TW550964B - Organic electro luminescence device - Google Patents
Organic electro luminescence device Download PDFInfo
- Publication number
- TW550964B TW550964B TW091101580A TW91101580A TW550964B TW 550964 B TW550964 B TW 550964B TW 091101580 A TW091101580 A TW 091101580A TW 91101580 A TW91101580 A TW 91101580A TW 550964 B TW550964 B TW 550964B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- emitting
- electric field
- layer
- intermediate layer
- Prior art date
Links
- 238000005401 electroluminescence Methods 0.000 title abstract 6
- 238000002347 injection Methods 0.000 claims abstract description 26
- 239000007924 injection Substances 0.000 claims abstract description 26
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 230000006798 recombination Effects 0.000 claims abstract description 11
- 238000005215 recombination Methods 0.000 claims abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 5
- 230000005684 electric field Effects 0.000 claims description 114
- 239000000126 substance Substances 0.000 claims description 38
- 230000003287 optical effect Effects 0.000 claims description 14
- 238000005192 partition Methods 0.000 claims description 13
- 238000009792 diffusion process Methods 0.000 claims description 7
- 238000000149 argon plasma sintering Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 54
- 230000001976 improved effect Effects 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 248
- 239000000758 substrate Substances 0.000 description 102
- 238000000034 method Methods 0.000 description 53
- 239000010408 film Substances 0.000 description 33
- 239000010409 thin film Substances 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000012545 processing Methods 0.000 description 15
- 239000011347 resin Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 14
- 238000003860 storage Methods 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 239000011521 glass Substances 0.000 description 12
- 239000000123 paper Substances 0.000 description 11
- 101150118300 cos gene Proteins 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000005525 hole transport Effects 0.000 description 8
- 239000003086 colorant Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000008020 evaporation Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002070 nanowire Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000000049 pigment Substances 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000011368 organic material Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- -1 vinyl (Phenylene-vinylene) Chemical class 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical compound C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000004770 highest occupied molecular orbital Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000001902 propagating effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical compound C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 2
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UXYHZIYEDDINQH-UHFFFAOYSA-N C1=CNC2=C3C=NN=C3C=CC2=C1 Chemical compound C1=CNC2=C3C=NN=C3C=CC2=C1 UXYHZIYEDDINQH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000010893 electron trap Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229930003944 flavone Natural products 0.000 description 2
- 235000011949 flavones Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 150000004866 oxadiazoles Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229960003540 oxyquinoline Drugs 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical compound C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 150000003413 spiro compounds Chemical class 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- LJZDKKMEKZKCNI-UHFFFAOYSA-N 1-n,1-n'-dinaphthalen-1-yl-1-n,1-n',4-triphenylcyclohexa-2,4-diene-1,1-diamine Chemical group C1C=C(C=2C=CC=CC=2)C=CC1(N(C=1C=CC=CC=1)C=1C2=CC=CC=C2C=CC=1)N(C=1C2=CC=CC=C2C=CC=1)C1=CC=CC=C1 LJZDKKMEKZKCNI-UHFFFAOYSA-N 0.000 description 1
- ZEMDSNVUUOCIED-UHFFFAOYSA-N 1-phenyl-4-[4-[4-(4-phenylphenyl)phenyl]phenyl]benzene Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 ZEMDSNVUUOCIED-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- BWSKMLZUZBOOPF-UHFFFAOYSA-N 2-(2-phenylphenyl)ethanimidamide Chemical compound NC(=N)CC1=CC=CC=C1C1=CC=CC=C1 BWSKMLZUZBOOPF-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101100234408 Danio rerio kif7 gene Proteins 0.000 description 1
- 101100221620 Drosophila melanogaster cos gene Proteins 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229920000535 Tan II Polymers 0.000 description 1
- GAMYVSCDDLXAQW-AOIWZFSPSA-N Thermopsosid Natural products O(C)c1c(O)ccc(C=2Oc3c(c(O)cc(O[C@H]4[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O4)c3)C(=O)C=2)c1 GAMYVSCDDLXAQW-AOIWZFSPSA-N 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 101100398237 Xenopus tropicalis kif11 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- XCJYREBRNVKWGJ-UHFFFAOYSA-N copper(II) phthalocyanine Chemical compound [Cu+2].C12=CC=CC=C2C(N=C2[N-]C(C3=CC=CC=C32)=N2)=NC1=NC([C]1C=CC=CC1=1)=NC=1N=C1[C]3C=CC=CC3=C2[N-]1 XCJYREBRNVKWGJ-UHFFFAOYSA-N 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002964 excitative effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002212 flavone derivatives Chemical class 0.000 description 1
- 150000002213 flavones Chemical class 0.000 description 1
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical group [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002346 layers by function Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004776 molecular orbital Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Substances C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- AKYFJADNRLTBGV-UHFFFAOYSA-N pyridine;thiadiazole Chemical compound C1=CSN=N1.C1=CC=NC=C1 AKYFJADNRLTBGV-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 208000011117 substance-related disease Diseases 0.000 description 1
- 238000007736 thin film deposition technique Methods 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- VHBFFQKBGNRLFZ-UHFFFAOYSA-N vitamin p Natural products O1C2=CC=CC=C2C(=O)C=C1C1=CC=CC=C1 VHBFFQKBGNRLFZ-UHFFFAOYSA-N 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/877—Arrangements for extracting light from the devices comprising scattering means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/878—Arrangements for extracting light from the devices comprising reflective means
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/879—Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
f 550964 A7 B7 五、發明説明(1 ) 技術領域 本發明係關於一種新型的有機電場發光元件,尤其係關 於:注入正負兩電荷後,藉由該兩電荷所產生的正洞與電 子之再結合而發光之有機電場發光元件。 背景技術 近來隨著各種行動電話、行動終端設備、行動電腦以及 汽車導航系統等產品之普及,質輕、高解析度、高明度且 價格低廉之小型平面顯示器之需求亦日趨升高。此外,在 住家及公司行號中,不佔空間的桌上型顯示器或壁掛式電 視等平面顯示器,亦取代了以往的CRT (陰極射線, Cathode Ray Tube)管顯示器。 尤其,在高速網際網路的普及和數位播放技術之發展下 ,每秒傳送數百乃至數億位元數位訊號之有線、無線雙向 傳輸已實用化,一般使用者正逐步邁向大量資訊即時化處 理的時代,因此,上述平面顯示器不但要求比以往的重量 更輕、解析度與明度更佳且價格低廉外,還必須具有可處 理數位訊號之高速顯示性。 此種平面顯示器,目前正研究開發者包括:液晶顯示器 (Liquid Crystal Display,LCD)、電漿顯示器(Plasma Display,PD)以及場致發射顯示器(Field Emission Display ,FED)等。除了上述各項平面顯示器以外,近年來又以稱 作有機電場發光元件(Organic Electro Luminescense Device ,OELD)或者有機發光二極體(Organic Light Emitted Diode ,OLED)之新型平面顯示器最受矚目。 -4 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 _ B7 五、發明説明(2 ) 所謂的有機電場發光元件’係令電流通過陰極與陽極之 間包夾的有機化合物,藉此讓其中所含的螢光性或磷光性 的有機分子發光。 根據《有機LED元件尚待解決之重要課題與實用化戰略》 (有機電子材料研究會編著,文伸出版,1999年)第u頁 中,佐藤佳晴所著的「序章:材料、元件之現狀與課題」所 述’有機黾%發光元件之研究,初期主要皆探討霉 (Anthracene)及二各後苯(Perylene)等有機半導體單結晶, 而到了 1987年,由 Tang 等人(C· W· Tang 與 S· A· VanSlykw^ 文發表,Appl. Phys· Lett· Μ,913,1987年)提出發光性有 機化合物薄膜與正孔輸送性有機化合物薄膜疊層下的雙層 式有機電場發光元件,該項研究的出發點在於大幅提升發 光特性(發光效率1.51 m/W、驅動電壓1〇 v、明度1〇〇Λ〇 cd/m2)所做之改良。 其後,色素摻雜技術、高分子0LED (有機電激發光顯示 器)、低功函數電極、遮光罩蒸鍍法等的元件技術陸續開 發,而於1997年以所謂的單純陣列方式之電荷注入方法, 完成部分有機電場發光元件之實用化,並進一步以所謂的 主動式矩陣(Active Matrix)之新型電荷注入方法,持續探 討有機電場發光元件之開發。 _木 此種有機電場發光元件之驅動原理如下。 於一對電極之間將螢光性或磷光性有機發光材料予以 膜化後,從正負電極注入電子與正孔,有機發光材料中之 注入電子,即為進入發光分子的最低非佔有分子軌域 -5 - 550964 A7 B7 五、發明説明f 550964 A7 B7 V. Description of the Invention (1) Technical Field The present invention relates to a new type of organic electric field light-emitting element, and particularly relates to the recombination of positive holes and electrons generated by the positive and negative charges after the positive and negative charges are injected. Organic light-emitting elements that emit light. 2. Description of the Related Art Recently, with the popularity of various mobile phones, mobile terminal devices, mobile computers, and car navigation systems, the demand for light-weight, high-resolution, high-brightness, and low-cost small flat-panel displays is increasing. In addition, flat displays such as desktop monitors or wall-mounted televisions that do not occupy space in homes and businesses have also replaced conventional CRT (Cathode Ray Tube) tube displays. In particular, with the popularization of high-speed Internet and the development of digital playback technology, wired and wireless two-way transmission that transmits hundreds or even hundreds of millions of digital signals per second has become practical, and ordinary users are gradually moving towards the real-time of a large amount of information. In the era of processing, the above-mentioned flat panel display not only requires lighter weight, better resolution and brightness, and lower price than the past, but also must have high-speed display capability capable of processing digital signals. Research and development of such flat displays include: Liquid Crystal Display (LCD), Plasma Display (PD), and Field Emission Display (FED). In addition to the above flat-panel displays, new flat-panel displays called Organic Electro Luminescense Device (OELD) or Organic Light Emitted Diode (OLED) have attracted the most attention in recent years. -4-This paper size is in accordance with Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 _ B7 V. Description of the invention (2) The so-called organic electric field light-emitting element 'encloses the current through the cathode and anode The organic compound is sandwiched, so that the fluorescent or phosphorescent organic molecules contained therein emit light. According to "Key Issues to be Solved and Practical Strategies for Organic LED Components" (edited by the Organic Electronic Materials Research Society, extended article, 1999) on page u, "Prologue: Current Status of Materials and Components" In the study of “Organic 黾% light-emitting elements” described in the topic, organic semiconductor single crystals such as molds (Anthracene) and perylene were mainly discussed in the early stage. By 1987, Tang et al. (C · W · Tang and S · A · VanSlykw ^, published by Appl. Phys · Let · M, 913, 1987) proposed a two-layer organic electric field light-emitting element under the lamination of a light-emitting organic compound film and a positive-hole transporting organic compound film. The starting point of this research is to improve the light-emitting characteristics (light-emitting efficiency 1.51 m / W, driving voltage 10v, brightness 100cd / m2). Since then, element technology such as pigment doping technology, polymer 0LED (organic electroluminescent display), low work function electrode, and hood evaporation method have been developed. In 1997, a so-called simple array method of charge injection method was developed. To complete the practical application of some organic electric field light-emitting elements, and continue to explore the development of organic electric field light-emitting elements with a new type of charge injection method called an active matrix. _ 木 The driving principle of this organic electric field light-emitting element is as follows. After the fluorescent or phosphorescent organic light-emitting material is filmed between a pair of electrodes, electrons and positive holes are injected from the positive and negative electrodes. The injected electrons in the organic light-emitting material are the lowest non-occupied molecular orbitals that enter the light-emitting molecules. -5-550964 A7 B7 V. Description of the invention
(Lowest Unoccupied Molecular Orbital,LUMO)之一電子化 有機分子(簡稱作電子)。 /主入正孔則成為進入發光性分子的最高佔有分子轨域 (Highest Occupied Molecular Orbital ’ HOMO)之一正孔化有 機分子(簡稱作正孔),而於有機材料中,分別朝對向電極 移動,途中遇到電子與電動,即形成發光性分子的單重態 或三重態激態反應,令光線輻射之同時失活,藉此放光。 般有機發光材料中,如同各種雷射色素,其相對於光 激態的量子效率高之材料十分常見,如藉由電荷注入而令 該等材料發光,因許多種有機化合物為絕緣體,其電子與 正孔的電荷傳輸性低,因此,初始的有機電場發光元件需 要數百V等級的高電壓。 前述的Tang氏之雙層式有機電場發光元件,即是利用影 印機感光體的有機照相感光體之高電荷輸送性能,將薄膜 刀作傳輸電荷(正孔)與發光等兩種功能,而有效提升發光 特性。 ^ 目前已開發出三層式的有機電場發光元件,其係另增設 一層有機薄膜,多擔負一個電荷電子的傳輸性。 +除此之外,並陸續提出有功能分離式、多層膜式的有機 電場發光元件,其係藉由增設擔負各種功能之薄膜,例如 增設電荷注入層,以提升正孔與電子注入有機材料之注入 特性,或者增設正孔停止層,以提升兩者的再結合機率等。 唯一不變的是,作為其發光源的部分,在有機發光層中所 含的有機發光分子產生激態之失活過程中,仍為光輻射。 -6 - 550964 A7 B7 五、發明説明( 根據《有機LED元件尚待解決之重要課題 (有機電,材料研究會編著,文伸出版,1999年)第2戰二 頁n:/所著的「第二節:發光材料之現狀與課題」 所、曰發出勞光或磷光之有機發光材料,開發作為油墨 、染料、閃光劑等各種用途者十分常見。 這些有機發光材料於有機電場發光元件中均有使用,如 以分子量來區分其材料種類,可分作低分子類與高分子類 ,低分子類係於真空蒸鍍法等乾式製程中形成薄膜,而高 分子類則以铸模法形成薄膜。 最初(Tang氏之前)使用有機電場發光元件,卻未能製造 出高效率的元件,一般認為其原因之一在於無法形成品質 優良的有機薄膜,尤其是低分子類所需的必要條件,列舉 包括: (1) 可利用真空蒸鍍法製造薄膜(l〇〇nm左右); (2) 製膜後可維持均一的薄膜構造(無需濾出結晶); (3) 固體狀悲下的南勞光量子吸收率; (4) 適度的載子傳輸性; (5) 耐熱性; (6) 精製容易; (7) 化學電性穩定。 此外,如從發光過程來分類,亦可分作:發光材料,其 係藉由直接電子與正孔再結合下發光,以及螢光材料,其 係藉由發光材料所產生的光激起下發光。 若從化學構造上的差異來看,常見者有金屬錯體型發光 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)(Lowest Unoccupied Molecular Orbital, LUMO) is one of the electronic organic molecules (referred to as electrons). / The main entrance pore becomes one of the highest occupied molecular orbitals (Highest Occupied Molecular Orbital 'HOMO) of the luminescent molecule. Orthoporous organic molecules (referred to as positive pores), and in organic materials, they face the opposite electrode. On the way, you will encounter electrons and electric motors, that is, singlet or triplet excitatory reactions that form luminescent molecules, which will deactivate the light while radiating it, thereby emitting light. In general organic light-emitting materials, like various laser pigments, materials with high quantum efficiency relative to light-excited states are very common. For example, these materials emit light by charge injection. Because many organic compounds are insulators, their electrons and The positive hole has a low charge-transporting property. Therefore, an initial organic electric field light-emitting element requires a high voltage of several hundreds of V levels. The aforementioned Tang ’s double-layer organic electric field light-emitting element is effective in utilizing the high charge-transporting performance of the photoreceptor's organic photoreceptor and using the thin film knife to transfer charge (positive holes) and emit light. Improve luminous characteristics. ^ At present, a three-layer organic electric field light-emitting device has been developed, which is provided with an additional organic thin film, which bears one charge electron transportability. + In addition, organic electric field light-emitting devices with functional separation and multi-layer films have been successively proposed, which are enhanced by adding thin films that perform various functions, such as adding a charge injection layer to enhance the positive holes and electron injection organic materials. Injection characteristics, or adding a positive hole stop layer to increase the recombination probability of the two, etc. The only constant is that, as part of its light emitting source, during the deactivation of the organic light emitting molecules contained in the organic light emitting layer, the light is still emitted. -6-550964 A7 B7 V. Description of the invention (According to "Important Issues to be Solved for Organic LED Components (Organic Electricity, Materials Research Society, Text Extended Edition, 1999), Page 2 of War 2: n: / Section 2: Current Status and Issues of Luminescent Materials "It is very common for organic light-emitting materials that emit light or phosphorescence to be developed for various uses such as inks, dyes, glitters, etc. These organic light-emitting materials are used in organic electric field light-emitting devices. It is used. For example, it can be divided into low molecular weight and high molecular weight by molecular weight. Low molecular weight is formed in dry processes such as vacuum evaporation, and high molecular weight is formed by casting. Originally (before Tang's) using organic electric field light-emitting devices, but failed to produce high-efficiency devices, it is generally believed that one of the reasons is the inability to form high-quality organic thin films, especially the necessary conditions required for low-molecular types. : (1) thin film (about 100 nm) can be manufactured by vacuum evaporation method; (2) uniform film structure can be maintained after film formation (no need to filter out crystals); (3) solid Nanao light's quantum absorptivity in the state of sadness; (4) Moderate carrier transport; (5) Heat resistance; (6) Easy purification; (7) Chemical and electrical stability. In addition, if classified from the light-emitting process, it is also It can be divided into: luminescent materials, which emit light through the combination of direct electrons and positive holes, and fluorescent materials, which emit light when excited by the light generated by the luminescent material. If viewed from the difference in chemical structure , Common people have metal misalignment type. The paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 mm)
裝 訂Binding
550964 A7 B7 五、發明説明(5 ) 材料(如配位子中的8- ϋ基0奎琳(8-Quinolinol)、苯嗯嗪 (Benzoxazole)、甲亞胺化合物(Azomethine)及黃酮(Flavone) 等),與中心金屬中的Al、Be、Zn、Ga、Eu及Pt等),以及 勞光色素類發光材料(如嗯二重氮(Oxadiazoles)、焦木素 (Pyroxilin)、聯苯乙晞丙块(Distyryl-allylene)、環戊二稀· (Cyclopentadiene)、四苯基 丁二晞(Tetraphenyl-butadiene) 、雙苯乙埽蒽(Bis-styryrl-anthracene)、二茶歲苯、菲 (Phenanthrene)、低噻吩(〇iig0-thiophene)、吡唑酮 4 啉 (Pyrazoloquinoline) ' 噻重氮啶(Thiadiazole-pyridine)、層 狀欽#5礦、p-聯六苯(p- Sexiphenyl),以及螺環化合物等) 等。 有關此等有機電場發光元件之發光材料及元件化製程, 過去已有各種眾多材料及方法受到討論,但是從這些有機 電場發光元件中,在最大或者何種程度的效率下,究竟能 獲得多少發光量,仍有許多疑點有帶釐清。 根據《有機LED元件尚待解決之重要課題與實用化戰略》 (有機電子材料研究會編著,文伸出版,1999年)第1〇5〜^ 18 頁中,同井哲夫所著的「第一節:發光效率之解釋與界限」 所述,有機電場發光元件外部發光之能源,係相當於元件 内流動的電子或一個正孔之放出光子數,如以電^發光的 外部量子效率7? 4(eXt)表示,可得下列關係式: [公式一] T] ψ (ext) = 7? ext X V φ (int) = ?? ext ( 7 χ η τχ η ^ ······(1) -8 · 本纸張尺度適用中國國豕標準(CNS) Α4規格(210 X 297公憂) _ 550964 A7 B7 五、發明説明(6550964 A7 B7 V. Description of the invention (5) Materials (such as 8-Quinolinol in ligands, Benzoxazole, Azomethine and Flavone) Etc.), and Al, Be, Zn, Ga, Eu, Pt, etc. in the center metal, as well as light-emitting pigments (such as Oxadiazoles, Pyroxilin, Biphenylacetamidine, etc.) (Distyryl-allylene), Cyclopentadiene, Tetraphenyl-butadiene, Bis-styryrl-anthracene, Dichasylbenzene, Phenoanthrene, Low thiophene (〇iig0-thiophene), Pyrazoloquinoline (Thyadiazole-pyridine), layered Qin # 5 ore, p-sexiphenyl, and spiro compounds, etc.) Wait. Regarding the light-emitting materials and element-forming processes of these organic electric-field light-emitting elements, various materials and methods have been discussed in the past, but from these organic electric-field light-emitting elements, how much light can be obtained at the maximum or the degree of efficiency? Volume, there are still many doubts with clarification. According to "Important Issues and Practical Strategies for Organic LED Components to Be Solved" (edited by the Organic Electronic Materials Research Society, extended article, 1999) on pages 105 ~ ^ 18, "The First Section: Interpretation and Boundary of Luminous Efficiency "According to the description, the energy source for the external light emission of an organic electric field light-emitting element is equivalent to the number of photons emitted by the electrons flowing in the element or a positive hole, such as the external quantum efficiency of electric light emission 7? 4 (eXt) indicates that the following relations can be obtained: [Formula 1] T] ψ (ext) = 7? ext XV φ (int) = ?? ext (7 χ η τχ η ^ ····· (1) -8 · This paper size applies to China National Standard (CNS) Α4 specification (210 X 297 public concern) _ 550964 A7 B7 V. Description of the invention (6
在此’ 7/ 4 (int)為内部量子效率,表千鈿a、人― 干衣不相當於疋件内部流 動的電子或一個正孔之放出光子數· a、泰止1 ★ K,々ext為透光效率,表 示元件内部所發生的光因元件界面的及 |叫w久财或吸收而減少後 ’對元件外部之透光效率。Here, '7/4 (int) is the internal quantum efficiency, which means that a person and a dry clothes are not equivalent to the number of photons emitted by an electron flowing inside a piece or a positive hole. A, Taizhi 1 ★ K, 々 ext is the light transmission efficiency, which means that the light that occurs inside the component is reduced by the interface of the component and | called w Jiu Cai or absorption, 'the light transmission efficiency to the outside of the component.
此外’ τ為電荷平衡,相當於注入到元件内部的電子與 正孔數心比例;7? r為單重態激發子產生效率,表示從所注 入的電荷產生有助於發光的多重態激發子之比例;。為發 光量子效率,表示單重態激發子中發光後失活之比例。X 相當於這些元件外部的發光量之外部量子效率^ “Μ) ,可大致分作:依發光材料本身的性質而決定之^及^厂 依元件内的電子與正孔之注入比例而決定之了,以f及依元 件構造而決定之々eja。 0 r及7? f為有關發光材料本身的物性之效率,單純根據使 用的發光材料而決定^ r則是依據電極以及與電極相接的 有機層之電性電位差、界面電位差,以及有機層中的電子 與正孔之易動度等所決定的量,此為依據電極材料與元件 内部之有機材料之物性所單方面決定之效率。 這些因子中,電荷平衡^^丨。單重態激發子產生效率 r,一般從電荷的自旋關係認定為〜$〇25。 發光量子效率77 f如在超放射性過程以外,則^丨< 1,因 此’依據元件内部的有機材料和電極材料所決定的因子部 分[公式一的(7 X 77 rx 77 f)的部分],一般認為在〇 25以下。 另一方面,根據 N.c. Greenham R· H. Friend, D.D.C· Bradley,Adv· Mater. 491,1994年的論文指出,透光效率 __ _ - 9 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 B7 五、發明説明(7 係根據古典光學的反射與折射法則而決定,假設發光層之 折射率為η,則: [公式二] V ext= l/(2n2) ......⑺ 终多有機電場發光元件的發光層之折射率,或者保存該 等發光層的玻璃基板之折射率約為1 ·6左右,以下並假設^ ^ =0.2 〇 從上述可知,整個電場發光之外部量子效率為^ (ext) $ 0.2 X 0.25=0.05 ,而一般認定其外部量子效率最高為5%。 為求有機電場發光元件之實用化,就必須提升此外部量 子效率,但因上述習知的有機電場發光元件之外部量子效 率有其上限’故業界仍持續開發與之具有不同功能的有機 電場發光元件。 其中一種方法,即嘗試提升發光材料本身的發光量子效 率單重態激發子產生效率77 r。在以往的電荷注入及再結合 之過程中,會產生〇·25的單重態激發子和0.75的三重態激 發子。 有鑑於此,藉由含有重金屬的有機發光材料自旋-軌道 角運動量相互作用下的激態間交又,令三重態激發子自旋 翻轉為單重態激發子,或者在奈米尺寸(Nan〇scale)區域中 所封閉的三重態激發子之間的衝突下,而轉變成單重態激 發子等’令所產生的三重態激發子轉化成單重態激發子, 藉此擴增有助於發光的激發子之比例。 使用含有此種新激發子產生機構的材料如fac tris (2- -10 - 本紙張尺度適用中國國豕標準(CNS) Α4規格(210X297公釐)In addition, τ is the charge balance, which is equivalent to the ratio of the number of electrons injected into the element to the center of the positive hole; 7? R is the singlet state exciton production efficiency, which means that from the injected charge, multiple state excitons that contribute to light emission are generated. proportion;. For the light emission quantum efficiency, it represents the proportion of singlet excitons that are deactivated after light emission. X corresponds to the external quantum efficiency of the amount of light emitted from these elements ^ "M", which can be roughly divided into: determined by the properties of the luminescent material itself ^ and ^ determined by the injection ratio of electrons and positive holes in the element In terms of f and 々eja, which are determined by the structure of the element, 0 r and 7? F are the efficiency of the physical properties of the light-emitting material itself, which is determined solely based on the light-emitting material used ^ r is based on the electrode and the electrode connected to the electrode The amount determined by the electrical potential difference, the interface potential difference of the organic layer, and the mobility of the electrons and the positive holes in the organic layer is an efficiency determined unilaterally based on the physical properties of the electrode material and the organic material inside the element. These Among the factors, the charge balance is ^^ 丨. The singlet exciton production efficiency r is generally determined to be ~ $ 025 from the spin relationship of the charge. The luminescence quantum efficiency 77 f is outside the superradioactive process, ^ 丨 < 1, Therefore, the factor part determined by the organic material and the electrode material inside the element [the part of the formula (7 X 77 rx 77 f)] is generally considered to be below 0. On the other hand, according to Nc Greenham R. H. Friend, DDC. Bradley, Adv. Mater. 491, 1994 paper pointed out that the light transmission efficiency __ _-9-This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 B7 V. Description of the invention (7 is determined according to the law of reflection and refraction of classical optics. Assuming the refractive index of the light-emitting layer is η, then: [Formula 2] V ext = l / (2n2) ......折射率 The refractive index of the light-emitting layer of the final multi-organic electric field light-emitting element, or the refractive index of the glass substrate holding the light-emitting layer is about 1.6. The following assumes that ^ ^ = 0.2 The quantum efficiency is ^ (ext) $ 0.2 X 0.25 = 0.05, and its external quantum efficiency is generally considered to be a maximum of 5%. In order to make the organic electric field light-emitting element practical, this external quantum efficiency must be improved. There is an upper limit to the external quantum efficiency of organic electric field light-emitting elements. Therefore, the industry continues to develop organic electric field light-emitting elements with different functions. One of the methods is to try to improve the light-emitting quantum efficiency of the light-emitting material itself. 7 r. In the previous charge injection and recombination process, a singlet exciton of 0.25 and a triplet exciton of 0.75 will be generated. In view of this, the spin-orbit angle of organic light-emitting materials containing heavy metals is generated. The interaction of excitons under the interaction of motion causes the triplet exciton spin to flip into a singlet exciton, or under the conflict between triplet excitons enclosed in a nanoscale region, The conversion to singlet excitons and the like causes the generated triplet excitons to be converted to singlet excitons, thereby amplifying the proportion of excitons that contribute to light emission. Use materials such as fac tris containing this new exciton generator (2--10-This paper size applies to China National Standard (CNS) A4 specification (210X297 mm)
裝 ηΗ
線 550964 A7 B7 五、發明説明(8Line 550964 A7 B7 V. Description of the invention (8
Phenylpyridine) iridium [Ir(ppy) 3],製成可達高效率發光 之有機電場發光元件,於M, A. BaldQUamansky, P1 Burrows,Μ· Ε· Thompson,S. R· F〇rrest 的論文 Appl phys Lett· II,4-6, 1999年中有所介紹。 另一個方法是,嘗試改善透光效率”…,以藉此提升元 件外部所產生的外部量子效率,亦即,先前未濾出結晶之 均一薄膜構造,為有機電場發光元件製造上的必要條件, 惟此時構成發光層之有機發光材料,係呈空間性隨機配向 狀態,因此會於發光元件内部,對全方位等向射出。 有鑑於此,對元件的發光面進行平行方向的發光控制, 並擴增垂直方向的發光之方法’舉例如特開平‘ 40413號公 報所記載之有機電場發光元件,其係具有發光層,該發光 層係包含以研磨法(Lapping)使之朝單軸配向的分子。 又如特開平11- 102783號公報之記載,在真空中藉由乾式 製程形成發光層後,再利用光異性化反應,令構成發光層 的有機分子平行配向於發光面上,如此所形成之有機電場 發光元件,亦可同樣於發光層内部得到異向性的發光特性。 然而上述公報中,並未具體說明配向化對於透光效率之 提升,唯有特開平11- 102783號公報中,稍記載著:元件外 部之發光效率由〇·51 m/W提升至〇·81 m/W,提升約ι·6倍左 右。 ° 相對的’在更早的論文「M. Hamaguchi and K. Yoshino, Jpn· J· Appl. PhyS·第 34卷,第 L712 頁,1995 年」中,已針 對配向後的有機電場發光元件之發光異向性以及透光效率 __ - 11 - t紙張尺度適财_家料(CNS) A4^g(21G χ 297公爱)---—-----Phenylpyridine) iridium [Ir (ppy) 3], an organic electric field light-emitting device capable of emitting light with high efficiency, in M, A. BaldQUamansky, P1 Burrows, M · E · Thompson, S. R · Frorrest Paper Appl Phys Lett · II, 4-6, introduced in mid-1999. Another method is to try to improve the light transmission efficiency "... in order to improve the external quantum efficiency generated by the outside of the element, that is, a uniform thin film structure without previously filtering out crystals, which is a necessary condition for the manufacture of organic electric field light emitting elements, However, at this time, the organic light-emitting material constituting the light-emitting layer is in a spatially random alignment state, so it will be emitted in all directions isotropically inside the light-emitting element. In view of this, the light-emitting surface of the element is controlled in parallel directions, and A method of amplifying light emission in a vertical direction, for example, an organic electric field light emitting device described in Japanese Patent Application Laid-Open No. 40413 has a light emitting layer containing molecules that are aligned in a uniaxial direction by a lapping method. As described in Japanese Patent Application Laid-Open No. 11-102783, after the light-emitting layer is formed by a dry process in a vacuum, the photo-anisotropic reaction is used to orient the organic molecules constituting the light-emitting layer in parallel on the light-emitting surface. An organic electric field light-emitting element can also obtain anisotropic light-emitting characteristics inside the light-emitting layer. However, in the above-mentioned publication, it does not have It is explained that alignment improves the light transmission efficiency. Only Japanese Patent Application Laid-Open No. 11-102783 states that the light emission efficiency outside the element is increased from 0.51 m / W to 0.81 m / W, which is about ι. · Approximately 6 times. ° Relative 'In earlier papers "M. Hamaguchi and K. Yoshino, Jpn · J · Appl. PhyS · Vol. 34, p. L712, 1995", the organic Luminous anisotropy and light transmission efficiency of electric field light-emitting elements __-11-t paper size suitable financial _ house materials (CNS) A4 ^ g (21G χ 297 public love) -----------
裝 ηΗ
線 550964 A7 — B7 五、發日>^^0月(9一) '— --~- ’進行了更為詳盡的測定。 根據其圖1所示,與配向方向平行與垂直的方向,兩者 的透光量發現有顯著的差別,但配向後的試料與無配向的 4料之間,卻未見顯著的透光量差異。 另有方法提出,於發光層内部隨機所發生的光中,利用 元件構造上的設計,令薄膜面内傳播的成分變換到膜面的 垂直方向。例如特開平10- 172766號公報所述,利用乾式蝕 刻加工开彡成發光層的橫端面,以膜端面作為半透明反射鏡 <功能使用,再利用一定比例的光回照膜内部的作用以降 低損失,令膜正面發出的有效光總量增加,以提升相當於 發光元件的輸入能源之輸出發光量。 仁疋採用此方法’需對有機薄膜進行乾式蚀刻,但因有 機薄膜的機械性強度原本就弱,因此要形成光學性優良的 ^面’以防止膜本身損傷或作為反射鏡之用,極為困難。 同樣的,根據特開平10-229243號公報之有機電場發光元 件’其具有垂直於膜面的諧振器構造,其所提出的方法是 ’利用鄰近場光於膜平行方向製成微細週期構造,使膜面 平行方向具有發揮反射功能之微細週期構造,再利用該構 造來改變所射出的發光。 但此方法同樣有膜的加工性問題,尤其於膜面内形成諧 振器構造時’需要更精準的加工精密度,加上有機發光層 本身的厚度最多只有100 nm左右,以光學技術加工此端面 ,實屬困難。 此外’根據特開平10_ 398 η號公報之提案,其係於彎曲 -12 - 本紙張尺度適用中國國豕標準(CNS) Α4規格(210 X 297公釐) 550964 五、發明説明(1〇 透明基板的凹部内側面,形成薄膜電場發光元件’以提升 f外邵透π之效率。但是,要於彎曲性基板上, 形成可顯示複雜圖像的像素電極、發光層及正孔輸送層等 功此性薄膜,極為困難。此外,以顯示元件來看,由於整 個顯示區均為大幅度彎曲,會對使用者的視野特性造成諸 多限制。 如上所述’雖有不少提案探討如冑較以往改善有機電場 發光元件的發光效率,但由於上述多項因素至今仍未出 現明確的解決方法。 本發明不但必須能夠使有機電場發光元件實用化,同時 要能提升此外部量子效率。但是,上述過去的有機電場發 光兀件有其外部量子效率上限,解決方法包括提升發光材 料本身的發光量子效率單重態激發子產生效率々r,以及藉 由改善透光效率7;ext,以提升元件外部的外部量子效率。 其中,本發明尤其係提供後者的方法,即改善透光效率 0 ext’以大幅提升其效率。 亦即本發明所提出之方法,係藉由採取更容易形成的元 件構造,以改善透光效率,且對於以往所揭示的相同 組成之有機電場發光元件,亦在相同的驅動條件下,令更 多的光線透出到元件外部。 其目的在於透過此種效率化的手段,力圖降低所需電力 並達到像素尺寸最佳化及高精密化,進而增長元件的壽命。 尤其以十英吋以上的大畫面顯示元件,以及面積小但精 密度高之圖像顯示元件作為驅動元件時,因考慮到使用有 13 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7Line 550964 A7 — B7 V. Issue date > ^^ 0 month (September 1) '--~-’has been measured in more detail. As shown in Figure 1, a significant difference in light transmission between the two directions parallel and perpendicular to the alignment direction was found, but no significant light transmission was observed between the sample after alignment and the four materials without alignment. difference. Another method proposes that, in the light randomly generated inside the light-emitting layer, the design of the element structure is used to transform the components propagating in the film surface to the vertical direction of the film surface. For example, as disclosed in Japanese Patent Application Laid-Open No. 10-172766, the lateral end surface of the light-emitting layer is formed by dry etching, and the end surface of the film is used as a semi-transparent mirror < function, and then a certain proportion of the light is used to reflect the interior of the film. The loss is reduced, so that the total amount of effective light emitted from the front side of the film is increased, so as to increase the output luminous amount equivalent to the input energy of the light emitting element. In this method, the organic film needs to be dry-etched. However, since the organic film has weak mechanical strength, it is very difficult to form a high-quality optical surface to prevent the film from being damaged or used as a reflector. It is extremely difficult. . Similarly, according to the organic electric field light-emitting element of Japanese Patent Application Laid-Open No. 10-229243, which has a resonator structure perpendicular to the film surface, the proposed method is to 'make a fine periodic structure in the parallel direction of the film by using adjacent field light, so that The film surface has a fine periodic structure in a direction parallel to the reflection function, and this structure is used to change the emitted light. However, this method also has the problem of processability of the film, especially when the resonator structure is formed in the film surface, 'more precise processing precision is needed, plus the thickness of the organic light emitting layer itself is only about 100 nm. This end surface is processed by optical technology. It is really difficult. In addition, according to the proposal of Japanese Unexamined Patent Publication No. 10_398 η, which is based on bending -12-This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 5. Description of the invention (10 transparent substrate A thin-film electric field light-emitting element is formed on the inner side surface of the recessed portion to improve the efficiency of f. However, it is necessary to form a pixel electrode, a light-emitting layer, and a positive-hole transport layer on a flexible substrate to display complex images. It is extremely difficult to use a thin film. In addition, from the perspective of a display element, since the entire display area is greatly bent, it will cause a lot of restrictions on the field of view of the user. The luminous efficiency of the organic electric field light-emitting element has not yet emerged due to the above-mentioned multiple factors. The present invention must not only make the organic electric field light-emitting element practical, but also improve the external quantum efficiency. However, the above-mentioned past organic The electric field light emitting element has its upper limit of external quantum efficiency, and the solution includes improving the singlet state of the light emitting quantum efficiency of the light emitting material itself. The hair generation efficiency 々r, and the external quantum efficiency outside the element are improved by improving the light transmission efficiency 7; ext. Among them, the present invention particularly provides the latter method, which is to improve the light transmission efficiency 0 ext 'to greatly increase its efficiency. That is, the method proposed by the present invention improves the light transmission efficiency by adopting an element structure that is easier to form, and also for organic field light-emitting elements of the same composition disclosed in the past, under the same driving conditions, Allows more light to be transmitted to the outside of the device. The purpose is to reduce the power required to achieve pixel size optimization and high precision through this efficiency method, thereby increasing the life of the device. Especially ten inches When the above large-screen display elements and small-area but high-precision image display elements are used as driving elements, 13 paper sizes are applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) 550964. A7
機材料時的本質性問題,使其無法作為高精密度的圖像顯 示元件使用,以往的提案最大僅提供到八英吋的圖像顯示 元件。本發明則針對次世代的有機電場發光元件,提出必 要之基本構成。 發明之揭示 為達成上述提升有機電場發光元件的透光效率之目的, 以下即說明本發明之要旨: [1] 一種有機電場發光元件,其係可進行正負兩電荷之 注入及傳送,並可藉由與該正負兩電荷所產生的正孔 (Positive Hole)與電子之再結合而發光,且具有包含螢光物 質之發光層,可接收來自發光物質或者該發光物質所放射 的光而產生二次發光,該發光物質係於該有機電場發光元 件中所含的再結合下所產生; 其特徵在於:具有第一種中間層,其係位在發光之發光 層外部’以及向有機電場發光元件外部透光的透光界面之 間’並且,從前述發光層所透出的光強度方位分佈,係於 穿過第一種中間層後放大。 [2] 如前述1之有機電場發光元件,其第一種中間層可進 行光散射或者光程擴散。 [3] 如前述1或2之有機電場發光元件,其第一種中間層 係按照具有特定形狀之像素逐一分隔’或者利用分隔壁逐 一分隔像素,該分隔壁包含與該中間層性質相異之物質。 [4] 如前述之有機電場發光元件,其第一種中間層係依 照相鄰於透光界面的像素逐一分隔,其形狀或者該分隔壁 -14 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 550964 A7 B7 五、發明説明(12 ) "一~ 的形狀係為多角形,且呈多角形的形狀面中,至少有兩個 面為平行。 [5] 如前述4之有機電場發光元件,其呈多角形的平行相 對之形狀面中,至少有一组之長度為發光波長的〇25〜2倍 長。 [6] 如前述3之有機電場發光元件,其第一種中間層係依 照相鄰於透光界面的像素逐一分隔,其形狀或者分隔壁的 形狀係為圓形。 [7] 如前述6之有機電場發光元件,其圓形的第一種中間 層或者分隔壁之直徑’係為發光波長的0.25〜2倍長。 [8] 如前述之有機電場發光元件,其第一種中間層係依 照相鄰於透光界面的像素逐一分隔,其剖面形狀或分隔壁 之剖面形狀,係具有未平行於透光界面之平面構造或者曲 面構造。 [9] 如前述之有機電場發光元件,其第一種中間層係依 照相鄰於透光界面的像素逐一分隔,該第一種中間層或分 隔壁中未連接至透光界面或發光層之界面,可令光線進行 反射或折射。 [10] 如前述之有機電場發光元件,其界面上的反射非為 正反射。 [11] 如前述之有機電場發光元件,其第一種中間層的剖 面形狀,呈開口部從發光面端向透光面端擴大之形狀,而 該第一種中間層的側面可令光線反射,且第一種中間層的 透光面端中,中間層的側面之錐形傾角7?對全反射角之 -15 - 本纸張尺度適用中國國家標準(CNS) A4规格(210 X 297公釐) 550964Due to the inherent problems of mechanical materials, it cannot be used as a high-precision image display device. The previous proposal provided only a maximum of eight inches of image display devices. The present invention proposes a necessary basic structure for the next-generation organic electric field light-emitting element. Disclosure of the Invention In order to achieve the above-mentioned purpose of improving the light transmission efficiency of the organic electric field light-emitting element, the following describes the gist of the present invention: [1] An organic electric field light-emitting element, which can inject and transmit positive and negative charges, and can borrow The positive hole (Positive Hole) generated by the positive and negative charges and electrons recombine to emit light, and has a light-emitting layer containing a fluorescent substance, which can receive light from the light-emitting substance or the light-emitting substance to generate secondary The light-emitting substance is generated by recombination contained in the organic electric field light-emitting element; it is characterized by having a first intermediate layer, which is located outside the light-emitting light-emitting layer, and to the outside of the organic electric field light-emitting element. Between light-transmitting interfaces, and the azimuth distribution of light intensity transmitted from the aforementioned light-emitting layer is enlarged after passing through the first intermediate layer. [2] The organic electric field light-emitting device according to the above 1, the first intermediate layer can perform light scattering or optical path diffusion. [3] As for the organic electric field light-emitting element of 1 or 2 above, the first intermediate layer is separated one by one according to pixels having a specific shape, or the pixels are separated one by one by using a partition wall that includes properties different from the properties of the intermediate layer. substance. [4] As mentioned above, the first intermediate layer of the organic electric field light-emitting element is separated one by one according to the pixels adjacent to the light-transmitting interface, and its shape or the partition wall-14 This paper size applies to China National Standard (CNS) A4 specifications (210 X 297 mm) 550964 A7 B7 V. Description of the invention (12) "The shape of a ~ is a polygon, and at least two of the polygons are parallel. [5] The organic electric field light-emitting element according to the aforementioned 4, wherein the length of at least one of the parallel-opposite shaped surfaces that are polygonal is 0.25 to 2 times as long as the emission wavelength. [6] The organic electric field light-emitting element according to the above 3, the first intermediate layer is separated one by one according to the pixels adjacent to the light-transmitting interface, and the shape or the shape of the partition wall is circular. [7] The organic electric field light-emitting element according to the aforementioned 6, wherein the diameter of the circular first intermediate layer or the partition wall 'is 0.25 to 2 times as long as the light emission wavelength. [8] As mentioned above, the first intermediate layer of the organic electric field light-emitting element is separated one by one according to the pixels adjacent to the light-transmitting interface. The cross-sectional shape or the shape of the partition wall has a plane that is not parallel to the light-transmitting interface. Structure or surface structure. [9] As described in the foregoing organic electric field light-emitting element, the first intermediate layer is separated one by one according to the pixels adjacent to the light-transmitting interface, and the first intermediate layer or the partition wall is not connected to the light-transmitting interface or the light-emitting layer. Interface that allows light to be reflected or refracted. [10] The organic electric field light-emitting element as described above, the reflection at the interface is not regular reflection. [11] As described above, the cross-sectional shape of the first intermediate layer of the organic electric field light-emitting element is a shape in which the opening portion expands from the light emitting surface end to the light transmitting surface end, and the side surface of the first intermediate layer can reflect light And, in the first type of light-transmitting surface end of the intermediate layer, the side of the intermediate layer has a tapered inclination angle of 7 ° to a total reflection angle of -15-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) 550) 550964
五 發明説明(13 ) 角度低於0 c。 [12] 如前述之有機電場發光元件,其第一種中間層的別 面形狀,呈開口部從發光面端向透光面端擴大之形狀,I 該第一種中間層的側面可令光線反射;第一種中間層的透 光面端中,中間層的側面之錐形傾角7/對全反射角0 C之角 度0。係以45。- 0C / 2得出,而在同一剖面上,第一種中間 層對該發光面端開口部寬度a之厚度d,係低於a / 2 tan 7/ ^ [13] 如前述之有機電場發光元件,其係具有光導波層, 該光導波層於第一種中間層及電極層之間具有剖面積,其 面積小於發光層之面積;該電極層具有與發光層相關之光 透過性。 [14] 如前述之有機電場發光元件,其係具有光導波層, 該光導波層於第一種中間層及電極層之間具有剖面積;該 電極層具有與發光層相關之光透過性,該剖面積小於發光 層之面積且未連接至光透過性電極層。 [15] 如前述之有機電場發光元件,其係包含可發光物質 ,該發光物質會吸收第一種中間層在發光層中發出的光線 ,而發出其他顏色的光。 [16] 如前述之有機電場發光元件,其第一種中間層係形 成於基板内部’該基板上載有發光層。 [17] 如前述之有機電場發光元件,其第一種中間層係形 成於光透過性基板外部,該基板上載有發光層。 [18] 如前述之有機電場發光元件,其發光層係形成於基 板上,該基板内形成有非晶形矽薄膜電晶體或複晶矽薄膜 550964 A7 _____ —_B7 五、發明説明(14 ) 電晶體,亦或形成有有基薄膜電晶體。 [19]如刖述之有機電場發光元件,其發光層係形成於基 板上,於泫基板内各自形成非晶形矽薄膜電晶體或複晶矽 薄膜電晶體,或者形成有機薄膜電晶體後,予以一體化成 型。 此處所說的有機電場發光元件,係可從陽極電極注入正 孔、k陰極电極注入電子至包含有機發光分子的發光層中 ,藉由該發光層内部的正孔與電子之再結合而發光;該發 光層無論為單層或多層皆可。 此外’该發光層除了含有藉由該正孔與電子再結合下放 光之有機發光分子以外,亦可包含螢光物質(或鱗光物質) ,其會吸收該有機發光分子所產生的光,而可發出別種光 線。 此外,該發光層亦可包含正孔輸送物質或電子輸送物質 ,其係可提高正孔或電子於該發光層内部的易動度。 此外,該發光層亦可包含正孔捕捉物質或電子捕捉物質 ,其係用來補足特定空間位置中的正孔或電子,或降低正 孔或電子之傳輸性。再者,此等有機發光分子、螢光物質(或 磷光物質)、正孔輸送物質、電子輸送物質、正孔捕捉物 免以及電子捕捉物質’無論包含在同一層中,或分散在各 個層中均可。分散在數層中且包含此等構成物質所形成之 層,在本發明中一律稱作發光層。 此外,本發明之該發光層以及對該發光層注入正孔或電 子之陽極或陰極之間,亦可設置正孔注入層或電子注入廣 -17 · 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 B7 五、發明説明(15 ) ,以便提升正孔或電子之注入效率。 此外亦可設置基板,用以載放該發光層、陽極、陰極、 正孔注入層以及電子注入層;或者另行適當增設中間層亦 可。此中間層之種類,可例舉如:用以改變光的反射特性 之反射鏡或部分穿透鏡、過濾特定光線之濾鏡、調整光射 出時間之光開關、用以調整光的相位特性之波長板、用以 擴散光射出方向之擴散板,以及保護膜,用以防止元件因 構成元件的物質外部之光、熱、氧氣、水份等導致惡化。 這些中間層可經由適當的設計,以防止該發光層、陽極 、陰極、正孔注入層、電子注入層、中間層與基板之間, 或者基板外部的元件特性大幅低落。其中,從該有機電場 發光元件透光至外部的最表面一層,特別固定稱之為透光 最表層。 此外,可於本發明中使用之電場發光材料,包括:各種 金屬錯體型發光材料(如配位子中的8-羥基喹啉(8-Quinolinol)、苯 17惡嗪(Benzoxazole)、甲亞胺化合物 (Azomethine)及黃酮(Flavone)等),與中心金屬中的Al、Be 、Zn、Ga、Eu、Ru及Pt等),以及螢光色素類發光材料(如 17惡二重氮(Oxadiazoles)、焦木素(Pyroxilin)、聯苯乙晞丙決 (Distyryl-allylene)、環戊二晞(Cyclopentadiene)、四苯基丁 二晞(Tetraphenyl-butadiene)、雙苯乙晞莲、(Bis-styryrl-anthracene)、二茶嵌苯、菲(Phenanthrene)、低遠吩(Oligo-thiophene)、p比嗅酮 p奎淋(Pyrazoloquinoline)、嚷重氮淀 (Thiadi azole - pyridine)、層狀鈥 #5 礦、p-聯六苯(p- Sex ip henyl) -18 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 550964 A7 ______ B7 五、發明説明(16 ) ’以及螺環化合物等)等。 或者,使用各種高分子材料(如聚苯基乙烯基(p〇以 (Phenylene- vinylene))、聚乙烯基咔唑(p〇ly (Wnyi· carbaz_)) 以及聚苟(P〇ly-flUOrene)等)作為發光材料,或是以非發光 性的高分子材料(如聚乙埽、聚苯乙埽、聚氧化乙缔㈣乂 (oxyethylene))、聚乙烯醇(Poly (vinyl alc〇h〇1))、聚甲基 丙烯酸甲酯(Poly (methacrylic acid) 、聚丙埽酸〇 醋、聚甲基丙缔酸甲酿、聚異戊二缔(p〇lyis〇prene)、聚 醯亞胺,以及聚碳酸酿等)作為矩陣,將各種發光材料或 螢光材料進行混合或共聚化合等亦可。 此外,亦可將各種有機正孔或電子輸送材料(三苯胺 (TdPhenylamine)等)混在其中。亦可進一步混入各種正孔 或電子注入層(例如Li、Ca、Mg、Cs及CuPc等),並可配合 元件構成’選擇適當的材料。 至於本發明的有機電場發光元件之製造方法,可使用各 種薄膜形成技術,例如自旋式塗佈法、塗佈法、壓鑄法' 濺鍍法真二蒸鍍法、分子線蒸鍵法、液相磊晶成長法、 原子層磊晶成長法、滾壓法、過網印刷法、噴墨式印刷法 黾野木&法、研磨法、嘴鍍法、水面擴散法,以及朗氏 (Langmuir- Blodgett)薄膜沉積法等。 此外,為促進此等製膜中或製膜後的配向化,可使用基 板本身具有配向限制力的結晶性基板、配向膜塗佈基板, 以及表面經過物理或化學處理之基板等。 此外’適合此種配向處理的化合物中之分子架構,以配 550964 A7V. Description of the invention (13) The angle is lower than 0 c. [12] As in the organic electric field light-emitting element described above, the shape of the other surface of the first intermediate layer is a shape in which the opening portion expands from the end of the light-emitting surface to the end of the light-transmitting surface. I The side surface of the first intermediate layer can make light Reflection; in the light-transmitting surface end of the first intermediate layer, the side of the intermediate layer has a tapered inclination angle of 7 / total reflection angle of 0 C and an angle of 0. Tied to 45. -0C / 2, and on the same section, the thickness d of the width a of the opening at the end of the light emitting surface of the first intermediate layer is lower than a / 2 tan 7 / ^ [13] The organic electric field as described above The device has a light-guiding layer having a cross-sectional area between the first intermediate layer and the electrode layer, and the area is smaller than the area of the light-emitting layer; the electrode layer has a light-transmitting property related to the light-emitting layer. [14] The organic electric field light-emitting element as described above, which has a light-guiding layer, the light-guiding layer has a cross-sectional area between the first intermediate layer and the electrode layer; the electrode layer has light permeability related to the light-emitting layer, The cross-sectional area is smaller than the area of the light-emitting layer and is not connected to the light-transmissive electrode layer. [15] The organic electric field light-emitting element as described above includes a light-emitting substance that absorbs light emitted by the first intermediate layer in the light-emitting layer and emits light of other colors. [16] The organic electric field light-emitting element as described above, wherein the first intermediate layer is formed inside the substrate ', and the substrate has a light-emitting layer on it. [17] The organic electric field light-emitting element as described above, wherein the first intermediate layer is formed on the outside of a light-transmitting substrate on which a light-emitting layer is carried. [18] The light-emitting layer of the organic electric field light-emitting element described above is formed on a substrate, and an amorphous silicon thin film transistor or a polycrystalline silicon thin film is formed in the substrate 550964 A7 _____ —_B7 V. Description of the Invention (14) Transistor , Or formed with a base film transistor. [19] The organic electric field light-emitting element as described above, the light-emitting layer is formed on the substrate, and an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor is formed in the tritium substrate, or an organic thin film transistor is formed. Integrated molding. The organic electric field light-emitting element mentioned here can inject positive holes from the anode electrode and electrons from the k cathode electrode into the light-emitting layer containing organic light-emitting molecules, and emit light by recombination of the positive holes in the light-emitting layer with the electrons. The light emitting layer may be a single layer or a plurality of layers. In addition, in addition to the organic light-emitting molecules that emit light through the positive holes and electrons recombination, the light-emitting layer may also contain a fluorescent substance (or a scale substance) that absorbs light generated by the organic light-emitting molecules, and Can emit other kinds of light. In addition, the light-emitting layer may also include a positive-hole transporting substance or an electron-transporting substance, which can improve the mobility of the positive-hole or electron in the light-emitting layer. In addition, the light-emitting layer may also contain a positive-hole-trapping substance or an electron-trapping substance, which is used to complement the positive-hole or electron in a specific spatial position, or to reduce the transmissivity of the positive-hole or electron. Furthermore, these organic light-emitting molecules, fluorescent substances (or phosphorescent substances), positive-hole transporting substances, electron-transporting substances, positive-hole trapping substances, and electron-trapping substances 'whether contained in the same layer or dispersed in each layer' Both. A layer formed by dispersing in several layers and containing these constituent substances is referred to as a light-emitting layer in the present invention. In addition, a positive hole injection layer or an electron injection can also be provided between the light-emitting layer of the present invention and the anode or cathode injecting positive holes or electrons into the light-emitting layer. The paper size is applicable to China National Standard (CNS) A4 Specifications (210 X 297 mm) 550964 A7 B7 5. Description of the invention (15), in order to improve the injection efficiency of positive holes or electrons. In addition, a substrate may also be provided to carry the light-emitting layer, anode, cathode, positive hole injection layer, and electron injection layer; or an intermediate layer may be appropriately added separately. The type of this intermediate layer can be exemplified by: a mirror or a part of a lens for changing the reflection characteristic of light, a filter for filtering specific light, an optical switch for adjusting the light exit time, and a phase characteristic for adjusting the light The wavelength plate, the diffusion plate for diffusing the light emission direction, and the protective film are used to prevent the element from being deteriorated due to light, heat, oxygen, moisture, etc. from the material constituting the element. These intermediate layers can be appropriately designed to prevent the characteristics of the light-emitting layer, the anode, the cathode, the positive hole injection layer, the electron injection layer, the intermediate layer and the substrate, or the components outside the substrate from deteriorating significantly. Among them, the outermost surface layer which transmits light from the organic electric field light-emitting element to the outside is particularly fixedly referred to as the outermost surface layer. In addition, the electric field light-emitting materials that can be used in the present invention include: various metal complex-type light-emitting materials (such as 8-Quinolinol in the ligand, Benzoxazole, methylimine) Compounds (Azomethine, Flavones, etc.), and Al, Be, Zn, Ga, Eu, Ru, Pt, etc. in the center metal, and fluorescent pigments such as 17 oxodiazoles (Oxadiazoles) , Pyroxilin, Distyryl-allylene, Cyclopentadiene, Tetraphenyl-butadiene, Bis-styryrl-anthracene, Dichaline, Phenoanthrene, Oligo-thiophene, Pyrazoloquinoline, Thiadiazole-pyridine, layered “# 5 ore, p- Bi-hexaphenyl (p- Sex ip henyl) -18-This paper size applies to Chinese National Standard (CNS) A4 (210 x 297 mm) 550964 A7 ______ B7 5. Description of the invention (16) 'and spiro compounds etc.) Wait. Alternatively, various polymer materials such as polyphenyl vinyl (Phenylene-vinylene), polyvinyl carbazole (Poly (Wnyi · carbaz_)), and polygolyl (Poly-flUOrene) are used. Etc.) as light-emitting materials, or non-luminous polymer materials (such as polyethylene, polystyrene, polyoxyethylene), polyvinyl alcohol (Poly (vinyl alc〇h〇1) )), Polymethylmethacrylate (Poly (methacrylic acid), polymethylmethacrylate, polymethylpropionate, polyisoprene, polyimide, and polyimide, and Polycarbonate, etc.) As a matrix, various luminescent materials or fluorescent materials may be mixed or copolymerized. In addition, various organic positive pores or electron transport materials (TdPhenylamine, etc.) can also be mixed therein. Various kinds of positive holes or electron injection layers (such as Li, Ca, Mg, Cs, CuPc, etc.) can be further mixed, and appropriate materials can be selected according to the component structure. As for the manufacturing method of the organic electric field light emitting device of the present invention, various thin film forming technologies can be used, such as a spin coating method, a coating method, a die casting method, a sputtering method, a true two-evaporation method, a molecular wire vapor-bonding method, a liquid Phase epitaxial growth method, atomic layer epitaxial growth method, rolling method, screen printing method, inkjet printing method Takinoki & method, grinding method, mouth plating method, water surface diffusion method, and Langmuir- Blodgett) thin film deposition method. In addition, in order to promote the alignment during or after such film formation, a crystalline substrate having an alignment limiting force on the substrate itself, an alignment film-coated substrate, and a substrate with a surface subjected to physical or chemical treatment can be used. In addition, the molecular structure of compounds suitable for such an alignment process is to match 550964 A7
向處理過程中顧+、治日从土 a卻至m 1… 者為佳。施行配向處理後,藉由 冷郃至武枓溫度的玻璃過渡溫度以τ 田 於分子間形成新的化學结人, ^ …、反應下 為有效。 、 以固疋其配向形態之方法亦 此外’基板的材料可使用如·· ,之基板,包含聚碳酸酿、聚二:乙:= 烯、聚甲基丙缔酸甲酯等有機物 丙 、 τ卞〗饵物貝(基板,或兩者共聚合 <基板。 這些基板可制各種方法形成,例如:自基板之母材切 割研磨、射出成形、嘴砂法,以及切割法⑽㈣等。 此外,為控制發光狀態,亦可使用形成有薄膜電晶體之 基板’而於此種形成有薄膜電晶體之基板上,形成有機 場發光層;或者,亦可分別形成具有薄膜電晶體之基板和 具有有機電場發光層之基板後’藉由兩者之接合使之成為 一體。 此外,本發明之有機電場發光元件,可使用各種精密加 工技術’以便於其元件形成之過程中,製造出所需 性元件構造,可例舉者包括:精密績石切斷加工、雷射加 工、蚀刻加工、光微影㈣、反應性離子㈣,以及聚焦 離子束蝕刻(Focusing I〇n Beam Etching)等技術。 此外,亦可預先將加工後的有機電場發光元件配置成數 個陣列’ ϋ予以多層化’而以光導波電路聯結其間,或者 在該狀態下進行封裝。 此外,亦可將元件保存在填充有非活性氣體或非活性液 -20 - 本紙張尺度適用巾® ®家標準(CNS) A4規格(210 X 297公^:丨 _ -------— 550964 A7 B7 五、發明説明 體的容器中’亦可進一步讓冷卻或加熱機構並存,以便調 整其動作環境。此等容器可使用的材質包括:銅、銀、不 銹鋼、鋁、黃銅、鐵及鉻等各種金屬及其合金,或是聚乙 烯、聚苯乙晞等高分子材料中,分散上述金屬之複合材料 ,以及陶瓷材料等。 此外,斷熱層之材料可使用:發泡苯乙晞、多孔質陶資 、玻璃纖維板以及紙張等。尤其亦可進行塗裝以防止凝結。 此外,填充於容器内的非活性液體,可使用低熔點壤、 水銀等液體或是其混合物。填充於容器内的非活性氣體, 可使用氦、氬及氮等。此外,為降低容器内部的濕度,亦 可加入乾燥劑。 本發明之有機電場發光元件,亦可於製品形成後進行加 工處理,以加強外觀、提升特性或增長壽命。此種後製處 理,例舉包括··熱退火、放射線照射、電子束照射、光照 射、電波照射、磁力線照射,以及超音波照射等。 再者,該有機電場發光元件亦可因應各種用途及目的, 使用各種方法進行複合,例如黏合、熔合、電鍍、蒸鍍、 壓合、染印、溶解成型、拌合、加壓成型,以及塗裝等。 此外,本發明之有機電場發光元件亦可緊鄰驅動用的電 子電路,並進行高密度構裝,且可和外部的訊號收受界面 及天線等一體化成型。 圖式之簡要說明 圖1 a及1 b為有機電場發光元件之基本元件構成,其係從 本發明的基板端透光。 -21 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 B7 五、發明説明(19 圖2為有機電場發光元件之基本元件構成,其係從本發 明的陰極端透光。 圖3a、3b、3c及3d為本發明的第一種中間層之幾何形狀。 圖4a、4b及4c為本發明的第一種中間層内部之反射鏡構 成圖。 圖 5(1) ' 5(2)、5(3)、5(4)、5(5)、5(6)、5(7)、5(8)為有 機電場發光元件之製造步驟範例之一,該有機電場發光元 件係具有本發明的第一種中間層。 圖6(4’)及6(5’)為有機電場發光元件之製造步驟範例之一 ,該有機電場發光元件係具有本發明的第一種中間層。 圖7為本發明的有機電場發光元件之實施例中,元件製 造裝置之構成圖。 圖8a及8b為一種測試用元件之構成圖,其係用以確認本 發明的第一種中間層之效果。 圖9為一種測試用元件之特性測定原理,其係用以確認 本發明的第一種中間層之效果。 圖10a及10b係說明本發明之第一種中間層像素配置。 圖11係說明本發明之第_種中間層之最佳像素尺寸。 圖12a、m及12c為本發明之顯示像素用之第一種中間層 之第一種中間層範例 晶體内建的像素顯示 圖13a及13b為本發明之顯示像素用 —— 〇 圖14a及14b係說明本發明之薄膜電 元件中,使用第一種中間層之情形。 -22 - 550964 A7 五、發明説明(2〇 本發明實施之最佳形態 [實施例一] 圖1為本發明之有機電場發光元件之基本構造圖。有機電 %發光7G件係可進行正負兩電荷之注入及傳送,且可藉由 與該正負兩電荷所產生的正孔與電子之再結合而發光者。 孩有機電場發光元件係包含:發光物質,其係藉由該有 機電場發光元件中之再結合下產生;或者包含螢光物質, 其係可從孩發光物質受光後,進行二度發光;其特徵在於 ··含有第一種中間層,其係位在發光之發光層外部,以及 向有機電場發光元件外部透光的透光界面之間,並且,從 蝻述發光層透出的光強度方位分佈,係於穿過第一種中間 層後放大。 一般而言,有機電場發光元件係為包夾在一對電極之間 之有機電場發光材料,其係從陰極注入電子、從陽極注入 正孔後,藉由兩者在該發光材料中之再結合下,進行發光。 例如,在圖1(a)中係從發光層2發光,該發光層2係夾在 陰極1與透明陽極3之間;而在圖1(b)中係從發光層2,發光 ’該發光層2’係夾在陰極1’與透明陽極3,之間。 此等發光層2和2’中,可使用習知的各種有機電場發光材 料。在此雖未特別予以圖示,但可視需要予以多層化,增 設正孔輸送層及電子輸送層、正孔注入層及電子注入層等 功能化的層。 由於兩者電場發光之部分,係為厚度頂多數百nm的薄膜 ’故形成於玻璃或者透明塑膠等製的基板4和4,上。發光層 -23 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 __B7 五、發明説明(21 ) 2、2’内部產生的光線會穿過透明陽極3、3*,並進一步穿 過基板4、4*,而透出至元件外部。此光線最後透出至元件 外部之元件界面,在此固定稱作光透出界面6、6*。 本發明特徵中之基本構成,係於此發光層2、2,外部,以 及光透出界面6、6,之間的部分,形成所謂第一種中間層5 、5’之區域。 其特徵係在於,光線穿過此領域而被誘導至外部的過程 中,其光強度方位分佈會於穿過第一種中間層5後放大。 圖1(a)係顯示該第一種中間層形成於基板4内部之情形;圖 1(b)則顯示第一種中間層5,於基板4,外部的保存媒體7内部 形成後進行接合之構造。 圖2係有關於光線從基板丨丨相反的頂端透出之元件構造 。陽極8、發光層9、透明陽極1〇在基板11上的疊層順序顛 倒,在發光層9内部產生的光,係被誘導至元件上部。在 此情況下,透明陽極1〇上部和保存媒體14内部所形成的第 一種中間層12接合後,内部的光線會經過此中間層12後抵 達光透出界面13,而對元件外部發光。 本發明的第一種中間層之構造,例如在圖丨(a)中係於基 板内部朝内,或者在圖1 (b)或圖2中係於保存媒體内部朝内 之第一種中間層的分界面上,可進行光線反射或擴散,且 該第一種中間層之内部,係形成為均一的光學媒體。 於發光層内部產生的光線,一般均為等向發光,故在到 達光透出界面前,會因反射到各薄膜的界面上或大量透出 到元件外部而損失。各薄膜間的折射率差異越大,其反射 -24 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 550964 五、發明説明(22 1的扣失垅越大,尤其以基板與空氣之間的界面中發生的 扣失最大。此種反射一般會隨著界面的法線相對角度變大 而增加’㈣’在超過全反射角之方位角下所放出的光線 ’將完全無法透出到元件外部。 八例如,假設基板的折射率為15〇,空氣的折射率為丨,則 全反射角(9c=Sin-i(1/1.50卜41.8。,放出的光線若大於此角 度,便僅能在基板朝内方向傳播而成為全數損失。 為此,仿照第一種中間層,藉由於_層的膜面内形成具 有特定1¾何構造之第-種中間層,即可改變朝此面内方向 傳播之光程,並誘導光線朝面外方向傳播。 為進一步發揮此第一種中間層的光散射或光程擴散效果 裝 ,必須盡可能減少發光層/透明陽極與第一種中間層之間的 界面上之反射,亦即,最好盡可能降低折射率的差異,或 者=大第一種中間層上的折射率。但在後者之情形下,由 於最終透光界面與空氣之折射率差異更大,有時必 其他防止折射之方法。 〃彳木取 弟一種中間層S根據各像素逐一形成,該像素係為其泰 場發光元件之發光單位。亦即,其特徵在於:第—種 層係按照具有特定形狀之像素逐一分隔;或者利用分隔i 逐一分隔像素,該分隔壁包含與該中間層性質相異之物所: 圖3顯示此第一種中間層之幾何形狀示例。又圖三 (d)中,左排係為剖面構造,右排係為立體構造,但各 為發光層在上、光透出界面在下。 白 圖3(a)為包含四個側面之梯形,從上側發光層進入的光 -25 - 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 X 297公爱) 550964 A7 B7 五、發明説明(23 ) ---^ 線會在四個側面上反射而改變其行進女a . 】逆万向,抵達下側的產 光界面,因此,光線能夠對四個方向進行反射擴散 圖3(b)中’剖面圖雖為梯形但整體實際上為圓t形,| 從光透出界面來看的反射面形狀為圓形,因此光線朝面内 方向呈相同之反射擴散。 圖3(c)為立方體構造,光線僅會單純在其侧面上反射, 發光層與透光界面兩端的光線之入出射角皆相同,因此必 須在透光界面上設計別種界面構造,以降低其反射損失。 若其側面具有光散射性,則可增加透光量。 圖3(d)為半球形,且令第一種中間層具有拋物面的反射 構造’如此可改變面内傳播的光線,大幅朝元件外部的透 光方向反射。 除上述之外,藉由特殊的光學設計,將第一種中間層依 照相鄰於透光界面的像素逐一分隔,並令其形狀或分隔壁 之形狀’具有非平行於透光界面之平面構造或者曲面構造 ’藉此可設計使面内方向的光線朝面外方向變化。尤其在 圖3(b)的構造中,依照相鄰於透光界面的像素逐一分隔之 第一種中間層,其形狀或者該分隔壁的形狀係為多角形, 且呈多角形的形狀面中,至少有兩個面為平行。 在此平行面中’呈多角形且平行相對之形狀面,係設定 至少一組之長度為發光波長的0.25〜2倍長,如此一來,可 在微小諧振器的效果下,令該形狀面之間反射的光線具有 光放大性。 此一效果尤其可利用一併分散色素的方式達成,該色素 -26 - 本紙張尺度適用中S S讀準(CNS) A4規格(2iQχ 29?公爱) 550964 A7 一__B7 五、發明説明(24 ) 係旎夠於光誘導媒體上進行雷射振盪。第一種中間媒體雖 同樣在圖示中省略,但其形狀係為圓柱形,且即使圓形的 直徑為發光波長的0.25〜2倍長時,仍可令其内部同樣具有 微小諧振器效果。 圖4係顯示第一種中間層的具體構造,該第一種中間層 係依照相鄰於此種透光界面的像素逐一分隔,並於第一種 中間層或分隔壁的透光界面,以及未連接發光層的界面上 ’具有令光線反射或折射之功能。 圖4(a)為反射鏡形成於第一種中間媒體側面之一示例, 形成於保存媒體15中且呈梯形的第一種中間層18之側面上 ,形成有反射鏡16,其中央部分填充有光誘導媒體ι7,用 以調整折射率。 圖4(b)為保存媒體15,中所形成之第一種中間媒體18,, 並取代圖4(a)的反射鏡16而形成有散射鏡19,其中央部分 填充有光誘導媒體17,,用以調整折射率。 當第一種中間層與其保存媒體之間的折射率差異大的情 況下’仍可保有此種反射或散射功能,例如,圖的第 一種中間媒體18"之構造,亦可發揮同樣的功能,該第一 種中間媒體18"係形成於保存媒體15,,内,且形狀與圖4(句 相同’其中央部分並同樣填充有光誘導媒體i7",用以調 整折射率。但是在此情況下,抵達側面的部分光線,有可 能會散失到保存媒體15"中。 中央部分的光誘導媒體,係將光線從發光層導向外部, 但可於其中分散各種功能性色素,藉此提升|機電場發光 -27 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) ' -— 550964 A7 -------- -B7 _ 五、發明説明(25 ) 元件之功能。 尤其右包含可吸收發光層的發光,而產生其他顏色光線 2物質’可進行發光的顏色變換。令各像素分擔紅、綠、 i 一原色等發光所可能具有的主色,利用發光層的光線顏 色變換而發出數種顏色的光,即可實現簡易又有效率的彩 色顯示。 此第種中間層係藉由其内部的多重反射下之干擾,以 防止元件外部的發光顏色產生變化,由此觀點看來,其厚 度以大幅厚於光的波長為佳。 此外,為將發光層所產生的光線,全數導至第一種中間 層,如前所述,兩者的折射率差異最好為零,其接觸部分 的面之發光層端上,宜以第一種中間層端予以覆蓋,因為 發光層端的折射率若大,則第一種中間層外側會產生發光 部分’而難以充分誘導發光層所發出的光線。 此外,像素尺寸宜同於第一種中間層的透光界面端之面 積’連帶的,發光層端的面積宜較之為小。 通常將界面中因全反射造成的損失納入考量的情形下, 發光層中產生的光線至多僅有20%會透出到外部,但若利 用第一種中間層,將面内方向傳播的光線全數誘導至元件 外部’將達到100%的透光效率,因此,相當於一個像素的 發光層部分面積為1/5即可。 此外,如圖1(b)所示,當透明陽極3,與第一種中間層5, 之間隔著透明基板4,的情形下,發光層2,所產生的光線在 抵達第一種中間層5,之前即會擴散,故兩者的距離宜短, -28 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 __B7 五、發明説明(26 ) 具體而言必須大於光的波長,且低於1 mm。 藉由令第一種中間層滿足上述形狀、尺寸及折射率等條 件’並$又置於發光層與透光界面之間,可將光線大量謗導 至元件外部。 [實施例二] 以下利用圖5,顯示貫施例一所示的第一種中間層構造 中’圓錐形構造的第一種中間層之製造步驟範例·· (1) 於形成有機電場發光元件的玻璃基板2〇,係採用硼 矽酸玻璃(尺寸40X 40X 0.8 mm、雙面研磨)。 (2) 在玻璃基板上利用噴砂法(以高速嘴射細砂狀粒子之 加工方法)開出圓錐狀的加工孔,其噴射範圍為丨〇〇 X 6〇 mm、上加工孔為295.5 #m、下加工孔為836 5 ,錐形 傾角為70°。 (3) 使用分子線蒸鍍裝置’從下加工孔之一端在此基板 上蒸鍍100 nm的链,形成反射鏡22。 (4) 於加工孔中填充折射率調整樹脂23,作為光誘導媒 體。折射率調整樹脂,應選擇其折射率接近有機電場發光 層者’在本實施例中係選擇下列一種使用:聚甲基丙埽酸 甲酯、聚苯乙埽、聚乙缔醇,以及聚醯胺(p〇lyamide)等。 (5) 充分硬化後,以研磨劑研磨以去除其上下滲出的多 餘樹脂,使表面平坦化。 (6) 接著,在基板溫度室溫下,以濺鍍裝置於此頂端面 上濺鍍IZ〇(銦鋅氧化物,indiUm Zinc Oxide,InZnO)形成 薄膜,作為透明陽極25。IZO的膜厚為100 nm,薄膜電阻 -29 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公笼) 550964 A7 B7 五、發明説明(27 ) 為60 Ω /□。將製造至此的基板以純水沖洗一小時,再於純 水中進行兩次十五分鐘超音波洗淨後,浸入丙酮(和光純藥 廠製造之特級試藥)中進行十五分鐘超音波洗淨,再以乾 燥氮氣吹乾。 放置於空氣中以紫外線燈照射五分鐘後,安裝於鉬製基 板支架(JapanVacsMetal公司製造)上,並迅速將整個基板支 架裝設到分子線蒸鍍裝置的更換室中。 (7)於此分子線蒸鍍裝置内,形成有機電場發光層26, 並進一步透過圖案化遮光罩,形成陰極27。為確認本發明 之效果,此處的發光層係採用雙層式構造,其中包含正孔 輸送層及有機電場發光材料層。正孔輸送層係使用a - NPD (4,4-bis [N-(l-naphthyl)-N-phenylamino]biphenyl);有機 發光物質係使用 Alq3 (aluminium tris (8- hydroquinoline)) 各膜厚度設為60 nm,於IZO上順序真空蒸鍍正孔輸送層 及有機發光物質,再於其上蒸鍍0.5 nm的LiF,形成電子注 入層。正孔輸送層乃至電子注入層等層,即相當於有機電 場發光層26。之後再進一步蒸鍍A1形成陰極。 圖7係顯示本實施例的試料製造中所使用的分子線蒸鍍 裝置之裝置構成。正孔輸送層、發光層及陰極,係於分子 線蒸鍍裝置(曰電Anelva公司製造,OMBE型,IMBE- 620) 中蒸鍵形成。 該分子線蒸鍍裝置係包含:更換室,用以更換、安裝基 板支架;前置處理室,用以搬運更換室内的基板,並可將 之加熱至最高1300°C ;第一生長室,其係形成正孔輸送層 -30 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 _ B7 五、發明説明(28 ) 、有機發光材料層以及無機障壁層;第二生長室,其係形 成金屬電極;以及分析室,其係以ESCA (化學分析電子能 譜儀)、AES(歐傑電子能譜儀)分析所形成的薄膜之表面狀 態。 其構造為:各室之基本壓力,於交換室外、1〇-lGT〇rr左 右,交換室内為1(T9 Torr左右,各室之間以閘門閥(Gate Valve)區隔’並視需要,可於超高真空下移動整個基板支 架。 此外’將基板安裝至更換室,以及取出製膜後的試料, 皆可透過閘門閥所區隔的套手工作箱(G1〇ve Β〇χ ,美和製 作所製造)’而於空氣壓力下但去除氧氣及水分的乾燥氮 氣環境中進行。 蒸鍍時’係視需要,將基板移至第一及第二生長室中進 行。進行蒸鍵時’先以液體氮冷卻生長腔室,並同時將預 先裝在各生長室内的原料物質加熱昇華或蒸發,以便蒸鍍 於基板上,形成薄膜◊原料物質中,有機物質係放置在石 英製堆鋼(日電Anelva公司製造)内,無機物質係放置在氮 化硼製坩鍋(信越化學公司製造)内,而於安裝至各生長室 後’凋成真空狀怨’利用加熱器加熱,令原料物質氣化。 坩鍋的出口設有機械式的檔板(Shutter),藉由固定時間 開關檔板,令氣化後的原料物質蒸鍍至基板上。 利用基板附近所置的水晶振動子膜厚計,測量蒸鍍後的 原料膜厚度,形成所定膜厚之薄膜。此外,基板的溫度可 於-90X:〜150°C的範圍内,維持所定的溫度。 -31 - 本紙張尺度相中國S家鮮(CNS) A4規格(210 X 297公f 550964 A7During the processing, Gu + and Zhiri are better from soil a to m 1…. After the alignment process is performed, a new chemical bond is formed between the molecules at a temperature of τ field from the glass transition temperature of the cold heading to the Wudeng temperature, which is effective under the reaction. The method of fixing its alignment form is also used. In addition, the material of the substrate can be used, such as ..., the substrate includes polycarbonate, polydiethyl: ethylene, polymethyl methacrylate, and other organic substances such as acrylic acid, τ卞 bait (substrate, or copolymerization of both substrates). These substrates can be formed by various methods, such as cutting and grinding from the base material of the substrate, injection molding, mouth sand method, and cutting method. In addition, In order to control the light-emitting state, a substrate having a thin-film transistor formed thereon may be used, and an airport light-emitting layer may be formed on such a substrate with a thin-film transistor formed, or a substrate having a thin-film transistor and an organic substrate may be separately formed. After the substrate of the electric field light-emitting layer, 'the two are integrated into one by joining them. In addition, the organic electric field light-emitting element of the present invention can use various precision processing techniques' to facilitate the formation of desired elements in the process of element formation Structures can be exemplified by: precision stone cutting, laser processing, etching, photolithography, reactive ion, and focused ion beam etching (Focusin g Ion Beam Etching), etc. In addition, the processed organic electric field light-emitting elements can be arranged in a plurality of arrays in advance, 'multilayered', and connected by optical waveguide circuits, or packaged in this state. , Can also store components filled with inactive gas or inactive liquid-20-This paper size is suitable for towels ® ® Home Standard (CNS) A4 specification (210 X 297 public ^: 丨 _ ----------- 550964 A7 B7 5. In the container of the invention body, a cooling or heating mechanism can be further co-existed to adjust its operating environment. The materials that can be used for these containers include: copper, silver, stainless steel, aluminum, brass, iron and Various metals such as chromium and their alloys, or polymer materials such as polyethylene and polystyrene which are dispersed in these materials, as well as ceramic materials. In addition, the material for the thermal insulation layer can be used: foamed styrene. , Porous ceramics, glass fiber board, paper, etc. In particular, it can be painted to prevent condensation. In addition, the inactive liquid filled in the container can be a liquid with a low melting point, mercury, or a mixture thereof. The inert gas filled in the container can be helium, argon, nitrogen, etc. In addition, in order to reduce the humidity inside the container, a desiccant can be added. The organic electric field light-emitting element of the present invention can also be processed after the product is formed. In order to enhance the appearance, improve the characteristics or increase the life. Such post-treatments include, for example, thermal annealing, radiation irradiation, electron beam irradiation, light irradiation, radio wave irradiation, magnetic field irradiation, and ultrasonic irradiation. Furthermore, The organic electric field light emitting element can also be compounded by various methods according to various uses and purposes, such as adhesion, fusion, electroplating, vapor deposition, lamination, dyeing, dissolution molding, mixing, pressure molding, and painting. In addition, the organic electric field light-emitting element of the present invention can also be placed next to the driving electronic circuit and can be constructed with high density, and can be integrated with external signal receiving interfaces and antennas. Brief Description of the Drawings Figs. 1a and 1b show the basic element structure of an organic electric field light emitting element, which transmits light from the substrate end of the present invention. -21-This paper size is in accordance with Chinese National Standard (CNS) A4 (210 X 297 mm) 550964 A7 B7 V. Description of the invention (19 Figure 2 is the basic element structure of the organic electric field light-emitting element, which is derived from the Extremely transparent. Figures 3a, 3b, 3c, and 3d are the geometry of the first intermediate layer of the present invention. Figures 4a, 4b, and 4c are diagrams of the mirror structure inside the first intermediate layer of the present invention. Figure 5 ( 1) '5 (2), 5 (3), 5 (4), 5 (5), 5 (6), 5 (7), 5 (8) are one example of the manufacturing steps of organic electric field light-emitting devices. The organic electric field light emitting element has the first intermediate layer of the present invention. Figs. 6 (4 ') and 6 (5') are examples of manufacturing steps of the organic electric field light emitting element. The organic electric field light emitting element has the first intermediate layer of the present invention. An intermediate layer. Fig. 7 is a structural diagram of an element manufacturing device in an embodiment of an organic electric field light-emitting element of the present invention. Figs. 8a and 8b are structural diagrams of a test element for confirming the first aspect of the present invention. The effect of an intermediate layer is shown in Fig. 9. Fig. 9 is a principle for measuring characteristics of a test element, which is used to confirm the first aspect of the present invention. The effect of the intermediate layer. Figures 10a and 10b illustrate the pixel configuration of the first intermediate layer of the present invention. Figure 11 illustrates the optimal pixel size of the first intermediate layer of the present invention. Figures 12a, m and 12c are examples of the present invention. First Intermediate Layer for Display Pixels First First Interlayer Example Crystal Built-in Pixel Display Figures 13a and 13b are for display pixels of the present invention.-Figures 14a and 14b illustrate the thin film electrical components of the present invention. The case of using the first intermediate layer. -22-550964 A7 V. Description of the invention (20 The best form for implementing the present invention [Embodiment 1] Figure 1 is a basic structural diagram of an organic electric field light-emitting element of the present invention. Organic electricity The 7G light emitting device can perform the injection and transmission of positive and negative charges, and can emit light by recombination with the positive holes and electrons generated by the positive and negative charges. The organic electric field light emitting device includes: a light emitting substance, which It is generated by the recombination of the organic electric field light-emitting element; or it contains a fluorescent substance, which can emit light twice after receiving light from the light-emitting substance; It is characterized by containing a first intermediate layer, which is It is located between the light-emitting light-emitting layer and the light-transmitting interface that transmits light to the outside of the organic electric-field light-emitting element, and the azimuth distribution of the light intensity transmitted from the light-emitting layer is enlarged after passing through the first intermediate layer In general, an organic electric field light-emitting element is an organic electric field light-emitting material sandwiched between a pair of electrodes. After the electrons are injected from the cathode and the positive holes are injected from the anode, the two are in the light-emitting material. For example, in FIG. 1 (a), light is emitted from the light-emitting layer 2, which is sandwiched between the cathode 1 and the transparent anode 3. In FIG. 1 (b), it is emitted from the light-emitting layer. 2. The light emitting 'the light emitting layer 2' is sandwiched between the cathode 1 'and the transparent anode 3. In these light emitting layers 2 and 2 ', various conventional organic electric field light emitting materials can be used. Although not shown here, it can be multi-layered as necessary, and functional layers such as a positive hole transport layer and an electron transport layer, a positive hole injection layer, and an electron injection layer are added. Since the electric field emitting part of the two is a thin film with a thickness of at most several hundred nm, it is formed on the substrates 4 and 4 made of glass or transparent plastic. Luminous layer-23-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 __B7 V. Description of the invention (21) 2, 2 'The light generated inside 2' will pass through the transparent anode 3, 3 *, And further passes through the substrates 4, 4 *, and penetrates to the outside of the element. This light finally passes out to the component interface outside the component, which is fixedly referred to here as the light-transmitting interface 6, 6 *. The basic structure in the features of the present invention is formed on the outside of the light-emitting layers 2, 2, and the portion between the light-transmitting interfaces 6, 6, and forms a region of the so-called first intermediate layer 5, 5 '. It is characterized in that the light intensity and azimuth distribution will be enlarged after passing through the first intermediate layer 5 during the process of light being induced to the outside through the field. Fig. 1 (a) shows the case where the first intermediate layer is formed inside the substrate 4. Fig. 1 (b) shows the first intermediate layer 5, which is formed after the substrate 4 and the external storage medium 7 are bonded inside. structure. FIG. 2 shows the structure of the light emitted from the opposite end of the substrate. The stacking order of the anode 8, the light emitting layer 9, and the transparent anode 10 on the substrate 11 is reversed, and the light generated inside the light emitting layer 9 is induced to the upper part of the element. In this case, after the upper portion of the transparent anode 10 and the first intermediate layer 12 formed inside the storage medium 14 are joined, the internal light will pass through this intermediate layer 12 and reach the light-transmitting interface 13 to emit light to the outside of the element. The structure of the first intermediate layer of the present invention is, for example, the first intermediate layer facing inward in the substrate in FIG. 丨 (a), or the internal type facing inward in the storage medium in FIG. 1 (b) or FIG. 2. At the interface, light can be reflected or diffused, and the inside of the first intermediate layer is formed as a uniform optical medium. The light generated inside the light-emitting layer is generally isotropic, so before the light reaches the interface, it will be lost due to the reflection on the interface of each film or a large amount of outside the element. The larger the difference in refractive index between the films, the reflection is -24-This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 550964 V. Description of the invention (22 1 The greater the loss of buckle, especially the substrate The largest deduction occurs in the interface with air. Such reflection generally increases as the normal angle of the interface's normal increases, and the 'light' emitted by the azimuth that exceeds the total reflection angle will be completely impossible. For example, if the refractive index of the substrate is 15 and the refractive index of air is 丨, the total reflection angle (9c = Sin-i (1 / 1.50, 41.8.), If the emitted light is greater than this angle Therefore, it can only be propagated in the direction of the substrate and become a total loss. For this reason, imitating the first intermediate layer, by forming the first intermediate layer with a specific structure in the film surface of the _ layer, the direction can be changed The light path that propagates in this direction and induces light to propagate out of the plane. In order to further exert the light scattering or light path diffusion effect of this first intermediate layer, it is necessary to reduce the light emitting layer / transparent anode and the first type as much as possible. Interlayer The reflection on the surface, that is, it is best to reduce the difference in refractive index as much as possible, or = the refractive index on the first intermediate layer is greater. However, in the latter case, the difference between the refractive index of the final light-transmitting interface and the air is more Large, sometimes necessary other methods to prevent refraction. Tochigi takes an intermediate layer S formed one by one according to each pixel, which is the light-emitting unit of its Thai field light-emitting element. That is, it is characterized by: the first layer Separate pixels one by one with a specific shape; or use i to separate pixels one by one, and the partition wall contains objects with properties different from that of the intermediate layer: Figure 3 shows an example of the geometry of this first intermediate layer. In (d), the left row is a cross-sectional structure, and the right row is a three-dimensional structure, but each has a light-emitting layer above and a light-transmitting interface below. White Figure 3 (a) is a trapezoid with four sides, which emits light from the upper side. Light entering through the layer -25-This paper size applies Chinese National Standard (CNS) A4 specification (21〇X 297 public love) 550964 A7 B7 V. Description of the invention (23) --- ^ The line will reflect on the four sides and Change its marching woman a.] Reverse the universal , Reaching the light-producing interface on the lower side, so that light can be reflected and diffused in four directions. Although the cross-sectional view in Fig. 3 (b) is trapezoidal, it is actually a circular t-shape. | The shape of the reflecting surface is circular, so the light reflects and diffuses in the same direction in the plane. Figure 3 (c) is a cube structure, the light will only be reflected on its side, and the light at the ends of the light-emitting layer and the light-transmitting interface will enter and exit. The angles are the same, so other interface structures must be designed on the light-transmitting interface to reduce its reflection loss. If the side has light scattering, it can increase the amount of light transmission. Figure 3 (d) is hemispherical, and the first This kind of intermediate layer has a parabolic reflective structure 'so that the light propagating in the plane can be changed, and it can be largely reflected in the direction of light transmission outside the element. In addition to the above, with a special optical design, the first intermediate layer is separated one by one according to the pixels adjacent to the light-transmitting interface, and the shape or shape of the partition wall has a planar structure that is not parallel to the light-transmitting interface. Or the curved surface structure can be designed so that the light in the in-plane direction changes out of the plane. Especially in the structure of FIG. 3 (b), the first intermediate layer is separated according to the pixels adjacent to the light-transmitting interface one by one, and the shape or the shape of the partition wall is a polygon and has a polygonal shape. , At least two faces are parallel. In this parallel plane, a polygonal and parallel-opposite shape plane is set to have at least one group with a length of 0.25 to 2 times the light emission wavelength. In this way, the shape plane can be made under the effect of a microresonator. The light reflected between them is optically amplified. This effect can be achieved in particular by dispersing the pigments together. The pigment-26-SS reading accuracy (CNS) A4 specification (2iQχ 29? Public love) 550964 A7 __B7 V. Description of the invention (24 ) Is sufficient for laser oscillation on light-induced media. Although the first intermediate medium is also omitted from the illustration, its shape is cylindrical, and even if the diameter of the circle is 0.25 to 2 times as long as the light emission wavelength, it can still have the effect of a micro-resonator inside. FIG. 4 shows the specific structure of the first intermediate layer, which is separated one by one according to the pixels adjacent to such a light-transmitting interface, and is at the light-transmitting interface of the first intermediate layer or the partition wall, and The interface not connected to the light emitting layer has a function of reflecting or refracting light. FIG. 4 (a) is an example in which a reflecting mirror is formed on the side of the first intermediate medium. A reflecting mirror 16 is formed on the side of the trapezoidal first intermediate layer 18 formed in the storage medium 15, and the central portion is filled. There is a light-inducing medium ι7 for adjusting the refractive index. FIG. 4 (b) is a first intermediate medium 18 formed in the storage medium 15, and instead of the reflecting mirror 16 in FIG. 4 (a), a diffuser 19 is formed, and a central portion thereof is filled with a light-inducing medium 17. To adjust the refractive index. When the refractive index difference between the first intermediate layer and its storage medium is large, such a reflection or scattering function can still be retained. For example, the structure of the first intermediate medium 18 in the figure can also perform the same function. The first intermediate medium 18 is formed in the storage medium 15, and has the same shape as that of FIG. 4 (the central portion is also filled with a light-inducing medium i7 "to adjust the refractive index. But here In some cases, some of the light reaching the side may be lost to the storage medium 15 ". The light-inducing medium in the central part guides the light from the light-emitting layer to the outside, but it can disperse various functional pigments in it, thereby improving | Electromechanical field emission-27-This paper size applies to Chinese National Standard (CNS) A4 specification (210X297 mm) '--550964 A7 -------- -B7 _ V. Function description of the invention (25) In particular, the right side contains light that can absorb the light emitting layer, and produces other colors of light. 2 Substances can perform color conversion of light. Let each pixel share the main colors that red, green, and i primary colors can have. The light layer's light color is changed to emit several colors of light, which can realize simple and efficient color display. This first intermediate layer prevents interference with the multiple internal reflections to prevent the color of light from emitting outside the device. From this point of view, it is better that the thickness is substantially thicker than the wavelength of light. In addition, in order to direct the light generated by the light-emitting layer to the first intermediate layer, as described above, the refractive indices of the two The difference is preferably zero. The light emitting layer end of the surface of the contact part should be covered with the first intermediate layer end, because if the refractive index of the light emitting layer end is large, the light emitting part will be generated outside the first intermediate layer. It is difficult to fully induce the light emitted by the light-emitting layer. In addition, the pixel size should be the same as the area of the light-transmitting interface end of the first intermediate layer, and the area of the light-emitting layer end should be smaller. Usually the total reflection in the interface is due to total reflection. When the loss caused is taken into consideration, at most only 20% of the light generated in the light-emitting layer will be transmitted to the outside, but if the first intermediate layer is used, all the light propagating in the plane will be induced. To the outside of the element, 100% light transmission efficiency will be achieved. Therefore, the area of the light-emitting layer equivalent to one pixel may be 1/5. In addition, as shown in FIG. 1 (b), when the transparent anode 3 and the first In the case where the intermediate layer 5 is separated by the transparent substrate 4, the light generated by the light emitting layer 2 will diffuse before reaching the first intermediate layer 5, so the distance between the two should be short. The paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 __B7 5. Description of the invention (26) Specifically, it must be greater than the wavelength of light and less than 1 mm. By making the first intermediate The layer satisfies the above-mentioned conditions of shape, size, and refractive index, and is placed between the light-emitting layer and the light-transmitting interface, which can direct a large amount of light to the outside of the element. [Embodiment 2] The following uses FIG. 5 to show an example of manufacturing steps of the first intermediate layer of the 'conical shape' in the first intermediate layer structure shown in Example 1. (1) To form an organic electric field light-emitting element The glass substrate 20 is made of borosilicate glass (size 40X 40X 0.8 mm, double-sided grinding). (2) Use a sandblasting method (a processing method of spraying fine sand-like particles with a high-speed nozzle) on a glass substrate to open a cone-shaped processing hole with a spray range of 〇〇〇 × 60mm and an upper processing hole of 295.5 # m The lower hole is 836 5 and the taper angle is 70 °. (3) A molecular beam deposition apparatus' was used to deposit a 100 nm chain on this substrate from one end of the lower processed hole to form a reflecting mirror 22. (4) The processed hole is filled with a refractive index adjusting resin 23 as a light-inducing medium. The refractive index adjustment resin should be selected whose refractive index is close to that of the organic electric field light-emitting layer. In this embodiment, one of the following is selected: polymethylpropionate, polyphenylenesulfonium, polyethylene glycol, and polyfluorene Amines and the like. (5) After hardening sufficiently, grind with an abrasive to remove excess resin that oozes up and down, and flatten the surface. (6) Next, at the substrate temperature and room temperature, a thin film was formed by sputtering IZO (indiUm Zinc Oxide, InZnO) on the top surface with a sputtering device as a transparent anode 25. The film thickness of IZO is 100 nm, and the sheet resistance is -29.-This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 male cage) 550964 A7 B7 5. Description of the invention (27) is 60 Ω / □. The substrate manufactured so far is rinsed with pure water for one hour, and then subjected to two 15-minute ultrasonic cleanings in pure water, and then immersed in acetone (a special reagent manufactured by Wako Pure Chemicals) for 15-minute ultrasonic cleaning. Clean and dry with dry nitrogen. After being placed in the air for 5 minutes under ultraviolet light irradiation, it was mounted on a molybdenum substrate holder (manufactured by Japan VacsMetal), and the entire substrate holder was quickly installed in the replacement chamber of the molecular wire evaporation device. (7) In this molecular wire vapor deposition device, an organic electric field light emitting layer 26 is formed, and further through a patterned light shield, a cathode 27 is formed. In order to confirm the effect of the present invention, the light-emitting layer here has a double-layer structure, which includes a positive hole transport layer and an organic electric field light-emitting material layer. The positive hole transport layer uses a-NPD (4,4-bis [N- (l-naphthyl) -N-phenylamino] biphenyl); the organic light-emitting substance uses Alq3 (aluminium tris (8-hydroquinoline)). At 60 nm, a positive hole transport layer and an organic light-emitting substance were sequentially vapor-deposited on the IZO, and then 0.5 nm of LiF was vapor-deposited thereon to form an electron injection layer. The layers such as the positive hole transport layer and the electron injection layer are equivalent to the organic electric field light emitting layer 26. Thereafter, A1 was further evaporated to form a cathode. Fig. 7 is a diagram showing a device configuration of a molecular wire vapor deposition device used in the production of a sample in this embodiment. The positive-hole transport layer, the light-emitting layer, and the cathode are formed by vapor-bonding in a molecular wire evaporation device (referred to as OMBE type, IMBE-620 manufactured by Dennel Annelva). The molecular wire evaporation device includes: a replacement chamber for replacing and installing a substrate holder; a pre-processing chamber for carrying the substrate in the replacement chamber and heating it to a maximum of 1300 ° C; a first growth chamber, which Form a positive hole transport layer -30-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 _ B7 V. Description of the invention (28), organic light emitting material layer and inorganic barrier layer; Two growth chambers, which form metal electrodes; and an analysis chamber, which analyzes the surface state of the formed thin film by ESCA (Chemical Analysis Electron Spectrometer) and AES (European Electronic Spectrometer). Its structure is: the basic pressure of each room is about 10-10 GT0rr outside the exchange room, the exchange room is 1 (about T9 Torr, each room is separated by a gate valve (Gate Valve), and if necessary, can be The entire substrate holder is moved under ultra-high vacuum. In addition, 'the substrate is installed in the replacement chamber, and the samples after film formation can be removed through a hand-held work box (G1ove Β〇χ separated by a gate valve). (Manufacturing) 'and in a dry nitrogen environment under the pressure of air but removing oxygen and moisture. During vapor deposition,' if necessary, the substrate is moved to the first and second growth chambers. For vapor bonding, 'liquid first Nitrogen cools the growth chambers, and at the same time, the raw material substances previously installed in each growth chamber are sublimated or evaporated in order to be evaporated on the substrate to form a thin film and the raw material substances. The organic substances are placed in a quartz steel stack (Nippon Electric Anelva Corporation). In the production), the inorganic substance is placed in a crucible made of boron nitride (manufactured by Shin-Etsu Chemical Co., Ltd.), and after being installed in each growth chamber, it is "vacuumed" and heated by a heater to make the raw material gas The outlet of the crucible is equipped with a mechanical shutter (Shutter). The shutter is switched on and off for a fixed time to evaporate the vaporized raw material onto the substrate. Using a crystal vibrator film thickness meter placed near the substrate, Measure the thickness of the raw material film after evaporation to form a film with a predetermined film thickness. In addition, the temperature of the substrate can be maintained in the range of -90X: ~ 150 ° C. -31- (CNS) A4 size (210 X 297 male f 550964 A7
__BV 五、發明説明(29 ) — -- 蒸鍍速度方面,係依據有機物及無機障壁層〇」、 陰極材料30 nm/s左右,來設定坩鍋的溫度。 …、鍍順序是,首先於第一生長室内形成所定膜厚之正孔 輸运層後,於同一腔室内形成所定膜厚之發光層,其係包 含有機發光材料層及無機障壁層,然後將之暫時搬運至更 換罜,於孩處將試料載換至基板支架上,該基板支架係裝 有不銹鋼製的金屬遮光罩;隨後將試料搬運至第二生長室 开1成陰極。合金性陰極之混合比,係藉由分析室的(電 子光邊儀),由各元素的存在比率決定之。陰極形成時的 基板溫度,係設定在_90。(:〜3(rc範圍内的所定溫度。 形成陰極後,將試料搬運至更換室,再從該處取出至套 手工作箱,於套手工作箱内部製作玻璃板蓋,並以紫外線 硬化樹脂封裝其端部。最後完成的試料,其發光層區域係 被封裝,而將陽極、陰極引出到其外部,以便使用手套從 外部對此二電極施加電壓。 此外,圖6係顯示部分有機電場發光元件的製造步驟, 其係具有低溫下難以成膜之透明陽極。 (1) 基板準備; (2) 錐度孔加工;及 (3) 反射鏡蒸鍍等步驟,均與圖5之情形完全相同,故在 此省略說明。 在圖5中,透明樹脂封入圖5(4)者係為基板,之後再形成 ιζο等製的透明陽極。相對於此,為使用IT〇 (銦錫氧^物 ,Indium Tin Oxide,InSnO)之透明陽極,形成薄膜電阻低 -32 - 本紙張尺度適用中國國家標準(CNS) A*規格(21G X 297公董)- 550964__BV 5. Description of the invention (29)-In terms of evaporation rate, the temperature of the crucible is set according to the organic and inorganic barrier layer 0 ″ and the cathode material at about 30 nm / s. …, The plating sequence is: firstly forming a positive-hole transport layer with a predetermined film thickness in the first growth chamber, and then forming a light-emitting layer with a predetermined film thickness in the same chamber, which includes an organic light-emitting material layer and an inorganic barrier layer, and then The sample is temporarily transferred to the replacement puppet, and the sample is transferred to a substrate holder at the child's place. The substrate holder is equipped with a stainless steel metal hood; the sample is then transferred to the second growth chamber and turned into a cathode. The mixing ratio of the alloy cathode is determined by the presence of each element in the analysis room (electronic edge detector). The substrate temperature during the formation of the cathode was set at _90. (: ~ 3 (A predetermined temperature in the range of rc. After the cathode is formed, the sample is transferred to the replacement chamber, and then taken out of the glove box, a glass plate cover is made inside the glove box, and the resin is cured with ultraviolet rays) The end of the package is sealed. In the final sample, the light-emitting layer area is encapsulated, and the anode and cathode are led out to the outside so that a voltage can be applied to the two electrodes from the outside using gloves. In addition, FIG. The element manufacturing steps are transparent anodes that are difficult to form at low temperatures. (1) substrate preparation; (2) tapered hole processing; and (3) mirror evaporation steps are exactly the same as in Figure 5, Therefore, the description is omitted here. In FIG. 5, the transparent resin sealed in FIG. 5 (4) is a substrate, and then a transparent anode made of ιζο and the like is formed. In contrast, IT0 (indium tin oxide, Indium) is used. Tin Oxide (InSnO) transparent anode to form a low sheet resistance -32-This paper size is applicable to China National Standard (CNS) A * specifications (21G X 297 public directors)-550964
的電極’ &須使基板溫度達刚。c以上進行蒸鍍,因此基 板典法使用預先填有折射率調整樹脂者。 遇此情況下,需另行以濺鍍將IT0蒸鍍在厚5〇 的玻璃 基板3 1上,形成透明陽極3〇 ,然後同樣使用分子線蒸鍍裝 置,依序蒸鍍正孔輸送層、有機發光材料及電子注入層, 形成發光層29,於其上蒸鍍Ai陰極28後進行玻璃封裝,形 成基板有機電場發光元件部32。 如圖6(4’)所示,將基本有機電場發光元件部32與基板之 接著面33接合’此時,先以折射率調整樹脂之稀薄溶液, 約略浸透於接著面33上,效果更佳。 接著如圖6(5,)所示,將折射率調整樹脂33填入前述加工 孔中’再以研磨去除滲出的樹脂,元件即告完成。上述作 業係於套手工作箱外進行兩者的位置校準並接合。 操論步驟為何,若是製造影像顯示元件之情形,必須對 透明陽極和陰極進行電極圖案化以形成顯示像素,但在此 省略圖示。 為了作為影像顯示元件進行驅動,製造時係於一片基板 内形成數個加工孔,形成第一中間媒體,但由於目前的加 工精密度,尚難以進行比此加工孔尺寸更小的鑽孔作業,礙 於技術限制,故包夾發光層的陽極、陰極係採用寬300 的單純陣列構造。再將此電極以100 的間隔,形成縱橫 各40排,其交又點即為一個像素。 在此陽極、陰極上,以焊銀接合外部電線,任意選擇一 個陽極和一個陰極,並施加8 V的電壓,如此可確認所有 -33 - 550964 A7 _ ____ B7 五、發明説明(31 ~---- 像素位置的發光情形。 [實施例三] 接著形成具有單-像素的測試用有機電場發光元件,並 以下列敘述方法’評估其光擴散特性。 圖8顯示^述測試用有機電場發光元件之元件構成。圖 8(a)為具有第-種中間層之元件,同圖㈨為不具有第一種 中間層之元件。 產生有機電場發光的部分之原理皆同,其製造方法則利 用實施例二的圖6之方法進行。亦即在圖8⑷中,於基板4〇 上從上至下形成陰極35、電子注入層36、有機發光材料^ 、正孔輸送層38以及透明陽極39者,即為基板有機電場發 光元件部41。 接著依照圖6的方法,於第一種中間層上鑽出加工孔後 ,將上述元件部41與保存媒體43接合,該保存媒體上蒸鍍 有反射鏡。在此,為防止光線漏失,故於其頂面加工孔以 外的部分,形成遮光罩42。 具體做法是,於該頂面塗佈薄層樹脂,再將碳粉灑於其 上形成之。再將以此製造的保存媒體43與基本有機電場發 疋元件部41接合,接合後封入折射率調整樹脂料,形成元 件。在此’保存媒體部43的玻璃,以及形成基本元件部q 的破璃基板40,係採用相同的玻璃材料,並選用折射率調 整樹脂與玻璃相同者。 +另—方面,比較用的有機電場發光元件,亦與產生有機 ” 發光部刀之原理相同,其製造方法係利用實施例二的 -34 - 國國豕標準(CNS) A4規格(210 X 297公爱) 550964 A7 _ _ B7 五、發明説明(32 ) 圖6之方法進行。亦即在圖8(b)中,於基板40,上從上至下 形成陰極35·、電子注入層36’、有機發光材料37,、正孔輪 送層38,以及透明陽極39’者,即為基板有機電場發光元件 部41,。應與此元件部4Γ接合且不具有第一種中間層的保存 媒體4 3 ',係直接採用施行鑽孔加工前的玻璃板,其中,在 其部分面積上形成遮光罩421,該部分面積係同於圖8(a)的 第一種中間層頂面之開孔尺寸,以令光線從該處穿透β以 上述方法完成之保存媒體43f,與上述元件部41,接合後,即 成為比較用元件。 圖9為元件評估用方塊圖,其係評估光擴散特性之差異 。對製造完成的有機電場發光元件45供給電壓,同時從測 定電流量的電壓供應/電流測定裝置48(惠普公司製造,pA Meter/DC Voltage Source 4140B)施加電壓,令電流從陽極 到陰極流通於元件内部,藉此讓該元件發光^ 利用該元件中央正面位置所設置的光度計相機46及其光 度控制器 47 (Photoresearch 公司製,Spectra PritchardThe electrode ’must make the substrate temperature rigid. C is vapor-deposited above. Therefore, the substrate method uses a resin filled with a refractive index adjusting resin in advance. In this case, it is necessary to separately deposit IT0 on a glass substrate 31 with a thickness of 50 by sputtering to form a transparent anode 30, and then use a molecular wire evaporation device to sequentially vaporize the positive hole transport layer, organic The light-emitting material and the electron injection layer form a light-emitting layer 29, and the Ai cathode 28 is vapor-deposited thereon, followed by glass encapsulation to form a substrate organic electric field light-emitting element portion 32. As shown in FIG. 6 (4 '), the basic organic electric field light-emitting element portion 32 is bonded to the bonding surface 33 of the substrate. At this time, the dilute solution of the resin for adjusting the refractive index is first penetrated into the bonding surface 33, and the effect is better. . Next, as shown in FIG. 6 (5,), the refractive index adjusting resin 33 is filled in the aforementioned processing hole ', and the exuding resin is removed by grinding, and the element is completed. The above-mentioned work is to calibrate and join the positions of the two outside the hand box. What are the steps? In the case of manufacturing an image display element, it is necessary to pattern the transparent anode and cathode to form display pixels, but the illustration is omitted here. In order to drive as an image display element, several processing holes are formed in a substrate during manufacturing to form a first intermediate medium. However, due to the current processing precision, it is difficult to perform drilling operations smaller than this processing hole size. Due to technical limitations, the anode and cathode of the light-emitting layer are simple array structures with a width of 300. This electrode is then spaced at 100 intervals to form 40 rows in vertical and horizontal directions, and the intersection is a pixel. On this anode and cathode, the external wires are joined by soldering silver. Any anode and cathode are arbitrarily selected, and a voltage of 8 V is applied, so that all -33-550964 A7 _ ____ B7 can be confirmed. 5. Description of the invention (31 ~- -Light emission situation at the pixel position. [Example 3] Next, a test organic electric field light-emitting element having a single-pixel is formed, and its light diffusion characteristics are evaluated in the following description method. FIG. 8 shows the test organic electric field light-emitting element. Figure 8 (a) is a component with a first type of intermediate layer, the same as Figure 不 is a component without a first type of intermediate layer. The principle of the part that generates an organic electric field is the same, and its manufacturing method is implemented by The method of FIG. 6 of Example 2 is performed. That is, in FIG. 8 (a), a cathode 35, an electron injection layer 36, an organic light emitting material ^, a positive hole transport layer 38, and a transparent anode 39 are formed on the substrate 40 from top to bottom. That is the substrate organic electric field light-emitting element portion 41. Next, according to the method of FIG. 6, after drilling a processing hole in the first intermediate layer, the element portion 41 is bonded to a storage medium 43, and a reflective medium is deposited on the storage medium. Here, in order to prevent light leakage, a light-shielding cover 42 is formed on the top surface other than the hole. The specific method is to coat a thin layer of resin on the top surface, and then spray carbon powder on it. Then, the storage medium 43 manufactured in this manner is bonded to the basic organic electric field generating element portion 41, and the refractive index adjusting resin material is sealed after the bonding to form an element. Here, the glass of the storage medium portion 43 and the basic element portion q are formed. The broken glass substrate 40 is made of the same glass material, and the same refractive index adjustment resin is used as the glass. + In addition, the comparative organic electric field light-emitting element is also the same as the principle of the organic light-emitting part knife, and its manufacturing The method was carried out using the -34-National Standard (CNS) A4 specification (210 X 297 public love) 550964 A7 _ _ B7 of the second embodiment V. Description of the invention (32) The method shown in Figure 6 was performed, that is, shown in Figure 8 ( b) In the substrate 40, a cathode 35 ·, an electron injection layer 36 ', an organic light-emitting material 37, a positive hole rotation layer 38, and a transparent anode 39' are formed on the substrate 40 from top to bottom. Element 41, should be associated with this element The storage medium 4 3 'bonded by 4Γ without the first intermediate layer is a glass plate directly before drilling, in which a light shield 421 is formed on a part of the area, which is the same as that of FIG. 8 ( a) The size of the openings on the top surface of the first intermediate layer, so that light can pass through β from the storage medium 43f completed in the above-mentioned method, and the above-mentioned element portion 41, after joining, becomes a comparison element. This is a block diagram for element evaluation, which evaluates the difference in light diffusion characteristics. A voltage is supplied to the organic light-emitting element 45 after manufacturing, and a voltage supply / current measurement device 48 (manufactured by Hewlett-Packard Company, pA Meter / DC) is used to measure the amount of current. Voltage Source 4140B) Apply voltage to make the current flow from the anode to the cathode inside the element, so that the element emits light. ^ The photometer camera 46 and its photometric controller 47 (Spectra, manufactured by Photoresearch, Spectra) Pritchard
Photometer,Model 1980 A-PL),對發光量進行亮度測量。 相對於光度計相機的元件透光界面之法線方向之相對方位 角β,係利用脈衝馬達驅動的旋轉台5 (中央精機公司製造) 進行測量。 上述光度计控制森4 7、電塵供應/電流測定裝置4 §以及旋 轉台50,係透過其控制及測量之控制電腦49進行控制。測 量一律在室溫下進行,未特別進行溫度控制。 以圖9(a)與圖9(b)的元件,比較從元件外部觀測到的發 -35 - 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐)Photometer (Model 1980 A-PL), which measures the amount of light emitted. The relative azimuth angle β with respect to the normal direction of the light transmitting interface of the photometer camera was measured using a rotary table 5 (manufactured by Chuo Seiki Co., Ltd.) driven by a pulse motor. The photometer control sensor 47, the electric dust supply / current measurement device 4 §, and the rotary table 50 are controlled by a control computer 49 which controls and measures the same. Measurements are always performed at room temperature, and no temperature control is performed. Using the components in Fig. 9 (a) and Fig. 9 (b), compare the observed development from the outside of the component. -35-This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm).
裝 訂Binding
線 550964 A7 ____ B7 五、發明説明(33 ) 光特性時,發現圖9(b)的元件如以正面明度(θ = 0。)為最 大值’則在大約cos2 Θ下,顯現發光強度衰減之所謂的朗 伯(Lambertian)發光特性,其光量在1〇v電壓下為正面12〇〇 cd/m2、0 = 20。為 1000 cd/m2。 相對的,在00°〜±30。的範園内觀測大致相等的明度, 則圖9(a)的元件之光量,在10 v電壓下為63〇〇 cd/m、此數 據顯不圖9(b)的元件中,光線係向保存媒體43,的面内方向 傳播,而將原本無法向面外透出的光線,幾乎全數透射至 外部。 此外,從加工孔的錐形傾角,可推測此元件在± 2〇。下 可觀測到光線,但在實驗中發現,可觀測到光線的角度稍 廣’推斷可能是因為加工面經噴砂處理後,變得粗糙所意 外產生的亂反射效果。 [實施例四] 以下針對使用於影像顯示用途之有機電場發光元件,說 明本發明之構造尺寸與設計範例。 供作影像顯示元件之用途時,各有機電場發光元件的發 光部77,係分隔成所I胃像素的區域,各像素的發光量及其 發光時間’均由影像顯示元件的控制電路進行控制。影像 顯示元件中的像素呈二次元排列,其像素數則依據影像顯 示元件的解像度予以規格化。Line 550964 A7 ____ B7 V. Description of the invention (33) In the light characteristics, it is found that if the component of FIG. 9 (b) takes the frontal brightness (θ = 0.) as the maximum value, then at about cos2 Θ, the luminous intensity decays. The so-called Lambertian light-emitting characteristic has a light amount of 12,000 cd / m2 and 0 = 20 at a voltage of 10 v. 1000 cd / m2. In contrast, at 00 ° ~ ± 30. Observed in the fan garden with approximately equal brightness, the light amount of the element in Fig. 9 (a) is 630,000 cd / m at a voltage of 10 v. This data shows that in the element in Fig. 9 (b), the light is stored in the direction of The medium 43, propagates in the in-plane direction, and transmits almost all light that could not be transmitted out of the plane to the outside. In addition, from the taper inclination of the machined hole, it can be presumed that this element is within ± 20. Light can be observed in the bottom, but it was found in the experiment that the angle at which the light can be observed is slightly wider. It is presumed that the processing surface was roughened by sand blasting and unexpectedly caused a random reflection effect. [Embodiment 4] The structure size and design example of the present invention will be described below for an organic electric field light-emitting element used for image display applications. When used as an image display element, the light emitting portion 77 of each organic electric field light emitting element is divided into regions of the stomach pixels, and the light emission amount and light emission time of each pixel are controlled by the control circuit of the image display element. The pixels in the image display element are arranged in two dimensions, and the number of pixels is standardized according to the resolution of the image display element.
例如:VGA= 640X 480,SVGA= 800 X 600 , XGA= 1024 X 768,SXGA= 1280 X 1024 , UXGA= 1600 X 1200,HDTV =1920X 1080,以及 qxga= 2048 X 1536。 -36 - 本紙張尺度適财a國家鮮(CNS) A4規格(21GX 297公董) 550964For example: VGA = 640X 480, SVGA = 800 X 600, XGA = 1024 X 768, SXGA = 1280 X 1024, UXGA = 1600 X 1200, HDTV = 1920X 1080, and qxga = 2048 X 1536. -36-This paper is suitable for a country's fresh (CNS) A4 specification (21GX 297 public directors) 550964
囚此,影像顯示元件中的夂徐本、σ ^ 丁γ的各像素《尺寸,係因應畫面尺 寸及解像度來決定’例如全 畫面尺寸為123 X31 mm、解像 度為XGA (像素數l〇24X 味亦/ 〇*· >- 八768)的情形時,每像素尺寸必須 在120X 40 /zm以下的區域内。 圖10顯示像素間配置圖 且闺(a)及(b)之關係;(a)為使用一般 有機電場發光元件之畢彡俊溢j -- 像顯不疋件,(b)為採用本發明的有 機電場發光元件構造之影像顯示元件。其令為求簡化,圖 2針對有機電場發光㈣的基板上㈣分,-律_示為 像素。 至於基板厚度d之基板上所形成的像素丨、2和3,若假設 像素尺寸為Μ、代表像素間距的像素節距為L2,則一個像 素所佔大小’包含發光之像素部及像素節距部 其長度 為 L1 + L2。 在此雖未特別說明,但紙面之垂直方向上亦同為像素區 域’其長度亦等於像素尺寸與像素節距相加之和。 各像素的發光如係從基板向外部放出的情形下,從像素 與基板界面所放射出的光線,會在抵達基板底部的透光界 面過程中進行光擴散,於基板與空氣之界面進行部分反射 ’而以大於臨界角的角度抵達之光線會全數反射,並向基 板的橫向傳#,因此若與相鄰的像素過份接近時,光線即 相混,而於全彩影像顯示中,產生色彩之混色效果。 •此2,於像素本身採取光諧振器構造’或者於各像素的 橫向設置錐面,以提高光線進人基板内的配向&,可㈣ 基板橫向的傳播。但是,光線透出到元件外部時,亦^產 -37 -For this reason, the size of each pixel in the image display element, 夂, and σ ^ γ, is determined according to the screen size and resolution. For example, the full screen size is 123 X 31 mm, and the resolution is XGA (number of pixels 1024X) In the case of / 〇 * · >-8768), the size of each pixel must be within the area of 120X 40 / zm or less. Figure 10 shows the layout of the pixels and the relationship between (a) and (b); (a) Bi Yijun Yi using a general organic electric field light-emitting element-the image display is not good, (b) is the use of the present invention Image display element with a structure of an organic electric field light emitting element. For simplicity, Fig. 2 shows the pixels on the substrate of the organic electric field emitting light, and -law_ is shown as a pixel. As for the pixels formed on the substrate of the substrate thickness d, 2, and 3, if it is assumed that the pixel size is M and the pixel pitch representing the pixel pitch is L2, then the size of a pixel includes the light emitting pixel portion and the pixel pitch. Its length is L1 + L2. Although not specifically described here, the vertical direction of the paper surface is also a pixel region ', and its length is also equal to the sum of the pixel size and the pixel pitch. If the light emission of each pixel is emitted from the substrate to the outside, the light emitted from the interface between the pixel and the substrate will diffuse light during the process of reaching the light-transmitting interface at the bottom of the substrate and partially reflect at the interface between the substrate and air. 'And the light arriving at an angle greater than the critical angle will be fully reflected and transmitted to the lateral direction of the substrate #, so if it is too close to the adjacent pixels, the light will be mixed, and the color will be generated in the full-color image display. Color mixing effect. • In this case, the pixel itself adopts an optical resonator structure ’or a conical surface is provided in the lateral direction of each pixel to improve the alignment of light entering the substrate & the substrate can propagate laterally. However, when light is transmitted to the outside of the device, it also produces -37-
550964 A7 B7550964 A7 B7
五、發明説明(35 ) 生光配向性殘留,不但讓影像顯示元件的視野角度變窄 也會因諧振器效果混雜光干涉色,而造成顯示色彩不均 為解決此問題,以包含本發明的有機電場發光元件之3 像顯示元件為例,其第一種中間層之設置,例如將錐面與 基板表面的法線所成之角度7?,設於連接透光界面上像素 間的中點位置,可避免各像素的發光於基板内混合,或者 可避免光的配向性,而令光線放射至基板外部。 圖11說明作為此種影像顯示元件用途下,本發明的有機 電場發光元件之第一種中間層之尺寸大小決定方法。 從像素侵入基板的光線,因像素本身為二次元的發光體 ,故會以各種方位角進行放射,而於限制第一種中間層的 基板橫向之界面反射,最後以各種角度抵達透光界面。故 透光界面上的部分光線會被反射,由其當反射角度比全反 射角更廣時,其光線會再度回到像素而無法透射出去,因 此必須計算最佳的第一種中間層之錐形傾角,以及其厚度 與折射率。 若第一種中間層的錐面與基板表面的法線所成之角度為 7/ ’則錐形傾角為7Γ /2- 77。再假設從基板底部的發光點p, 向方位4放出的光線抵達錐面之位置為W,在W反射而到 達基板頂面的位置為V,相當於Z軸上的點w高度之點為G ’點W上的錐面之法線與z軸相交之點為ρ ,錐面與χ軸相 交之點為Ε。 需注意,相對於錐面的放射光之入射角為ZPWF ,反射 光之方向,僅於點W入射光的方位向量,朝逆向量之負方 -38 - 本纸張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)V. Description of the invention (35) The residual light alignment property not only narrows the viewing angle of the image display element, but also causes the interference effect of the resonator to mix light interference colors, resulting in non-uniform display colors. This problem is solved by including the present invention. An organic electric field light-emitting element like an image display element is taken as an example. The first intermediate layer is set, for example, an angle of 7 ° formed by the cone surface and the normal line of the substrate surface is set at the midpoint between the pixels on the transparent interface. The position can prevent the light emission of each pixel from being mixed in the substrate, or the alignment of the light can be avoided, and the light can be radiated to the outside of the substrate. FIG. 11 illustrates a method for determining the size of the first intermediate layer of the organic electric field light-emitting device of the present invention for such an image display device. The light that enters the substrate from the pixel is emitted by the pixel at various azimuth angles because the pixel itself is a two-dimensional light emitter. It restricts the horizontal interface reflection of the substrate of the first intermediate layer and finally reaches the light-transmitting interface at various angles. Therefore, part of the light on the transparent interface will be reflected. When the reflection angle is wider than the total reflection angle, the light will return to the pixel again and cannot be transmitted out. Therefore, the best cone of the first intermediate layer must be calculated. Shape inclination, and its thickness and refractive index. If the angle formed by the tapered surface of the first intermediate layer and the normal to the substrate surface is 7 / ', the tapered inclination angle is 7Γ / 2-77. Assume that from the light emitting point p at the bottom of the substrate, the position where the light emitted in the azimuth 4 reaches the tapered surface is W, and the position at which the W reflects and reaches the top surface of the substrate is V, and the point corresponding to the height of the point w on the Z axis is G. The point where the normal of the cone surface at the point W intersects with the z-axis is ρ, and the point where the cone surface intersects with the χ-axis is E. It should be noted that the incident angle of the radiated light relative to the cone is ZPWF, the direction of the reflected light is only the azimuth vector of the incident light at the point W, and the negative square of the inverse vector -38-This paper scale applies the Chinese national standard (CNS ) A4 size (210 X 297 mm)
裝 訂Binding
線 550964 五 、發明説明(36 A7 B7 ' ^— 向旋轉 ZPWV= 2 ZPWF。此時,需注意0〉,貝1J : [公式三] △GWP ^ 一 φ,乙GWE - η ZJ^WE =乙GWE — ZX^WP = φ — tj Z^PWF Z^WE ---(0 _ ”) (X 點P的放射光方位向量為: 錐面的法線向量為··Line 550964 V. Description of the invention (36 A7 B7 '^ — Direction rotation ZPWV = 2 ZPWF. At this time, pay attention to 0>, Bei 1J: [Formula 3] △ GWP ^ a φ, B GWE-η ZJ ^ WE = B GWE — ZX ^ WP = φ — tj Z ^ PWF Z ^ WE --- (0 _ ”) (The radiation vector at point X is: The normal vector of the cone surface is ···
Z rsin0^ ,cos^i fx \ SS cos(- sin(-y) (sinrj、 /一 cos 17、 / -sin(-―) [ 2J cos(-|\ (cosr^ { sin?7 y 放射光的方位向量之逆向量與錐面的法会 古、·泉向量共成之角 度,從其内積可得: [公式四](-cos 7/ ) (-sin 0 ) + sin 7? (-cos 0 ) = sin( 0 - 7/ ) 其角度為(;t/2)—4 + 7;。 以僅此兩倍角度的正向旋轉者作為反射光的方位,則反 射光的方位向量為: [公式五] cos (--φ + η) (X, 丨Z丨 (cos[jt - 2(φ - η)] sin[;r — 2(φ - η)] γ - sin 沴、 卜 sin[7r - 2(0 - 77)] cos〇r — 2(0 - η)] cos(^ - sin(^r - 0 + 2?7)\ /- sin(^) - 2η)\「cos(;r + 2η)广(cos(卜 2rj) y -39 - 本纸張尺度適用中國國家標準(CNS) A4規格(210 x 297公釐) 550964 A7 B7 五、發明説明(37 其方位角則為: [公式六] -$in(^ - 2η) cos(彡一 277) _ arctan = arctan[tan(2;7= ......(3) 由此可知,反射光入射至頂面之角度如上公式。具體而言 ’可依據第-種中間層之形狀,計算來自底面的光線之光 程求出即可。 其範圍為,直接放射 光在抵達錐面EV之前,為使其不超過臨界角0e=sin(i/n) ,即;7<0C,且錐面上的反射光之最大廣角(0=9〇。)亦不 得超過臨界角,因此: [公式七] -久 <2卜奮,^-γ<τ7 如 n= 1.6則 25.66。<77 <38.68。,但 η=2·2時,0c=27.〇4。 且(7Γ/4) —(0C/2) = 31.48。’無法決定出最佳的錐形傾角。 因此,藉由在錐度中央部分填入折射率1·6左右的樹脂, 可將光線全數導引至外部。 光線抵達之角度如過於接近臨界角,光的穿透率亦不高 ’為求實效,將角度設在(25.66+ 38.68)/2= 32.17。左右,< 令直接反射光及反射光皆控制在略小於臨界角的範圍内。 接著求取可產生有利透光量的基板厚度。假設像素下側 -40 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) 550964 A7 --- -- B7 五、發明説明(38 ) 面々直彳二為a,基板厚度為d,則上側透光面的半徑為a/2 + d tan 77。下側面的光線若1〇〇%透出,肖與上側面同大的單 純像素(假設為透光效率τ)所發出的光量,若要相等於下側 面的光量,則: [公式八] 有,“忐(1+讳 …(5: 假設τ=0.2、fuo _、。,則d=3〇”m。 如此厚度d將會更薄,且可產生有利的透光量。相反的, 上侧面的大小若為120 #m,則a=1〇7、d=1〇5以瓜。 由此可知’像素尺寸a一旦決定,即可藉由前述工式⑷ 決定角度々,且有效的基板厚度4可藉由前述公式(5)得以 決疋。若基板厚度大於此數據時,將無法令像素之發光全 數向外部透出,未必有利。 圖12顯示採用第一種中間層的元件構造之範例,該第一 種中間層具有此最佳厚度。 圖12(a)顯示第一種中間層直接在像素下部接合之情形, 該第一種中間層之厚度相較於基板整體厚度薄了許多。在 此種配置中,最終抵達透光界面之前,由於光線得以擴散 故效果不佳。 ⑻顯示基板整體厚度與第—種中間層厚度相同之情 形。在此情況下’雖能獲得前述透光之優點,但基板厚度 較薄,因此,為維持基板的機械性強度,可如圖I"幻所示 -41 - 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐) 550964 A7 ________B7 五、發明説明(39 ) " ,令像素與第一種中間層之間,隔著一定間距dw之基板。 在此情況下,光線從像素抵達第一種中間層之前,為避免 與相鄰像素的光線混合,上述#之值不得過大。 圖13顯示一種元件構造,其係於第一種中間層與像素隔 絕配置之條件下,於基板中形成連接兩者之導波層。此時 又可分作兩種情形:一為如圖n(a)所示,藉由導波層接合 直接像素部與第一種中間層;二為如圖13(b)所示,藉由導 波層隔著間距dw接合第一種中間層。尤其在後者的情況下 ’當光線從像素抵達第一種中間層之前,為避免與相鄰像 素的光線混合,上述dw之值不得過大。 如上所述,有機電場發光元件中,第一種中間層的剖面 形狀’呈開口部從發光面端向透光面端擴大之形狀,而該 第一種中間層的側面可令光線反射,且第一種中間層的透 光面中,中間層的側面之錐形傾角”對全反射角欠之角度 低於0 c。 尤其當元件構造設計為77在45。- 0e/2以上、0。以下,且第 一種中間層的厚度d在同一剖面上相對於發光面端開口部 的寬度a在a/2 tan 7?以下時,在像素部發生的幾乎所有光線 ,可維持在顯示元件的像素尺寸限制内,並對元件外部透 出。 [實施例五] 本實施例係利用圖14 ,針對非晶形矽薄膜電晶體或多晶 矽薄膜電晶體,或者有機薄膜電晶體等,於基板上形成之 狀態下,說明景〉像顯示元件的元件構造及驅動電路。 -42 - 本紙張尺度適用中國國家標準(CNS) A4規格(21〇 X 297公爱) 550964 A7 -----—__________ Β7 五、發明説明(4〇 ) 當有機電場發光元㈣為影像顯示元件使輯,必須控 制各像素的發光狀態。當畫面尺寸加大時,有效方法是於 …牛内部的各個像素中,形成可獨立驅動各像素之薄膜電 晶體。 圖Μ⑷即顯示内建有該種薄膜電晶體的單個像素部之構 造。於基板透光面相反的頂面上’形成有薄膜電晶體層, 在此以兩個電晶體(Tsw :切換式電晶冑,Swifching Transistor ; ydr :沒極電晶體,丁咖仏如)驅動一個 像素,並於薄膜電晶體層之上,形成有機電場發光元件的 透明陽極、發光層及陰極。 部分透明陽極與部分陰極,係藉_配線與電晶體連接 。發光層的下層形成有第一種中間層,其構造可採用實施 例四所示的各種構造。 、圖14⑻係顯示用以驅動各像素之電晶體電路圖,各像素 <間分別形成有用以驅動切換式電晶體的閘極配線⑴丨〜 G4),以及用以驅動汲極電晶體的汲極配線(di〜d4)。 為令特疋像素進行顯示,從此二種配線進行選擇,並驅 動特定像素位置之電晶體,令該發光部進行發光。發出的 光會被導入内建電晶體層下方所形成之第一種中間層内, 於該處進行光程擴散並抵達透光界面。 包含此種薄膜電晶體内建式的有機電場發光層之影像讀 示元件中,為使電晶體部分及配線部分共存於發光像素部 分以外的地方,故必定會含有非發光區域,但藉由在第— 種中間層的錐形部分配置該等驅動電路,可使元件更為精 -43 - 550964 發明説明 密’且可將透光效率發揮至最大限度。 本發明之有機電場發光元件,無需變更以往諸多研究所 揭示的有機電場發光元件之發光部基本構造,而能夠以更 簡易的方法改善透光效率,令更多光線穿透至元件外 部。 尤其以十英吋以上的大畫面顯示元件,以及面積小但精 始、度高之圖像顯示元件作為驅動元件時,因考慮到使用有 機材料時的本質性問題,使其無法作為高精密度的圖像顯 示元件使用,以往的提案最大僅提供到八英吋的圖像顯示 元件。此種高精密元件及大畫面元件中,亦可使用有機電 場發光元件。 藉由此等元件的電性特性之提升,可望達成元件驅動之 低電壓化、高明度化及壽命增長。 產業上利用之可能性 利用本發明,可製造出既薄且輕、高精密度且高效率之 有機電場發光元件,並且,採用本發明之有機電場發光元 件’可提供各種新型光電元件,以及使用該等元件之系統 與服務等’例如:薄膜平面顯示器、小型行動投射型顯示 咨、行動電話顯示元件、立體顯示器、電子紙、行動電腦 顯TF器、即時電子佈告板、光發光二極體、雷射、二次元 光圖案產生元件、光電腦、光交叉連接器(Cr〇ss Connector) ,以及光路由器等。 -44 · 本紙張尺度適用中國國家標準(CNS) A4規格(21〇X297公釐)Z rsin0 ^, cos ^ i fx \ SS cos (-sin (-y) (sinrj, / 一 cos 17 ,, / -sin (-―) [2J cos (-| \ (cosr ^ {sin? 7 y radiated light The angle at which the inverse vector of the azimuth vector and the conical surface of the conical surface and the spring vector form, can be obtained from its inner product: [Formula 4] (-cos 7 /) (-sin 0) + sin 7? (-Cos 0) = sin (0-7 /) whose angle is (; t / 2) —4 + 7; With a positive rotation of only twice the angle as the orientation of the reflected light, the orientation vector of the reflected light is: [Formula 5] cos (--φ + η) (X, 丨 Z 丨 (cos [jt-2 (φ-η)] sin [; r — 2 (φ-η)] γ-sin 沴, bu sin [ 7r-2 (0-77)] cos〇r — 2 (0-η)] cos (^-sin (^ r-0 + 2? 7) \ /-sin (^)-2η) \ 「cos (; r + 2η) wide (cos (Bu 2rj) y -39-This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 x 297 mm) 550964 A7 B7 V. Description of the invention (37 The azimuth angle is: [Formula 6]-$ in (^-2η) cos (彡 一 277) _ arctan = arctan [tan (2; 7 = ...... (3) It can be seen that the angle of the reflected light incident on the top surface The above formula. Specifically, 'can be calculated based on the shape of the first intermediate layer. The optical path of the light from the surface can be obtained. Its range is that before the direct light reaches the conical surface EV, so that it does not exceed the critical angle 0e = sin (i / n), that is, 7 < 0C, and the conical surface The maximum wide-angle (0 = 90) of the reflected light on the surface must not exceed the critical angle, so: [Formula 7]-Jiu < 2 Bu Fen, ^ -γ < τ7 If n = 1.6 then 25.66. ≪ 77 & lt 38.68., But when η = 2.2, 0c = 27.〇4. And (7Γ / 4)-(0C / 2) = 31.48. 'Cannot determine the optimal taper angle. Therefore, by using The central part of the taper is filled with a resin with a refractive index of about 1.6, which can guide the light to the outside. If the angle of the light is too close to the critical angle, the light transmission rate is not high. For practical results, set the angle at (25.66+ 38.68) / 2 = 32.17. About, < make both the direct reflected light and the reflected light within a range slightly smaller than the critical angle. Then find the thickness of the substrate that can produce a favorable amount of light transmission. Suppose the lower side of the pixel is -40-This paper size applies Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 ----B7 V. Description of the invention (38) The surface is straight, the second is a, and the thickness of the substrate Is d, the radius of the upper transparent surface is a / 2 + d tan 77. If the light on the lower side is 100% transparent, the amount of light emitted by a simple pixel (assuming transmission efficiency τ) the same as that on the upper side, is equal to the amount of light on the lower side: [Formula 8] Yes "忐 (1 ++ ... (5: assuming τ = 0.2, fuo _, ..., then d = 3〇" m.) In this way, the thickness d will be thinner and can produce a favorable amount of light transmission. On the contrary, the above If the size of the side is 120 #m, then a = 107 and d = 105. It can be seen from this that once the 'pixel size a' is determined, the angle 工 can be determined by the aforementioned working formula 々 and an effective substrate The thickness 4 can be determined by the aforementioned formula (5). If the substrate thickness is larger than this data, it will not be able to make the pixel's light emission fully transparent to the outside, which is not necessarily beneficial. Figure 12 shows the structure of the element using the first intermediate layer. For example, the first intermediate layer has this optimal thickness. Figure 12 (a) shows the case where the first intermediate layer is directly bonded to the lower part of the pixel. The thickness of the first intermediate layer is much thinner than the overall thickness of the substrate. In this configuration, the effect is not good because the light is diffused before finally reaching the light-transmitting interface ⑻ Shows that the overall thickness of the substrate is the same as the thickness of the first intermediate layer. In this case, 'Although the advantages of the aforementioned light transmission can be obtained, the thickness of the substrate is thin. Therefore, in order to maintain the mechanical strength of the substrate, it can be shown in Figure I " Magic show -41-This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm) 550964 A7 ________B7 5. Description of the invention (39) " Between the pixel and the first intermediate layer, The substrate is separated by a certain distance dw. In this case, before the light from the pixel reaches the first intermediate layer, in order to avoid mixing with the light from adjacent pixels, the value of # above must not be too large. Figure 13 shows a component structure, which is Under the condition that the first intermediate layer is isolated from the pixel, a waveguide layer connecting the two is formed in the substrate. At this time, it can be divided into two cases: one is shown in Figure n (a). The wave layer joins the direct pixel portion with the first intermediate layer; the second is shown in Figure 13 (b), where the wave guide layer joins the first intermediate layer at a distance dw. Especially in the latter case, when the light passes from Before the pixels reach the first intermediate layer, To avoid mixing with the light from adjacent pixels, the value of the above dw must not be too large. As mentioned above, in the organic electric field light-emitting element, the cross-sectional shape of the first intermediate layer is a shape in which the opening portion expands from the light emitting surface end to the light transmitting surface end And the side surface of the first intermediate layer can reflect light, and in the light-transmitting surface of the first intermediate layer, the angle of the tapered inclination of the side surface of the intermediate layer to the total reflection angle is less than 0 c. Especially when When the element structure is designed to be 77 at 45.-0e / 2 or more and 0. or less, and the thickness d of the first intermediate layer in the same section with respect to the width a of the light-emitting surface end opening a is less than a / 2 tan 7? Almost all the light generated in the pixel portion can be maintained within the pixel size limit of the display element and can be transmitted to the outside of the element. [Embodiment 5] This embodiment uses FIG. 14 to describe an element structure of an image display element for an amorphous silicon thin film transistor or a polycrystalline silicon thin film transistor, or an organic thin film transistor, and the like on a substrate. And driving circuit. -42-This paper size is in accordance with Chinese National Standard (CNS) A4 specification (21〇X 297 public love) 550964 A7 -----__________ B7 V. Description of the invention (4〇) When the organic electric field light emitting element is displayed as an image It is necessary to control the light emitting state of each pixel by using the device. When the screen size increases, an effective method is to form a thin film transistor that can drive each pixel independently in each pixel inside the cow. Figure M⑷ shows the structure of a single pixel section with this thin film transistor built in. A thin film transistor layer is formed on the top surface opposite to the light-transmitting surface of the substrate, and is driven by two transistors (Tsw: Switching Transistor, Swifching Transistor; ydr: Non-polar Transistor, Ding Caoru) One pixel is formed on the thin film transistor layer to form a transparent anode, a light emitting layer and a cathode of an organic electric field light emitting element. Part of the transparent anode and part of the cathode are connected to the transistor through wiring. The first intermediate layer is formed under the light-emitting layer, and the structure can adopt various structures shown in the fourth embodiment. 14 is a circuit diagram of a transistor for driving each pixel, and gate wirings for driving a switching transistor are formed between each pixel < and G4), and a drain for driving a drain transistor Wiring (di ~ d4). In order to make a special pixel display, select from these two kinds of wiring, and drive the transistor at a specific pixel position to make the light emitting part emit light. The emitted light is introduced into the first intermediate layer formed under the built-in transistor layer, where the optical path is diffused and reaches the light-transmitting interface. In an image reading display device including such a thin-film transistor built-in organic electric field light-emitting layer, in order to coexist the transistor part and the wiring part outside the light-emitting pixel part, a non-light-emitting area must be included, but by The first type—the tapered part of the middle layer—configures these drive circuits to make the components more precise. The organic electric field light emitting device of the present invention does not need to change the basic structure of the light emitting part of the organic electric field light emitting device disclosed in many previous researches, but can improve the light transmission efficiency in a simpler way and allow more light to penetrate to the outside of the device. In particular, when a large-screen display element of more than ten inches and an image display element with a small area but a high degree of precision are used as the driving element, due to the inherent problems when using organic materials, it cannot be used as a high precision. The use of image display elements, the previous proposal only provides up to eight inches of image display elements. Among such high-precision devices and large-screen devices, organic electric field light-emitting devices can also be used. With the improvement of the electrical characteristics of these devices, it is expected that the device drive will achieve lower voltage, higher brightness, and longer life. Possibility of industrial utilization Using the present invention, an organic electric field light-emitting element that is thin and light, high precision and high efficiency can be manufactured, and the organic electric field light-emitting element using the present invention can provide various new types of photovoltaic elements, and use System and services of these components, such as: thin film flat panel display, small mobile projection display, mobile phone display element, stereo display, electronic paper, mobile computer display TF device, real-time electronic bulletin board, light emitting diode, Laser, two-dimensional light pattern generating element, optical computer, optical cross connector (CrOss Connector), and optical router. -44 · This paper size applies to China National Standard (CNS) A4 (21 × 297 mm)
裝 訂Binding
線line
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001033543 | 2001-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW550964B true TW550964B (en) | 2003-09-01 |
Family
ID=18897281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091101580A TW550964B (en) | 2001-02-09 | 2002-01-30 | Organic electro luminescence device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2002065817A1 (en) |
TW (1) | TW550964B (en) |
WO (1) | WO2002065817A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8330146B2 (en) | 2007-05-07 | 2012-12-11 | Chunghwa Picture Tubes, Ltd. | Organic photodetector |
TWI454765B (en) * | 2009-09-25 | 2014-10-01 | Intel Corp | Vertical mirror in a silicon photonic circuit |
US9195007B2 (en) | 2012-06-28 | 2015-11-24 | Intel Corporation | Inverted 45 degree mirror for photonic integrated circuits |
CN105185924A (en) * | 2015-10-21 | 2015-12-23 | 南京先进激光技术研究院 | High-light-effect OLED (Organic Light Emitting Diode) display unit |
US9761746B2 (en) | 2013-03-11 | 2017-09-12 | Intel Corporation | Low voltage avalanche photodiode with re-entrant mirror for silicon based photonic integrated circuits |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2836584B1 (en) * | 2002-02-27 | 2004-05-28 | Thomson Licensing Sa | LIGHT EMITTING PANEL WITH LIGHT EXTRACTION ELEMENTS |
US9070901B2 (en) | 2008-04-04 | 2015-06-30 | Koninklijke Philips N.V. | OLED device with macro extractor |
KR101084178B1 (en) | 2009-12-14 | 2011-11-17 | 한국과학기술원 | Organic light emitting device, lighting equipment comprising the same, and organic light emitting display apparatus comprising the same |
WO2017134820A1 (en) * | 2016-02-05 | 2017-08-10 | パイオニア株式会社 | Light emitting device and method for manufacturing light emitting device |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10189237A (en) * | 1996-12-25 | 1998-07-21 | Casio Comput Co Ltd | Surface light emitting body and liqiud crystal display device using it |
US5869929A (en) * | 1997-02-04 | 1999-02-09 | Idemitsu Kosan Co., Ltd. | Multicolor luminescent device |
PT1051582E (en) * | 1998-02-05 | 2004-01-30 | Zumtobel Staff Gmbh | LIGHTING DEVICE |
JP3832088B2 (en) * | 1998-04-23 | 2006-10-11 | 松下電器産業株式会社 | Organic light emitting device |
JPH11329726A (en) * | 1998-05-21 | 1999-11-30 | Sharp Corp | Organic element |
JP2000068069A (en) * | 1998-08-13 | 2000-03-03 | Idemitsu Kosan Co Ltd | Organic electroluminescence device and its manufacture |
JP4403596B2 (en) * | 1999-03-05 | 2010-01-27 | ソニー株式会社 | Optical element and substrate for optical element |
JP2000284134A (en) * | 1999-03-31 | 2000-10-13 | Seiko Epson Corp | Optical device |
JP2002008850A (en) * | 2000-04-21 | 2002-01-11 | Semiconductor Energy Lab Co Ltd | Self-luminous device and electric appliance using the same |
-
2002
- 2002-01-30 TW TW091101580A patent/TW550964B/en active
- 2002-02-06 JP JP2002565396A patent/JPWO2002065817A1/en active Pending
- 2002-02-06 WO PCT/JP2002/000967 patent/WO2002065817A1/en active Application Filing
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8330146B2 (en) | 2007-05-07 | 2012-12-11 | Chunghwa Picture Tubes, Ltd. | Organic photodetector |
TWI454765B (en) * | 2009-09-25 | 2014-10-01 | Intel Corp | Vertical mirror in a silicon photonic circuit |
US9195007B2 (en) | 2012-06-28 | 2015-11-24 | Intel Corporation | Inverted 45 degree mirror for photonic integrated circuits |
US9761746B2 (en) | 2013-03-11 | 2017-09-12 | Intel Corporation | Low voltage avalanche photodiode with re-entrant mirror for silicon based photonic integrated circuits |
CN105185924A (en) * | 2015-10-21 | 2015-12-23 | 南京先进激光技术研究院 | High-light-effect OLED (Organic Light Emitting Diode) display unit |
Also Published As
Publication number | Publication date |
---|---|
WO2002065817A1 (en) | 2002-08-22 |
JPWO2002065817A1 (en) | 2004-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7138191B2 (en) | Organic electroluminescence device and photoelectron device using said electroluminescence device | |
US20240057374A1 (en) | Organic electroluminescent devices | |
US7612497B2 (en) | Organic electroluminescence device and organic electroluminescence system | |
Kalyani et al. | Novel materials for fabrication and encapsulation of OLEDs | |
TWI500787B (en) | Deposition method and method for manufacturing light emitting device | |
TWI481733B (en) | Method for manufacturing evaporation donor substrate and light-emitting device | |
TWI362128B (en) | Light emitting device and method of manufacturing the same | |
TWI292678B (en) | Top-emittierendes, elektrolumineszierendes bauelement mit zumindest einer organischen schicht | |
US9130195B2 (en) | Structure to enhance light extraction and lifetime of OLED devices | |
JP2011029172A (en) | Organic el device, and design method thereof | |
Singh et al. | Development in organic light-emitting materials and their potential applications | |
JP2010080423A (en) | Color display device and its manufacturing method | |
US10483489B2 (en) | Integrated circular polarizer and permeation barrier for flexible OLEDs | |
TW201503451A (en) | Barrier covered microlens films | |
TW550964B (en) | Organic electro luminescence device | |
JP2011076799A (en) | Organic electroluminescent display device | |
JP2003277741A (en) | Organic el light-emitting element and liquid crystal display device obtained using the same | |
JP2011065943A (en) | Organic electroluminescent element | |
Bae et al. | High-color-stability and low-driving-voltage white organic light-emitting diodes on silicon with interlayers of thin charge generation units for microdisplay applications | |
Frischeisen | Light extraction in organic light-emitting diodes | |
US20170162818A1 (en) | Display device, display unit, and electronic apparatus | |
JP5566069B2 (en) | Organic electroluminescence display | |
JP2010198907A (en) | Organic electroluminescent display device | |
JP5306949B2 (en) | Organic electroluminescence device | |
JP2003115389A (en) | Organic electric field light emitting element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |