WO2002060677A1 - Powder molding method - Google Patents

Powder molding method Download PDF

Info

Publication number
WO2002060677A1
WO2002060677A1 PCT/JP2002/000617 JP0200617W WO02060677A1 WO 2002060677 A1 WO2002060677 A1 WO 2002060677A1 JP 0200617 W JP0200617 W JP 0200617W WO 02060677 A1 WO02060677 A1 WO 02060677A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
magnetic field
cavity
orientation
magnet
Prior art date
Application number
PCT/JP2002/000617
Other languages
French (fr)
Japanese (ja)
Inventor
Atsushi Ogawa
Shuhei Okumura
Original Assignee
Sumitomo Special Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co., Ltd. filed Critical Sumitomo Special Metals Co., Ltd.
Priority to JP2002560848A priority Critical patent/JPWO2002060677A1/en
Publication of WO2002060677A1 publication Critical patent/WO2002060677A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/022Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space whereby the material is subjected to vibrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a powder molding method, and more particularly to a powder molding method for breath-forming a powder for a rare earth magnet.
  • a main object of the present invention is to provide a powder molding method capable of improving the orientation of the obtained molded article. Disclosure of the invention
  • At least one of the upper punch and the lower punch is vibrated in the press direction in the through hole of the die during the press forming, so that the friction acting on the magnet powder in the cavity changes from static friction to dynamic friction. Reduce the frictional force between the magnet powders Since it can be reduced, the fluidity of the magnet powder increases. If the orientation magnetic field is applied while the punch is vibrated in this manner, the magnet powder moves so as to be aligned in the magnetic field orientation direction, and the orientation of the magnet powder is improved. Therefore, if the magnet powder in that state is pressed, a compact having high orientation can be obtained.
  • the orientation magnetic field in the pressing step is a static magnetic field.
  • a static magnetic field is applied during press molding, the powder can be pressed while securing the time required for the powder to flow, so that the orientation of the magnet powder and thus the compact can be improved.
  • the pressing direction is perpendicular to the magnetic field orientation direction.
  • the magnetic field generating mechanism can be easily separated from the press mechanism, the orientation of the magnet powder and thus the compact can be improved with a simple configuration.
  • the present invention is suitable when the pressing direction is parallel to the magnetic field orientation direction.
  • the pressing direction is parallel to the direction of the magnetic field than in the case where it is perpendicular to the direction of the magnetic field, the pressing is performed while the orientation during the application of the magnetic field is broken.
  • the adverse effect can be suppressed by vibrating at least one of the upper punch and the lower punch in the through hole.
  • the present invention is suitable when the magnet powder is manufactured by a quenching method.
  • the frictional force acting between the powders is larger than that of other powders because the powder has a square shape in the past.
  • the flowability of the powder during magnetic field orientation deteriorated, and improvement in the orientation property was hindered.
  • the frictional force acting between the magnet powders in the cavity is reduced by vibrating the punch in the pressing direction in the through hole in the through hole during the magnetic field orientation and pressing.
  • the fluidity of the magnet powder can be improved, so that the orientation of the magnet powder and thus the compact can be improved.
  • the rare earth sintered magnet in order to reduce the crystal grain size of the R 2 F e 1 4 B phase after sintering tends to reduce the powder ⁇ after milling.
  • the powder particle size is less than 5 / m (FSSS particle size) or less, even if a strong orientation magnetic field is applied, the degree of orientation is reduced because the rotating force generated in each powder becomes small. According to the present invention, it is possible to improve the degree of orientation even in such a powder having a small particle diameter.
  • the present invention is suitable for a case where the molded article has an irregular shape.
  • the resulting molded body is In the case of a different shape such as an arc shape, the compression ratio at the time of pressing differs depending on the forming part. Therefore, in the related art, at the end of the molded body having a high compression ratio, a gap occurs due to a difference from the compression ratio of other portions, and the orientation varies depending on the molding portion.
  • the present invention even when a molded article having a different shape is obtained, the fluidity of the magnet powder is increased by vibration, and the density variation of the magnet powder within the cavity is reduced. Therefore, it is possible to mold a molded article of a different shape in which the density of each molded portion after molding is substantially uniform, and it is possible to suppress the occurrence of deformation and improve the orientation.
  • a method of manufacturing a rare earth magnet including the above-described powder molding method.
  • a molded body with improved orientation can be obtained. Therefore, in the present invention, a rare earth magnet having high magnetic properties can be obtained.
  • FIG. 1 is an illustrative view showing one embodiment of the present invention
  • FIG. 2 is a perspective view showing an example of the obtained molded body
  • FIG. 3 is a timing chart showing an example of the operation of the embodiment of FIG. 1
  • FIG. 4 is a table showing an example of the experimental result.
  • FIG. 5 is a graph obtained from the experimental results shown in FIG.
  • FIG. 6 is an illustrative view showing one example of a measurement point of a magnetic property of a magnet in an experiment
  • FIG. 7 is an illustrative view showing another embodiment of the present invention.
  • FIG. 8 is a timing chart showing an example of the operation of the embodiment of FIG. 7, and FIG. 9 is an illustrative view showing another embodiment of the present invention.
  • FIG. 10 is an illustrative view showing still another embodiment of the present invention
  • FIG. 11 is a waveform diagram showing an example of each of a static magnetic field and a pulse magnetic field.
  • a powder molding apparatus 10 is a powder molding apparatus for magnets of a withdrawal type in which a pressing direction is perpendicular to a magnetic field orientation direction. You.
  • the powder molding apparatus 10 includes a base plate 12, which is supported by a plurality of legs 14.
  • a die 16 is arranged above the single plate 12.
  • the lower surface of the die 16 is connected to the connecting plate 20 via a pair of guide posts 18 penetrating the base plate 12.
  • the connecting plate 20 is connected to a lower hydraulic cylinder (not shown) via a cylinder load 22. Therefore, the die 16 can be moved vertically by the lower hydraulic cylinder.
  • a through hole 24 penetrating in the vertical direction is formed.
  • a lower punch 26 is inserted into the through hole 24 from below, and a cavity 28 is formed in the through hole 24.
  • the powder for magnets such as rare earth alloy powder
  • the powder feeding device for example, a powder feeding device described in Japanese Patent Application Laid-Open No. 2000-248301 is used.
  • the packing density of the powder filled in the cavity 28 is, for example, 2.2 g / cm 3 or more and 2.5 g / cm 3 or less.
  • the lower punch 26 is disposed on the vibrator 30, and the vibrator 30 is disposed on the die plate 12. Therefore, the lower punch 26 is fixed on the base plate 12, but the upper punch plate 32 is arranged above the die 16 which can be vibrated in the vertical direction, that is, the press direction by the vibrating device 30. You.
  • An upper punch 34 is provided on the lower surface of the upper punch plate 32 at a position where it can be inserted into the cavity 28.
  • a cylinder rod 36 is provided on the upper surface of the upper punch plate 32.
  • An upper hydraulic cylinder (not shown) is connected to the cylinder rod 36.
  • a pair of guide posts 38 provided in the vertical direction are passed through the vicinity of both ends of the upper punch plate 32, and the lower end of the guide post 38 is connected to the upper surface of the die 16.
  • the upper punch plate 32 can be moved vertically by the upper hydraulic cylinder while being guided by the guide post 38, and accordingly, the upper punch 34 can be moved vertically so that the upper punch plate 32 is moved into the cavity 28. Can be imported.
  • the powder is compressed by the lower punch 26 and the upper punch 34 in the cavity 28 to form a compact 39.
  • An arc-shaped molded body 39 for producing a silver magnet is formed.
  • the upper surface 39 a of the molded body 39 is a contact surface with the upper punch 34
  • the lower surface 39 b of the molded body 39 is a contact surface with the lower punch 26.
  • a magnetic field generator 40 for orienting the powder in the cavity 28 is provided near the die 16.
  • the magnetic field generator 40 includes a pair of yokes 42 a and 42 b symmetrically arranged so as to sandwich the die 16 from both sides.
  • the yokes 42a and 42b are made of a material having high magnetic permeability such as carbon steel.
  • Coils 44a and 44b are wound around the yokes 42a and 42b, respectively. When the coils 44a and 44b are energized, a static magnetic field is generated in the direction indicated by the arrow X, and the powder in the cavity 28 is oriented.
  • the pressing direction is perpendicular to the magnetic field orientation direction.
  • the applied magnetic field strength is, for example, approximately 0.8 ⁇ 7 ⁇ 1 or more and 1.3 MA / m or less.
  • a rare earth alloy powder such as an Nd-Fe-B powder is used as the powder.
  • the rare earth alloy powder is produced, for example, as follows. First, quenching method (cooling rate 1 0 ⁇ C / sec or more 1 0 4 ° C / sec or less) US Patent No. 5 by the manufacturing method of the alloy, 3 8 3, 9 7 scan as shown in No. 8 A piece is produced by using a trip casting method.
  • Nd 30 wt%
  • B 1.0 wt%
  • Dy 1.2 wt%
  • A1 0.2 wt%
  • Co 0.9 wt%
  • An alloy having a composition consisting of the balance Fe and inevitable impurities is melted by high frequency melting. After the molten metal was kept at 1,350 ° C, the peripheral speed of the nozzle was about 1m / s, the cooling speed was 500 ° C / sec, and the supercooling was 200 ° C. It is quenched on a single roll to obtain a flake-like alloy ingot with a thickness of about 0.3 mm.
  • the alloy ingot is roughly pulverized by a hydrogen storage method, and then finely pulverized in a nitrogen gas atmosphere using a jet mill to obtain an alloy powder having an average particle size of 3.5 m.
  • a lubricant is added to the powder.
  • a fatty acid ester is used as a lubricant
  • a petroleum-based solvent is used as a solvent.
  • rare earth 0.3 wt% (lubricant base) of fatty acid ester diluted with petroleum solvent is added to the alloy powder and mixed, and the lubricant is coated on the surface of the rare earth alloy powder.
  • die 16 is located at the lower end and upper punch 34 is located at the upper end, and the upper surfaces of die 16 and lower punch 26 are flush with each other. Is done.
  • die 16 is raised to form a cavity 28 in the through hole 24.
  • the powder feeding device (not shown) is moved onto the cavity 28, and the powder in the powder feeding device is moved into the cavity 28 by slightly swinging the powder feeding device back and forth. After filling, the powder feeding device is moved out.
  • the die 16 is further raised, and the upper punch 34 is lowered, and as shown in the period E, the orientation magnetic field is applied by the magnetic field generator 40 and the vibrator 30 is applied.
  • the vibration of the lower punch 26 starts. Further, as shown in a period F, the powder is pressed in the cavity 28 by the lower punch 26 and the upper punch 34 inserted into the through hole 24 from above while applying an orientation magnetic field and applying vibration. In the state of demagnetization and vibration stopped during period G, press molding of the powder is continued at the maximum pressing pressure. Thereafter, as shown in a period H, the upper punch 34 is gradually raised to gradually reduce the pressure, and the press forming is completed to form a molded body 39. Then, as shown in period I, the molded body 39 in the cavity 28 is pulled out to the upper surface of the die 16 by lowering the die 16 to the lower end. Further, as shown in the period J, after the upper punch 34 is raised to the rising end, the molded body 39 is taken out at the time K, and is prepared for the next press molding process. The powder is press-molded by repeating the above processing.
  • the lower punch 26 is oscillated in the press direction in the through hole 24 at the time of press molding, whereby the frictional force between the powders in the cavity 28 can be reduced, and the fluidity of the powders can be reduced. Get higher. If an orientation magnetic field is applied to the powder while oscillating the lower punch 26 in this way, the powder moves so as to be aligned with the direction of the magnetic field orientation, and the orientation of the powder is improved. In addition, since the powder moves so as to fill the gaps, the powder can be more evenly distributed in the cavity, so that the orientation during compression molding can be reduced. Can be suppressed. By pressing the powder in that state, a molded body 39 with high orientation can be obtained.
  • the powder Even if the powder is filled at a high density of 2.5 g / cm 3 or more and press-molded, the powder moves to fill the gap due to vibration. Accordingly, the molding density for obtaining the desired magnetic properties can be reached at a low press pressure, so that the magnetic field alignment can be prevented from being broken by the press pressure, and a pressed compact can be produced while maintaining the magnetic field orientation state. Further, variation in the orientation in the height direction can be suppressed, which is particularly effective when a molded body 39 having a height of 20 mm or more is obtained.
  • the powder can be pressed while securing the time required for the powder to flow, so that the orientation of the powder and thus the compact 39 can be improved.
  • 0 can be separated from the press mechanism such as the die 16 and the upper punch 34, so that the configuration of the powder molding apparatus 10 is simplified.
  • Nd-Fe-B-based powder produced by the quenching method has a greater frictional force acting between the powders than Nd-Fe-B-based granulated powder, and it is difficult to improve the orientation.
  • the Nd-Fe-B powder produced by the quenching method has a much smaller particle size and a narrower and sharper particle size distribution, so that the gap between the powders is smaller and the surface area of the powder is larger. This is because the grain shape is angular.
  • the average particle size of powder has been reduced to 5 zm (FSSS particle size) for the purpose of improving magnetic properties.
  • the powder molding apparatus 10 even the fine powder produced by the quenching method can be pressed by vibrating the lower punch 26 in the press direction in the through hole 24 during the magnetic field orientation, and pressing. Since the frictional force acting between the powders in the powders 28 can be reduced and the fluidity of the powders can be improved, the orientation of the powders and thus the compact 39 can be improved.
  • the fluidity of the powder in the cavity 28 is increased by the vibration, and the powder is more evenly distributed in the cavity 28. Is done. Therefore, the density (green density) of each molded part after molding ) Can produce a molded article having a substantially uniform shape.
  • the compact obtained as described above was pressed in a state where the variation in the density of the powder in the cavity 28 was reduced and the magnetic anisotropy was more uniform.
  • this green body is sintered, the variation in the amount of shrinkage is reduced, and the degree of contour of the obtained sintered body is improved as compared with the conventional one. Therefore, the processing cost required for correction in the molded product is small.
  • a magnet such as a rare earth magnet having good magnetic properties can be obtained.
  • a magnet obtained by using a powder molding apparatus 10 and a magnet obtained by using a powder molding apparatus (hereinafter, referred to as a “comparative apparatus”) obtained by removing the vibration device 30 from the powder molding apparatus 10 are described.
  • the magnetic properties of each of them were compared. That is, the magnetic properties of the magnets with and without vibration were compared.
  • the magnet was obtained by subjecting a compact produced by a powder compacting machine to sintering and aging.
  • Nd-Fe-B-based alloy powder for example, NE OMAX-48BH: manufactured by Sumitomo Special Metals Co., Ltd.
  • Nd-Fe-B-based alloy powder for example, NE OMAX-48BH: manufactured by Sumitomo Special Metals Co., Ltd.
  • Lubricants such as zinc stearate were added.
  • die 16 a die in which one molded product of 51.3 mm x 53.3 mm x 25 mm was formed in one cycle (for taking one piece) was used.
  • the molding density is 4.
  • the feeding method is feeder filling (injection filling)
  • the orientation magnetic field is the core center magnetic field 1.66 T
  • the vibration frequency is about 50
  • the vibration was about 0.02 mm
  • the vibration device 26 was made by Daiichi Corporation. Then, the obtained compact is sintered at 150 ° C. for 5.5 hours in an Ar atmosphere, and further aged for 3 hours at 500 ° C. in an Ar atmosphere. A magnet (Nd-Fe-B magnet) was obtained.
  • the magnetic properties were measured as follows. First, a compact having a desired compacting density was formed using a powder compacting apparatus. A total of two compacts were obtained by two press moldings. After sintering and aging treatment of the obtained two compacts, they were cut to obtain nine magnets. For each of the nine magnets, the residual magnetic flux density Br and the maximum energy product (BH) max of the central part S were measured as shown in FIG. 6, and the nine values were averaged. Such a treatment was performed for each of the molding densities as shown in FIG. 4 for the powder molding apparatus 10 and the comparison apparatus, and the results shown in FIGS. 4 and 5 were obtained.
  • the present invention by performing the magnetic field molding while applying vibration, it is possible to suppress the variation in the molding density of the compact and the deformation due to sintering. Therefore, for filling the powder, a method is used in which the powder corresponding to each cavity is weighed and the powder is dropped into the cavity and filled as disclosed in Japanese Patent Publication No. 2001-9595. Next, a powder molding apparatus 10a according to another embodiment of the present invention will be described with reference to FIG.
  • the powder compacting apparatus 10a is a double-push magnet powder compacting apparatus in which the pressing direction is perpendicular to the magnetic field orientation direction.
  • the die 16 is fixed on the base plate 12 via a plurality of legs 46, the vibrating apparatus 30 is disposed on the table 48, and the table 48 is provided with the guide post 50.
  • the connecting plate 20 To the connecting plate 20 via
  • the overlapping description will be omitted. Therefore, in the powder molding apparatus 10a, the lower punch 26 and the upper punch 34 move up and down in the through hole 24 of the die 16 to press the powder in the cavity 28.
  • the die 16 is fixed, and the lower punch 26 moves vertically.
  • the lower punch 26 in the powder molding apparatus 10a operates substantially in the opposite direction to the die 16 in the powder molding apparatus 10, and Are pressed by the lower punch 26 and the upper punch 34.
  • the extraction of the upper punch 34 from the cavity 28 is started from the period I. Except for these points, the operation of the powder compacting apparatus 10a is the same as that of the powder compacting apparatus 10, so that the overlapping description will be omitted.
  • the powder compacting device 10b is a magnet type powder compacting device of a wide-open Al type in which the pressing direction is parallel to the magnetic field orientation direction.
  • the powder molding device 10b includes a magnetic field generator 52.
  • the magnetic field generator 52 includes a yoke 54 disposed above the die 16 and substantially parallel to the die 16.
  • An upper punch 34 is provided on a lower surface of the yoke 54 at a position where it can be inserted into the through hole 24.
  • Die 16 functions as a yoke paired with yoke 54.
  • Coils 56a and 56b are wound on the yoke 54 and the die 16, respectively.
  • the coils 56a and 56b are energized, a static magnetic field is generated in the direction indicated by the arrow Y, and the powder in the cavity 28 is oriented.
  • the pressing direction is parallel to the magnetic field direction.
  • the side surface 39 c of the compact 39 becomes a contact surface with the upper punch 34, and the side surface 39 of the compact 39 is formed.
  • d Is the contact surface with the lower punch 26. Therefore, the shapes of the upper punch 34 and the lower punch 26 and the cross-sectional shape of the through hole 24 in the powder molding device 10b are different from those of the powder molding device 10.
  • the powder molding apparatus 10b operates as shown in FIG. 3 similarly to the powder molding apparatus 10, and thus the duplicated description is omitted.
  • the same effect as in the powder molding apparatus 10 can be obtained in the powder molding apparatus 10b.
  • the pressing direction is parallel to the magnetic field orientation direction, since the pressing direction and the magnetic field orientation direction are the same, the magnetic field orientation in the molded body is easily broken by the molding pressure.
  • the adverse effect can be suppressed by vibrating the lower punch 26 in the pressing direction in the through hole 24, and the effect becomes more remarkable.
  • the powder molding apparatus 10b is effective in forming a thin compact with a narrow through-hole 24 (in either the length direction or the width direction), a large cavity depth, and the like. It is.
  • a magnet having high magnetic properties can be obtained even if the molding density is relatively high.
  • the powder molding apparatus 1 Ob even when a thin compact (magnet) is obtained, the compact density can be increased so as not to be crushed when the compact is extracted from the cavity, and good magnetic properties can be obtained. Can be obtained.
  • a description will be given of a powder molding apparatus 10c according to still another embodiment of the present invention.
  • the powder compacting apparatus 10c is a double-push magnet powder compacting apparatus in which the pressing direction is parallel to the magnetic field orientation direction.
  • the die 16 is fixed on the base plate 12 via a plurality of legs 46, the vibrating apparatus 30 is arranged on the table 48, and the table 48 is connected to the guide post 50.
  • the connecting plate 20 To the connecting plate 20 via The rest of the configuration is the same as that of the powder molding apparatus 10b shown in FIG. 9, and a duplicate description thereof will be omitted. Therefore, the lower punch 26 and the upper punch 34 move up and down in the through hole 24 of the die 16 to press the powder in the cavity 28, and the pressing direction becomes parallel to the magnetic field orientation direction.
  • the powder compacting apparatus 10c operates as shown in FIG. 8 similarly to the powder compacting apparatus 10a, and therefore, redundant description is omitted.
  • the same effects as those of the powder molding apparatus 10 can be obtained in the powder molding apparatus 10c.
  • the effect of the non-powder molding apparatus 10c is more remarkable because the pressing direction is parallel to the direction of the magnetic field orientation, as in the case of the powder molding apparatus 10b, and is particularly effective when a thin compact is formed. It is a target.
  • the amplitude of the lower punch 26 is preferably in the range of 0.001 mm to 0.2 mm. If the amplitude is less than 0.01 mm, the friction generated between the powders during molding cannot be reduced, while if the amplitude exceeds 0.2 mm, for example, the die 16 and the lower punch 26 This is because the powder is likely to be caught between them and the die 16 and the lower punch 26 are damaged.
  • the vibration frequency of the lower punch 26 be 5 Hz or more and 100 Hz or less. If the vibration frequency is less than 5 Hz, it is not possible to reduce the friction between the powders during molding.On the other hand, if the vibration frequency exceeds 100 Hz, the cost of the vibration device 30 becomes too high and practical. It is not.
  • the present invention is not limited to the case where only the lower punch 26 is vibrated in the through hole 24.
  • the upper and lower punches 34, 26 may both be vibrated in the through hole 24, or only the upper punch 34 may be vibrated.
  • the present invention is not limited to the case of forming the shaped body 39 having a different shape, but can be applied to the case of obtaining a shaped body having an arbitrary shape such as a ring shape or a stepped shape.
  • the alignment magnetic field not only a static magnetic field but also a pulse magnetic field may be used.
  • the static magnetic field refers to a magnetic field in which the magnetic field intensity does not change with time as shown in FIG. 11 (a).
  • the pulse magnetic field is a kind of dynamic magnetic field in which the magnetic field strength changes with time, and refers to a magnetic field generated temporarily as shown in Fig. 11 (b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

A powder molding method capable of increasing the orientationality of a molded body (39), comprising the steps of filling powder for magnet manufactured by a quenching method into a cavity (28) formed in a through-hole (24) of a die (16), and applying an orienting magnetostatic field to the powder inside the cavity (28) by a magnetic field generating device (40) while vibrating a lower punch (26) in the through-hole (24) in pressing direction by a vibrating device (30) to pressingly mold the powder inside the cavity (28) by an upper punch (34) and the lower punch (26) so as to provide the molded body (39), the pressing direction being vertical to the magnetic field orienting direction, or being allowed to be parallel with the magnetic field orienting direction.

Description

明 細 書 粉末成形方法 技術分野  Description Powder molding method Technical field
この発明は粉末成形方法に関し、 より特定的には希土類磁石用の粉末をブレス 成形するための粉末成形方法に関する。 背景技術  The present invention relates to a powder molding method, and more particularly to a powder molding method for breath-forming a powder for a rare earth magnet. Background art
この種の従来技術の一例が日本特開昭 6 1— 2 5 0 8号において開示されてい る。 ここでは、 押盤を昇降自在に支持すると共に成形台を振動自在に支持してな る振動プレス成形機が提案されている。 この振動ブレス成形機では、 成形台の側 と押盤の側にそれそれバイブレー夕が配設支持されると共に、 押盤の側と成形台 の側にそれそれ昇降自在な加圧シリンダが配設支持される。  One example of this kind of prior art is disclosed in Japanese Patent Application Laid-Open No. 61-25008. Here, there has been proposed a vibration press forming machine which supports a pressing plate so as to be able to move up and down and a shaping table so as to be able to vibrate freely. In this vibrating breath forming machine, a vibrator is arranged and supported on the molding table side and the press plate side, respectively, and a pressurized cylinder which can move up and down is arranged on the press plate side and the molding table side. Supported.
しかし、 上述の従来技術では、 成形型内に充填された粉体原料を配向する技術 について何ら言及されておらず、 粉体原料ひいては得られる成形体の配向性を向 上させることはできない。  However, in the above-mentioned prior art, there is no mention of a technique for orienting the powder raw material filled in the molding die, and it is not possible to improve the orientation of the powder raw material and thus the obtained molded body.
それゆえにこの発明の主たる目的は、 得られる成形体の配向性を向上できる粉 末成形方法を提供することである。 発明の開示  Therefore, a main object of the present invention is to provide a powder molding method capable of improving the orientation of the obtained molded article. Disclosure of the invention
この発明のある見地によれば、 ダイの貫通孔に形成されたキヤビティに磁石用 粉末を充填する充填工程、 ならびに磁場配向時に貫通孔内で上パンチおよび下パ ンチの少なくともいずれか一方をプレス方向に振動させ、 キヤビティ内の磁石用 粉末を上パンチおよび下パンチによってプレス成形し成形体を得るプレス工程を 備える、 粉末成形方法が提供される。  According to an aspect of the present invention, there is provided a filling step of filling a cavity formed in a through hole of a die with a powder for magnets, and pressing at least one of an upper punch and a lower punch in a through hole during a magnetic field orientation. And a press step of press-forming the magnet powder in the cavity by an upper punch and a lower punch to obtain a molded body.
この発明では、 プレス成形時にダイの貫通孔内で上パンチおよび下パンチの少 なくともいずれか一方をプレス方向に振動させることによって、 キヤビティ内の 磁石用粉末相互に働く摩擦が静摩擦から動摩擦に変わり磁石用粉末間の摩擦力を 低減できるので、 磁石用粉末の流動性が高くなる。 このようにパンチを振動させ ながら配向磁場を印加すれば、 磁場配向方向により揃うように磁石用粉末が移動 し磁石用粉末の配向性が向上する。 したがって、 その状態の磁石用粉末をプレス すれば配向性の高い成形体が得られる。 According to the present invention, at least one of the upper punch and the lower punch is vibrated in the press direction in the through hole of the die during the press forming, so that the friction acting on the magnet powder in the cavity changes from static friction to dynamic friction. Reduce the frictional force between the magnet powders Since it can be reduced, the fluidity of the magnet powder increases. If the orientation magnetic field is applied while the punch is vibrated in this manner, the magnet powder moves so as to be aligned in the magnetic field orientation direction, and the orientation of the magnet powder is improved. Therefore, if the magnet powder in that state is pressed, a compact having high orientation can be obtained.
好ましくは、 プレス工程における配向磁場が静磁場である。 プレス成形時に静 磁場を印加すると粉末の流動に必要な時間を確保しつつプレスできるので、 磁石 用粉末ひいては成形体の配向性を向上できる。  Preferably, the orientation magnetic field in the pressing step is a static magnetic field. When a static magnetic field is applied during press molding, the powder can be pressed while securing the time required for the powder to flow, so that the orientation of the magnet powder and thus the compact can be improved.
また、 好ましくは、 プレス方向が磁場配向方向に垂直である。 この場合、 磁場 発生機構をプレス機構から容易に分離できるので、 簡単な構成で磁石用粉未ひい ては成形体の配向性を向上できる。  Preferably, the pressing direction is perpendicular to the magnetic field orientation direction. In this case, since the magnetic field generating mechanism can be easily separated from the press mechanism, the orientation of the magnet powder and thus the compact can be improved with a simple configuration.
この発明は、 プレス方向が磁場配向方向に平行である場合に適する。 プレス方 向が磁場配向方向に垂直の場合より平行の場合の方が磁場印加時の配向を崩しな がらプレスするので磁石用粉末の配向くずれが大きくなる。 しかし、 この発明で は、 上パンチおよび下パンチの少なくともいずれか一方を貫通孔内で振動させる ことによってその弊害を抑制できる。  The present invention is suitable when the pressing direction is parallel to the magnetic field orientation direction. In the case where the pressing direction is parallel to the direction of the magnetic field than in the case where it is perpendicular to the direction of the magnetic field, the pressing is performed while the orientation during the application of the magnetic field is broken. However, in the present invention, the adverse effect can be suppressed by vibrating at least one of the upper punch and the lower punch in the through hole.
また、 この発明は、 磁石用粉末が急冷法によって製造されている場合に適する 。 急冷法によって製造された磁石用粉末を用いた場合、 従来では粉末が角張った 形状のためそれ以外の粉末と比べ粉末間に働く摩擦力が大きい。 そのため、 磁場 配向時粉末の流動性が悪くなり、 配向性の向上が妨げられていた。 しかし、 この 発明では、 このような磁石用粉末であっても、 磁場配向時に貫通孔内でパンチを プレス方向に振動させてプレスすることで、 キヤビティ内の磁石用粉末間に働く 摩擦力を低減することができ磁石用粉末の流動性を改善できるので、 磁石用粉末 ひいては成形体の配向性を向上できる。  Further, the present invention is suitable when the magnet powder is manufactured by a quenching method. In the case where magnet powder produced by the quenching method is used, the frictional force acting between the powders is larger than that of other powders because the powder has a square shape in the past. As a result, the flowability of the powder during magnetic field orientation deteriorated, and improvement in the orientation property was hindered. However, in the present invention, even with such a magnet powder, the frictional force acting between the magnet powders in the cavity is reduced by vibrating the punch in the pressing direction in the through hole in the through hole during the magnetic field orientation and pressing. As a result, the fluidity of the magnet powder can be improved, so that the orientation of the magnet powder and thus the compact can be improved.
希土類焼結磁石では、 焼結後の R 2 F e 1 4 B相の結晶粒径を小さくさせるため 、 微粉砕後の粉碎粉を小さくする傾向にある。 粉末粒径が 5 / m ( F S S S粒径 ) 以下になると強い配向磁場を印加しても、 個々の粉末に発生する回転力が小さ くなるので配向度が低下する。 この発明によれば、 このような粒径の小さい粉末 においても配向度を向上させることが可能になる。 The rare earth sintered magnet, in order to reduce the crystal grain size of the R 2 F e 1 4 B phase after sintering tends to reduce the powder碎粉after milling. When the powder particle size is less than 5 / m (FSSS particle size) or less, even if a strong orientation magnetic field is applied, the degree of orientation is reduced because the rotating force generated in each powder becomes small. According to the present invention, it is possible to improve the degree of orientation even in such a powder having a small particle diameter.
さらに、 この発明は、 成形体が異形状である場合に適する。 得られる成形体が 弓形等の異形状の場合、 成形部位によってプレス時の圧縮率が異なる。 したがつ て、 従来では、 成形体のうち圧縮率が高い端部では他の部位の圧縮率との違いに よるヮレが発生し、 また成形部位によって配向性がばらついていた。 しかし、 こ の発明では、 異形状の成形体を得る場合であっても、 振動によって磁石用粉末の 流動性が高まり、 キヤビティ内での磁石用粉末の密度ばらつきが小さくなる。 し たがって、 各成形部位の成形後の密度が略均一な異形状の成形体を成形すること ができ、 ヮレの発生を抑制できかつ配向性を向上できる。 Further, the present invention is suitable for a case where the molded article has an irregular shape. The resulting molded body is In the case of a different shape such as an arc shape, the compression ratio at the time of pressing differs depending on the forming part. Therefore, in the related art, at the end of the molded body having a high compression ratio, a gap occurs due to a difference from the compression ratio of other portions, and the orientation varies depending on the molding portion. However, in the present invention, even when a molded article having a different shape is obtained, the fluidity of the magnet powder is increased by vibration, and the density variation of the magnet powder within the cavity is reduced. Therefore, it is possible to mold a molded article of a different shape in which the density of each molded portion after molding is substantially uniform, and it is possible to suppress the occurrence of deformation and improve the orientation.
この発明の他の見地によれば、 上述の粉末成形方法を含む、 希土類磁石の製造 方法が提供される。 上述の粉末成形方法を用いれば、 配向性の向上した成形体が 得られるので、 この発明では、 磁気特性の高い希土類磁石が得られる。 図面の簡単な説明  According to another aspect of the present invention, there is provided a method of manufacturing a rare earth magnet, including the above-described powder molding method. By using the above-mentioned powder molding method, a molded body with improved orientation can be obtained. Therefore, in the present invention, a rare earth magnet having high magnetic properties can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の一実施形態を示す図解図であり、  FIG. 1 is an illustrative view showing one embodiment of the present invention;
第 2図は、 得られる成形体の一例を示す斜視図であり、  FIG. 2 is a perspective view showing an example of the obtained molded body,
第 3図は、 第 1図の実施形態の動作の一例を示すタイミングチャートであり、 第 4図は、 実験結果の一例を示すテーブルであり、  FIG. 3 is a timing chart showing an example of the operation of the embodiment of FIG. 1, and FIG. 4 is a table showing an example of the experimental result.
第 5図は、 第 4図に示す実験結果から得られるグラフであり、  FIG. 5 is a graph obtained from the experimental results shown in FIG.
第 6図は、 実験における磁石の磁気特性の測定個所の一例を示す図解図であり 第 7図は、 この発明の他の実施形態を示す図解図であり、  FIG. 6 is an illustrative view showing one example of a measurement point of a magnetic property of a magnet in an experiment, and FIG. 7 is an illustrative view showing another embodiment of the present invention.
第 8図は、 第 7図の実施形態の動作の一例を示すタイミングチヤ一トであり、 第 9図は、 この発明のその他の実施形態を示す図解図であり、  FIG. 8 is a timing chart showing an example of the operation of the embodiment of FIG. 7, and FIG. 9 is an illustrative view showing another embodiment of the present invention;
第 1 0図は、 この発明のさらにその他の実施形態を示す図解図であり、 第 1 1図は、 静磁場およびパルス磁場のそれそれの一例を示す波形図である。 発明を実施するための最良の形態  FIG. 10 is an illustrative view showing still another embodiment of the present invention, and FIG. 11 is a waveform diagram showing an example of each of a static magnetic field and a pulse magnetic field. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照してこの発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
第 1図を参照して、 この発明の一実施形態の粉末成形装置 1 0は、 プレス方向 が磁場配向方向に垂直でありかつウイズドロアル方式の磁石用粉末成形装置であ る。 Referring to FIG. 1, a powder molding apparatus 10 according to one embodiment of the present invention is a powder molding apparatus for magnets of a withdrawal type in which a pressing direction is perpendicular to a magnetic field orientation direction. You.
粉末成形装置 1 0はベースプレート 1 2を含み、 ベースプレート 1 2は複数の 脚部 1 4によって支持される。 ぺ一スプレ一ト 1 2の上方にはダイ 1 6が配置さ れる。 ダイ 1 6の下面は、 ベースプレート 1 2を貫通する一対のガイ ドポスト 1 8を介して連結板 2 0に接続される。 連結板 2 0はシリンダロヅド 2 2を介して 図示しない下部油圧シリンダに接続される。 したがって、 ダイ 1 6は下部油圧シ リンダによって上下方向に移動可能とされる。  The powder molding apparatus 10 includes a base plate 12, which is supported by a plurality of legs 14. A die 16 is arranged above the single plate 12. The lower surface of the die 16 is connected to the connecting plate 20 via a pair of guide posts 18 penetrating the base plate 12. The connecting plate 20 is connected to a lower hydraulic cylinder (not shown) via a cylinder load 22. Therefore, the die 16 can be moved vertically by the lower hydraulic cylinder.
ダイ 1 6の略中央部には鉛直方向に貫通する貫通孔 2 4が形成される。 貫通孔 2 4には下側から下パンチ 2 6が揷入され、 貫通孔 2 4内にキヤビティ 2 8が形 成される。 キヤビティ 2 8には、 キヤビティ 2 8に対して進退可能な図示しない 給粉装置によってたとえば希土類合金粉末などの磁石用の粉末が供給される。 給粉装置としては、 たとえば日本特開 2 0 0 0— 2 4 8 3 0 1号に記載の給粉 装置が用いられる。 キヤビティ 2 8に充填される粉末の充填密度は、 たとえば 2 . 2 g / c m 3 以上 2 . 5 g / c m 3 以下である。 At a substantially central portion of the die 16, a through hole 24 penetrating in the vertical direction is formed. A lower punch 26 is inserted into the through hole 24 from below, and a cavity 28 is formed in the through hole 24. The powder for magnets, such as rare earth alloy powder, is supplied to the cavity 28 by a powder supply device (not shown) that can move in and out of the cavity 28. As the powder feeding device, for example, a powder feeding device described in Japanese Patent Application Laid-Open No. 2000-248301 is used. The packing density of the powder filled in the cavity 28 is, for example, 2.2 g / cm 3 or more and 2.5 g / cm 3 or less.
下パンチ 2 6は振動装置 3 0上に配置され、 振動装置 3 0はダイプレート 1 2 上に配置される。 したがって、. 下パンチ 2 6は、 ベースプレート 1 2上に固定さ れるが、 振動装置 3 0によって上下方向すなわちプレス方向に振動可能とされる ダイ 1 6の上方には上パンチプレート 3 2が配置される。 上パンチプレート 3 2の下面には、 キヤビティ 2 8に挿入可能な位置に上パンチ 3 4が設けられる。 上パンチプレート 3 2の上面にはシリンダロッ ド 3 6が設けられる。 シリンダロ ッ ド 3 6には図示しない上部油圧シリンダが接続される。 上パンチプレート 3 2 の両端近傍には、 鉛直方向に設けられた一対のガイ ドポスト 3 8が揷通され、 ガ イ ドポスト 3 8の下端部がダイ 1 6の上面に接続される。  The lower punch 26 is disposed on the vibrator 30, and the vibrator 30 is disposed on the die plate 12. Therefore, the lower punch 26 is fixed on the base plate 12, but the upper punch plate 32 is arranged above the die 16 which can be vibrated in the vertical direction, that is, the press direction by the vibrating device 30. You. An upper punch 34 is provided on the lower surface of the upper punch plate 32 at a position where it can be inserted into the cavity 28. A cylinder rod 36 is provided on the upper surface of the upper punch plate 32. An upper hydraulic cylinder (not shown) is connected to the cylinder rod 36. A pair of guide posts 38 provided in the vertical direction are passed through the vicinity of both ends of the upper punch plate 32, and the lower end of the guide post 38 is connected to the upper surface of the die 16.
したがって、 上パンチプレート 3 2は、 ガイ ドポスト 3 8に案内されながら上 部油圧シリンダによって上下方向に移動可能とされ、 それに伴って上パンチ 3 4 が上下方向に移動可能とされキヤビティ 2 8内に揷入可能となる。 プレス成形時 には、 キヤビティ 2 8内で下パンチ 2 6と上パンチ 3 4とによって粉末が圧縮さ れ成形体 3 9が形成される。 この実施形態では、 第 2図に示すように、 ボイスコ ィルモー夕用磁石を製造するための弓形の成形体 3 9が形成される。 この場合、 成形体 39の上面 3 9 aが上パンチ 34との接触面となり、 成形体 39の下面 3 9 bが下パンチ 2 6との接触面となる。 Therefore, the upper punch plate 32 can be moved vertically by the upper hydraulic cylinder while being guided by the guide post 38, and accordingly, the upper punch 34 can be moved vertically so that the upper punch plate 32 is moved into the cavity 28. Can be imported. At the time of press molding, the powder is compressed by the lower punch 26 and the upper punch 34 in the cavity 28 to form a compact 39. In this embodiment, as shown in FIG. An arc-shaped molded body 39 for producing a silver magnet is formed. In this case, the upper surface 39 a of the molded body 39 is a contact surface with the upper punch 34, and the lower surface 39 b of the molded body 39 is a contact surface with the lower punch 26.
ダイ 1 6近傍にはキヤビティ 2 8内の粉未を配向させるための磁場発生装置 4 0が設けられる。 磁場発生装置 40は、 ダイ 1 6を両側から挟むように対称的に 配置される一対のヨーク 4 2 a、 42 bを含む。 ヨーク 4 2 a、 42 bは、 炭素 鋼などの透磁率の高い材料で構成される。 ヨーク 42 a、 42 bにはそれそれコ ィル 44 a、 44 bが卷回される。 コイル 44 a、 44 bに通電されると矢印 X に示す方向に静磁場が発生し、 キヤビティ 2 8内の粉末が配向される。  A magnetic field generator 40 for orienting the powder in the cavity 28 is provided near the die 16. The magnetic field generator 40 includes a pair of yokes 42 a and 42 b symmetrically arranged so as to sandwich the die 16 from both sides. The yokes 42a and 42b are made of a material having high magnetic permeability such as carbon steel. Coils 44a and 44b are wound around the yokes 42a and 42b, respectively. When the coils 44a and 44b are energized, a static magnetic field is generated in the direction indicated by the arrow X, and the powder in the cavity 28 is oriented.
このように上述の粉末成形装置 1 0では、 プレス方向が磁場配向方向に垂直と なる。 印加される磁界強度は、 たとえば略 0. 8 ΜΑ7Π1以上 1. 3MA/m以 下である。  Thus, in the powder molding apparatus 10 described above, the pressing direction is perpendicular to the magnetic field orientation direction. The applied magnetic field strength is, for example, approximately 0.8ΜΑ7Π1 or more and 1.3 MA / m or less.
ここで、 粉末にはたとえば N d— F e— B系粉末などの希土類合金粉末が用い られる。  Here, a rare earth alloy powder such as an Nd-Fe-B powder is used as the powder.
希土類合金粉末は、 たとえばつぎのようにして作製される。 まず、 急冷法 (冷 却速度 1 0 ^C/s e c以上 1 04°C/s e c以下) による合金の作製法として米 国特許第 5, 3 8 3 , 9 7 8号に示されるようなス ト リ ップキャス ト法を用いて 、 鎵片が作製される。 The rare earth alloy powder is produced, for example, as follows. First, quenching method (cooling rate 1 0 ^ C / sec or more 1 0 4 ° C / sec or less) US Patent No. 5 by the manufacturing method of the alloy, 3 8 3, 9 7 scan as shown in No. 8 A piece is produced by using a trip casting method.
具体的には、 公知の方法によって製造された、 Nd : 3 0wt %、 B : l . 0 wt %、 D y : 1. 2wt %、 A 1 : 0. 2wt %、 C o : 0. 9wt %、 残部 F eおよび不可避不純物からなる組成の合金が高周波溶解により溶湯とされる。 この溶湯が、 1, 3 5 0 ° Cに保持された後、 口一ル周速度を約 1 m/秒、 冷却 速度 5 00 ° C/s e c、 過冷度 2 0 0 ° Cの条件で、 単ロール上で急冷され、 厚さ約 0. 3 mmのフレーク状合金铸塊が得られる。  Specifically, Nd: 30 wt%, B: 1.0 wt%, Dy: 1.2 wt%, A1: 0.2 wt%, Co: 0.9 wt% produced by a known method. An alloy having a composition consisting of the balance Fe and inevitable impurities is melted by high frequency melting. After the molten metal was kept at 1,350 ° C, the peripheral speed of the nozzle was about 1m / s, the cooling speed was 500 ° C / sec, and the supercooling was 200 ° C. It is quenched on a single roll to obtain a flake-like alloy ingot with a thickness of about 0.3 mm.
つぎに、 合金錶塊が、 水素吸蔵法によって粗粉砕された後、 ジェットミルを用 いて窒素ガス雰囲気中で微粉砕され、 平均粒径 3. 5 mの合金粉末が得られる このような希土類合金粉末には潤滑剤が添加される。 この場合、 たとえば、 潤 滑剤として脂肪酸エステル、 溶剤として石油系溶剤が用いられる。 そして、 希土 類合金粉末に対して、 脂肪酸エステルを石油系溶剤で希釈したものが 0 . 3 w t % (潤滑剤ベース) 添加混合され、 潤滑剤が希土類合金粉末の表面に被覆される 第 3図を参照して、 粉末成形装置 1 0の動作について説明する。 Next, the alloy ingot is roughly pulverized by a hydrogen storage method, and then finely pulverized in a nitrogen gas atmosphere using a jet mill to obtain an alloy powder having an average particle size of 3.5 m. A lubricant is added to the powder. In this case, for example, a fatty acid ester is used as a lubricant, and a petroleum-based solvent is used as a solvent. And rare earth 0.3 wt% (lubricant base) of fatty acid ester diluted with petroleum solvent is added to the alloy powder and mixed, and the lubricant is coated on the surface of the rare earth alloy powder. Next, the operation of the powder molding apparatus 10 will be described.
最初は、 期間 Aに示すように、 ダイ 1 6は下降端に位置するとともに上パンチ 3 4は上昇端に位置しており、 ダイ 1 6および下パンチ 2 6のそれそれの上面は 面一とされる。 ついで、 期間 Bに示すようにダイ 1 6を上昇させて貫通孔 2 4内 にキヤビティ 2 8が形成される。 その後、 期間 Cに示すように、 給粉装置 (図示 せず) がキヤビティ 2 8上に移動され、 給粉装置を前後に小さく揺動させること によって給粉装置内の粉末がキヤビティ 2 8内に充填され、 粉末充填後給粉装置 は退去される。 そして、 期間 Dに示すように、 ダイ 1 6をさらに上昇させると共 に上パンチ 3 4を下降させ、 期間 Eに示すように、 磁場発生装置 4 0による配向 磁場の印加および振動装置 3 0による下パンチ 2 6の振動が開始される。 さらに 、 期間 Fに示すように、 配向磁場の印加および振動を加えながら下パンチ 2 6と 貫通孔 2 4内に上方から揷入された上パンチ 3 4とによってキヤビティ 2 8内で 粉末のプレス成形が鬨始され、 期間 Gで脱磁されかつ振動が停止された状態で最 大のプレス圧で粉末のプレス成形が継続される。 その後、 期間 Hに示すように、 上パンチ 3 4を徐々に上昇させることによって徐々に減圧してプレス成形が終了 され成形体 3 9が形成される。 そして、 期間 Iに示すように、 ダイ 1 6を下降端 まで下降させることによってキヤビティ 2 8内の成形体 3 9がダイ 1 6上面に抜 き出される。 さらに期間 Jに示すように、 上パンチ 3 4を上昇端まで上昇させた のち、 時間 Kにおいて成形体 3 9が取り出され、 次回のプレス成形処理に備える 。 以上の処理を繰り返して粉末がプレス成形される。  Initially, as shown in period A, die 16 is located at the lower end and upper punch 34 is located at the upper end, and the upper surfaces of die 16 and lower punch 26 are flush with each other. Is done. Next, as shown in a period B, the die 16 is raised to form a cavity 28 in the through hole 24. Thereafter, as shown in period C, the powder feeding device (not shown) is moved onto the cavity 28, and the powder in the powder feeding device is moved into the cavity 28 by slightly swinging the powder feeding device back and forth. After filling, the powder feeding device is moved out. Then, as shown in the period D, the die 16 is further raised, and the upper punch 34 is lowered, and as shown in the period E, the orientation magnetic field is applied by the magnetic field generator 40 and the vibrator 30 is applied. The vibration of the lower punch 26 starts. Further, as shown in a period F, the powder is pressed in the cavity 28 by the lower punch 26 and the upper punch 34 inserted into the through hole 24 from above while applying an orientation magnetic field and applying vibration. In the state of demagnetization and vibration stopped during period G, press molding of the powder is continued at the maximum pressing pressure. Thereafter, as shown in a period H, the upper punch 34 is gradually raised to gradually reduce the pressure, and the press forming is completed to form a molded body 39. Then, as shown in period I, the molded body 39 in the cavity 28 is pulled out to the upper surface of the die 16 by lowering the die 16 to the lower end. Further, as shown in the period J, after the upper punch 34 is raised to the rising end, the molded body 39 is taken out at the time K, and is prepared for the next press molding process. The powder is press-molded by repeating the above processing.
粉末成形装置 1 0によれば、 プレス成形時に貫通孔 2 4内で下パンチ 2 6をプ レス方向に振動させることによって、 キヤビティ 2 8内の粉末間の摩擦力を低減 でき粉末の流動性が高くなる。 このように下パンチ 2 6を振動させながら粉末に 配向磁場を印加すれば、 磁場配向方向により揃うように粉末が移動し粉末の配向 性が向上する。 また、 粉末が隙間を埋めるように移動することによって粉末をキ ャビティ内でより均等に分布させることができるので、 圧縮成形時の配向みだれ を抑制できる。 その状態の粉末をプレスすることによって配向性の高い成形体 3 9が得られる。 According to the powder molding apparatus 10, the lower punch 26 is oscillated in the press direction in the through hole 24 at the time of press molding, whereby the frictional force between the powders in the cavity 28 can be reduced, and the fluidity of the powders can be reduced. Get higher. If an orientation magnetic field is applied to the powder while oscillating the lower punch 26 in this way, the powder moves so as to be aligned with the direction of the magnetic field orientation, and the orientation of the powder is improved. In addition, since the powder moves so as to fill the gaps, the powder can be more evenly distributed in the cavity, so that the orientation during compression molding can be reduced. Can be suppressed. By pressing the powder in that state, a molded body 39 with high orientation can be obtained.
たとえ粉末を 2 . 5 g / c m 3以上の高密度に充填しプレス成形する場合であ つても、 振動により粉末が隙間を埋めるように移動する。 したがって、 低いプレ ス圧で所望の磁気特性を得るための成形密度に達することができるので、 プレス 圧による磁場配向みだれを抑制でき磁場配向状態を維持したままプレス成形体を 作製することができる。 また、 高さ方向の配向性のばらつきを抑えることができ 、 特に高さが 2 0 m m以上の成形体 3 9を得る場合に効果的となる。 Even if the powder is filled at a high density of 2.5 g / cm 3 or more and press-molded, the powder moves to fill the gap due to vibration. Accordingly, the molding density for obtaining the desired magnetic properties can be reached at a low press pressure, so that the magnetic field alignment can be prevented from being broken by the press pressure, and a pressed compact can be produced while maintaining the magnetic field orientation state. Further, variation in the orientation in the height direction can be suppressed, which is particularly effective when a molded body 39 having a height of 20 mm or more is obtained.
また、 プレス成形時に静磁場を印加することによって粉末の流動に必要な時間 を確保しつつプレスできるので、 粉末ひいては成形体 3 9の配向性を向上できる 粉末成形装置 1 0では、 磁場発生装置 4 0を、 ダイ 1 6および上パンチ 3 4等 のプレス機構と分離できるので、 粉末成形装置 1 0の構成が簡単になる。  In addition, by applying a static magnetic field during press molding, the powder can be pressed while securing the time required for the powder to flow, so that the orientation of the powder and thus the compact 39 can be improved. 0 can be separated from the press mechanism such as the die 16 and the upper punch 34, so that the configuration of the powder molding apparatus 10 is simplified.
一般的に、 急冷法によって製造された N d— F e — B系粉末は N d— F e — B 系造粒粉よりも、 粉末間に働く摩擦力が大きく、 配向性の向上が難しい。 これは 、 急冷法によって製造された N d— F e—B系粉末の方が、 格段に粒径が小さく かつ粒度分布が狭くてシャープなため粉末間の隙間が小さくなり粉未の表面積が 大きくなり、 さらに粒形状が角張っているからである。 また、 磁気特性の向上を 目的として最近、 粉末の平均粒径を 5 z m ( F S S S粒径) とすることが行われ ている。 しかし、 粉末成形装置 1 0によれば、 急冷法によって製造された細かい 粉末であっても、 磁場配向時に貫通孔 2 4内で下パンチ 2 6をプレス方向に振動 させてプレスすることで、 キヤビティ 2 8内の粉末相互に働く摩擦力を低減する ことができ粉末の流動性を改善できるので、 粉末ひいては成形体 3 9の配向性を 向上できる。  In general, Nd-Fe-B-based powder produced by the quenching method has a greater frictional force acting between the powders than Nd-Fe-B-based granulated powder, and it is difficult to improve the orientation. This is because the Nd-Fe-B powder produced by the quenching method has a much smaller particle size and a narrower and sharper particle size distribution, so that the gap between the powders is smaller and the surface area of the powder is larger. This is because the grain shape is angular. Recently, the average particle size of powder has been reduced to 5 zm (FSSS particle size) for the purpose of improving magnetic properties. However, according to the powder molding apparatus 10, even the fine powder produced by the quenching method can be pressed by vibrating the lower punch 26 in the press direction in the through hole 24 during the magnetic field orientation, and pressing. Since the frictional force acting between the powders in the powders 28 can be reduced and the fluidity of the powders can be improved, the orientation of the powders and thus the compact 39 can be improved.
さらに、 N d— F e— B系粉末に潤滑剤が添加されると、 粉末間の摩擦は緩和 され粉末の流動性が向上するので配向性がより向上する。  Further, when a lubricant is added to the Nd-Fe-B powder, friction between the powders is reduced and the fluidity of the powder is improved, so that the orientation is further improved.
また、 成形体 3 9のような弓形等の異形状の成形体を得る場合であっても、 振 動によってキヤビティ 2 8内の粉末の流動性が高まり粉末がキヤビティ 2 8内に より均一に配分される。 したがって、 各成形部位の成形後の密度 (グリーン密度 ) が略均一な異形状の成形体を製造することができる。 In addition, even when a molded article having a different shape such as a bow such as the molded article 39 is obtained, the fluidity of the powder in the cavity 28 is increased by the vibration, and the powder is more evenly distributed in the cavity 28. Is done. Therefore, the density (green density) of each molded part after molding ) Can produce a molded article having a substantially uniform shape.
上述のようにして得られた成形体は、 キヤビティ 2 8内の粉末の密度ばらつき が低減されかつ磁気異方性がより揃った状態でプレスされたものである。 この成 形体を焼結した場合、 収縮量のばらつきが低減され、 得られる焼結体の輪郭度が 従来と比較して向上する。 したがって、 成形体において修正のために必要とされ る加工代がわずかで足りる。 このような焼結体にさらに時効処理を施すことによ つて.、 磁気特性の良好な希土類磁石等の磁石が得られる。  The compact obtained as described above was pressed in a state where the variation in the density of the powder in the cavity 28 was reduced and the magnetic anisotropy was more uniform. When this green body is sintered, the variation in the amount of shrinkage is reduced, and the degree of contour of the obtained sintered body is improved as compared with the conventional one. Therefore, the processing cost required for correction in the molded product is small. By subjecting such a sintered body to further aging treatment, a magnet such as a rare earth magnet having good magnetic properties can be obtained.
ついで、 実験例について説明する。  Next, an experimental example will be described.
ここでは、 粉末成形装置 1 0を用いて得られた磁石と、 粉末成形装置 1 0から 振動装置 3 0を除いた粉末成形装置 (以下、 「比較装置」 という) を用いて得ら れた磁石のそれそれの磁気特性を比較した。 すなわち、 振動の有無による磁石の 磁気特性を比較した。 磁石は、 粉末成形装置によって製造された成形体に、 さら に焼結、 時効処理を施して得られた。  Here, a magnet obtained by using a powder molding apparatus 10 and a magnet obtained by using a powder molding apparatus (hereinafter, referred to as a “comparative apparatus”) obtained by removing the vibration device 30 from the powder molding apparatus 10 are described. The magnetic properties of each of them were compared. That is, the magnetic properties of the magnets with and without vibration were compared. The magnet was obtained by subjecting a compact produced by a powder compacting machine to sintering and aging.
実験条件を以下に示す。  The experimental conditions are shown below.
粉末として、 ストリップキャスト法によって平均粒径 2 以上 3 / m以下に 製造された Nd— F e— B系合金粉末 (たとえば NE OMAX— 48BH :住友 特殊金属株式会社製) が用いられ、 粉末にはたとえばステアリン酸亜鉛などの潤 滑剤が添加された。 ダイ 1 6として、 1サイクルで 5 1. 3 mmx 53. 3 mm x 2 5 mmの成形体が 1個形成される ( 1個取り用) ダイが用いられた。 成形密 度は 4. O g/cm3以上 4. 5 g/c m3以下、 給粉方法はフィーダ充填 (押し 込み充填) 、 配向磁場はコア中心磁場 1. 6 6 T、 振動周波数は約 50 Η ζ、 振 幅は約 0. 0 2 mm、 振動装置 2 6は株式会社ダイイチ製であった。 そして得ら れた成形体を A r雰囲気の下で 1 0 5 0 ° Cにて 5 · 5時間焼結し、 さらに 5 0 0° C、 A r雰囲気中で 3時間時効処理して、 焼結磁石 (Nd— F e— B系磁石 ) を得た。 As the powder, Nd-Fe-B-based alloy powder (for example, NE OMAX-48BH: manufactured by Sumitomo Special Metals Co., Ltd.) manufactured by the strip casting method to have an average particle size of 2 to 3 / m is used. Lubricants such as zinc stearate were added. As the die 16, a die in which one molded product of 51.3 mm x 53.3 mm x 25 mm was formed in one cycle (for taking one piece) was used. The molding density is 4. O g / cm 3 or more and 4.5 g / cm 3 or less, the feeding method is feeder filling (injection filling), the orientation magnetic field is the core center magnetic field 1.66 T, and the vibration frequency is about 50 The vibration was about 0.02 mm, and the vibration device 26 was made by Daiichi Corporation. Then, the obtained compact is sintered at 150 ° C. for 5.5 hours in an Ar atmosphere, and further aged for 3 hours at 500 ° C. in an Ar atmosphere. A magnet (Nd-Fe-B magnet) was obtained.
上述の条件下で、 粉末成形装置 1 0を用いて得られた N d— F e— B系磁石と 比較装置とを用いて得られた Nd— F e—B系磁石について、 磁気特性を測定し た結果を第 4図および第 5図に示す。  Under the above conditions, the magnetic properties of the Nd-Fe-B-based magnet obtained using the powder molding apparatus 10 and the Nd-Fe-B-based magnet obtained using the comparative apparatus were measured. Figures 4 and 5 show the results.
具体的にはつぎのようにして磁気特性を測定した。 まず、 粉末成形装置を用いて所望の成形密度の成形体が形成された。 成形体は 、 2回のプレス成形によって合計 2個得られた。 得られた 2個の成形体について 焼結 ·時効処理を施した後、 切断して 9枚の磁石が得られた。 9枚の各磁石につ いて、 第 6図に示すように中央部 Sの残留磁束密度 B rおよび最大エネルギー積 ( B H ) m a xが測定され、 9個の値が平均された。 このような処理が、 粉末成 形装置 1 0と比較装置とについて、 第 4図に示すような成形密度ごとに行われ、 第 4図および第 5図に示す結果が得られた。 Specifically, the magnetic properties were measured as follows. First, a compact having a desired compacting density was formed using a powder compacting apparatus. A total of two compacts were obtained by two press moldings. After sintering and aging treatment of the obtained two compacts, they were cut to obtain nine magnets. For each of the nine magnets, the residual magnetic flux density Br and the maximum energy product (BH) max of the central part S were measured as shown in FIG. 6, and the nine values were averaged. Such a treatment was performed for each of the molding densities as shown in FIG. 4 for the powder molding apparatus 10 and the comparison apparatus, and the results shown in FIGS. 4 and 5 were obtained.
第 5図 (a ) からわかるように、 同じ成形密度で比較すると、 粉末成形装置 1 0を用いた場合 (振動ありの場合) の方が比較装置を用いた場合 (振動なしの場 合) より、 残留磁束密度 B rが大きくなる。 また、 第 5図 (b ) からわかるよう に、 同じ成形密度で比較すると、 粉末成形装置 1 0を用いた場合 (振動ありの場 合) の方が比較装置を用いた場合 (振動なしの場合) より、 最大エネルギー積 ( B H ) m a xが大きくなる。  As can be seen from Fig. 5 (a), when comparing at the same molding density, the case using the powder molding apparatus 10 (with vibration) is better than the case using the comparison apparatus (without vibration). However, the residual magnetic flux density Br increases. In addition, as can be seen from Fig. 5 (b), when comparing at the same molding density, the case using the powder molding apparatus 10 (with vibration) is the case using the comparison apparatus (without vibration). ), The maximum energy product (BH) max becomes larger.
したがって、 成形密度が同じ場合、 粉末成形装置 1 0を用いた場合の方が比較 装置を用いた場合より、 得られる磁石の磁気特性が改善されることがわかる。 し たがって、 同じ磁気特性の磁石を得るためには、 粉末成形装置 1 0を用いた場合 の方が比較装置を用いた場合より、 小さい成形圧力で足りる。  Therefore, when the compacting densities are the same, it can be seen that the magnetic properties of the obtained magnet are improved when the powder compacting apparatus 10 is used as compared with the case where the comparative apparatus is used. Therefore, in order to obtain magnets having the same magnetic characteristics, a smaller molding pressure is required when using the powder molding apparatus 10 than when using the comparison apparatus.
なお、 この発明によれば、 振動を加えつつ磁場成形することで、 成形体の成形 密度のばらつきおよび焼結による変形を抑制できる。 したがって、 粉末の充填に は、 日本特鬨 2 0 0 1 - 9 5 9 5号に開示するような、 キヤビティ毎に対応する 粉末を秤量し、 その粉末をキヤビティに落下させて充填する方法を用いてもよい つぎに、 第 7図を参照して、 この発明の他の実施形態の粉末成形装置 1 0 aに ついて説明する。  According to the present invention, by performing the magnetic field molding while applying vibration, it is possible to suppress the variation in the molding density of the compact and the deformation due to sintering. Therefore, for filling the powder, a method is used in which the powder corresponding to each cavity is weighed and the powder is dropped into the cavity and filled as disclosed in Japanese Patent Publication No. 2001-9595. Next, a powder molding apparatus 10a according to another embodiment of the present invention will be described with reference to FIG.
粉末成形装置 1 0 aは、 プレス方向が磁場配向方向に垂直でありかつ両押し方 式の磁石用粉末成形装置である。  The powder compacting apparatus 10a is a double-push magnet powder compacting apparatus in which the pressing direction is perpendicular to the magnetic field orientation direction.
粉末成形装置 1 0 aでは、 ダイ 1 6が複数の脚部 4 6を介してベースプレート 1 2上に固定され、 振動装置 3 0がテーブル 4 8上に配置され、 テーブル 4 8が ガイ ドポスト 5 0を介して連結板 2 0に接続される。 その他の構成については第 1図に示す粉末成形装置 1 0と同様であるので、 その重複する説明は省略する。 したがって、 粉末成形装置 1 0 aでは、 ダイ 1 6の貫通孔 2 4内を下パンチ 2 6 および上パンチ 3 4が上下方向に移動してキヤビティ 2 8内の粉末がプレスされ る。 In the powder molding apparatus 10a, the die 16 is fixed on the base plate 12 via a plurality of legs 46, the vibrating apparatus 30 is disposed on the table 48, and the table 48 is provided with the guide post 50. To the connecting plate 20 via For other configurations, refer to Since the configuration is the same as that of the powder molding apparatus 10 shown in FIG. 1, the overlapping description will be omitted. Therefore, in the powder molding apparatus 10a, the lower punch 26 and the upper punch 34 move up and down in the through hole 24 of the die 16 to press the powder in the cavity 28.
第 8図を参照して、 粉末成形装置 1 0 aの動作について説明する。  The operation of the powder molding apparatus 10a will be described with reference to FIG.
粉末成形装置 1 0 aでは、 ダイ 1 6は固定され下パンチ 2 6が上下方向に移動 する。 第 8図を第 3図と比較してわかるように、 粉末成形装置 1 0 aにおける下 パンチ 2 6が粉末成形装置 1 0におけるダイ 1 6とは略正反対に動作して、 キヤ ビティ 2 8内の粉末が下パンチ 2 6および上パンチ 3 4によって両押しされる。 また、 キヤビティ 2 8からの上パンチ 3 4の抜き出しは期間 Iから開始される。 これらの点を除いて、 粉末成形装置 1 0 aの動作は粉末成形装置 1 0と同様であ るので、 その重複する説明は省略する。  In the powder molding apparatus 10a, the die 16 is fixed, and the lower punch 26 moves vertically. As can be seen by comparing FIG. 8 with FIG. 3, the lower punch 26 in the powder molding apparatus 10a operates substantially in the opposite direction to the die 16 in the powder molding apparatus 10, and Are pressed by the lower punch 26 and the upper punch 34. The extraction of the upper punch 34 from the cavity 28 is started from the period I. Except for these points, the operation of the powder compacting apparatus 10a is the same as that of the powder compacting apparatus 10, so that the overlapping description will be omitted.
粉末成形装置 1 0 aについても粉末成形装置 1 0と同様の効果が得られる。 さらに、 第 9図を参照して、 この発明のその他の実施形態の粉末成形装置 1 0 bについて説明する。  The same effects as those of the powder molding apparatus 10 can be obtained with the powder molding apparatus 10a. Further, a powder molding apparatus 10b according to another embodiment of the present invention will be described with reference to FIG.
粉末成形装置 1 0 bは、 プレス方向が磁場配向方向に平行でありかつウイズド 口アル方式の磁石用粉末成形装置である。  The powder compacting device 10b is a magnet type powder compacting device of a wide-open Al type in which the pressing direction is parallel to the magnetic field orientation direction.
粉末成形装置 1 0 bは、 粉未成形装置 1 0と同様、 ダイ 1 6が上下方向に移動 し、 下パンチ 2 6は上下方向に振動する。 この点について重複する説明は省略す る。 また、 粉末成形装置 1 0 bは磁場発生装置 5 2を含む。 磁場発生装置 5 2は 、 ダイ 1 6の上方にダイ 1 6と略平行に配置されるョ一ク 5 4を含む。 ヨーク 5 4の下面には貫通孔 2 4に揷入可能な位置に上パンチ 3 4が設けられる。 ダイ 1 6はヨーク 5 4と対をなすヨークとして機能する。 ヨーク 5 4およびダイ 1 6に はそれぞれコイル 5 6 aおよび 5 6 bが卷回される。 したがって、 コイル 5 6 a 、 5 6 bに通電されると矢印 Yに示す方向に静磁場が発生し、 キヤビティ 2 8内 の粉末が配向される。 このように粉末成形装置 1 0 bでは、 プレス方向が磁場配 向方向に平行となる。  In the powder molding apparatus 10b, the die 16 moves in the vertical direction, as in the powder non-molding apparatus 10, and the lower punch 26 vibrates in the vertical direction. A duplicate description of this point will be omitted. The powder molding device 10b includes a magnetic field generator 52. The magnetic field generator 52 includes a yoke 54 disposed above the die 16 and substantially parallel to the die 16. An upper punch 34 is provided on a lower surface of the yoke 54 at a position where it can be inserted into the through hole 24. Die 16 functions as a yoke paired with yoke 54. Coils 56a and 56b are wound on the yoke 54 and the die 16, respectively. Therefore, when the coils 56a and 56b are energized, a static magnetic field is generated in the direction indicated by the arrow Y, and the powder in the cavity 28 is oriented. Thus, in the powder molding apparatus 10b, the pressing direction is parallel to the magnetic field direction.
粉末成形装置 1 O bによって図 2に示す成形体 3 9を形成する場合には、 成形 体 3 9の側面 3 9 cが上パンチ 3 4との接触面となり、 成形体 3 9の側面 3 9 d が下パンチ 2 6との接触面となる。 したがって、 粉末成形装置 1 0 bにおける上 パンチ 3 4および下パンチ 2 6の形状ならびに貫通孔 2 4の断面形状は、 粉未成 形装置 1 0の場合とは異なる。 When the compact 39 shown in FIG. 2 is formed by the powder compacting apparatus 1 Ob, the side surface 39 c of the compact 39 becomes a contact surface with the upper punch 34, and the side surface 39 of the compact 39 is formed. d Is the contact surface with the lower punch 26. Therefore, the shapes of the upper punch 34 and the lower punch 26 and the cross-sectional shape of the through hole 24 in the powder molding device 10b are different from those of the powder molding device 10.
粉末成形装置 1 0 bは、 粉末成形装置 1 0と同様、 第 3図に示すように動作す るのでその重複する説明は省略する。  The powder molding apparatus 10b operates as shown in FIG. 3 similarly to the powder molding apparatus 10, and thus the duplicated description is omitted.
粉末成形装置 1 0 bにおいても粉末成形装置 1 0と同様の効果が得られる。 なお、 一般に、 プレス方向が磁場配向方向に平行の場合には、 プレス方向と磁 場配向方向とが同方向であるので、 成形圧力によって成形体内の磁場配向が崩れ 易くなる。 しかし、 粉末成形装置 1 0 bによれば、 下パンチ 2 6を貫通孔 2 4内 でプレス方向に振動させることによってその弊害を抑制でき、 効果がより顕著と なる。  The same effect as in the powder molding apparatus 10 can be obtained in the powder molding apparatus 10b. In general, when the pressing direction is parallel to the magnetic field orientation direction, since the pressing direction and the magnetic field orientation direction are the same, the magnetic field orientation in the molded body is easily broken by the molding pressure. However, according to the powder molding apparatus 10b, the adverse effect can be suppressed by vibrating the lower punch 26 in the pressing direction in the through hole 24, and the effect becomes more remarkable.
特に、 粉末成形装置 1 0 bは、 貫通孔 2 4の開口寸法 (長さ方向および幅方向 のいずれか一方) が狭く、 キヤビティ深さが大きく、 薄型の成形体を形成する場 合に効果的である。  In particular, the powder molding apparatus 10b is effective in forming a thin compact with a narrow through-hole 24 (in either the length direction or the width direction), a large cavity depth, and the like. It is.
プレス方向が磁場配向方向に平行であって上述のような薄型の成形体を形成す る場合、 従来では、 磁気特性を確保するためには低い成形密度でプレスしなけれ ばならなかった。 これは、 成形密度が高くなると磁気特性が低下するためである 。 しかし、 成形密度が低くなると成形体の強度は低下し、 成形体はキヤビティか ら抜き出す際に容易に圧壊され、 成形体を抜き出すことが困難となり、 生産性が 低下する。 一方、 成形体強度を確保するために成形密度を高く設定すると、 通常 より高い成形圧力がキヤビティ内の粉末へ加わってしまい、 配向を崩しながら成 形してしまう。  In the case of forming a thin compact as described above in which the pressing direction is parallel to the direction of the magnetic field orientation, conventionally, it was necessary to press at a low compacting density in order to secure magnetic properties. This is because the magnetic properties decrease as the molding density increases. However, when the molding density is reduced, the strength of the molded body is reduced, and the molded body is easily crushed when it is extracted from the cavity, and it becomes difficult to extract the molded body, and productivity is reduced. On the other hand, if the molding density is set high to ensure the strength of the molded body, a molding pressure higher than usual is applied to the powder in the cavity, and the molding is performed while losing the orientation.
粉末成形装置 1 0 bを用いれば、 成形密度を比較的高く しても、 高い磁気特性 を有する磁石が得られる。 たとえば、 粉末成形装置 1 0 bを用いて得られた成形 密度が 4 . 4 g / c m 3の磁石の磁気特性は、 振動なしで得られた成形密度が 4 . 1 g / c m 3の磁石の磁気特性と同等である。 By using the powder molding apparatus 10b, a magnet having high magnetic properties can be obtained even if the molding density is relatively high. For example, magnetic properties of magnets molded density obtained by using a powder molding apparatus 1 0 b 4. 4 g / cm 3, the molded density obtained without vibration 4.1 of g / cm 3 of the magnet Equivalent to magnetic properties.
したがって、 粉末成形装置 1 O bによれば、 薄型の成形体 (磁石) を得る場合 であっても、 成形体をキヤビティから抜き出す際に圧壊しないように成形密度を 高くできるとともに、 良好な磁気特性を有する磁石を得ることができる。 第 1 0図を参照して、 この発明のさらにその他の実施形態の粉末成形装置 1 0 cについて説明する。 Therefore, according to the powder molding apparatus 1 Ob, even when a thin compact (magnet) is obtained, the compact density can be increased so as not to be crushed when the compact is extracted from the cavity, and good magnetic properties can be obtained. Can be obtained. With reference to FIG. 10, a description will be given of a powder molding apparatus 10c according to still another embodiment of the present invention.
粉末成形装置 1 0 cは、 プレス方向が磁場配向方向に平行でありかつ両押し方 式の磁石用粉末成形装置である。  The powder compacting apparatus 10c is a double-push magnet powder compacting apparatus in which the pressing direction is parallel to the magnetic field orientation direction.
粉末成形装置 1 0 cでは、 ダイ 1 6が複数の脚部 4 6を介してベースプレート 1 2上に固定され、 振動装置 3 0がテーブル 4 8上に配置され、 テーブル 4 8が ガイ ドポスト 5 0を介して連結板 2 0に接続される。 その他の構成については第 9図に示す粉末成形装置 1 0 bと同様であるので、 その重複する説明は省略する 。 したがって、 ダイ 1 6の貫通孔 2 4内を下パンチ 2 6および上パンチ 3 4が上 下方向に移動してキヤビティ 2 8内の粉末がプレスされ、 プレス方向が磁場配向 方向に平行となる。  In the powder molding apparatus 10c, the die 16 is fixed on the base plate 12 via a plurality of legs 46, the vibrating apparatus 30 is arranged on the table 48, and the table 48 is connected to the guide post 50. To the connecting plate 20 via The rest of the configuration is the same as that of the powder molding apparatus 10b shown in FIG. 9, and a duplicate description thereof will be omitted. Therefore, the lower punch 26 and the upper punch 34 move up and down in the through hole 24 of the die 16 to press the powder in the cavity 28, and the pressing direction becomes parallel to the magnetic field orientation direction.
粉末成形装置 1 0 cは、 粉末成形装置 1 0 aと同様、 第 8図に示すように動作 するのでその重複する説明は省略する。  The powder compacting apparatus 10c operates as shown in FIG. 8 similarly to the powder compacting apparatus 10a, and therefore, redundant description is omitted.
粉末成形装置 1 0 cにおいても粉末成形装置 1 0と同様の効果が得られる。 また、 粉未成形装置 1 0 cは、 粉末成形装置 1 0 bと同様、 プレス方向が磁場 配向方向に平行であるので効果がより顕著となり、 特に、 薄型の成形体を形成す る場合に効果的である。  The same effects as those of the powder molding apparatus 10 can be obtained in the powder molding apparatus 10c. In addition, the effect of the non-powder molding apparatus 10c is more remarkable because the pressing direction is parallel to the direction of the magnetic field orientation, as in the case of the powder molding apparatus 10b, and is particularly effective when a thin compact is formed. It is a target.
なお、 上述の各粉未成形装置 1 0、 1 0 a、 1 0 bおよび 1 0 cにおいて、 下 パンチ 2 6の振幅が 0 . 0 0 l mm以上 0 . 2 mm以下であることが好ましい。 振幅が 0 . 0 0 1 mm未満であれば成形時に粉末間に発生する摩擦を低減するこ とができず、 一方、 振幅が 0 . 2 mmを超えると、 たとえばダイ 1 6と下パンチ 2 6との間に粉末をかみ込みやすくなり、 ダイ 1 6や下パンチ 2 6を損傷する原 因となるからである。  In each of the powder non-molding apparatuses 10, 10 a, 10 b, and 10 c, the amplitude of the lower punch 26 is preferably in the range of 0.001 mm to 0.2 mm. If the amplitude is less than 0.01 mm, the friction generated between the powders during molding cannot be reduced, while if the amplitude exceeds 0.2 mm, for example, the die 16 and the lower punch 26 This is because the powder is likely to be caught between them and the die 16 and the lower punch 26 are damaged.
また、 上述の各粉末成形装置 1 0、 1 0 a、 1 0 bおよび 1 0 cにおいて、 下 パンチ 2 6の振動周波数が 5 H z以上 1 0 0 0 H z以下であることが好ましい。 振動周波数が 5 H z未満であれば成形時に粉末間の摩擦を低減させることができ ず、 一方、 振動周波数が 1 0 0 0 H zを超えると振動装置 3 0のコストがかかり 過ぎて実用的ではないからである。  In each of the powder molding apparatuses 10, 10 a, 10 b, and 10 c, it is preferable that the vibration frequency of the lower punch 26 be 5 Hz or more and 100 Hz or less. If the vibration frequency is less than 5 Hz, it is not possible to reduce the friction between the powders during molding.On the other hand, if the vibration frequency exceeds 100 Hz, the cost of the vibration device 30 becomes too high and practical. It is not.
この発明は、 貫通孔 2 4内で下パンチ 2 6だけを振動させる場合に限定されず 、 貫通孔 2 4内で、 上下パンチ 3 4 , 2 6ともに振動させてもよく、 上パンチ 3 4のみ振動させてもよい。 The present invention is not limited to the case where only the lower punch 26 is vibrated in the through hole 24. The upper and lower punches 34, 26 may both be vibrated in the through hole 24, or only the upper punch 34 may be vibrated.
また、 この発明は、 異形状の成形体 3 9を形成する場合に限定されず、 リング 形状や段付き形状等の任意の形状の成形体を得る場合に適用できる。  In addition, the present invention is not limited to the case of forming the shaped body 39 having a different shape, but can be applied to the case of obtaining a shaped body having an arbitrary shape such as a ring shape or a stepped shape.
配向磁場としては、 静磁場だけではなくパルス磁場が用いられてもよい。 ここ で、 静磁場とは、 第 1 1図 (a ) に示すように時間とともに磁場強度が変化しな い磁場をいう。 パルス磁場とは、 時間とともに磁場強度が変化する動磁場の一種 であり、 第 1 1図 (b ) に示すように一時的に発生する磁場をいう。  As the alignment magnetic field, not only a static magnetic field but also a pulse magnetic field may be used. Here, the static magnetic field refers to a magnetic field in which the magnetic field intensity does not change with time as shown in FIG. 11 (a). The pulse magnetic field is a kind of dynamic magnetic field in which the magnetic field strength changes with time, and refers to a magnetic field generated temporarily as shown in Fig. 11 (b).

Claims

請 求 の 範 囲 The scope of the claims
1 . ダイの貫通孔に形成されたキヤビティに磁石用粉未を充填する充填工程、 な らびに 1. Filling process for filling the cavity formed in the die through hole with magnet powder, and
磁場配向時に前記貫通孔内で上パンチおよび下パンチの少なくともいずれか一 方をプレス方向に振動させ、 前記キヤビティ内の前記磁石用粉末を前記上パンチ および前記下パンチによってプレス成形し成形体を得るプレス工程を備える、 粉 末成形方法。  At the time of magnetic field orientation, at least one of the upper punch and the lower punch is vibrated in the pressing direction in the through hole, and the magnet powder in the cavity is press-formed by the upper punch and the lower punch to obtain a molded body. A powder molding method comprising a pressing step.
2 . 前記プレス工程における配向磁場が静磁場である、 請求項 1に記載の粉末成 形方法。  2. The powder molding method according to claim 1, wherein the orientation magnetic field in the pressing step is a static magnetic field.
3 . 前記プレス方向が磁場配向方向に垂直である、 請求項 1または 2に記載の粉 末成形方法。  3. The powder molding method according to claim 1, wherein the pressing direction is perpendicular to a magnetic field orientation direction.
4 . 前記プレス方向が磁場配向方向に平行である、 請求項 1または 2に記載の粉 末成形方法。  4. The powder molding method according to claim 1, wherein the pressing direction is parallel to a magnetic field orientation direction.
5 . 前記磁石用粉末が急冷法によって製造されている、 請求項 1または 2に記載 の粉来成形方法。  5. The powder molding method according to claim 1 or 2, wherein the magnet powder is produced by a quenching method.
6 . 前記成形体が異形状である、 請求項 1 または 2に記載の粉末成形方法。 6. The powder molding method according to claim 1, wherein the molded body has a different shape.
7 . 請求項 1または 2に記載の粉末成形方法を含む、 希土類磁石の製造方法。 7. A method for producing a rare earth magnet, comprising the powder molding method according to claim 1 or 2.
PCT/JP2002/000617 2001-01-29 2002-01-28 Powder molding method WO2002060677A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002560848A JPWO2002060677A1 (en) 2001-01-29 2002-01-28 Powder molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001020803 2001-01-29
JP2001-020803 2001-01-29

Publications (1)

Publication Number Publication Date
WO2002060677A1 true WO2002060677A1 (en) 2002-08-08

Family

ID=18886459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000617 WO2002060677A1 (en) 2001-01-29 2002-01-28 Powder molding method

Country Status (3)

Country Link
JP (1) JPWO2002060677A1 (en)
CN (1) CN1248811C (en)
WO (1) WO2002060677A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002815T5 (en) 2006-11-21 2009-12-17 ULVAC, Inc., Chigasaki A method of manufacturing an oriented body, a molded body and a sintered body, and a method of manufacturing a permanent magnet
DE112007003247T5 (en) 2007-01-11 2009-12-31 ULVAC, Inc., Chigasaki Molding apparatus
US8328954B2 (en) 2007-12-25 2012-12-11 Ulvac, Inc. Method of manufacturing permanent magnet
JP2015142940A (en) * 2013-12-24 2015-08-06 信越化学工業株式会社 Manufacturing method of rare-earth sintered magnet and forming device
WO2019181454A1 (en) * 2018-03-22 2019-09-26 日本電産株式会社 Sintered body production method
CN115942999A (en) * 2020-05-26 2023-04-07 锡克拜控股有限公司 Magnetic assembly and method for producing an optical effect layer comprising oriented plate-like magnetic or magnetizable pigment particles

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102225465B (en) * 2011-06-16 2013-04-03 安徽大地熊新材料股份有限公司 Sintered NdFeB powder orienting method
CN102909369A (en) * 2012-11-01 2013-02-06 山西京宇天成科技有限公司 Neodymium iron boron vibration magnetic field molding press device
US10046392B2 (en) 2015-03-04 2018-08-14 The Boeing Company Crack-free fabrication of near net shape powder-based metallic parts
CN114628142A (en) * 2022-03-30 2022-06-14 鞍钢股份有限公司 Production method of magnetic field powder molded magnetic core

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722899A (en) * 1980-07-14 1982-02-05 Inoue Japax Res Inc Magnetic field pressing apparatus
JPH07153640A (en) * 1993-11-29 1995-06-16 Hitachi Metals Ltd Method and device for manufacturing permanent magnet
JPH08170105A (en) * 1994-12-14 1996-07-02 Sumitomo Metal Ind Ltd Molding of resin bonded magnet
JPH09312229A (en) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd Manufacturing sintered rare earth magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5722899A (en) * 1980-07-14 1982-02-05 Inoue Japax Res Inc Magnetic field pressing apparatus
JPH07153640A (en) * 1993-11-29 1995-06-16 Hitachi Metals Ltd Method and device for manufacturing permanent magnet
JPH08170105A (en) * 1994-12-14 1996-07-02 Sumitomo Metal Ind Ltd Molding of resin bonded magnet
JPH09312229A (en) * 1996-05-23 1997-12-02 Sumitomo Special Metals Co Ltd Manufacturing sintered rare earth magnet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007002815T5 (en) 2006-11-21 2009-12-17 ULVAC, Inc., Chigasaki A method of manufacturing an oriented body, a molded body and a sintered body, and a method of manufacturing a permanent magnet
JPWO2008062757A1 (en) * 2006-11-21 2010-03-04 株式会社アルバック Method for manufacturing oriented body, molded body and sintered body, and method for manufacturing permanent magnet
US8128757B2 (en) 2006-11-21 2012-03-06 Ulvac, Inc. Method of manufacturing oriented body, molded body and sintered body as well as method of manufacturing permanent magnet
DE112007003247T5 (en) 2007-01-11 2009-12-31 ULVAC, Inc., Chigasaki Molding apparatus
JPWO2008084611A1 (en) * 2007-01-11 2010-04-30 株式会社アルバック Molding equipment
US8328954B2 (en) 2007-12-25 2012-12-11 Ulvac, Inc. Method of manufacturing permanent magnet
JP2015142940A (en) * 2013-12-24 2015-08-06 信越化学工業株式会社 Manufacturing method of rare-earth sintered magnet and forming device
WO2019181454A1 (en) * 2018-03-22 2019-09-26 日本電産株式会社 Sintered body production method
CN115942999A (en) * 2020-05-26 2023-04-07 锡克拜控股有限公司 Magnetic assembly and method for producing an optical effect layer comprising oriented plate-like magnetic or magnetizable pigment particles
CN115942999B (en) * 2020-05-26 2023-09-12 锡克拜控股有限公司 Magnetic assembly and method for producing an optical effect layer comprising oriented platelet-shaped magnetic or magnetizable pigment particles

Also Published As

Publication number Publication date
JPWO2002060677A1 (en) 2004-06-03
CN1248811C (en) 2006-04-05
CN1484578A (en) 2004-03-24

Similar Documents

Publication Publication Date Title
JP4438967B2 (en) Manufacturing method of radial anisotropic magnet
US7045092B2 (en) Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
WO2002060677A1 (en) Powder molding method
JP3554604B2 (en) Compact molding method and rubber mold used in the method
JP3193916B2 (en) Punch, powder molding apparatus and powder molding method
JP2004002998A (en) Press molding process for rare earth alloy powder and process for manufacturing rare earth alloy sintered body
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP2003193107A (en) Method for pressing rare-earth alloy powder, and method for manufacturing sintered compact of rare-earth alloy
JP4797283B2 (en) Powder press apparatus and powder press method
JP2005259977A (en) Manufacturing method of rare earth magnet
JPH0935977A (en) Manufacture of anisotropic sintered magnet
JP4715077B2 (en) Magnet powder press molding apparatus and method for producing magnet powder compact
JPH11195548A (en) Production of nd-fe-b magnet
JP3101799B2 (en) Manufacturing method of anisotropic sintered permanent magnet
JP3526493B2 (en) Manufacturing method of anisotropic sintered magnet
WO2021193115A1 (en) Production method for rare-earth sintered magnet, and wet-molding device
KR100225497B1 (en) Method for manufacturing permanent magnet based on re-tm-b alloy
JP4561432B2 (en) Method for producing RTB-based sintered magnet
JP3937126B2 (en) Die for sintered magnet and method for producing sintered magnet
JPH07183148A (en) Manufacture of rare-earth permanent magnet
WO1999007006A1 (en) Method of producing r-t-b-base radial anisotropic annular sintered magnet
JPH09148165A (en) Manufacture of radially anisotropic bonded magnet and bonded magnet
JPH06188136A (en) Manufacture of permanent magnet
JPH0997730A (en) Manufacture of sintered permanent magnet
JP3182142B2 (en) Rare earth alloy powder pressing apparatus and rare earth alloy powder pressing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028035267

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002560848

Country of ref document: JP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase