WO2019181454A1 - Sintered body production method - Google Patents

Sintered body production method Download PDF

Info

Publication number
WO2019181454A1
WO2019181454A1 PCT/JP2019/008337 JP2019008337W WO2019181454A1 WO 2019181454 A1 WO2019181454 A1 WO 2019181454A1 JP 2019008337 W JP2019008337 W JP 2019008337W WO 2019181454 A1 WO2019181454 A1 WO 2019181454A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
sintered
material powder
sintered body
gear
Prior art date
Application number
PCT/JP2019/008337
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 門村
中西 徹
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Publication of WO2019181454A1 publication Critical patent/WO2019181454A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/093Compacting only using vibrations or friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/08Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of toothed articles, e.g. gear wheels; of cam discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the present invention relates to a method for producing a sintered body.
  • a sintered gear sintered body
  • compression-molding compacting raw material powder
  • the sintered gear manufactured by this method has a dimensional error of about 0.03 mm with respect to the sintered gear to be manufactured.
  • a high-precision sintered gear used for a robot hand or the like needs to be finished to a dimensional error (about 0.01 mm) comparable to cutting.
  • An object of the present invention is to provide a method for manufacturing a sintered body capable of manufacturing a sintered gear with high dimensional accuracy without using dedicated equipment and without performing secondary processing (post-processing).
  • the exemplary invention of the present application includes a step of compressing a raw material powder containing raw material particles with a molding die to obtain a molded body, and a step of firing the molded body to obtain a sintered body.
  • a method for producing a sintered body characterized by applying vibration and impact force in the vertical direction to the raw material powder in the mold.
  • a sintered body with high dimensional accuracy can be manufactured.
  • FIG. 1 is a plan view (a) and a cross-sectional view (b) schematically showing a configuration (sintered gear) of a sintered body according to an embodiment of the present invention
  • FIG. It is a figure which shows schematic structure of the shaping
  • a sintered gear 1 shown in FIG. 1 includes a disc-shaped gear body 2 and a plurality of teeth 3 that are arranged along the circumferential direction of the gear body 2 and project radially outward. The plurality of teeth 3 are provided at substantially equal intervals.
  • the sintered gear 1 is composed of a sintered body of raw material powder.
  • the configuration of the raw material powder will be described in detail later.
  • the size of the sintered gear 1 is not particularly limited because it is designed according to the application to be used, but when the sintered gear 1 is a gear for a robot hand (high-precision gear), for example, the following Designed as such.
  • the tip circle diameter (indicated by “D” in FIG. 1) of the sintered gear 1 is preferably about 3 to 15 mm, more preferably about 5 to 10 mm.
  • the number of teeth of the sintered gear 1 is preferably about 15 to 40, more preferably about 20 to 35.
  • the module indicating the size (tooth thickness) of the teeth 12 is preferably about 0.15 to 0.3 mm, and more preferably about 0.15 to 0.25 mm. Even such a small (high accuracy) sintered gear 1 can be manufactured with high dimensional accuracy by using the raw material powder of the present invention.
  • the tooth width of the tooth 12 (indicated by “W” in FIG. 1) is preferably about 1 to 10 mm, and more preferably about 2 to 5 mm.
  • a sintered gear 1 is a so-called spur gear, the present invention is not limited to this, and may be, for example, a screw gear, a bevel gear, a worm gear, a hypoid gear, or the like.
  • a sintered gear 1 is manufactured as follows. Hereinafter, a method for manufacturing the sintered gear 1 (a method for manufacturing a sintered gear) will be described.
  • the method for manufacturing a sintered gear according to the present embodiment includes: [1] a molding step of compression molding raw material powder to obtain a molded body having a shape corresponding to the sintered gear 1, and [2] firing the molded body. And a firing step for obtaining a sintered body, and [3] a surface treatment step for heat-treating the sintered body to form an oxide film covering the surface thereof.
  • a molding step of compression molding raw material powder to obtain a molded body having a shape corresponding to the sintered gear 1
  • a firing step for obtaining a sintered body and [3] a surface treatment step for heat-treating the sintered body to form an oxide film covering the surface thereof.
  • molding apparatus 10 shown in FIG. 2 is provided with the shaping
  • the molding die 20 includes a die 21 having a through hole 211 that penetrates in the thickness direction, and an upper punch 22 and a lower punch 23 that are inserted into the through hole 211 of the die 21.
  • the shape of the inner peripheral surface of the die 21 that defines the through-hole 211 corresponds to the shape (uneven shape) of the outer peripheral surface of the sintered gear 1 to be manufactured.
  • a core pin 231 extending along the axial direction A vibrating body 232 that applies vibration to the core pin 231 is disposed inside the lower punch 23, inside the lower punch 23, a core pin 231 extending along the axial direction.
  • a vibrating body 232 that applies vibration to the core pin 231 is disposed inside the lower punch 23, inside the lower punch 23, a core pin 231 extending along the axial direction.
  • the molding apparatus 10 has a mechanism for lifting the die 21 and the lower punch 23 vertically upward and then dropping them. With this configuration, it is possible to impart vibration and a vertical impact force to the raw material powder in the mold 20.
  • a molded body is formed according to the following steps.
  • the feeder 30 is slid on the die 21 so as to cover the cavity 212 with the feeder 30, and the raw material powder is filled into the cavity 212 from the feeder 30 (see FIG. 2B).
  • the raw material powder used to manufacture the sintered gear 1 is preferably configured as follows.
  • the raw material powder includes raw material particles having a particle size of a module [mm] or less of the sintered gear 1.
  • the raw material particles can be filled not only into the tooth root portion of the cavity 212 but also into the tooth tip portion as necessary and sufficient.
  • the particle size of the raw material particles is adjusted so that B / A is 10 or less. Has been. That is, it is adjusted so that the difference in particle size of the raw material particles contained in the raw material powder does not become large.
  • B / A is preferably 7 or less, more preferably about 2 to 4.
  • the maximum particle size B of the raw material particles is preferably not more than half that of the module of the sintered gear 1, and more preferably about 0.35 to 0.45 times the module.
  • the specific value of the maximum particle size B of the raw material particles is preferably about 0.1 to 0.25 mm. More preferably, it is about 0.2 mm.
  • the specific value of the minimum particle diameter A of the raw material particles is preferably about 0.02 to 0.05 mm, and more preferably about 0.025 to 0.04 mm.
  • the raw material particles can be produced using, for example, an atomizing method such as a pulverizing method, a water atomizing method, a gas atomizing method, a reduction method, a carbonyl method, or the like.
  • an atomizing method such as a pulverizing method, a water atomizing method, a gas atomizing method, a reduction method, a carbonyl method, or the like.
  • the constituent material of the raw material particles include Fe (iron) alone, various metal materials such as an alloy containing Fe as a main component and an arbitrary element, and various ceramic materials such as apatite-based ceramics.
  • elements added to the alloy include Cr (chromium), Mo (molybdenum), Mn (manganese), Ni (nickel), Cu (copper), W (tungsten), V (vanadium), and Co ( Cobalt), Si (silicon), C (carbon), and the like.
  • Such raw material powder may contain a lubricant.
  • liquidity of raw material powder can be improved more.
  • the lubricant include fatty acids such as stearic acid, metal salts thereof, derivatives thereof (eg, amides, esters, etc.), fluorine resins, and the like. These compounds can be used individually by 1 type or in combination of 2 or more types.
  • the amount of lubricant contained in the raw material powder is not particularly limited, but is preferably 5% by mass or less, more preferably about 0.1 to 3% by mass.
  • the fluidity of the raw material powder can be adjusted to a sufficiently high value by containing a small amount (about 0.1 to 0.5% by mass) of a lubricant.
  • the specific fluidity of the raw material powder is preferably about 25 to 50 sec / 50 g, more preferably about 30 to 40 sec / 50 g.
  • a raw material powder having such a fluidity can be supplied to the cavity 212 with high stability.
  • the fluidity can be measured in accordance with a metal powder-fluidity measurement method defined in JIS Z 2502 (2012).
  • Second step (overfill step) Next, the die 21 and the lower punch 23 are relatively approached to reduce the volume of the cavity 212 (space 211), and a part of the raw material powder is returned to the feeder 30. Thereby, the packing density of raw material powder can be raised more.
  • Third Step Thereafter, the feeder 30 is slid on the die 21 to be retracted from the cavity 212. At this time, surplus raw material powder is scraped off.
  • the vibrating body 232 is operated to vibrate the core pin 231. Accordingly, vibration is applied to the raw material powder in the cavity 212 through the lower punch 23. At this time, the raw material particles in the cavity 212 are rearranged, and the packing density of the raw material powder can be increased.
  • the time for applying vibration is preferably about 0.1 to 5 seconds, more preferably about 0.5 to 3 seconds. By applying vibration to the raw material powder in a relatively short time, the packing density can be further increased while preventing the raw material powder from scattering.
  • the frequency of vibration is not particularly limited, and is appropriately set according to the particle size of the raw material particles, the fluidity of the raw material powder, and the like in order to increase the packing density of the raw material powder into the cavity 212.
  • the die 21 and the lower punch 23 are lifted vertically upward and then dropped.
  • this operation is also referred to as “tap”.
  • an impact force in the vertical direction can be applied to the raw material powder in the cavity 212.
  • the number of times of applying the impact force is preferably about 1 to 5 times, and more preferably about 2 to 3 times.
  • the density of the raw material powder can be further increased without disturbing the arrangement of the raw material particles rearranged in the cavity 212.
  • the height at which the die 21 and the lower punch 23 are lifted is not particularly limited, but is preferably about 1 to 10 mm, and more preferably about 3 to 7 mm. Thereby, an appropriate impact force can be imparted to the raw material powder.
  • the tip of the upper punch 22 is inserted into the cavity 212, and the raw material powder is compressed by the lower punch 23 and the upper punch 22 (see FIG. 3C).
  • the pressure at which the raw material powder is compressed is not particularly limited, but is preferably about 0.5 to 3 tons, and more preferably about 1 to 2 tons.
  • the molded body 11 having a shape corresponding to the sintered gear is obtained in the cavity 212.
  • the die 21 and the lower punch 23 are brought relatively close to each other, and the molded body 11 is discharged from the cavity 212.
  • the obtained molded body 11 is fired to obtain a sintered body.
  • diffusion occurs at the interface between the raw material particles, leading to sintering.
  • the molded body 11 is entirely contracted to obtain a high-density sintered body.
  • the firing temperature is not particularly limited because it is set depending on the composition, particle size, and the like of the raw material powder used in the production of the molded body 11, but is preferably about 950 to 1300 ° C., and preferably about 1000 to 1200 ° C. Is more preferable.
  • the firing time is preferably about 0.2 to 3 hours, and more preferably about 0.5 to 2 hours.
  • the atmosphere during firing is not particularly limited, and examples thereof include an air atmosphere, an oxidizing atmosphere, a reducing atmosphere, an inert gas atmosphere, or a reduced-pressure atmosphere obtained by reducing these atmospheres. Since the sintered body obtained in this way has extremely high dimensional accuracy, the sintered gear 1 can be formed without performing secondary processing such as forging and cutting.
  • the secondary processing refers to processing that mechanically changes the shape of the sintered body, and the secondary processing does not include surface treatment (heating treatment) described later.
  • the error between the dimension in the radial direction of the sintered gear 1 to be manufactured and the dimension in the radial direction of the obtained sintered body is 6 ⁇ , preferably 0.02 mm or less, more preferably 0.005 to 0. About .015 mm.
  • the surface treatment step Next, the sintered body is subjected to a surface treatment for forming an oxide film on the surface.
  • a surface treatment for forming an oxide film on the surface.
  • the surface treatment temperature is not particularly limited, but is preferably about 500 to 1000 ° C, more preferably about 700 to 950 ° C.
  • the surface treatment time is preferably about 0.5 minute to 1 hour, more preferably about 1 to 45 minutes.
  • the atmosphere for the surface treatment is not particularly limited, and examples thereof include a steam atmosphere, an oxidizing atmosphere, an inert gas atmosphere, or a reduced pressure atmosphere obtained by reducing these atmospheres. [3] The surface treatment step may be performed as necessary and may be omitted.
  • the manufacturing method of the sintered compact of this invention was demonstrated based on suitable embodiment, this invention is not limited to these.
  • the sintered gear 1 is not only an industrial machine part such as a robot hand, but also, for example, an automobile part, a bicycle part, a railway vehicle part, a marine part, an aircraft part, a space transportation part, etc. It is used for parts for electronic equipment such as parts for transportation equipment, parts for personal computers and parts for portable terminals, parts for electric equipment such as refrigerators, washing machines and air conditioners, parts for plants, parts for watches, and the like.
  • the sintered body is not limited to the sintered gear 1 and may be, for example, a bearing, a cylinder, or the like.
  • Example 1 [A] First, raw material particles containing Fe as a main component (maximum particle size B: 0.212 mm, manufactured by Höganäs) were prepared. [B] Next, particles having a particle diameter of less than 0.032 mm were removed from the raw material particles using a sieve. Therefore, B / A is 6.6.
  • this raw material powder was compression molded using a molding apparatus shown in FIG. 2 to obtain a molded body.
  • the raw material powder was filled into the cavity from the feeder. After applying vibration to the raw material powder in the cavity for 1 second, an impact force was applied by two tapping operations. Thereafter, the raw material powder was scraped off by a feeder and then compressed with an upper punch and a lower punch. The pressure during compression molding was 1.1 ton and the temperature was room temperature.
  • the obtained molded body was fired at 1200 ° C. for 1 hour in an air atmosphere to obtain a sintered gear (sintered body).
  • the shape of the sintered gear was a tip diameter 9 mm, a module 0.3 mm, and 27 teeth.
  • the obtained sintered gear was heat-treated at 750 ° C. for 1 minute in an air atmosphere to form an oxide film having an average thickness of 0.01 mm on the surface of the sintered gear. As a result, a sintered gear with an oxide film was obtained. The average thickness of the oxide film was measured by a cross-sectional observation method.
  • Example 2 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that an overfill operation was performed before applying vibration to the raw material powder.
  • Example 3 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the time for applying vibration and the number of taps were changed.
  • Example 4 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the shape of the sintered gear was 6 mm in tip diameter, 0.2 mm in module, and 28 teeth.
  • Example 1 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the application of vibration to the raw material powder in the cavity was omitted.
  • Comparative Example 2 A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the application of the impact force by the tap operation to the raw material powder in the cavity was omitted.
  • the dimensional error 6 ⁇ in the thickness direction of the molded body can be reduced, that is, the density of the molded body can be increased.
  • the sintered gear of each example obtained by firing such a molded body had high dimensional accuracy. Moreover, the said effect showed the tendency to improve by adding overfill operation. On the other hand, if the application of vibration or impact force to the raw material powder in the cavity is omitted, the density of the molded body could not be increased.
  • the sintered gear of each comparative example obtained by firing such a molded body was inferior in dimensional accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Gears, Cams (AREA)

Abstract

[Problem] To provide a sintered body production method with which it is possible to produce a sintered gear with high dimensional accuracy without using dedicated equipment and without performing secondary processing (postprocessing). [Solution] This sintered body production method involves a step for compression molding a raw material powder containing raw material particles with a mold to obtain a molded body, and a step for sintering the molded body to obtain a sintered body. In the step for obtaining the molded body, vibration and a vertical-direction impact force are applied to the raw material particles inside the mold. Further, it is preferable to apply the vibration for a duration of 0.1-5 seconds and to apply the impact force 1-5 times.

Description

焼結体の製造方法Method for manufacturing sintered body
 本発明は、焼結体の製造方法に関する。 The present invention relates to a method for producing a sintered body.
 従来、焼結ギア(焼結体)は、原料粉末を圧縮成形(圧粉成形)して成形体を得、この成形体をサイジング加工した後、焼成することにより製造される。この方法で製造される焼結ギアは、製造予定の焼結ギアとの寸法誤差が0.03mm程度となる。
 しかしながら、ロボットハンド等に用いられる高精度の焼結ギアでは、切削加工に匹敵する程度の寸法誤差(0.01mm程度)に仕上げる必要がある。
Conventionally, a sintered gear (sintered body) is manufactured by compression-molding (compacting) raw material powder to obtain a molded body, sizing the molded body, and then firing. The sintered gear manufactured by this method has a dimensional error of about 0.03 mm with respect to the sintered gear to be manufactured.
However, a high-precision sintered gear used for a robot hand or the like needs to be finished to a dimensional error (about 0.01 mm) comparable to cutting.
 かかる要求を満たすために、成形体を成形する際に、熱間成形、熱間等方圧成形(HIP)、冷間等方圧成形(CIP)等の特殊成形を行うこと、あるいは焼結体に対して鍛造(例えば、特許文献1参照)、切削等の二次加工を施すことが検討されている。
 ところが、これらの方法では、特殊設備、付帯設備等の専用設備が必要となったり、二次加工のための後工程を追加せざるを得ず、焼結ギアの大量生産には不向きである。また、焼結体には、多数の巣が存在するため、二次加工(特に切削)を行うと、表面に巣が表れ、焼結ギアの機械的強度が低下するおそれもある。
In order to satisfy such requirements, when forming a molded body, special molding such as hot molding, hot isostatic pressing (HIP), cold isostatic pressing (CIP) or the like is performed, or a sintered body. For example, it has been studied to perform secondary processing such as forging (see, for example, Patent Document 1) and cutting.
However, these methods are not suitable for mass production of sintered gears, because special equipment such as special equipment and incidental equipment is required or a post-process for secondary processing must be added. In addition, since the sintered body has a large number of nests, when secondary processing (particularly cutting) is performed, the nests appear on the surface and the mechanical strength of the sintered gear may be lowered.
 これに対して、安価な圧縮成形で成形体を形成する場合には、成形体の寸法精度をより高める必要がある。具体的には、原料粉末の成形型への充填性を改善する必要がある。通常、成形型へ原料粉末を充填する場合、原料粉末をフィーダーから自由落下で成形型に充填される。このため、原料粉末の成形型への充填性が安定しないという問題がある。 On the other hand, when forming a molded body by inexpensive compression molding, it is necessary to further improve the dimensional accuracy of the molded body. Specifically, it is necessary to improve the filling property of the raw material powder into the mold. Usually, when the raw material powder is filled into the mold, the raw material powder is filled into the mold by free fall from the feeder. For this reason, there exists a problem that the filling property to the shaping | molding die of raw material powder is not stabilized.
特開2002-137039号公報JP 2002-137039 A
 本発明の目的は、専用設備を用いず、かつ二次加工(後加工)を施すことなく、寸法精度の高い焼結ギアを製造し得る焼結体の製造方法を提供することにある。 An object of the present invention is to provide a method for manufacturing a sintered body capable of manufacturing a sintered gear with high dimensional accuracy without using dedicated equipment and without performing secondary processing (post-processing).
 本願の例示的な発明は、原料粒子を含む原料粉末を成形型で圧縮成形して、成形体を得る工程と、成形体を焼成して、焼結体を得る工程とを有し、成形体を得る工程において、成形型内の原料粉末に対して振動と鉛直方向への衝撃力とを付与することを特徴とする焼結体の製造方法である。 The exemplary invention of the present application includes a step of compressing a raw material powder containing raw material particles with a molding die to obtain a molded body, and a step of firing the molded body to obtain a sintered body. Is a method for producing a sintered body characterized by applying vibration and impact force in the vertical direction to the raw material powder in the mold.
 本願の例示的な発明によれば、寸法精度の高い焼結体を製造することができる。 According to the exemplary invention of the present application, a sintered body with high dimensional accuracy can be manufactured.
本発明の一実施形態に係る焼結体の構成(焼結ギア)を模式的に示す平面図(a)および断面図(b)である。It is the top view (a) and sectional drawing (b) which show typically the structure (sintering gear) of the sintered compact which concerns on one Embodiment of this invention. 焼結ギアを製造するのに用いる成形装置の概略構成を示す図である。It is a figure which shows schematic structure of the shaping | molding apparatus used in manufacturing a sintered gear.
 以下、本発明の焼結体の製造方法を添付図面に示す実施形態に基づいて詳細に説明する。
 図1は、本発明の一実施形態に係る焼結体の構成(焼結ギア)を模式的に示す平面図(a)および断面図(b)、図2は、焼結ギアを製造するのに用いる成形装置の概略構成を示す図である。
Hereinafter, the manufacturing method of the sintered compact of this invention is demonstrated in detail based on embodiment shown to an accompanying drawing.
FIG. 1 is a plan view (a) and a cross-sectional view (b) schematically showing a configuration (sintered gear) of a sintered body according to an embodiment of the present invention, and FIG. It is a figure which shows schematic structure of the shaping | molding apparatus used for.
 以下では、焼結体を焼結ギアとする場合を代表に説明する。
 なお、焼結ギアの中心軸に平行な方向(図1(a)の紙面に垂直な方向)を「軸方向」、中心軸に直交する方向を「径方向」、中心軸を中心とする軸周りの方向を「周方向」と言う。
 図1に示す焼結ギア1は、円盤状のギア本体2と、ギア本体2の周方向に沿って配置され、径方向外側に突出する複数の歯3とを有している。複数の歯3は、ほぼ等間隔で設けられている。
Below, the case where a sintered compact is used as a sintered gear is demonstrated as a representative.
The direction parallel to the central axis of the sintered gear (the direction perpendicular to the paper surface of FIG. 1A) is the “axial direction”, the direction orthogonal to the central axis is the “radial direction”, and the axis is centered on the central axis. The surrounding direction is called “circumferential direction”.
A sintered gear 1 shown in FIG. 1 includes a disc-shaped gear body 2 and a plurality of teeth 3 that are arranged along the circumferential direction of the gear body 2 and project radially outward. The plurality of teeth 3 are provided at substantially equal intervals.
 この焼結ギア1は、原料粉末の焼結体で構成されている。なお、原料粉末の構成については、後に詳述する。
 焼結ギア1のサイズは、使用する用途に応じて設計されるため、特に限定されないが、焼結ギア1を、例えばロボットハンド用のギア(高精度のギア)とする場合には、次のように設計される。
 焼結ギア1の歯先円直径(図1中「D」で示す。)は、3~15mm程度であることが好ましく、5~10mm程度であることがより好ましい。また、焼結ギア1の歯数は、15~40枚程度であることが好ましく、20~35枚程度であることがより好ましい。
The sintered gear 1 is composed of a sintered body of raw material powder. The configuration of the raw material powder will be described in detail later.
The size of the sintered gear 1 is not particularly limited because it is designed according to the application to be used, but when the sintered gear 1 is a gear for a robot hand (high-precision gear), for example, the following Designed as such.
The tip circle diameter (indicated by “D” in FIG. 1) of the sintered gear 1 is preferably about 3 to 15 mm, more preferably about 5 to 10 mm. The number of teeth of the sintered gear 1 is preferably about 15 to 40, more preferably about 20 to 35.
 したがって、歯12の大きさ(歯厚)の程度を示すモジュールは、0.15~0.3mm程度であることが好ましく、0.15~0.25mm程度であることがより好ましい。このような小型(高精度)の焼結ギア1であっても、本発明の原料粉末を用いれば、高い寸法精度で製造することができる。
 なお、歯12の歯幅(図1中「W」で示す。)は、1~10mm程度であることが好ましく、2~5mm程度であることがより好ましい。
Therefore, the module indicating the size (tooth thickness) of the teeth 12 is preferably about 0.15 to 0.3 mm, and more preferably about 0.15 to 0.25 mm. Even such a small (high accuracy) sintered gear 1 can be manufactured with high dimensional accuracy by using the raw material powder of the present invention.
The tooth width of the tooth 12 (indicated by “W” in FIG. 1) is preferably about 1 to 10 mm, and more preferably about 2 to 5 mm.
 なお、図1に示す焼結ギア1は、いわゆる平歯車であるが、本発明はこれに限定されず、例えば、ねじ歯車、かさ歯車、ウォームギア、ハイポイドギア等であってもよい。
 このような焼結ギア1は、次のようにして製造される。
 以下、焼結ギア1を製造する方法(焼結ギアの製造方法)について説明する。
1 is a so-called spur gear, the present invention is not limited to this, and may be, for example, a screw gear, a bevel gear, a worm gear, a hypoid gear, or the like.
Such a sintered gear 1 is manufactured as follows.
Hereinafter, a method for manufacturing the sintered gear 1 (a method for manufacturing a sintered gear) will be described.
 本実施形態の焼結ギアの製造方法は、[1]原料粉末を圧縮成形して、焼結ギア1に対応する形状を有する成形体を得る成形工程と、[2]成形体を焼成して、焼結体を得る焼成工程と、[3]焼結体を熱処理して、その表面を被覆する酸化膜を形成する表面処理工程とを有する。以下、各工程について順次説明する。 The method for manufacturing a sintered gear according to the present embodiment includes: [1] a molding step of compression molding raw material powder to obtain a molded body having a shape corresponding to the sintered gear 1, and [2] firing the molded body. And a firing step for obtaining a sintered body, and [3] a surface treatment step for heat-treating the sintered body to form an oxide film covering the surface thereof. Hereinafter, each process will be described sequentially.
 [1]成形工程
 まず、成形装置と、原料粉末とを用意する。
 図2に示す成形装置10は、成形型20と、原料粉末を収容したフィーダー30とを備えている。
 また、成形型20は、厚さ方向に貫通する貫通孔211を備えるダイ21と、このダイ21の貫通孔211内に挿入される上パンチ22および下パンチ23とを有している。そして、貫通孔211を規定するダイ21の内周面の形状が、製造すべき焼結ギア1の外周面の形状(凹凸形状)に対応している。
[1] Molding process First, a molding apparatus and raw material powder are prepared.
The shaping | molding apparatus 10 shown in FIG. 2 is provided with the shaping | molding die 20 and the feeder 30 which accommodated the raw material powder.
The molding die 20 includes a die 21 having a through hole 211 that penetrates in the thickness direction, and an upper punch 22 and a lower punch 23 that are inserted into the through hole 211 of the die 21. The shape of the inner peripheral surface of the die 21 that defines the through-hole 211 corresponds to the shape (uneven shape) of the outer peripheral surface of the sintered gear 1 to be manufactured.
 本実施形態では、下パンチ23の内部には、軸方向に沿って延びるコアピン231と、
このコアピン231に振動を付与する振動体232とが配置されている。
 また、成形装置10は、図示しないが、ダイ21および下パンチ23を鉛直上方に持ち上げた後、落下させる機構を有している。
 かかる構成により、成形型20内の原料粉末に対して振動と、鉛直方向への衝撃力とを付与することができる。
In the present embodiment, inside the lower punch 23, a core pin 231 extending along the axial direction,
A vibrating body 232 that applies vibration to the core pin 231 is disposed.
Further, although not shown, the molding apparatus 10 has a mechanism for lifting the die 21 and the lower punch 23 vertically upward and then dropping them.
With this configuration, it is possible to impart vibration and a vertical impact force to the raw material powder in the mold 20.
 かかる成形装置10では、次のステップに従って、成形体を形成する。
 [1-1]第1ステップ
 まず、ダイ21の貫通孔211の下部に下パンチ23の先端部を挿入して、ダイ21と下パンチ23とでキャビティー(空間)212を形成する(図2(a)参照)。次に、ダイ21上でフィーダー30をスライドさせ、フィーダー30でキャビティー212を覆った状態とし、フィーダー30から原料粉末をキャビティー212に充填する(図2(b)参照)。
In the molding apparatus 10, a molded body is formed according to the following steps.
[1-1] First Step First, the tip of the lower punch 23 is inserted below the through-hole 211 of the die 21 to form a cavity (space) 212 with the die 21 and the lower punch 23 (FIG. 2). (See (a)). Next, the feeder 30 is slid on the die 21 so as to cover the cavity 212 with the feeder 30, and the raw material powder is filled into the cavity 212 from the feeder 30 (see FIG. 2B).
 焼結ギア1を製造するのに用いられる原料粉末は、次のような構成であることが好ましい。
 原料粉末は、焼結ギア1のモジュール[mm]以下の粒径を有する原料粒子を含んでいる。かかる構成により、原料粒子をキャビティー212の歯元部のみならず歯先部にまで必要かつ十分に充填することができる。
 特に、本実施形態では、原料粒子の最小粒径をA[mm]とし、最大粒径をB[mm]としたとき、B/Aが10以下となるように、原料粒子の粒径が調整されている。すなわち、原料粉末中に含まれる原料粒子の粒径の差が大きくならないように調整されている。
The raw material powder used to manufacture the sintered gear 1 is preferably configured as follows.
The raw material powder includes raw material particles having a particle size of a module [mm] or less of the sintered gear 1. With this configuration, the raw material particles can be filled not only into the tooth root portion of the cavity 212 but also into the tooth tip portion as necessary and sufficient.
In particular, in this embodiment, when the minimum particle size of the raw material particles is A [mm] and the maximum particle size is B [mm], the particle size of the raw material particles is adjusted so that B / A is 10 or less. Has been. That is, it is adjusted so that the difference in particle size of the raw material particles contained in the raw material powder does not become large.
 B/Aは、7以下であることが好ましく、2~4程度であることがより好ましい。B/Aを上記範囲に調整することにより、原料粉末の流動性の著しい低下を防止することができる。これにより、原料粉末をキャビティー212に安定的に供給して、高密度で充填することができる。また、この場合、廃棄する原料粒子の量が多くなり過ぎることを防止して、原料粉末のコスト、ひいては焼結ギア1の製造コストの増大を抑制し得る。
 原料粒子の最大粒径Bは、焼結ギア1のモジュールの半分以下であることが好ましく、モジュールの0.35~0.45倍程度であることがより好ましい。これにより、原料粒子のキャビティー212の歯先部への充填密度をより高めることができる。
B / A is preferably 7 or less, more preferably about 2 to 4. By adjusting B / A to the said range, the remarkable fall of the fluidity | liquidity of raw material powder can be prevented. Thereby, raw material powder can be stably supplied to the cavity 212 and can be filled with high density. Further, in this case, it is possible to prevent the amount of the raw material particles to be discarded from being excessively increased, and to suppress an increase in the cost of the raw material powder and consequently the manufacturing cost of the sintered gear 1.
The maximum particle size B of the raw material particles is preferably not more than half that of the module of the sintered gear 1, and more preferably about 0.35 to 0.45 times the module. Thereby, the filling density to the tooth tip part of the cavity 212 of a raw material particle can be raised more.
 前述したような高精度(小型)の焼結ギア1を製造する場合、原料粒子の最大粒径Bの具体的な値は、0.1~0.25mm程度であることが好ましく、0.12~0.2mm程度であることがより好ましい。この場合、原料粒子の最小粒径Aの具体的な値は、0.02~0.05mm程度であることが好ましく、0.025~0.04mm程度であることがより好ましい。
 原料粒子の最小粒径Aおよび最大粒径Bを前記範囲とすることにより、高精度の焼結ギア1を製造する場合であっても、原料粉末の流動性を低下させることなく、原料粒子をキャビティー212の歯先部にまで十分に充填することができる。
 ここで、原料粒子の粒径は、例えば、レーザーによる投影像から測定することができる。
When manufacturing the high precision (small) sintered gear 1 as described above, the specific value of the maximum particle size B of the raw material particles is preferably about 0.1 to 0.25 mm. More preferably, it is about 0.2 mm. In this case, the specific value of the minimum particle diameter A of the raw material particles is preferably about 0.02 to 0.05 mm, and more preferably about 0.025 to 0.04 mm.
By setting the minimum particle size A and the maximum particle size B of the raw material particles in the above ranges, the raw material particles can be produced without reducing the fluidity of the raw material powder even when the sintered gear 1 with high precision is manufactured. The tooth tip portion of the cavity 212 can be sufficiently filled.
Here, the particle diameter of the raw material particles can be measured, for example, from a projected image by a laser.
 原料粒子は、例えば、粉砕法、水アトマイズ法、ガスアトマイズ法のようなアトマイズ法、還元法、カルボニル法等を用いて製造することができる。
 また、原料粒子の構成材料としては、Fe(鉄)単体、主成分のFeと任意の元素とを含む合金のような各種金属材料、アパタイト系セラミックスのような各種セラミックス材料等が挙げられる。なお、合金に添加される元素としては、例えば、Cr(クロム)、Mo(モリブデン)、Mn(マンガン)、Ni(ニッケル)、Cu(銅)、W(タングステン)、V(バナジウム)、Co(コバルト)、Si(珪素)、C(炭素)等のうちの少な
くとも1種が挙げられる。
The raw material particles can be produced using, for example, an atomizing method such as a pulverizing method, a water atomizing method, a gas atomizing method, a reduction method, a carbonyl method, or the like.
Examples of the constituent material of the raw material particles include Fe (iron) alone, various metal materials such as an alloy containing Fe as a main component and an arbitrary element, and various ceramic materials such as apatite-based ceramics. Examples of elements added to the alloy include Cr (chromium), Mo (molybdenum), Mn (manganese), Ni (nickel), Cu (copper), W (tungsten), V (vanadium), and Co ( Cobalt), Si (silicon), C (carbon), and the like.
 このような原料粉末は、滑剤を含有してもよい。これにより、原料粉末の流動性をより高めることができる。
 滑剤としては、例えば、ステアリン酸のような脂肪酸、その金属塩、その誘導体(例えば、アミド、エステル等)、フッ素系樹脂等が挙げられる。これらの化合物は、1種を単独で、または2種以上を組み合わせて用いることができる。
 この場合、原料粉末中に含まれる滑剤の量は、特に限定されないが、5質量%以下であることが好ましく、0.1~3質量%程度であることがより好ましい。
Such raw material powder may contain a lubricant. Thereby, the fluidity | liquidity of raw material powder can be improved more.
Examples of the lubricant include fatty acids such as stearic acid, metal salts thereof, derivatives thereof (eg, amides, esters, etc.), fluorine resins, and the like. These compounds can be used individually by 1 type or in combination of 2 or more types.
In this case, the amount of lubricant contained in the raw material powder is not particularly limited, but is preferably 5% by mass or less, more preferably about 0.1 to 3% by mass.
 なお、本実施形態では、粒径が相対的に小さい原料粒子を取り除いているため、滑剤を含まない原料粉末自体の流動性が高い。このため、少量(0.1~0.5質量%程度)の滑剤を含有することで、原料粉末の流動度を十分に高い値に調整することができる。
 原料粉末の具体的な流動度は、25~50sec/50g程度であることが好ましく、30~40sec/50g程度であることがより好ましい。このような流動度を有する原料粉末であれば、高い安定性でキャビティー212へ供給することができる。ここで、流動度は、JIS Z 2502(2012年)に規定された金属粉-流動度測定法に準拠して測定することができる。
In addition, in this embodiment, since the raw material particle | grains with a relatively small particle size are removed, the fluidity | liquidity of the raw material powder itself which does not contain a lubricant is high. Therefore, the fluidity of the raw material powder can be adjusted to a sufficiently high value by containing a small amount (about 0.1 to 0.5% by mass) of a lubricant.
The specific fluidity of the raw material powder is preferably about 25 to 50 sec / 50 g, more preferably about 30 to 40 sec / 50 g. A raw material powder having such a fluidity can be supplied to the cavity 212 with high stability. Here, the fluidity can be measured in accordance with a metal powder-fluidity measurement method defined in JIS Z 2502 (2012).
 [1-2]第2ステップ(オーバーフィルステップ)
 次に、ダイ21と下パンチ23とを相対的に接近させることにより、キャビティー212(空間211)の容積を減少させて、原料粉末の一部をフィーダー30に戻す。これにより、原料粉末の充填密度をより高めることができる。
 [1-3]第3ステップ
 その後、ダイ21上でフィーダー30をスライドさせ、キャビティー212から後退させた状態とする。この際、余剰の原料粉末の摺り切りが行われる。
[1-2] Second step (overfill step)
Next, the die 21 and the lower punch 23 are relatively approached to reduce the volume of the cavity 212 (space 211), and a part of the raw material powder is returned to the feeder 30. Thereby, the packing density of raw material powder can be raised more.
[1-3] Third Step Thereafter, the feeder 30 is slid on the die 21 to be retracted from the cavity 212. At this time, surplus raw material powder is scraped off.
 [1-4]第4ステップ
 次に、振動体232を作動させ、コアピン231を振動させる。これにより、キャビティー212内の原料粉末に対して下パンチ23を介して振動が付与される。このとき、キャビティー212内の原料粒子が再配列され、原料粉末の充填密度を高めることができる。
 振動を付与する時間は、0.1~5秒間程度であることが好ましく、0.5~3秒間程度であることがより好ましい。比較的短時間で振動を原料粉末に付与することにより、原料粉末の飛散を防止しつつ、充填密度をより高めることができる。
 振動の周波数は、特に限定されず、原料粒子の粒径、原料粉末の流動度等に応じて、原料粉末のキャビティー212内への充填密度を高めるべく、適宜設定される。
[1-4] Fourth Step Next, the vibrating body 232 is operated to vibrate the core pin 231. Accordingly, vibration is applied to the raw material powder in the cavity 212 through the lower punch 23. At this time, the raw material particles in the cavity 212 are rearranged, and the packing density of the raw material powder can be increased.
The time for applying vibration is preferably about 0.1 to 5 seconds, more preferably about 0.5 to 3 seconds. By applying vibration to the raw material powder in a relatively short time, the packing density can be further increased while preventing the raw material powder from scattering.
The frequency of vibration is not particularly limited, and is appropriately set according to the particle size of the raw material particles, the fluidity of the raw material powder, and the like in order to increase the packing density of the raw material powder into the cavity 212.
 [1-5]第5ステップ
 次に、ダイ21および下パンチ23を鉛直上方に持ち上げた後、落下させる。以下、この動作を「タップ」とも記載する。これにより、キャビティー212内の原料粉末に対して鉛直方向への衝撃力を付与することができる。これにより、キャビティー212内の原料粒子の充填密度をより高めることができる。
 衝撃力を付与する回数(タップ回数)は、1~5回程度であることが好ましく、2~3回程度であることがより好ましい。タップ回数を前記範囲とすれば、キャビティー212内で再配列された原料粒子の配置を乱すことなく、原料粉末の密度をより高めることができる。
 また、ダイ21および下パンチ23を持ち上げる高さは、特に限定されないが、1~10mm程度であることが好ましく、3~7mm程度であることがより好ましい。これにより、適度な衝撃力を原料粉末に付与することができる。
[1-5] Fifth Step Next, the die 21 and the lower punch 23 are lifted vertically upward and then dropped. Hereinafter, this operation is also referred to as “tap”. Thereby, an impact force in the vertical direction can be applied to the raw material powder in the cavity 212. Thereby, the packing density of the raw material particles in the cavity 212 can be further increased.
The number of times of applying the impact force (number of taps) is preferably about 1 to 5 times, and more preferably about 2 to 3 times. When the number of taps is within the above range, the density of the raw material powder can be further increased without disturbing the arrangement of the raw material particles rearranged in the cavity 212.
Further, the height at which the die 21 and the lower punch 23 are lifted is not particularly limited, but is preferably about 1 to 10 mm, and more preferably about 3 to 7 mm. Thereby, an appropriate impact force can be imparted to the raw material powder.
 [1-6]第6ステップ
 その後、キャビティー212に上パンチ22の先端部を挿入して、下パンチ23と上パンチ22とで原料粉末を圧縮する(図3(c)参照)。
 原料粉末を圧縮する際の圧力(成形圧力)は、特に限定されないが、0.5~3ton程度であることが好ましく、1~2ton程度であることがより好ましい。
 以上のようにして、キャビティー212内に、焼結ギアに対応する形状を有する成形体11が得られる。
 [1-7]第7ステップ
 その後、ダイ21と下パンチ23とを相対的に接近させ、キャビティー212から成形体11を排出する。
[1-6] Sixth Step Thereafter, the tip of the upper punch 22 is inserted into the cavity 212, and the raw material powder is compressed by the lower punch 23 and the upper punch 22 (see FIG. 3C).
The pressure at which the raw material powder is compressed (molding pressure) is not particularly limited, but is preferably about 0.5 to 3 tons, and more preferably about 1 to 2 tons.
As described above, the molded body 11 having a shape corresponding to the sintered gear is obtained in the cavity 212.
[1-7] Seventh Step Thereafter, the die 21 and the lower punch 23 are brought relatively close to each other, and the molded body 11 is discharged from the cavity 212.
 [2]焼成工程
 次に、得られた成形体11を、焼成して焼結体を得る。
この焼結により、成形体11では、原料粒子同士の界面で拡散が生じて焼結に至る。この際、成形体11は、全体的に収縮して高密度の焼結体が得られる。本発明では、前述したような原料粉末を用いるため、その効果が特に高い。
 焼成温度は、成形体11の製造に用いた原料粉末の組成や粒径等によって、設定されるため特に限定されないが、950~1300℃程度であることが好ましく、1000~1200℃程度であることがより好ましい。
[2] Firing step Next, the obtained molded body 11 is fired to obtain a sintered body.
By this sintering, in the molded body 11, diffusion occurs at the interface between the raw material particles, leading to sintering. At this time, the molded body 11 is entirely contracted to obtain a high-density sintered body. In the present invention, since the raw material powder as described above is used, the effect is particularly high.
The firing temperature is not particularly limited because it is set depending on the composition, particle size, and the like of the raw material powder used in the production of the molded body 11, but is preferably about 950 to 1300 ° C., and preferably about 1000 to 1200 ° C. Is more preferable.
 焼成時間は、0.2~3時間程度であることが好ましく、0.5~2時間程度であることがより好ましい。
 また、焼成の際の雰囲気は、特に限定されないが、大気雰囲気、酸化性雰囲気、還元性雰囲気、不活性ガス雰囲気またはこれらの雰囲気を減圧した減圧雰囲気等が挙げられる。
 このようにして得られた焼結体は、寸法精度が極めて高いため、鍛造、切削のような二次加工を施すことなく、焼結ギア1とすることができる。なお、二次加工とは、機械的に焼結体の形状を変化させる加工を言い、二次加工には、後述する表面処理(加熱処理)は含まれない。
The firing time is preferably about 0.2 to 3 hours, and more preferably about 0.5 to 2 hours.
The atmosphere during firing is not particularly limited, and examples thereof include an air atmosphere, an oxidizing atmosphere, a reducing atmosphere, an inert gas atmosphere, or a reduced-pressure atmosphere obtained by reducing these atmospheres.
Since the sintered body obtained in this way has extremely high dimensional accuracy, the sintered gear 1 can be formed without performing secondary processing such as forging and cutting. The secondary processing refers to processing that mechanically changes the shape of the sintered body, and the secondary processing does not include surface treatment (heating treatment) described later.
 なお、製造予定の焼結ギア1の径方向における寸法と得られた焼結体の径方向における寸法との誤差は、6σで好ましくは0.02mm以下であり、より好ましくは0.005~0.015mm程度である。前述したような粒径を有する原料粒子を用いることにより、かかる寸法精度の高い焼結ギア1を得ることができる。 The error between the dimension in the radial direction of the sintered gear 1 to be manufactured and the dimension in the radial direction of the obtained sintered body is 6σ, preferably 0.02 mm or less, more preferably 0.005 to 0. About .015 mm. By using the raw material particles having a particle size as described above, it is possible to obtain the sintered gear 1 with high dimensional accuracy.
 [3]表面処理工程
 次に、焼結体には、その表面に酸化膜を形成するための表面処理を行う。
 この表面処理により、焼結ギア1の表面の平滑性が高まる。また、表面に酸化膜が形成されることにより、酸化膜付き焼結ギア1は、製造予定の焼結ギア1との寸法誤差をより小さくすることができる。
 表面処理の温度は、特に限定されないが、500~1000℃程度であることが好ましく、700~950℃程度であることがより好ましい。
[3] Surface treatment step Next, the sintered body is subjected to a surface treatment for forming an oxide film on the surface.
By this surface treatment, the smoothness of the surface of the sintered gear 1 is increased. Further, by forming an oxide film on the surface, the sintered gear 1 with an oxide film can further reduce a dimensional error with respect to the sintered gear 1 to be manufactured.
The surface treatment temperature is not particularly limited, but is preferably about 500 to 1000 ° C, more preferably about 700 to 950 ° C.
 また、表面処理の時間は、0.5分間~1時間程度であることが好ましく、1~45分間程度であることがより好ましい。
 表面処理の雰囲気は、特に限定されないが、水蒸気雰囲気、酸化性雰囲気、不活性ガス雰囲気、またはこれらの雰囲気を減圧した減圧雰囲気等が挙げられる。
 なお、[3]表面処理工程は、必要に応じて行うようにすればよく、省略してもよい。
The surface treatment time is preferably about 0.5 minute to 1 hour, more preferably about 1 to 45 minutes.
The atmosphere for the surface treatment is not particularly limited, and examples thereof include a steam atmosphere, an oxidizing atmosphere, an inert gas atmosphere, or a reduced pressure atmosphere obtained by reducing these atmospheres.
[3] The surface treatment step may be performed as necessary and may be omitted.
 以上、本発明の焼結体の製造方法について、好適な実施形態に基づいて説明したが、本
発明はこれらに限定されるものではない。
 また、焼結ギア1は、ロボットハンドのような産業機械用部品の他、例えば、自動車用部品、自転車用部品、鉄道車両用部品、船舶用部品、航空機用部品、宇宙輸送機用部品のような輸送機器用部品、パソコン用部品、携帯端末用部品のような電子機器用部品、冷蔵庫、洗濯機、冷暖房機のような電気機器用部品、プラント用部品、時計用部品等に用いられる。
As mentioned above, although the manufacturing method of the sintered compact of this invention was demonstrated based on suitable embodiment, this invention is not limited to these.
Further, the sintered gear 1 is not only an industrial machine part such as a robot hand, but also, for example, an automobile part, a bicycle part, a railway vehicle part, a marine part, an aircraft part, a space transportation part, etc. It is used for parts for electronic equipment such as parts for transportation equipment, parts for personal computers and parts for portable terminals, parts for electric equipment such as refrigerators, washing machines and air conditioners, parts for plants, parts for watches, and the like.
 さらに、焼結体は、焼結ギア1に限らず、例えば、軸受け、シリンダ等とすることもできる。 Furthermore, the sintered body is not limited to the sintered gear 1 and may be, for example, a bearing, a cylinder, or the like.
 次に、本発明の実施例について説明する。
 1.酸化膜付き焼結ギアの製造
Next, examples of the present invention will be described.
1. Manufacture of sintered gear with oxide film
 (実施例1)
 [A]まず、Feを主成分とする原料粒子(最大粒径B:0.212mm、ヘガネス社製)を用意した。
 [B]次に、篩を用いて、原料粒子から0.032mm未満の粒径を有する粒子を取り除いた。したがってB/Aは6.6である。
(Example 1)
[A] First, raw material particles containing Fe as a main component (maximum particle size B: 0.212 mm, manufactured by Höganäs) were prepared.
[B] Next, particles having a particle diameter of less than 0.032 mm were removed from the raw material particles using a sieve. Therefore, B / A is 6.6.
 [C]次に、原料粒子と、滑剤としてN,N’-エチレンビスステアラミド(花王株式会社製、「KAO WAX EB-FF」)とを、V型混合機で30分間混合して、原料粉末を得た。なお、原料粉末中に含まれるN,N’-エチレンビスステアラミドの量が0.2質量%となるように調製した。また、得られた原料粉末の流動度を、流動度測定装置(自社製、JIS Z 2502(2012年)に準拠)を用いて測定しところ、30sec/50gであった。 [C] Next, the raw material particles and N, N′-ethylenebisstearamide (made by Kao Corporation, “KAO WAX EB-FF”) as a lubricant are mixed with a V-type mixer for 30 minutes to obtain a raw material. A powder was obtained. The amount of N, N′-ethylenebisstearamide contained in the raw material powder was adjusted to 0.2% by mass. Further, the fluidity of the obtained raw material powder was measured by using a fluidity measuring device (in-house manufactured, conforming to JIS Z 2502 (2012)), and was 30 sec / 50 g.
 次に、この原料粉末を、図2に示す成形装置を用いて圧縮成形し、成形体を得た。
 まず、フィーダーから原料粉末をキャビティーに充填した。キャビティー内の原料粉末に対して、振動を1秒間付与した後、2回のタップ操作により衝撃力を付与した。その後、フィーダーにより原料粉末を摺り切った後、上パンチと下パンチとで圧縮した。なお、圧縮成形の際の圧力を1.1tonとし、温度を室温とした。
Next, this raw material powder was compression molded using a molding apparatus shown in FIG. 2 to obtain a molded body.
First, the raw material powder was filled into the cavity from the feeder. After applying vibration to the raw material powder in the cavity for 1 second, an impact force was applied by two tapping operations. Thereafter, the raw material powder was scraped off by a feeder and then compressed with an upper punch and a lower punch. The pressure during compression molding was 1.1 ton and the temperature was room temperature.
 [D]次に、得られた成形体を、大気雰囲気中、1200℃で1時間焼成して、焼結ギア(焼結体)を得た。なお、焼結ギアの形状は、歯先円直径9mm、モジュール0.3mm、歯数27枚とした。
 [E]次に、得られた焼結ギアを、大気雰囲気中、750℃で1分間熱処理することにより、焼結ギアの表面に、平均厚さ0.01mmの酸化膜を形成した。これにより、酸化膜付き焼結ギアを得た。なお、酸化膜の平均厚さは、断面観察法により測定した。
[D] Next, the obtained molded body was fired at 1200 ° C. for 1 hour in an air atmosphere to obtain a sintered gear (sintered body). The shape of the sintered gear was a tip diameter 9 mm, a module 0.3 mm, and 27 teeth.
[E] Next, the obtained sintered gear was heat-treated at 750 ° C. for 1 minute in an air atmosphere to form an oxide film having an average thickness of 0.01 mm on the surface of the sintered gear. As a result, a sintered gear with an oxide film was obtained. The average thickness of the oxide film was measured by a cross-sectional observation method.
 (実施例2)
 原料粉末に対して振動を付与する前に、オーバーフィル操作を行った以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
 (実施例3)
 振動を付与する時間およびタップ回数を変更した以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
 (実施例4)
 焼結ギアの形状を、歯先円直径6mm、モジュール0.2mm、歯数28枚とした以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(Example 2)
A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that an overfill operation was performed before applying vibration to the raw material powder.
(Example 3)
A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the time for applying vibration and the number of taps were changed.
Example 4
A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the shape of the sintered gear was 6 mm in tip diameter, 0.2 mm in module, and 28 teeth.
 (比較例1)
 キャビティー内の原料粉末に対する振動の付与を省略した以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
 (比較例2)
 キャビティー内の原料粉末に対するタップ操作による衝撃力の付与を省略した以外は、前記実施例1と同様にして、酸化膜付き焼結ギアを得た。
(Comparative Example 1)
A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the application of vibration to the raw material powder in the cavity was omitted.
(Comparative Example 2)
A sintered gear with an oxide film was obtained in the same manner as in Example 1 except that the application of the impact force by the tap operation to the raw material powder in the cavity was omitted.
 2.寸法誤差の測定
 各実施例および各比較例で得られた成形体および焼結ギアの寸法誤差6σは、工場顕微鏡(測定顕微鏡)により測定した。なお、成形体では、厚さ方向の寸法誤差を、焼結ギアでは、厚さ方向または径方向の寸法誤差を測定した。
 この測定結果を、原料粉末の構成と併せて、以下の表1に示す。
2. Measurement of dimensional error The dimensional error 6σ of the molded body and the sintered gear obtained in each example and each comparative example was measured with a factory microscope (measurement microscope). In addition, the dimension error in the thickness direction was measured for the molded body, and the dimension error in the thickness direction or the radial direction was measured for the sintered gear.
The measurement results are shown in Table 1 below together with the composition of the raw material powder.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上のように、キャビティー内の原料粉末に対して振動および衝撃力を付与することに
より、成形体の厚さ方向における寸法誤差6σを小さくすること、すなわち成形体の密度を高めることができた。かかる成形体を焼成して得られた各実施例の焼結ギアは、高い寸法精度を有していた。
 また、オーバーフィル操作を追加することにより、上記効果が向上する傾向を示した。
 これに対して、キャビティー内の原料粉末に対する振動または衝撃力の付与を省略すると、成形体の密度を高めることができなかった。かかる成形体を焼成して得られた各比較例の焼結ギアは、寸法精度に劣るものであった。
As described above, by applying vibration and impact force to the raw material powder in the cavity, the dimensional error 6σ in the thickness direction of the molded body can be reduced, that is, the density of the molded body can be increased. . The sintered gear of each example obtained by firing such a molded body had high dimensional accuracy.
Moreover, the said effect showed the tendency to improve by adding overfill operation.
On the other hand, if the application of vibration or impact force to the raw material powder in the cavity is omitted, the density of the molded body could not be increased. The sintered gear of each comparative example obtained by firing such a molded body was inferior in dimensional accuracy.
 1…焼結ギア
 11…成形体
 2…ギア本体
 3…歯
 10…成形装置
 20…成形型
 21…ダイ
 211…貫通孔
 212…キャビティー
 22…上パンチ
 23…下パンチ
 231…コアピン
 232…振動体
 30…フィーダー
DESCRIPTION OF SYMBOLS 1 ... Sintered gear 11 ... Molded body 2 ... Gear main body 3 ... Teeth 10 ... Molding device 20 ... Mold 21 ... Die 211 ... Through-hole 212 ... Cavity 22 ... Upper punch 23 ... Lower punch 231 ... Core pin 232 ... Vibrating body 30 ... Feeder

Claims (9)

  1.  原料粒子を含む原料粉末を成形型で圧縮成形して、成形体を得る工程と、
     前記成形体を焼成して、焼結体を得る工程とを有し、
     前記成形体を得る工程において、前記成形型内の前記原料粉末に対して振動と鉛直方向への衝撃力とを付与することを特徴とする焼結体の製造方法。
    Compressing raw material powder containing raw material particles with a molding die to obtain a molded body;
    Firing the molded body to obtain a sintered body,
    In the step of obtaining the molded body, a method for producing a sintered body, wherein vibration and an impact force in a vertical direction are applied to the raw material powder in the mold.
  2.  前記振動を付与する時間が、0.1~5秒間である請求項1に記載の焼結体の製造方法。 The method for producing a sintered body according to claim 1, wherein the time for applying the vibration is 0.1 to 5 seconds.
  3.  前記衝撃力を付与する回数が、1~5回である請求項1または2に記載の焼結体の製造方法。 The method for producing a sintered body according to claim 1 or 2, wherein the number of times of applying the impact force is 1 to 5.
  4.  前記成形型が、ダイと、該ダイに挿入される上パンチおよび下パンチとを有し、
     前記成形体を得る工程が、前記原料粉末を収容したフィーダーで前記ダイと前記下パンチとで形成される空間を覆った状態とし、前記フィーダーから前記原料粉末を前記空間に充填するステップと、
     前記空間内の前記原料粉末に対して前記下パンチを介して前記振動を付与するステップと、
     鉛直上方に持ち上げた前記ダイおよび前記下パンチを落下させて、前記空間内の前記原料粉末に対して前記衝撃力を付与するステップと、
     前記空間内の前記原料粉体を前記下パンチと前記上パンチとで圧縮して、前記成形体を得るステップとを有する請求項1ないし3のいずれか1項に記載の焼結体の製造方法。
    The mold has a die, and an upper punch and a lower punch inserted into the die,
    The step of obtaining the molded body is a state in which the space formed by the die and the lower punch is covered with a feeder containing the raw material powder, and the raw material powder is filled into the space from the feeder;
    Applying the vibration to the raw material powder in the space via the lower punch;
    Dropping the die lifted vertically upward and the lower punch to give the impact force to the raw material powder in the space;
    The method for producing a sintered body according to any one of claims 1 to 3, further comprising: compressing the raw material powder in the space with the lower punch and the upper punch to obtain the formed body. .
  5.  前記成形体を得る工程が、さらに、前記原料粉末を充填するステップと前記振動を付与するステップとの間に、前記空間の容積を減少させて、前記原料粉末の一部を前記フィーダーに戻すステップを有する請求項4に記載の焼結体の製造方法。 The step of obtaining the molded body further includes a step of reducing the volume of the space and returning a part of the raw material powder to the feeder between the step of filling the raw material powder and the step of applying the vibration. The manufacturing method of the sintered compact of Claim 4 which has these.
  6.  前記焼結体が、焼結ギアであり、
     前記原料粒子が、前記焼結ギアのモジュール[mm]以下の粒径を有し、
     前記原料粒子の最小粒径をA[mm]とし、最大粒径をB[mm]としたとき、B/Aが10以下である請求項1ないし5のいずれか1項に記載の焼結体の製造方法。
    The sintered body is a sintered gear;
    The raw material particles have a particle size of the sintered gear module [mm] or less;
    The sintered body according to any one of claims 1 to 5, wherein B / A is 10 or less when the minimum particle diameter of the raw material particles is A [mm] and the maximum particle diameter is B [mm]. Manufacturing method.
  7.  前記焼結ギアの前記モジュールが、0.15~0.3mmである請求項6に記載の焼結体の製造方法。 The method for manufacturing a sintered body according to claim 6, wherein the module of the sintered gear is 0.15 to 0.3 mm.
  8.  前記焼結体を得た後、前記焼結体に対して二次加工を施すことなく、前記焼結体を前記焼結ギアとする請求項6または7に記載の焼結体の製造方法。 The method for producing a sintered body according to claim 6 or 7, wherein after the sintered body is obtained, the sintered body is used as the sintered gear without subjecting the sintered body to secondary processing.
  9.  製造予定の前記焼結ギアの径方向における寸法と得られた前記焼結体の径方向における寸法との誤差が、6σで0.02mm以下である請求項6ないし8のいずれか1項に記載の焼結体の製造方法。 The error between the dimension in the radial direction of the sintered gear to be manufactured and the dimension in the radial direction of the obtained sintered body is 0.02 mm or less at 6σ. The manufacturing method of the sintered compact of this.
PCT/JP2019/008337 2018-03-22 2019-03-04 Sintered body production method WO2019181454A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018054553A JP2019167566A (en) 2018-03-22 2018-03-22 Method for manufacturing a sintered body
JP2018-054553 2018-03-22

Publications (1)

Publication Number Publication Date
WO2019181454A1 true WO2019181454A1 (en) 2019-09-26

Family

ID=67986518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008337 WO2019181454A1 (en) 2018-03-22 2019-03-04 Sintered body production method

Country Status (2)

Country Link
JP (1) JP2019167566A (en)
WO (1) WO2019181454A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137039A (en) * 2000-10-30 2002-05-14 Unisia Jecs Corp Forging method of sintered material
WO2002060677A1 (en) * 2001-01-29 2002-08-08 Sumitomo Special Metals Co., Ltd. Powder molding method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002137039A (en) * 2000-10-30 2002-05-14 Unisia Jecs Corp Forging method of sintered material
WO2002060677A1 (en) * 2001-01-29 2002-08-08 Sumitomo Special Metals Co., Ltd. Powder molding method

Also Published As

Publication number Publication date
JP2019167566A (en) 2019-10-03

Similar Documents

Publication Publication Date Title
CN101579741B (en) Manufacturing method of large size thin-walled titanium alloy cylindrical part and cylindrical mould
KR20160132937A (en) Powder magnetic core manufacturing method, and powder magnetic core
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
CN104942278B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
US20090090435A1 (en) Process for Producing Magnetic Powder and Process for Producing Dust Core
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
WO2019181451A1 (en) Raw material powder, sintered gear production method, and sintered gear
WO2019181454A1 (en) Sintered body production method
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP7403525B2 (en) Manufacturing method of sintered body
WO2021060363A1 (en) Method for producing green compact and method for producing sintered body
WO2019181452A1 (en) Raw material powder, sintered gear production method, and sintered gear
WO2019181453A1 (en) Raw material powder, sintered gear production method, and sintered gear
WO2020145221A1 (en) Sintered gear manufacturing method and sintered gear
WO2019181449A1 (en) Surface treatment method, production method of sintered body with oxide film, and sintered body with oxide film
JP6152002B2 (en) Method for producing a green compact
US20220226944A1 (en) Method for manufacturing sintered gear
JP5177787B2 (en) Method for producing Fe-based sintered alloy and Fe-based sintered alloy
WO2019181417A1 (en) Sintered machine component, sintered gear, pulley, coupling, sintered machine component manufacturing method, and powder molding mold
JP2017106085A (en) Manufacturing method of sintered compact
DE4322085A1 (en) Method for the production of a moulding from a powder material
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JP2023043803A (en) sintered body
JP2020183554A (en) Manufacturing method of sputtering target
JP2019135326A (en) Method for manufacturing sintered compact

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19772289

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19772289

Country of ref document: EP

Kind code of ref document: A1