength of light from the viewpoint of preventing a change in emission color outside the element due to interference due to multiple reflections inside.
また、 発光層から発生した光を、 全て第 1種中間層に導くため には、 両者の屈折率差が無いのが望ましいことは既述した。 その 接触部分の面の発光層側が、第 1種中間層側によって覆われるこ とが望ましい。 なぜならば、 発光層側が大きいと、 第 1種中間層 の外側に発光する部分が生じるために、発生した光を十分に誘導 することが困難となる。 .  In addition, as described above, in order to guide all the light generated from the light emitting layer to the first type intermediate layer, it is preferable that there is no difference in refractive index between the two. It is desirable that the light emitting layer side of the surface of the contact portion is covered with the first type intermediate layer side. This is because, if the light emitting layer side is large, a light emitting portion is generated outside the first type intermediate layer, and it is difficult to sufficiently guide the generated light. .
また、 画素サイズは、 第 1種中間層の光取り出し界面側の面積 程度であることが望ましい。 このことから発光層側の面積はより 小さな面積である.ことが望ましい。  Further, the pixel size is desirably about the area of the light extraction interface side of the first type intermediate layer. For this reason, it is desirable that the area on the light emitting layer side be smaller.
通常界面での全反射による損失を考慮した場合、発光層で発生 した光の高々 2 0 %が外部に取り出されるだけであるが、面内方 向に伝播する光も、第 1種中間層によって全て素子外部に誘導さ れた場合、 その取り出し効率は 1 0 0 %となる。 従って、 1つの 画素当りの発光層部分の面積は 1 / 5でよい。 ' また、 第 1図 ( b ) のように、 透明陽極 3 ' と第 1種中間層 5 ' との間に透明基板 4 ' が介在する場合は、発光層 2 ' から発生 した光が第 1種中間層' に到達するまでに拡散してしまうため、 両者の.距離は短いほど望ましい。実質的には光の波長より も大き く、 1 m m以下程度が必要である。  Normally, when considering the loss due to total reflection at the interface, at most 20% of the light generated in the light emitting layer is extracted to the outside, but the light propagating in the in-plane direction is not If all of them are guided outside the element, the extraction efficiency is 100%. Therefore, the area of the light emitting layer portion per pixel may be 1/5. As shown in FIG. 1 (b), when the transparent substrate 4 ′ is interposed between the transparent anode 3 ′ and the first kind intermediate layer 5 ′, the light generated from the light emitting layer 2 ′ is Since they diffuse before reaching the seed intermediate layer, the shorter the distance between them, the better. Practically, it needs to be larger than the wavelength of light and about 1 mm or less.
以上のような形状と寸法、屈折率の条件を満たす第 1種中間層 を、 発光層と光取り出し界面との間に設けることにより、 よ り多 くの光を素子外部に誘導することが可能となる。 By providing the first type intermediate layer satisfying the conditions of the shape, dimensions, and refractive index as described above between the light emitting layer and the light extraction interface, the number of layers can be increased. More light can be guided to the outside of the device.
〔実施例 2〕  (Example 2)
次に、 実施例 1 に示す第 1種中間層の構造の内、 円錐型構造の 第 1種中間層の作製手順の例を第 5図に示す。  Next, among the structures of the first type intermediate layer shown in Example 1, an example of a procedure for manufacturing a first type intermediate layer having a conical structure is shown in FIG.
( 1 ) 有機電界発光素子を形成するガラス基板 2 0には、 硼 珪酸ガラス (サイズ 4 0 X 4 0 X 0 . 8 m m、 両面研磨) を用い た  (1) Borosilicate glass (size 40 X 40 X 0.8 mm, double-side polished) was used for the glass substrate 20 on which the organic electroluminescent element was formed.
( 2 ) ガラス基板にはサン ドプラス ト法 (微細な砂状粒子を 高速噴射して加工する手法) で、 噴射範囲.1 0 0 X 6 0 mm、 加 ェ上穴 2 9 5 . 5 ju m 加工下穴 8 3 6 . 5 m、 テ一パ角 7 0 ° で、 円錐状の加工穴を明ける。  (2) The sandblast method (a method of high-speed injection of fine sand-like particles) is applied to the glass substrate. The injection area is 100 x 60 mm, and the upper hole is 295.5 jum. Drill a conical hole with a drilling hole of 86.5 m and a taper angle of 70 °.
( 3 ) これに分子線蒸着装置を用いて加工下穴側からアルミ 二ゥムを 1 0 0 n m蒸着し、 反射鏡 2 2 とする。  (3) On this, 100 nm of aluminum was deposited from the prepared hole side using a molecular beam deposition apparatus to form a reflector 22.
( 4 ) 加工穴に屈折率調整樹脂 2 3を光誘導媒体として充填 する。屈折率調整樹脂は用いる有機電界発光層の屈折率に近い樹 脂を選択する。 本実施例ではポリメタク リル酸メチル, ポリスチ レン, ポリ ビニルアルコール, ポリアミ ドから選択して用いた。  (4) Fill the processed hole with the refractive index adjusting resin 23 as a light guiding medium. As the refractive index adjusting resin, a resin close to the refractive index of the organic electroluminescent layer to be used is selected. In this example, a material selected from polymethyl methacrylate, polystyrene, polyvinyl alcohol, and polyamide was used.
( 5 ) 十分に硬化後、 その上面と下面に余分にはみ出た樹脂 を'研磨剤で表面を研磨して平坦にした。 ' '  (5) After sufficient curing, the excess resin that had protruded on the upper and lower surfaces was polished with an abrasive to flatten the surface. ''
( 6 ) 次に、 この上面側に基板温度室温で I Z 0 ('I ndium Z inc Oxide: I n Z n O ) をスパヅ夕装置で薄膜形成し、 透明 陽極 2 5 とした。 I Z 0の膜厚は l O O nm、 シート抵抗は 6 0 Ω /口であった。 これを純水の流水下で 1時間洗浄後、 純水中で 1 5分超音波洗浄を 2回繰り返した後、 アセ ト ン (和光純薬製特 級試薬) 中で 1 5分超音波洗浄し、 乾燥窒素を吹き付けて乾燥さ せた。 これを大気中で紫外線ランプを 5分間照射した後、 モリブデン 製基板ホルダ (日本バックスメタル製) に装着し、 手早く分子線 蒸着装置の交換室に基板ホルダごと装着した。 (6) Next, a thin film of IZ0 ('Indium Zinc Oxide: InZnO) was formed on the upper surface side at a substrate temperature of room temperature by a sputtering device to obtain a transparent anode 25. The film thickness of IZ 0 was 100 nm, and the sheet resistance was 60 Ω / port. This was washed in running pure water for 1 hour, and then ultrasonically washed twice in pure water for 15 minutes, and then ultrasonically washed in acetone (special grade reagent manufactured by Wako Pure Chemical Industries) for 15 minutes. Then, it was dried by blowing dry nitrogen. After irradiating this with an ultraviolet lamp for 5 minutes in the atmosphere, it was mounted on a molybdenum substrate holder (manufactured by Nippon Bax Metal) and quickly mounted together with the substrate holder in the exchange room of the molecular beam deposition system.
( 7 ) この分子線蒸着装置内で有機電界発光層 2 6を形成し 、 更に、 パターニングマスクを介して陰極 2 7を形成した。 本発 明の効果を確認するため、 ここでは発光層に正孔輸送層と有機発 光材料層とからなる二層型構造を採用した。正孔輸送層には 一 N P D ( 4, 4一 b i s CN-( l - n a p h t h y l )-N - p h e ny l am i n o ) b i p h e n y l ) を用い、 有機発光物 質には A l q 3 ( a l um i n i um t r i s ( 8 -h y d r o q u i n o l i n e )) を用いた。  (7) An organic electroluminescent layer 26 was formed in the molecular beam deposition apparatus, and a cathode 27 was formed via a patterning mask. In order to confirm the effects of the present invention, here, a two-layer structure including a hole transport layer and an organic light emitting material layer was adopted as the light emitting layer. One NPD (4,4-bis-CN- (l-naphthyl) -N-phenylamino) biphenyl) was used for the hole transport layer, and Alq3 (aluminiium tris) was used for the organic luminescent material. (8-hydroquinoline)) was used.
各膜厚は 6 0 nmとし、 I Z 0上に正孔輸送層、 有機発光物質 の順に真空蒸着した。 その上に L i Fを電子注入層として 0.5 nm蒸着した。 これら正孔輸送層から電子注入層までが有機電界 発光層 2 6に相当する。 更に、 A 1を陰極として蒸着した。  Each film thickness was 60 nm, and a hole transport layer and an organic luminescent material were vacuum-deposited on IZO in this order. On top of that, 0.5 nm of LiF was deposited as an electron injection layer. The region from the hole transport layer to the electron injection layer corresponds to the organic electroluminescent layer 26. Further, A1 was deposited as a cathode.
第 7図は、本実施例の試料作製に用いた分子線蒸着装置の装置 構成を示す。 正孔輸送層, 発光層及び陰極は、 分子線蒸着装置 ( 日電ァネルバ製、 型式 OMB E, I MB E - 6 2 0 ) 内で蒸着形 成した。  FIG. 7 shows an apparatus configuration of a molecular beam evaporation apparatus used for preparing a sample of this example. The hole transport layer, light emitting layer and cathode were formed by vapor deposition in a molecular beam deposition apparatus (models OMB E, IMBE-620, manufactured by Nidec ANELVA).
該分子線蒸着装置は基板ホルダを交換,装着するための交換室 、交換室内の基板を搬送して最高 1 3 0 0 °Cまで加熱できる前処 理室、 正孔輸送層, 有機発光材料層及び無機障壁層を形成する第 1成長室、 金属電極を形成する第 2成長室、 形成された薄膜の表 面状態を E S C A, AE Sで分析する分析室から成っている。  The molecular beam deposition apparatus includes an exchange chamber for exchanging and mounting a substrate holder, a pretreatment chamber capable of transporting a substrate in the exchange chamber and heating the substrate up to a maximum of 130 ° C., a hole transport layer, and an organic luminescent material layer. It consists of a first growth chamber for forming an inorganic barrier layer, a second growth chamber for forming metal electrodes, and an analysis chamber for analyzing the surface condition of the formed thin film by ESCA and AES.
各室のベース圧力は、 交換室以外は 1 0— 1 Q T o r r台、 交換 室は 1 0— 9 T o r r台であ り、 各室の間はゲ一 トバルブによつ て仕切られ、 必要に応じて、 基板ホルダごと基板を超高真空下で 移動できる構造になっている。 The base pressure of each chamber is 10 to 1 Q Torr units except for the exchange room, and 10 to 9 Torr units for the exchange room. A gate valve is used between each room. The structure is such that the substrate can be moved together with the substrate holder under ultra-high vacuum if necessary.
また、 交換室への基板の装着や製膜された試料の取出しは、 ゲ ―トバルブで仕切られたグローブボックス (美和製作所製) を介 し、 大気圧下、 但し酸素及び水分を除去した乾燥窒素の環境下で 行うことが可能となっている。  In addition, the mounting of the substrate in the exchange chamber and the removal of the film-formed sample are performed at atmospheric pressure through a glove box (manufactured by Miwa Seisakusho), which is separated by a gate valve, but with dry nitrogen from which oxygen and moisture have been removed. It is possible to perform under the environment.
蒸着に際しては、必要に応じ第 1及び第 2成長室に'基板を移動 させて行った。蒸着時には該当する成長室チヤンバを液体窒素で 冷却しながら、各成長室に予め装着した原料物質を加熱昇華また は蒸発させることで基板上に蒸着し、 薄膜を形成した。 原料物質 は、 有機物質には石英製るつぼ (日電ァネルバ製)、 無機物質に · は窒化硼素製るつぼ (信越化学製) に収納し、 各成長室'に装着後 、 真空状態にし、 ヒー夕加熱によって原料物質を気化させる。  At the time of vapor deposition, the substrate was moved to the first and second growth chambers as necessary. At the time of vapor deposition, while the corresponding growth chamber chamber was cooled with liquid nitrogen, the raw material previously mounted in each growth chamber was heated and sublimated or evaporated to form a thin film on the substrate. Raw materials are stored in a crucible made of quartz (made by Nidec ANELVA) for organic substances and in a crucible made of boron nitride (made by Shin-Etsu Chemical) for inorganic substances. The raw material is vaporized.
るつぼの出口に?ま.機械式のシャッ夕が設けられており、所定時 間シャ ツ夕を開く こどで、気化した原料物質を基板上に蒸着させ 蒸着された原料の膜厚は、基板近く に置かれた水晶振動子型膜 厚計により計測し、 所定の膜厚の薄膜を形成した。 また、 基板の 温度は— 9 0 °C;〜 1 5 0 °Cの範囲で所定の温度に保持するこ と が可能である。 ·  At the exit of the crucible? A mechanical shut down is provided, and when the shut down is opened for a predetermined time, the vaporized raw material is deposited on the substrate, and the film thickness of the deposited raw material is placed near the substrate. A thin film having a predetermined thickness was formed by measurement using a quartz crystal film thickness gauge. The temperature of the substrate can be maintained at a predetermined temperature within a range of −90 ° C. to 150 ° C. ·
蒸着速度は、 有機物及び無機障壁層は 0 . 1 n m Z s、 陰極材 料は 3 0 n m / s程度になるようにるつぼの温度を設定した。 蒸着手順は、 まず第 1成長室内で正孔輸送層を所定の膜厚に形 成後、 同じチヤンバ内で有機発光材料層と無機障壁層からなる発 光層を所定の膜厚形成した。 これを一旦交換室に搬送する。 そこ で、ステンレス製の金属マスクを装着した基板ホルダに試料を載 せ換えた後、 第 2成長室に試料を搬送し、 陰極を形成した。 合金 性陰極の混合比は、分析室の XP Sによって各元素の存在比率か ら決定した。陰極形成時の基板温度は一 9 0°C〜 3 0°Cの範囲の 所定温度に設定した。 The deposition rate was set so that the crucible temperature was about 0.1 nm Zs for the organic and inorganic barrier layers and about 30 nm / s for the cathode material. In the deposition procedure, first, a hole transport layer was formed to have a predetermined thickness in the first growth chamber, and then a light emitting layer including an organic light emitting material layer and an inorganic barrier layer was formed to have a predetermined thickness in the same chamber. This is once transported to the exchange room. The sample was placed on a substrate holder with a stainless steel metal mask. After the replacement, the sample was transported to the second growth chamber to form a cathode. The mixing ratio of the alloy cathode was determined from the abundance ratio of each element by XPS in the analysis room. The substrate temperature during the formation of the cathode was set to a predetermined temperature in the range of 190 to 30 ° C.
陰極まで形成した試料は交換室に移動し、 そこからグロ一プボ ヅクスに取出し、 グローブボックス内部でガラス板のカバ一をし 、 その端部を紫外線硬化樹脂にて封止した。 最終的な試料では発 光層エリアは封止され、 その外部に陽極, 陰極が引き出されてお り、 これら電極に対してはプローバを用いて外部から電圧を印加 させることができる。  The sample formed up to the cathode was moved to an exchange room, taken out of the glove box, covered with a glass plate inside the glove box, and the end was sealed with an ultraviolet curable resin. In the final sample, the light emitting layer area is sealed, and the anode and cathode are drawn out of the area. A voltage can be applied to these electrodes from outside using a prober.
また、第 6図には低温での膜形成が困難な透明陽極を有する有 機電界発光素子の作製手順の一部を示した。 . '  FIG. 6 shows a part of a procedure for fabricating an organic electroluminescent device having a transparent anode which is difficult to form a film at a low temperature. '
( 1 ) 基板の準備、  (1) Preparation of substrate,
( 2 ) テ一パ穴加工、 ' ( 3 ) 反射鏡蒸着までのプロセスは、 第' 5図の場合と全く同- 一であるのでここでは省略する。 '  (2) Taper hole processing and '(3) The process up to reflector mirror deposition is exactly the same as in the case of FIG. 5 and will not be described here. '
第 5図では、 透明樹脂を第 5図 ( 4 ) で封入したものを基板と して、 その後 I Z 0のような透明陽極を形成した。 これに対し、 I T 0 ( I ndium T in O ide: I n S nひ) 'のような透明陽極 でシート抵抗の低い電極を形成するためには、基板温度'を 1 0 0 °C以上にして蒸着する必要があり、予め屈折率調整樹脂を封入し たものを基板とすることができない。  In FIG. 5, the transparent resin encapsulated in FIG. 5 (4) was used as a substrate, and then a transparent anode such as IZO was formed. On the other hand, in order to form an electrode with a low sheet resistance using a transparent anode such as IT0 (Indium Tin Oide: InSn), the substrate temperature must be 100 ° C or higher. Therefore, it is not possible to use a substrate in which a refractive index adjusting resin is sealed in advance as a substrate.
そこで、 この場合は基板厚さ 5 0 mのガラス基板 3 1上に、 別途 I T◦を透明陽極 3 0としてスパッ夕蒸着し、 同様に分子線 蒸着装置を用いて、 正孔輸送層, 有機発光材料, 電子注入層を順 次蒸着したものを発光層 2 9とした。その上に A 1陰極 2 8を蒸 着した後、 ガラス封止したものを基本有機電界発光素子部 3 2 と した。 Therefore, in this case, sputter deposition was performed using IT◦ as a transparent anode 30 separately on a glass substrate 31 having a thickness of 50 m, and the hole transport layer and the organic luminescence were similarly formed using a molecular beam deposition apparatus. The light-emitting layer 29 was obtained by sequentially depositing the material and the electron injection layer. A1 cathode 2 8 After the attachment, a glass-sealed one was used as a basic organic electroluminescent element part 32.
第 6図 ( 4 ' ) に示す様に基本有機電界発光素子部 3 2を基板 の接着面 3 3 と接合した。 この際、 接着面 3 3 に薄く屈折率調整 樹脂の希薄溶液を浸透させて予備接合しておく ことが効果的で あった。  As shown in FIG. 6 (4 '), the basic organic electroluminescent element 32 was bonded to the bonding surface 33 of the substrate. At this time, it was effective to preliminarily join the adhesive surface 33 by thinly penetrating a dilute solution of the refractive index adjusting resin.
次に第 6図 ( 5 ' ) に示す様に、 前記の加工穴に屈折率調整樹 脂 3 3を封入し、 はみ出た樹脂は研磨除去して素子を完成させた 。 これらの作業はグローブボツクス外で両者の位置合わせを行い つつ接合した。  Next, as shown in FIG. 6 (5 '), a refractive index adjusting resin 33 was sealed in the processed hole, and the protruding resin was polished and removed to complete the element. These operations were performed while aligning the two outside the glove box.
いずれの場合も、画像表示素子とする場合には透明陽極及び陰 極に対して表示画素としての電極パターニングが必要であるが、 ここでは図示は省略した。  In any case, when forming an image display element, electrode patterning as a display pixel is necessary for the transparent anode and the cathode, but they are not shown here.
画像表示素子として駆動させるためには、 1枚の基板内に複数 の加工穴を形成して、 第 中間媒体を作製した。 但し、 現在の加 ェ精度の都合上、 このサイズの加工穴よ り細かな穴開けが困難で あつたので、 これに合せて、 発光層を挟む陽極, 陰極は幅 3 0 0 z mの単純マ ト リ ックス構造とした。 このような電極を間隔 1 0 0 mで縦横それそれ 4 0本ずつ形成し、 その交点を一つの'画素' 部とした。  In order to drive as an image display element, a plurality of processing holes were formed in one substrate to produce a first intermediate medium. However, due to the current accuracy, it was difficult to make a finer hole than a hole of this size, so the anode and cathode sandwiching the light-emitting layer had a width of 300 zm. It has a trix structure. Such electrodes were formed at intervals of 100 m, each vertically and horizontally, and each intersection was defined as one 'pixel' portion.
この陽極、 陰極に外部電線を銀ペース トを用いて接合し、 任意 の陽極, 陰極を 1つずつ選択し 8 Vの電圧を印加したところ、 全 ての画素位置で発光を確認することができた。  External wires were bonded to the anode and cathode using a silver paste, an arbitrary anode and cathode were selected one by one, and a voltage of 8 V was applied. Light emission was confirmed at all pixel positions. Was.
〔実施例 3〕  (Example 3)
次に、 単一の画素を持つ試験用有機電界発光素子を形成し、 そ の光拡散特性を以下に示す手法で評価した。 第 8図は、 上記試験用有機電界発光素子の素子構成を示す。 第 8図 ( a ) は第 1種中間層を有する素子、 同 ( b ) は第 1種中間 層を持たない素子を示す。 Next, a test organic electroluminescent device having a single pixel was formed, and its light diffusion characteristics were evaluated by the following method. FIG. 8 shows a device configuration of the test organic electroluminescent device. FIG. 8 (a) shows a device having the first kind intermediate layer, and FIG. 8 (b) shows a device without the first kind intermediate layer.
有機電界発光を起こす部分はいずれも同じであ り、 その製法は 、 実施例 2の第 6図の手法によって作製した。 即ち、 第 8図 ( a ) では上から陰極 3 5 , 電子注入層 3 6 , 有機発光材料 3 7 , 正 孔輸送層 3 8 ,透明陽極 3 9をガラス基板 4 0上に形成したもの を基本有機電界発光素子部 4 1 とした。  The portions causing organic electroluminescence were the same in all cases, and were manufactured by the method shown in FIG. 6 of Example 2. That is, in FIG. 8 (a), a cathode 35, an electron injection layer 36, an organic luminescent material 37, a hole transport layer 38, and a transparent anode 39 are formed on a glass substrate 40 from the top. The organic electroluminescent device section was designated as 41.
これに対して、第 6図の手法に従い第 1種中間層となるべき加 ェ穴を開け、 かつ、 反射鏡を蒸着した保持媒体 4 3を接合した。 但し、 ここでは、 その上面の加工穴以外の部分に、 光が漏れるこ とを防止するための遮光マスク 4 2を形成した。  On the other hand, according to the method shown in FIG. 6, a hole for forming a first-class intermediate layer was formed, and a holding medium 43 on which a reflecting mirror was deposited was joined. However, here, a light shielding mask 42 for preventing light from leaking was formed in a portion other than the processing hole on the upper surface.
具体的にはその上面に薄く樹脂を塗り、 その上から力一ボン粉 末を散布して形成した。 こう して作製した保持媒体 4 3を基本有 機電界発光素子部 4 1 と接合し、 その状態で屈折率調整樹脂 4 4 を封入し素子を形成した。 ここでは、 保持媒体部 4 3のガラスと' 、 基本素子部 4 1 を形成したガラス基板 4 0は、 同種のガラス材 料を用い、屈折率調整樹脂の屈折率がガラスと同じとなるものを 選択した。 '  Specifically, a thin resin was applied on the upper surface, and a bonbon powder was sprayed on the resin. The thus-prepared holding medium 43 was joined to the basic organic electroluminescent element section 41, and in this state, a refractive index adjusting resin 44 was sealed to form an element. Here, the glass of the holding medium part 43 and the glass substrate 40 on which the basic element part 41 is formed are made of the same kind of glass material, and the refractive index adjustment resin has the same refractive index as the glass. Selected. '
一方、比較用の有機電界発光素子も有機電界発光を起こす部分 はいずれも同じであ り、 その作製方法は実施例 2の第 6図の手法 によって作製した。 即ち、 第 8図 ( b ) では上から陰極 3 5 ' , 電子注入層 3 6 ' , 有機発光材料 3 7 ' , 正孔輸送層 3 8 ' , 透 明陽極 3 9 ' をガラス基板 4 0 ' 上に形成したものを基本有機 電界発光素子部 4 1 ' とした。 これに対して接合させるべき第 1 種中間層を持たない保持媒体 4 3 ' としては、 穴開け加工を施す 前のガラス板そのものを用いた。 但し、 その一部に第 8図 ( a ) の第 1種中間層の上面穴と同じサイズの領域だけ光が透過する ように、 遮光マスク 4 2 ' を形成した。 このようにした保持媒体 4 3 ' を同様に接合したものを比較用素子とした。 On the other hand, the organic electroluminescent device for comparison also has the same portion that causes organic electroluminescence, and was manufactured by the method shown in FIG. 6 of Example 2. That is, in FIG. 8 (b), the cathode 35 5 ′, the electron injection layer 36 ′, the organic luminescent material 37 ′, the hole transport layer 38 ′, and the transparent anode 39 ′ are placed on the glass substrate 40 ′ from the top. The element formed above was used as a basic organic electroluminescent element section 41 '. On the other hand, as the holding medium 4 3 ′ having no type 1 intermediate layer to be bonded, The previous glass plate itself was used. However, a light-shielding mask 42 ′ was formed on a part of the light-shielding mask so that light was transmitted only in an area having the same size as the upper surface hole of the first type intermediate layer in FIG. 8A. The thus-obtained holding medium 43 'was similarly joined to obtain a comparative element.
第 9図は、 光拡散特性の違いを評価した素子の評価系ダイァグ ラムを示す。 作製した有機電界発光素子 4 5 に対して、 電圧を供 給し、 同時に電流量を測定する電圧供給, 電流測定装置 4 8 (H e w l e t t — P a c k a r d社製、 p A M e t e r /D C V o l t a g e S o u r c e 4 1 4 0 B) から電圧を印加し 、 陽極から陰極に向けて素子内部に電流を流すことで、 該素子を 電界発光させた。  Fig. 9 shows an evaluation system diagram of the device that evaluated differences in light diffusion characteristics. A voltage is supplied to the fabricated organic electroluminescent device 45, and at the same time a current is measured. A current measuring device 48 (Hewlett-Packard, p AMeter / DCVoltageSource 4) A voltage was applied from 140 B), and a current was caused to flow from the anode to the cathode inside the device, thereby causing the device to emit light.
発生した光量は、 該素子中央部の正面位置に設置された輝度計 カメラ 4 6及びそれを制御する輝度計制御器 4 7 ( P h o t o r e s e a r c h社製、 S p e c t r a P r i t c h a r d P h o t o m e t e r , M o d e l 1 9 8 0 A— P L) によって The amount of generated light is measured by a brightness meter camera 46 installed in front of the center of the element and a brightness meter controller 47 controlling the brightness meter (Spectra Pritchard P hotometer, Model 1998, manufactured by P hotoresearch). 0 A— by PL)
、 その輝度測定を行った。 輝度計カメラに対する素子の光取り出 し界面の法線方向に対する方位角 0は、 パルスモータ駆動の回転 ステージ 5 (中央精機製) によって行った。 The luminance was measured. The azimuth of the element with respect to the normal direction of the light extraction interface of the element with respect to the luminance meter camera was set at 0 using a rotary stage 5 (manufactured by Chuo Seiki) driven by a pulse motor.
これらの輝度計制御器 4 7、 電圧供給, 電流測定装置 4 8及び 回転ステージ 5 0は、 その制御及び計測を制御パ一ソナルコンビ ユ ー夕 4 9によって制御した。 測定は全て室温で行い、 特に、 温 度制御は行っていない。  The control and measurement of the luminance meter controller 47, the voltage supply and current measuring device 48 and the rotary stage 50 were controlled by a control personal computer 49. All measurements were performed at room temperature, and no temperature control was performed.
第 8図 ( a ) の素子と同 ( b ) の素子で、 素子外部から観測し た発光特性を比較したところ、 第 8図 ( b ) の素子では正面輝度 ( 0 = 0 ° ) を最大値として、 ほぼ COS 20で発光強度が減衰す る所謂 L a m b e r t i a nな発光特性を示し、 その光量は 1 0 Vで正面 1 2 0 0 c d /m2、 0 = 2 0 。 で l O O O c d Zm 2 であった。 A comparison of the light emission characteristics observed from outside of the device of Fig. 8 (a) and the same device (b) showed that the front brightness (0 = 0 °) of the device of Fig. 8 (b) was the maximum value. It shows a so-called Lambertian light emission characteristic in which the light emission intensity is attenuated almost at COS 20 and the light intensity is 10 Front view at V 1 200 cd / m 2 , 0 = 20. It was l OOO cd Zm 2 .
これに対して第 8図 ( a ) の素子では、 0が 0 ° 〜土 3 0 ° の 範囲でほぼ同等な輝度を観測し、 その光量は 1 0 Vで 6 3 0 0 c d Zm2であった。 これは第 8図 ( b ) の素子では保持媒体 4 3 ' の面内方向に伝播し、 面外方向に取り出すことができなかった 光が、 ほぼ全て外部に取り出せたことを示している。 On the other hand, in the element of Fig. 8 (a), 0 observed almost the same brightness in the range of 0 ° to 30 °, and the light intensity was 6300 cd Zm 2 at 10 V. Was. This indicates that almost all of the light that could not be extracted in the out-of-plane direction and propagated in the in-plane direction of the holding medium 43 'in the element of FIG. 8 (b) could be extracted to the outside.
また、 加工穴のテ一パ角からは、 この素子の場合は ± 2 0 ° で 光が観測されると予想されるが、 実験ではやや広い角度に光が観 測された。 これはサンドブラス ト法による加工面の荒れによる乱 反射の効果が、 加味されたものと考えられる。  From the taper angle of the machined hole, it is expected that light will be observed at ± 20 ° in the case of this element, but light was observed at a slightly wider angle in the experiment. This is considered to be due to the effect of irregular reflection caused by roughening of the machined surface by the sandblast method.
〔実施例 4〕  (Example 4)
次に、 画像表示用の有機電界発光素子に用いる場合の本発明の 構造寸法, 設計の一例について説明する。  Next, an example of the structural dimensions and design of the present invention when used in an organic electroluminescent device for image display will be described.
画像表示素子として用いる場合、 各有機電界発光素子の発光部 分は画素と呼ばれる領域に区切られており、 各画素の発光量やそ の発光時間が画像表示素子の制御回路によって制御される。 画像 表示素子中の画素は 2次元的に配列されており、その画素数は画 像表示素子の解像度に応じて規格化されている。  When used as an image display element, the light emitting portion of each organic electroluminescent element is divided into regions called pixels, and the light emission amount and the light emission time of each pixel are controlled by a control circuit of the image display element. The pixels in the image display device are two-dimensionally arranged, and the number of pixels is standardized according to the resolution of the image display device.
例えば、 V GA= 6 4 0 X 4 8 0 , S V GA= 8 0 0 X 6 0 0 , X GA= 1 0 2 4 X 7 6 8 , S X GA= 1 2 8 0 X 1 0 2 4 , UX GA= 1 6 0 0 X 1 2 0 0 , H D T V= 1 9 2 0 X 1 0 8 0 , QX GA= 2 0 4 8 X 1 5 3 6である。  For example, V GA = 6 4 0 X 4 8 0, SV GA = 8 0 0 X 6 0 0, X GA = 10 2 4 X 7 6 8, SX GA = 1 2 8 0 X 1 0 2 4, UX GA = 16 0 0 X 12 00, HDTV = 19 20 0 X 10 08 0, QX GA = 20 48 X 15 36.
従って、 画像表示素子中の各画素のサイズは、 画面サイズと解 像度に応じて決定され、 例えば、 画面サイズが 1 2 3 X 3 1 mm 、 解像度 X GA (画素数 1 0 2 4 X 7 6 8 ) の場合、 一つの画素 サイズは 1 2 0 x 4 0 m以下の領域になければならない。 Therefore, the size of each pixel in the image display element is determined according to the screen size and the resolution. For example, the screen size is 123 × 31 mm, and the resolution XGA (the number of pixels is 10 24 × 7 In the case of 6 8), one pixel The size must be in the area of less than 120 x 40 m.
第 1 0図は、一般的な有機電界発光素子を用いた画像表示素子 の画素間の配置図 ( a ) と、 本発明の有機電界発光素子の構造を 取り込んだ画像表示素子の画素間配置図 ( b ) との関係を示した 。 但し、 第 1 0図においては、 簡略化のため有機電界発光素子の 基板よ り上の部分については、 一括して画素と表示した。  FIG. 10 shows the arrangement between pixels of an image display element using a general organic electroluminescent element (a), and the arrangement between pixels of an image display element incorporating the structure of the organic electroluminescent element of the present invention. The relationship with (b) was shown. However, in FIG. 10, for the sake of simplicity, the portion above the substrate of the organic electroluminescent device is collectively displayed as pixels.
基板厚 dの基板上に形成された画素 1 , 2 , 3について、 画素 サイズを L i、 画素間の距離を示す画素ピッチを L 2とする と、 1つの画素が占有する大きさは光を発生する画素部と画素ピッ チ部分と.なり、 その長さは L i + L 2である。 For pixels 1, 2, and 3 formed on a substrate with a substrate thickness d, if the pixel size is L i and the pixel pitch indicating the distance between pixels is L 2 , the size occupied by one pixel is light. pixel unit for generating the pixel pitch portion and. it, its length is L i + L 2.
ここでは特に説明しないが、紙面に垂直な方向にも闾様な画素. 領域があり、 その長さも画素サイズと画素ピッチの和どなる。 各画素の発光が基板側から外部に放出される場合、画素と基板 の界面から放射された光が、基板底部の光取り出し界面に達する 間に光拡散し、 基板ど空気との界面において一部は反射され、'臨 界角よ り も広角で到達した光は全反射されて、基板の横方向に伝 播する。 このため隣の画素と近接し過ぎると隣の光が混在し、 フ ルカラー画像表示の場合には色の混色が発生する。  Although not specifically described herein, there are various pixel regions in the direction perpendicular to the paper surface, and the length thereof is also the sum of the pixel size and the pixel pitch. When the light emitted from each pixel is emitted from the substrate side to the outside, the light emitted from the interface between the pixel and the substrate diffuses while reaching the light extraction interface at the bottom of the substrate, and partially diffuses at the interface between the substrate and air. The light arriving at an angle wider than the critical angle is totally reflected and propagates in the lateral direction of the substrate. For this reason, if the pixel is too close to the adjacent pixel, the adjacent light will be mixed, and in the case of full color image display, color mixture will occur.
また、 画素自身に光共振器構造を取り込んだり、 各画素の横方 向にテーパ面を設けると基板内を進む光の指向性が高ま り、基板 横方向の伝播が抑制される。 しかし、 光が素子外部に出た時点で も光指向性が残留し、画像表示素子としての視野角が狭くなると 共に、 共振器効果による光干渉色が混じ り、 表示色むらを発生さ せる。  In addition, incorporating an optical resonator structure in the pixel itself or providing a tapered surface in the lateral direction of each pixel enhances the directivity of light traveling in the substrate, and suppresses propagation in the lateral direction of the substrate. However, even when the light exits the device, the light directivity remains, and the viewing angle as an image display device is narrowed, and the light interference color due to the resonator effect is mixed, resulting in display color unevenness.
これに対し、 本発明の有機電界発光素子からなる画像表示素子 の場合、 第 1種中間層として、 例えば、 テーパ面が基板表面の法 線と成す角??を、光取り出し界面で画素間の中点位置で接するよ うに設けた場合、各画素から発生した光は基板内で混合すること なく、 また、 基板外部で指向性を伴うことなく光が放出される。 第 1 1図は、 このような画像表示素子として用いた本発明の有 機電界発光素子の最適な第 1種中間層の大きさを決定するため の説明図を示す。 On the other hand, in the case of the image display device comprising the organic electroluminescent device of the present invention, as the first type intermediate layer, for example, a method in which the tapered surface is formed on the substrate surface. The angle between the line and the line? ? When light is provided at the midpoint between pixels at the light extraction interface, light generated from each pixel is emitted without mixing inside the substrate and without directivity outside the substrate. You. FIG. 11 is an explanatory diagram for determining the optimum size of the first type intermediate layer of the organic electroluminescent device of the present invention used as such an image display device.
画素から基板に侵入する光は、画素自身が 2次元的な発光体で あることから、 様々な方位角で放射され、 第 1種中間層の基板横' 方向を制限する界面で反射されながら、最終的に様々な角度で光 取り出し界面に到達する。 このため、 光取り出し界面で一部の光 は反射され、 特に全反射角より も広角の光が存在すると、 その光 は再び画素に戻ってしまって取り出すことができない。 従って、' 最適な第 1種中間層のテ一パ角と、 その厚みや屈折率を見積もる 必要がある。 '  Light entering the substrate from the pixel is emitted at various azimuthal angles because the pixel itself is a two-dimensional light emitter, and is reflected at the interface of the type 1 intermediate layer that restricts the lateral direction of the substrate. Finally, it reaches the light extraction interface at various angles. For this reason, part of the light is reflected at the light extraction interface. In particular, when light having a wider angle than the total reflection angle exists, the light returns to the pixel again and cannot be extracted. Therefore, it is necessary to estimate the optimal taper angle of the first type intermediate layer, and its thickness and refractive index. '
第 1種中間層のテ一パ面が基板表面の法線と成す角'を V す ると、 テ一パ角は 7Γ Ζ 2—?? となる。 そして、 基板下面の発光点 If the angle between the taper surface of the type 1 intermediate layer and the normal to the substrate surface is V, the taper angle is 7Γ Ζ 2—? ? And the light emitting point on the bottom of the substrate
Pから方位 øに放出された光が、 テーパ面に到達した位置を W、 Wで反射されて基板上面に達した位置を Vとし、 z軸上の点 Wの 高さに相当する点を G、 点 Wでのテ一パ面の法線'と z軸の交点を F、 テーパ面と X軸との交点を E とする。 W is the position where the light emitted from P in the direction 方位 reaches the tapered surface, V is the position where the light is reflected by W and reaches the top surface of the substrate, and G is the point corresponding to the height of point W on the z-axis. Let F be the intersection of the z-axis with the normal to the taper plane at point W, and E be the intersection of the tapered surface and the X-axis.
テ一パ面に対する放射光の入射角は Z P W Fであり、反射光の 方向は点 Wで入射光の方位べク トルの逆べク トルを負の方向に Z P W V = 2 Z P W Fだけ回転させたものであるこ とに留意す この時、 0 > 7であることに注意すると、  The incident angle of the emitted light to the taper surface is ZPWF, and the direction of the reflected light is the point W and the inverse vector of the azimuthal vector of the incident light is rotated in the negative direction by ZPWV = 2 ZPWF. Keep in mind that at this time, note that 0> 7.
〔数 3〕 GWP = --0, LGWE = -~n (Equation 3) GWP = --0, LGWE =-~ n
2 2  twenty two
LPWE = LGWE一 LGWP = φ-η
Figure imgf000039_0001
lx\ sin0、
LPWE = LGWE-LGWP = φ-η
Figure imgf000039_0001
lx \ sin0,
点 pの放射光の方位べク トル Azimuth vector of radiation at point p
cos  cos
テ一パ面の法線ベク トル fx' cos(- ) Sln (-^") cos?7、 Normal vector of the taper surface fx ' cos (-) Sln (-^ ") cos? 7,
, ζ' . , 7Γ、 π cos ? sin ? , ζ '., 7Γ, π cos? sin?
- sm(- ) cos (- 放射光の方位べク トルの逆べク トルとテ一パ面の法線べク ト ルとの為す角はそれら 内積から、 -sm (-) cos (-The angle between the inverse vector of the azimuthal vector of synchrotron radiation and the normal vector of the taper surface is
〔数 4〕  (Equation 4)
(― cosi)(— sm^) + smi 一 cos^>) = sm (^— ) = cos( Φ +η) ■'■ その角度は ( 2 ) — 0 + 7?である。 (− Cosi) (— sm ^) + smi-one cos ^>) = sm (^ —) = cos (Φ + η) ■ '■ The angle is (2) — 0 + 7 ?.
こ の 2倍の角度だけ正の方向に回転させたものが反射光の方 位となるかち、 反'射光の方位ベク トルは、  The direction of the reflected light is the one rotated in the positive direction by twice this angle, and the azimuth vector of the reflected light is
〔数 5〕  (Equation 5)
cosi π一 2{ψ一 η)] smπ一 2(φ -η)]\ί - sin φ  cosi π-1 2 {ψ1 η)] smπ-1 2 (φ -η)] \ ί-sin φ
\ζ ノ I― sin[jv一 2(φ― η)] cos?r— 2(φ™ )] 1— cos φ \ ζノ I− sin [jv 一 2 (φ− η)] cos? r— 2 (φ ™)] 1— cos φ
I一 sin 7r -φ + 2η) \ ί一 sin ( 一 2τ7)\ I-1 sin 7r -φ + 2η) \ ί1 sin (-1 2τ7) \
I -COS(JT -φ + 2η) J I cos(^»― 2η) I  I -COS (JT -φ + 2η) J I cos (^ »― 2η) I
となる。 その方位角は、 Becomes The azimuth angle is
〔数 6〕
Figure imgf000040_0001
(Equation 6)
Figure imgf000040_0001
となる。 Becomes
n = 1 .6では 2 5 .6 6 ° く 7? < 3 8 .6 8 ° となるが、 n = 2 .2では ø。二 2 7 .0 4 ° 、 ( 7Γ / 4 ) ― ( ø。ノ 2 ) = 3 1 . When n = 1.6, it is 25.66 ° and 7? <38.68 °, but when n = 2.2, it is ø. 2 27.0 4 °, (7Γ / 4)-(ø.2) = 3 1.
4 8 ° となり、 最適なテ一パ角を定めるこどができない。 The angle is 48 °, making it difficult to determine the optimal taper angle.
よって、 テ一パ中央部に屈折率 1 .6程度の樹脂を埋めること により、 全ての光を外部に導く ことができる。  Therefore, all the light can be guided to the outside by embedding a resin having a refractive index of about 1.6 in the center of the taper.
あま り臨界角に近い角度で到着した光の透過率も高く ないこ とから、 実効的には ( 2 5 .6 6 + 3 8 .6 8 ) ノ 2 = 3 2 .1 7 Since the transmittance of light arriving at an angle close to the critical angle is not high, it is practically (25.66 + 38.6.68) no2 = 32.1.17
。 程度にすると、 直接放射光も反射光も臨海角よ り もやや小角の 範囲に止めることができる。 . With this level, both direct radiation and reflected light can be kept at a slightly smaller angle than the sea angle.
次に、 光取り出し量で利得が発生する基板厚を求める。 画素下 側面の直径を a、 基板厚を dとすると、 上側取り出し面の半径は a/ 2 + dtan?? =である。 下側面の光が 1 0 0 %取り出された として、 上側面と同じ大きさの単純画素 (取り出し効率 Tとする ) からの光量が下側面の光と同じ光量となるのは、 Next, a substrate thickness at which a gain is generated by the amount of light taken out is obtained. Below pixel Assuming that the diameter of the side surface is a and the substrate thickness is d, the radius of the upper extraction surface is a / 2 + dtan? =. Assuming that 100% of the light on the lower surface is extracted, the light amount from a simple pixel of the same size as the upper surface (the extraction efficiency is T) is the same as the light amount on the lower surface.
〔数 8〕
Figure imgf000041_0001
(Equation 8)
Figure imgf000041_0001
T = 0.2、 a = 1 2 0 m、 ?? = 3 2. 1 7 ° とすると、 d = T = 0.2, a = 120 m,? ? = 3 2.17 °, d =
3 0 となる 従って、 厚み dがこれより も薄いと、 取り出 し光量に利得が生じる。逆に上側面の犬ぎさが 1 2 0 /mでは a = 1 0 7 , d = 1 0 5 zmとなる。 Therefore, when the thickness d is smaller than this, a gain is generated in the extracted light amount. On the other hand, if the dog on the upper side is 120 / m, a = 107 and d = 105 zm.
このことは、 画素サイズ aが決まると前記式 ( 4 ) によって角 度??が定ま り、 また有効な基板厚 dが前記式 ( 5 ) によって定ま ることを示している。 これよりも大きな基板厚に対しては、 '画素 で発生した光の全てを外部に取り出すことができず、必ずしも利 得は大きくない。  This means that when the pixel size a is determined, the angle? ? This indicates that the effective substrate thickness d is determined by the above equation (5). If the substrate thickness is larger than this, it is not possible to extract all the light generated in the pixel to the outside, and the gain is not necessarily great.
第 1 2図は、 このような最適厚みを有する第 1種中間層を取り 込んだ素子構造の一例を示す。  FIG. 12 shows an example of a device structure incorporating a type 1 intermediate layer having such an optimum thickness.
第 1 2図 ( a ) は、 基板全体の厚みに比べて十分薄い第 1種中 間層が、 画素下部に、 直接、 接している場合を示している。 この ような配置では、 最終的な光取り出し界面に達するまでに光が拡 散する余地があるので効果が少ない。  FIG. 12 (a) shows a case where the first type intermediate layer, which is sufficiently thinner than the thickness of the entire substrate, directly contacts the lower part of the pixel. Such an arrangement is less effective because there is room for light to diffuse before reaching the final light extraction interface.
第 1 2図 ( b ) は、 基板全体の厚みと第 1種中間層の厚みが同 じ場合を示している。 この場合は、 前記の通り光取り出しの利得 はあるが、 基板厚みが薄いものとなる。 このため、 基板の機械的 強度を維持するためには、 第 1 2図 ( c ) のような画素と第 1種 中間層との間に、 一定の距離 d wを介した基板も可能である。 こ の場合は、 画素から第 1種中間層に光が到達す »間で、 隣接画素 との光の混合を避けるため、上記 d wをあま り大きな値としては いけない。 FIG. 12 (b) shows a case where the thickness of the entire substrate is the same as the thickness of the first type intermediate layer. In this case, the light extraction gain is obtained as described above, but the substrate thickness is small. For this reason, in order to maintain the mechanical strength of the substrate, the pixels as shown in Fig. Substrates with a certain distance dw between them and the intermediate layer are also possible. In this case, the value of dw should not be too large in order to avoid mixing of light with adjacent pixels during the time when the light reaches the first type intermediate layer from the pixel.
第 1 3図は、第 1種中間層と画素とが隔絶配置されている条件 で、 両者をつなく、導波層を、 基板中に形成した素子構造を示す。 この場合、 第 1 3図 ( a ) の様に直接画素部と第 1種中間層を導 波層によって結合する場合と、 第 1 3図 ( b ) の様に距離 d wを 介して第 1種中間層を導波層によって結合する場合とがある。特 に、 後者は、 画素から第 1種中間層に光が到達する間で隣接画素 との光の混合を避けるためには、 上記 d wをあま り大き値として はいけない。  FIG. 13 shows an element structure in which a type 1 intermediate layer and a pixel are separated from each other and a waveguide layer is formed in a substrate under the condition that they are connected to each other. In this case, the pixel unit and the first type intermediate layer are directly connected by the waveguide layer as shown in Fig. 13 (a), and the first type is connected through the distance dw as shown in Fig. 13 (b). In some cases, the intermediate layers are coupled by a waveguide layer. In particular, in the latter case, in order to avoid mixing of light with adjacent pixels while the light reaches the first type intermediate layer from the pixel, the value of d w should not be too large.
以上のように、 有機電界発光素子において、 第 1種中間層の断 面形状が、発光面側から光取り出し面側に向けて開口'部が披大す る形状であって、該第 1種中間層の側面において光を反射させる ことが可能で、第 1種中間層の光取り出し面側における全反射角 As described above, in the organic electroluminescent device, the cross-sectional shape of the first type intermediate layer is a shape in which the opening portion expands from the light-emitting surface side to the light extraction surface side, and Light can be reflected on the side surface of the intermediate layer, and the total reflection angle on the light extraction surface side of the type 1 intermediate layer
Φ Cに対して、 中間層の側面のテーパ角 7?が 0 C以下とする。 特に、 7?が 4 5 。 — 。 / 2以上、 。以下で、 同一断面上で 発光面側開口部の幅 aに対して、第 1種中間層の厚み dが / 2 tan ??以下であるよう素子構造を設計すると、 画素部で発生した 光の殆どを表示素子としての画素サイズの制限を保持しながら、 素子外部に取り出すことが可能となる。 The taper angle 7? Of the side surface of the intermediate layer is 0 C or less with respect to ΦC. In particular, 7? — / 2 or more,. In the following, when the element structure is designed so that the thickness d of the first type intermediate layer is equal to or less than / 2 tan ?? with respect to the width a of the light emitting surface side opening a on the same cross section, the light generated in the pixel portion is Most can be taken out of the device while maintaining the limitation on the pixel size as a display device.
〔実施例 5〕  (Example 5)
本実施例では、 アモルファスシリコン薄膜トランジスタまたは 多結晶シリコン薄膜トランジス夕を形成した基板上に形成、 また は、有機薄膜トランジス夕を形成した基板上に形成した状態の画 像表示素子の素子構造と駆動回路について第 1 4図を用いて説 明する。 In this embodiment, an image is formed on a substrate on which an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor is formed, or is formed on a substrate on which an organic thin film transistor is formed. The element structure and drive circuit of the image display element will be described with reference to FIG.
有機電界発光素子を画像表示素子として用いる場合、各画素の 発光状態を制御する必要がある。 画面サイズが大き く なると、 各 画素を独立して駆動可能な薄膜 ト ラ ンジスタを素子内部に画素 毎に形成するこ とが有効である。  When an organic electroluminescent device is used as an image display device, it is necessary to control the light emitting state of each pixel. As the screen size increases, it is effective to form a thin film transistor for each pixel inside the device that can drive each pixel independently.
第 1 4図 ( a ) は、 そのような薄膜トランジスタを内蔵した 1 つの画素部の構造を示す。基板の光取り 出し面とは反対側の上面 に薄膜トランジスタ層が形成されてお り、 ここでは 1つの画素当 り 2つの トランジスタ ( T s w : スイ ッチング 卜ラ ンジス夕、 T d r : ドレイ ン トランジスタ) によって駆動され、 薄膜トランジ- スタ層の上部に有機電界発光素子の透明陽極, 発光層, 陰極を形 成した。  FIG. 14 (a) shows the structure of one pixel section incorporating such a thin film transistor. A thin film transistor layer is formed on the upper surface of the substrate opposite to the light extraction surface. Here, two transistors per pixel (T sw: switching transistor, T dr: drain transistor) The transparent anode, light-emitting layer, and cathode of the organic electroluminescent device were formed on the thin-film transistor layer.
透明陽極の一部及び陰極の一部は、 A 1配線によ り トランジス 夕 と接続されている。発光層の下層には第 1種中 '間層が形成され てお り、 その構造は実施例 4に示したような種々の構造を取るこ とができる。  Part of the transparent anode and part of the cathode are connected to the transistor via A1 wiring. An intermediate layer of the first type is formed under the light emitting layer, and the structure can take various structures as shown in Example 4.
第 1 4図 ( b.) には、 各画素を駆動させるための トランジスタ の回路図を示してお り'、 スィ ツチング トランジスタを駆動させる ためのゲー ト配線 ( G 1 〜 G 4 )、 ド レイ ン ト ランジスタを駆動 させるための ドレイ ン配線 ( D 1 〜D 4 ) が、 それそれ画素間に は形成されている。  Fig. 14 (b.) Shows a circuit diagram of a transistor for driving each pixel ', gate wiring (G1 to G4) for driving switching transistors, and a drain. Drain wires (D1 to D4) for driving the transistors are formed between the pixels.
特定の画素を表示させるには、 これら 2種の配線を選択して特 定の画素位置の トラ ンジスタを駆動し、 当該発光部で光を発生さ せる。発生した光は薄膜 トランジス夕を内蔵した層の下に形成し た第 1種中間層に導かれ、 そこで光路が拡散しながら光取り出し 界面に到達する。 In order to display a specific pixel, these two types of wiring are selected, a transistor at a specific pixel position is driven, and light is generated by the light emitting unit. The generated light is guided to the first type intermediate layer formed below the layer containing the thin film transistor, where light is extracted while the optical path is diffused. Reach the interface.
このよう に薄膜ト ラ ンジスタ内蔵型の有機電界発光層からな る画像表示素子では、発光画素部分以外に トランジスタ部分や配 線部分が共存するため、 非発光な領域を必ず含む。 しかし、 第 1 種中間層のテ一パ部分にそれらの駆動回路部分を配置すること で、 素子をより緻密し、 光取り出し効率を最大限に引き出すこと が可能となる。  As described above, in an image display device including an organic electroluminescent layer with a built-in thin-film transistor, a transistor portion and a wiring portion coexist in addition to a light-emitting pixel portion, so that a non-light-emitting region is necessarily included. However, by arranging those drive circuit portions on the tapered portion of the type 1 intermediate layer, it becomes possible to make the device more dense and to maximize the light extraction efficiency.
本発明の有機電界発光素子は、 従来、 数多く報告されている有 機電界発光素子の発光部の基本構造を変化させることなく、 よ り 簡便な手法で取り出し効率 7 e x tを改善し、 よ り多くの光を素子 外部に取り出すことができる。 The organic electroluminescent device of the present invention can improve the extraction efficiency 7 ext by a simpler method without changing the basic structure of the light-emitting portion of the organic electroluminescent device, which has been reported in many cases, and achieves more Light can be extracted outside the device.
特に、 1 0イ ンチ以上の大画面表示素子や、 小面積でも高精細 な画像表示素子として駆動させる場合、 従来、 有機材料を用いる 上での本質的な事柄と.考えられてきたため、高密度な画像表示素 子としての利用は制限され、高々 8イ ンチまでの画像表示素子が 提案されたに過ぎなかった。 このような高精細素子, 大画面素子 に対しても、有機電界発光素子を適用可能なものとすることがで さる。  In particular, when driving as a large-screen display element of 10 inches or more or a high-definition image display element even with a small area, it has been conventionally considered to be an essential matter in using organic materials, so high density Its use as a simple image display device was limited, and only an image display device of up to 8 inches was proposed. The organic electroluminescent device can be applied to such a high definition device and a large screen device.
これら素子の電気特性の向上によって、 素子駆動の低電圧化, 高輝度化, 長寿命化を図ることが可能となる。 産業上の利用可能性  By improving the electrical characteristics of these devices, it is possible to lower the driving voltage, increase the brightness, and extend the life of the devices. Industrial applicability
本発明によって、 薄膜, 軽量, 高精細にして高効率な有機電界発 光素子、 並びに、 これを用いた薄膜平面ディスプレイ , 小型携帯 投射型ディスプレイ , 携帯電話表示素子, 立体ディ スプレイ , 電 子紙, 携帯型パーソナルコンピュー夕用ディ スプレイ , リアル夕 ィ ム電子掲示板, 光発光ダイオード, レーザ, 2次元光パターン 発生素子, 光コンピュータ, 光クロスコネクタ, 光ルー夕等の各 種新規光電子素子、 及び、 それを用いたシステム, サ一ビスの提 供が可能となる。 According to the present invention, a thin-film, light-weight, high-definition and high-efficiency organic electroluminescent device, and a thin-film flat display using the same, a small portable projection display, a mobile phone display device, a three-dimensional display, electronic paper, Portable personal computer evening display, real evening Provide various new opto-electronic devices such as electronic bulletin boards, light-emitting diodes, lasers, two-dimensional light pattern generators, optical computers, optical cross connectors, optical routers, etc., and systems and services using them. Becomes possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 正負の両電荷の注入, 輸送が可能で、 該正負の両電荷により 生成された正孔と電子の再結合により光の発生が可能な有機電 界発光素子であり、 該有機電界発光素子に含まれる再結合による 発光物質または該発光物質からの光を受けて二次的に光を発生 させることが可能な蛍光物質を含む発光層を有する有機電界発 光素子において、 1. An organic electroluminescent device capable of injecting and transporting both positive and negative charges and generating light by recombination of holes and electrons generated by the positive and negative charges. An organic electroluminescent device having a light-emitting layer containing a light-emitting substance by recombination contained in or a fluorescent substance capable of receiving light from the light-emitting substance and generating light secondarily,
光を発生する発光層外部にあって、 有機電界発光素子外部への 光の取り出し界面との間に第 1種中間層を有し、 かつ、 前記発光 層から取り出される光の強度方位分布が第 1種中間層を通過し た後に拡大することを特徴とする有機電界発光素子。  A light-emitting layer outside the light-emitting layer, a first-type intermediate layer between the light-emitting layer outside the organic electroluminescent element, and an intensity azimuth distribution of light extracted from the light-emitting layer. An organic electroluminescent device characterized in that it expands after passing through one kind of intermediate layer.
2 . 第 1種中間層が光散乱が可能であるか、 または、 光路の拡散 が可能である請求の範囲第 1項記載の有機電界発光素子。  2. The organic electroluminescent device according to claim 1, wherein the first type intermediate layer is capable of scattering light or diffusing an optical path.
3 . 第 1種中間層が特定の形状を有する画素毎に区切られている 力、、 または、 該中間層とは異なる性状の物質からなる隔壁によつ て画素毎に区切られている請求の範囲第 1項記載の有機電界発 光素子。 3. A claim in which the first type intermediate layer is separated for each pixel having a specific shape, or is separated for each pixel by a partition made of a material having a property different from that of the intermediate layer. 2. The organic electroluminescent device according to item 1, wherein
4 . 第 1種中間層が特定の形状を有する画素毎に区切られている か、 または、 該中間層とは異なる性状の物質からなる隔壁によつ て画素毎に区切られており、 取り出し界面から臨む画素毎に区切 られた第 1種中間層の形状または該隔壁の形状が多角形であり、 該多角形を形成する形状面のうちの少なく とも 2つが平行であ る請求の範囲第 1項記載の有機電界発光素子。  4. The first type intermediate layer is separated for each pixel having a specific shape, or is separated for each pixel by a partition made of a material having a property different from that of the intermediate layer. The shape of the first type intermediate layer or the shape of the partition, which is divided for each pixel facing from, is a polygon, and at least two of the shape surfaces forming the polygon are parallel. Item 10. The organic electroluminescent device according to item 8.
5 . 第 1種中間層が特定の形状を有する画素毎に区切られている 力 または、 該中間層とは異なる性状の物質からなる隔壁によつ て画素毎に区切られており、 取り出し界面から臨む画素毎に区切 られた第 1種中間層の形状または該隔壁の形状が多角形であり、 該多角形を形成する形状面のうちの少なく とも 2つが平行で、 多 角形を形成する平行な形状面の対のうち、 少なく とも一組が発生 する光の波長の 0 . 2 5〜 2波長分の長さである請求の範囲第 1 項記載の有機電界発光素子。 5. A force in which the first type intermediate layer is separated for each pixel having a specific shape, or a partition made of a material having a property different from that of the intermediate layer. The shape of the first type intermediate layer or the shape of the partition wall divided for each pixel facing the take-out interface is a polygon, and at least one of the shape surfaces forming the polygon 2. The method according to claim 1, wherein at least one pair of the pairs of parallel shaped surfaces forming two polygons that are parallel to each other has a length of 0.25 to 2 wavelengths of light generated. Organic electroluminescent device.
6 . 第 1種中間層が特定の形状を有する画素毎に区切られている か、 または、 該中間層とは異なる性状の物質からなる隔壁によつ て画素毎に区切られており、取り出し界面から臨む画素毎に区切 られた第 1種中間層の形状または隔壁の形状が円形である請求 の範囲第 1項記載の有機電界発光素子。  6. The first-type intermediate layer is separated for each pixel having a specific shape, or is separated for each pixel by a partition made of a material having a property different from that of the intermediate layer. 2. The organic electroluminescent device according to claim 1, wherein the shape of the first-type intermediate layer or the shape of the partition wall divided for each pixel facing from is circular.
7 . 円形の第 1種中間層または隔壁の直径が、 発生する光の波長 の 0 . 2 5〜 2波長分である請求の範囲第 1項記載の有機電界発 光素子。  7. The organic electroluminescent device according to claim 1, wherein the diameter of the circular first type intermediate layer or the partition wall is 0.25 to 2 wavelengths of the wavelength of the generated light.
8 . 取り出し界面から臨む画素毎に区切られた第 1種中間層の断 面形状または隔壁の断面形状が、光の取り出し界面に対して平行 でない平面構造または曲面構造を有している請求の範囲第 1項 記載の有機電界発光素子。 8. The cross-sectional shape of the first type intermediate layer or the cross-sectional shape of the partition, which is divided for each pixel facing the light extraction interface, has a plane structure or a curved surface structure that is not parallel to the light extraction interface. Item 2. The organic electroluminescent device according to item 1.
9 . 取り出し界面から臨む画素毎に区切られた第 1種中間層また は隔壁の光の取り出し界面及び光発光層に接していない界面が、 光を反射または屈折させることが可能である請求の範囲第 1項 記載の有機電界発光素子。  9. The light-extraction interface of the first-type intermediate layer or the partition, which is separated for each pixel facing the extraction interface, and the interface that is not in contact with the light-emitting layer can reflect or refract light. Item 2. The organic electroluminescent device according to item 1.
1 0 . 取り出し界面から臨む画素毎に区切られた第 1種中間層ま たは隔壁の光の取り出し界面及び光発光層に接していない界面 が、 光を反射または屈折させることが可能で、 界面での反射が正 反射でない請求の範囲第 1項記載の有機電界発光素子。 10. The light-extraction interface of the first-type intermediate layer or the partition and the interface not in contact with the light-emitting layer, which are separated for each pixel facing the extraction interface, can reflect or refract light. 2. The organic electroluminescent device according to claim 1, wherein reflection at the device is not specular reflection.
1 1 . 第 1種中間層の断面形状が発光面側から光取り出し面側に 向けて開口部が拡大する形状であって、 該第 1種中間層の側面に おいて光を反射させることが可能であり、 第 1種中間層の光取り 出し面側における全反射角(i) cに対して中間層の側面のテ一パ角 7?が Φ。以下である請求の範囲第 1項記載の有機電界発光素子。 1 1. The cross-sectional shape of the first type intermediate layer is a shape in which the opening is enlarged from the light emitting surface side to the light extraction surface side, and light can be reflected on the side surface of the first type intermediate layer. It is possible that the taper angle 7? On the side surface of the intermediate layer is Φ with respect to the total reflection angle (i) c on the light extraction surface side of the first type intermediate layer. 2. The organic electroluminescent device according to claim 1, which is as follows.
1 2 . 第 1種中間層の断面形状が発光面側から光取り出し面側に 向けて開口部が拡大する形状であって、 該第 1種中間層の側面に おいて光を反射させることが可能であり、 第 1種中間層の光取り 出し面側における全反射角 φ cに対して中間層の側面のテ一パ角 ?7が 4 5 ° — Φ 。 Ζ 2から(i> cであり、 同一断面上で該発光面側 開口部の幅 aに対して第 1種中間層の厚み dが a Z 2 t an ?7以下 である請求の範囲第 1項記載の有機電界発光素子。 1 2. The cross section of the first type intermediate layer has a shape in which the opening is enlarged from the light emitting surface side to the light extraction surface side, and light can be reflected on the side surface of the first type intermediate layer. It is possible, and the taper angle? 7 on the side surface of the intermediate layer is 45 °-Φ with respect to the total reflection angle φc on the light extraction surface side of the first type intermediate layer. The thickness of the first-type intermediate layer is not more than aZ 2 t an? 7 with respect to the width a of the opening on the light-emitting surface side on the same cross section from Ζ 2 (i> c) . Item 10. The organic electroluminescent device according to item 8.
1 3 . 第 1種中間層と、 発光層に係る光透過性の電極層との間に 、発光層の面積以下の断面積を有する光導波層を有している請求 の範囲第 1項記載の有機電界発光素子。  13. An optical waveguide layer having a cross-sectional area equal to or less than the area of the light-emitting layer between the first-type intermediate layer and the light-transmitting electrode layer of the light-emitting layer. Organic electroluminescent device.
1 4 . 第 1種中間層と、 発光層に係る光透過性の電極層との間に 、光透過性電極層に接することなく発光層の面積以下の断面積を 有する光導波層を有している請求の範囲第 1項記載の有機電界 発光素子。  14. An optical waveguide layer having a cross-sectional area equal to or less than the area of the light-emitting layer without being in contact with the light-transmitting electrode layer is provided between the first-type intermediate layer and the light-transmitting electrode layer related to the light-emitting layer. The organic electroluminescent device according to claim 1, wherein
1 5 . 第 1種中間層が発光層で発生する光を吸収して別の色の光 を発生し得る物質を含む請求の範囲第 1項記載の有機電界発光 素子。 15. The organic electroluminescent device according to claim 1, wherein the first type intermediate layer includes a substance capable of absorbing light generated in the light emitting layer and generating light of another color.
1 6 . 第 1種中間層が発光層を担持する基板内部に形成されてい る請求の範囲第 1項記載の有機電界発光素子。  16. The organic electroluminescent device according to claim 1, wherein the first type intermediate layer is formed inside a substrate supporting the light emitting layer.
1 7 . 第 1種中間層が発光層を担持する光透過性基板の外部に形 成されている請求の範囲第 1項記載の有機電界発光素子。 17. The organic electroluminescent device according to claim 1, wherein the first type intermediate layer is formed outside a light-transmitting substrate that carries the light-emitting layer.
1 8 . 発光層がアモルファスシリ コン薄膜'トランジス夕または多 結晶シリコン薄膜トランジスタを形成した基板に形成、 または、 有機薄膜トランジスタを形成した基板上に形成されている請求 の範囲第 1項記載の有機電界発光素子。 18. The organic electroluminescent device according to claim 1, wherein the light emitting layer is formed on a substrate on which an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor is formed, or on a substrate on which an organic thin film transistor is formed. element.
1 9 . 発光層がアモルファスシリコン薄膜トランジスタまたは多 結晶シリコン薄膜トランジスタを形成した基板、 または、 有機薄 膜トランジスタを形成した基板と別個に形成後、 一体化された請 求の範囲第 1項記載の有機電界発光素子。  19. The organic electric field according to claim 1, wherein the light emitting layer is formed separately from the substrate on which the amorphous silicon thin film transistor or the polycrystalline silicon thin film transistor is formed or the substrate on which the organic thin film transistor is formed, and then integrated. Light emitting element.
PCT/JP2002/000967 2001-02-09 2002-02-06 Organic field light emitting element WO2002065817A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002565396A JPWO2002065817A1 (en) 2001-02-09 2002-02-06 Organic electroluminescent device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-33543 2001-02-09
JP2001033543 2001-02-09

Publications (1)

Publication Number Publication Date
WO2002065817A1 true WO2002065817A1 (en) 2002-08-22

Family

ID=18897281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000967 WO2002065817A1 (en) 2001-02-09 2002-02-06 Organic field light emitting element

Country Status (3)

Country Link
JP (1) JPWO2002065817A1 (en)
TW (1) TW550964B (en)
WO (1) WO2002065817A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531102A (en) * 2002-02-27 2005-10-13 トムソン ライセンシング Electroluminescent panel provided with light extraction element
EP2263274A1 (en) * 2008-04-04 2010-12-22 Philips Intellectual Property & Standards GmbH Oled device with macro extractor
KR101084178B1 (en) 2009-12-14 2011-11-17 한국과학기술원 Organic light emitting device, lighting equipment comprising the same, and organic light emitting display apparatus comprising the same
WO2017134820A1 (en) * 2016-02-05 2017-08-10 パイオニア株式会社 Light emitting device and method for manufacturing light emitting device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI355106B (en) 2007-05-07 2011-12-21 Chunghwa Picture Tubes Ltd Organic photodetector and fabricating method of or
US8435809B2 (en) * 2009-09-25 2013-05-07 Intel Corporation Vertical mirror in a silicon photonic circuit
US9195007B2 (en) 2012-06-28 2015-11-24 Intel Corporation Inverted 45 degree mirror for photonic integrated circuits
WO2014142795A1 (en) 2013-03-11 2014-09-18 Intel Corporation Low voltage avalanche photodiode with re-entrant mirror for silicon based photonic integrated circuits
CN105185924A (en) * 2015-10-21 2015-12-23 南京先进激光技术研究院 High-light-effect OLED (Organic Light Emitting Diode) display unit

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189237A (en) * 1996-12-25 1998-07-21 Casio Comput Co Ltd Surface light emitting body and liqiud crystal display device using it
WO1998034437A1 (en) * 1997-02-04 1998-08-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent display device
WO1999040364A1 (en) * 1998-02-05 1999-08-12 Zumtobel Staff Gmbh Lighting fixture
JPH11307266A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Organic luminescent element
JPH11329726A (en) * 1998-05-21 1999-11-30 Sharp Corp Organic element
JP2000068069A (en) * 1998-08-13 2000-03-03 Idemitsu Kosan Co Ltd Organic electroluminescence device and its manufacture
JP2000260559A (en) * 1999-03-05 2000-09-22 Sony Corp Optical element and base body for optical element
JP2000284134A (en) * 1999-03-31 2000-10-13 Seiko Epson Corp Optical device
JP2002008850A (en) * 2000-04-21 2002-01-11 Semiconductor Energy Lab Co Ltd Self-luminous device and electric appliance using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189237A (en) * 1996-12-25 1998-07-21 Casio Comput Co Ltd Surface light emitting body and liqiud crystal display device using it
WO1998034437A1 (en) * 1997-02-04 1998-08-06 Idemitsu Kosan Co., Ltd. Organic electroluminescent display device
WO1999040364A1 (en) * 1998-02-05 1999-08-12 Zumtobel Staff Gmbh Lighting fixture
JPH11307266A (en) * 1998-04-23 1999-11-05 Matsushita Electric Ind Co Ltd Organic luminescent element
JPH11329726A (en) * 1998-05-21 1999-11-30 Sharp Corp Organic element
JP2000068069A (en) * 1998-08-13 2000-03-03 Idemitsu Kosan Co Ltd Organic electroluminescence device and its manufacture
JP2000260559A (en) * 1999-03-05 2000-09-22 Sony Corp Optical element and base body for optical element
JP2000284134A (en) * 1999-03-31 2000-10-13 Seiko Epson Corp Optical device
JP2002008850A (en) * 2000-04-21 2002-01-11 Semiconductor Energy Lab Co Ltd Self-luminous device and electric appliance using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005531102A (en) * 2002-02-27 2005-10-13 トムソン ライセンシング Electroluminescent panel provided with light extraction element
EP2263274A1 (en) * 2008-04-04 2010-12-22 Philips Intellectual Property & Standards GmbH Oled device with macro extractor
KR20110004419A (en) * 2008-04-04 2011-01-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Oled device with macro extractor
JP2011517030A (en) * 2008-04-04 2011-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ OLED device with macro extractor
US9070901B2 (en) 2008-04-04 2015-06-30 Koninklijke Philips N.V. OLED device with macro extractor
KR101669088B1 (en) * 2008-04-04 2016-10-26 오엘이디워크스 게엠베하 Oled device with macro extractor
KR101084178B1 (en) 2009-12-14 2011-11-17 한국과학기술원 Organic light emitting device, lighting equipment comprising the same, and organic light emitting display apparatus comprising the same
WO2017134820A1 (en) * 2016-02-05 2017-08-10 パイオニア株式会社 Light emitting device and method for manufacturing light emitting device

Also Published As

Publication number Publication date
TW550964B (en) 2003-09-01
JPWO2002065817A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
JP6930016B2 (en) OLED device with enhancement layer
US7612497B2 (en) Organic electroluminescence device and organic electroluminescence system
JP4984343B2 (en) Organic electroluminescent device and optoelectronic device using the same
JP4526776B2 (en) LIGHT EMITTING DEVICE AND ELECTRONIC DEVICE
Kalyani et al. Novel materials for fabrication and encapsulation of OLEDs
KR101647527B1 (en) Phosphor-coated light extraction structures for phosphor-converted light emitting devices
JP4690041B2 (en) Diffusion barrier coating with graded composition and device comprising the same
US20080233669A1 (en) Method for Manufacturing Light-Emitting Device
KR20080096381A (en) Film formation method and method for manufacturing light-emitting device
WO2002065817A1 (en) Organic field light emitting element
TW201007650A (en) Organic light emitting device based lighting for low cost, flexible large area signage
TW201002129A (en) Organic el display and manufacturing method thereof
JP6185498B2 (en) Evaporation mask
JP2001357972A (en) Organic electroluminescent element
JP2010121215A (en) Deposition apparatus and deposition method
JP2003115389A (en) Organic electric field light emitting element
JP5568683B2 (en) Vapor deposition mask and vapor deposition method using the mask
WO2009099009A1 (en) Organic el display and manufacturing method of the same
JP2013067867A (en) Vessel
JP2017036512A (en) Deposition device
KR20050104065A (en) Flexible plane organic light emitting source
KR20050103845A (en) Flexible plane organic light emitting source
TW200421918A (en) Full-color polarized electroluminescent device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002565396

Country of ref document: JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase