WO2002057628A1 - Compression displacement controller of refrigerating cycle - Google Patents

Compression displacement controller of refrigerating cycle Download PDF

Info

Publication number
WO2002057628A1
WO2002057628A1 PCT/JP2002/000364 JP0200364W WO02057628A1 WO 2002057628 A1 WO2002057628 A1 WO 2002057628A1 JP 0200364 W JP0200364 W JP 0200364W WO 02057628 A1 WO02057628 A1 WO 02057628A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
discharge
suction
control valve
Prior art date
Application number
PCT/JP2002/000364
Other languages
French (fr)
Japanese (ja)
Inventor
Hisatoshi Hirota
Original Assignee
Tgk Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tgk Co., Ltd. filed Critical Tgk Co., Ltd.
Priority to EP02715833A priority Critical patent/EP1363021A1/en
Publication of WO2002057628A1 publication Critical patent/WO2002057628A1/en
Priority to US10/217,556 priority patent/US20030035733A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1886Open (not controlling) fluid passage
    • F04B2027/1895Open (not controlling) fluid passage between crankcase and suction chamber

Definitions

  • the present invention relates to a compression capacity control device for a refrigeration cycle used for an air conditioner for a vehicle or the like.
  • the compressor used in the refrigeration cycle of an automotive air conditioner cannot control the rotation speed because it is directly connected to the engine by a belt. Therefore, in order to obtain an appropriate cooling capacity without being restricted by the engine speed, a variable displacement compressor that can change the compression capacity (discharge rate) is used.
  • Such a variable displacement compressor generally compresses refrigerant sucked from a suction chamber leading to a suction pipe and discharges the compressed refrigerant into a discharge chamber leading to a discharge pipe.
  • the discharge amount of the refrigerant is changed by the pressure change.
  • an electromagnetic clutch or the like is provided on a part of a pulley that receives rotation of a belt directly connected to an engine in order to prevent the compressor from being driven in an operating state where it is not necessary to compress the refrigerant.
  • the equipment cost was incurred. Disclosure of the invention
  • an object of the present invention is to provide a compression capacity control device for a refrigeration cycle that does not require a clutch for preventing the operation of the compressor and can greatly reduce the cost of the device.
  • a compression capacity control device for a refrigeration cycle compresses refrigerant sucked from a suction chamber leading to a suction pipe, discharges the compressed refrigerant to a discharge chamber leading to a discharge pipe, and uses an electromagnetic control valve.
  • a compression capacity control device for a refrigeration cycle having a variable capacity compressor in which the discharge amount of refrigerant is changed by a change in pressure in a pressure-controlled pressure regulating chamber. When the solenoid valve is not energized, the variable displacement compressor is set to a variable discharge range with a minimum discharge amount.
  • the electromagnetic control valve communicates between the pressure regulating chamber and the discharge chamber such that the pressure difference between at least one of the pressure in the pressure regulating chamber and the pressure in the suction chamber and the pressure in the discharge chamber is maintained at a predetermined pressure.
  • the pressure difference may be changed by changing the electromagnetic force of the electromagnetic control valve to change the pressure of the pressure regulating chamber, thereby controlling the discharge amount of the refrigerant.
  • a biasing means is provided for maintaining the electromagnetic control valve in the open state when the electromagnetic control valve is not energized. May be set to the minimum discharge amount.
  • a suction path opening / closing valve that closes between the suction pipe line and the suction chamber when the pressure difference between the discharge chamber and the suction chamber becomes equal to or less than a predetermined value may be provided.
  • FIG. 1 is a longitudinal sectional view showing the overall configuration of a compression capacity control device for a refrigeration cycle according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a capacity control solenoid valve according to a second embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view showing an overall configuration of a compression capacity control device for a refrigeration cycle according to a third embodiment of the present invention.
  • reference numeral 10 denotes a swash plate type variable displacement compressor which is used for an air conditioning refrigeration cycle of an automobile.
  • R134A or the like is used as the refrigerant, but the present invention may be applied to a refrigeration cycle using carbon dioxide as the refrigerant.
  • Reference numeral 1 denotes a rotating shaft disposed in an airtight crank chamber 12 (pressure regulating chamber), which is a rotary shaft driven by a drive belt (not shown) directly connected to the engine. 3 is connected to the axis position, and the rotation axis The swing plate 14 arranged in the crank chamber 12 at an angle with respect to 11 swings.
  • a piston 17 is arranged reciprocally in a cylinder 15 arranged in a peripheral part in the crank chamber 12, and the piston 17 and the rocking plate 14 are connected by a rod 18. I have.
  • Refrigerant is fed into the suction chamber 3 from the upstream side of the evaporator (not shown) via the suction pipe 1, and from the discharge chamber 4 to the downstream side of the condenser (not shown).
  • the high-pressure refrigerant is sent out via the discharge line 2.
  • the tilt angle of the oscillating plate 14 changes depending on the pressure in the crank chamber 12 (crank chamber pressure P c), and the amount of refrigerant discharged from the cylinder 15 (ie, , Compression capacity).
  • the discharge amount is often large when the oscillating plate 14 is inclined as shown by the solid line, and decreased when it is not inclined as shown by the two-dot chain line.
  • the discharge amount becomes zero.
  • the discharge amount should not be less than about 3 to 5%.
  • Such an operation state in which the discharge amount is minimum is called minimum operation.
  • a minimum securing spring 19 is publicly known, and has, for example, a configuration in which a corrugated panel and a coil panel are combined.
  • Reference numeral 20 denotes a capacity control solenoid valve (electromagnetic control valve) for electromagnetic solenoid control for performing compression capacity control by automatically controlling the crank chamber pressure (P c).
  • 21 is an electromagnetic coil and 22 is a fixed iron core.
  • the movable iron core 23 and the valve body 25 are arranged so as to pass through the fixed iron core 22 and are connected by an axially movable rod 24, and are urged by compression coil springs 27, 28 from both ends. ing.
  • the biasing force of the two compression coil springs 27, 28 is set to be larger in the valve-opening spring 28 than in the valve-closing spring 27.
  • the valve seat 26 is formed between the crank chamber communication passage 5 communicating with the crank chamber 12 and the discharge chamber communication passage 6 communicating with the discharge chamber 4, and the valve body 25 is connected to the valve seat from the crank chamber communication passage 5 side. It is arranged facing 26.
  • the communication between the crank chamber communication passage 5 and the suction pipe line 1 is communicated via a thin leak passage 7.
  • the differential pressure (Pd_Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) acts on the valve body 25 in the opening direction, and in the closing direction, the electromagnetic force of the displacement control solenoid valve 20
  • the force (including the biasing force of the compression coil springs 27 and 28) acts.
  • the differential pressure (Pd—Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) is The valve body 25 is opened and closed in accordance with the fluctuation, and the differential pressure (Pd-Pc) is kept constant, whereby the crank chamber pressure (Pc) is controlled to a value corresponding to the discharge pressure (Pd), and the compression is performed.
  • the volume (discharge volume) is kept constant.
  • the electromagnetic force of the displacement control solenoid valve 20 is increased, the pressure difference (Pd—Pc) that is kept constant increases, so that the crank chamber pressure (Pc) moves away from the discharge pressure (Pd). And the inclination angle of the swing plate 14 with respect to the rotating shaft 11 increases, so that the refrigerant discharge amount increases.
  • the current supplied to the electromagnetic coil 21 is controlled by detecting signals from the engine, the temperature inside and outside the vehicle, evaporator sensors, and other sensors for detecting various conditions. And a control signal based on the calculation result is sent from the control unit 40 to the electromagnetic coil 21 to be performed.
  • the drive circuit of the electromagnetic coil 21 is not shown.
  • the compressor 10 enters the minimum operation state, so that even when it is not necessary to operate the compressor 10, the rotating shaft 11 can be operated. It can be kept in a state of being driven to rotate.
  • FIG. 2 shows a displacement control solenoid valve 20 according to a second embodiment of the present invention.
  • the compressor 10 is the same as that of the first embodiment and is not shown.
  • leak paths will be arranged as appropriate.
  • a piston rod 25p having the same pressure receiving area as the valve seat 26 is provided on the back side of the valve body 25, and suction is performed in a space facing the back surface of the piston rod 25p.
  • the chamber communication passage 8 is connected, the crank chamber communication passage 5 is connected to the space facing the side surface of the piston rod 25 p, and the discharge chamber connection is provided in the space behind the valve seat 26 when viewed from the valve body 25 side. Passage 6 is connected.
  • crank chamber pressure (P c) applied to the piston rod 25 p and the valve body 25, etc. is canceled, and the differential pressure (P d -P d) between the discharge pressure (P d) and the suction pressure (P s) s) causes the valve body 25 to open and close, which causes the crank chamber 12 and the discharge chamber
  • valve body 25 Due to the difference between the urging forces of 7, 28, the valve body 25 is opened away from the valve seat 26, A state in which the minimum operation is maintained.
  • the pressure difference between at least one of the pressure (Pc) in the crank chamber 12 and the pressure (Ps) in the suction pipe 1 and the pressure (Pd) in the discharge chamber 4 is reduced to a predetermined pressure difference.
  • the pressure difference between the crank chamber 12 and the discharge chamber 4 is changed by changing the electromagnetic force of the displacement control solenoid valve 20 by changing the electromagnetic force of the displacement control solenoid valve 20 to maintain the pressure (Pc ) Can be applied to a device in which the discharge amount changes accordingly, and further to a device controlled by another method.
  • FIG. 3 shows a third embodiment of the present invention.
  • a valve body 32 disposed on a valve seat 31 formed between the suction pipe 1 and the suction chamber 3 so as to face from the suction pipe 1 side is provided with a compression coil spring in a valve closing direction. It is arranged biased by 33.
  • Reference numeral 34 denotes a spring receiver in which a large cutout is formed so as not to hinder the passage of the refrigerant.
  • a pressure receiving piston 35 that receives the pressure (Pd) of the discharge chamber 4 and the pressure (P s) of the suction chamber 3 from both sides is connected to the valve body 32, and the pressure (Pd) of the discharge chamber 4 and the suction chamber
  • the pressure difference (Pd_Ps) from the pressure (Ps) in Step 3 is larger than a certain value
  • the valve body 32 separates from the valve seat 31 and the suction passage opening / closing valve 30 is opened.
  • (Pd-Ps) becomes smaller than a certain value, the valve element 32 is pressed against the valve seat 31, and the suction path on-off valve 30 is closed.
  • the low-pressure refrigerant in the suction line 1 is not sucked into the compressor 10 during the minimum operation, so that the fins of the evaporator do not freeze during the minimum operation when the load is small as in winter. be able to.
  • variable displacement compressor maintains the state of the minimum discharge amount in the variable range in a state where power is not supplied to the electromagnetic control valve, so that the compressor is not operated. This eliminates the need for a clutch, thus greatly reducing equipment costs.

Abstract

A compression displacement controller of a refrigerating cycle, comprising a variable displacement compressor (10) for compressing refrigerant sucked from a suction chamber (3) connected to a suction line (1), discharging the refrigerant to a discharge chamber (4) connected to a discharge line (2), and varying the discharge amount of the refrigerant due to a pressure variation in a pressure regulating chamber (12) pressure-controlled by a solenoid control valve (20), wherein, when an electric power is not supplied to the solenoid control valve (20), the solenoid control valve (20) disposed between the discharge chamber (4) and the pressure regulating valve (12) is held in an open state so that the variable displacement compressor (10) can be brought into a minimum discharge amount in a variable range, whereby a clutch to disable the operation of the variable displacement compressor (10) can be eliminated, and an installation cost can be reduced remarkably.

Description

明 細 書 冷凍サイクルの圧縮容量制御装置 技術分野  Description Refrigeration cycle compression capacity control device Technical field
この発明は、 自動車用空調装置等に用いられる冷凍サイクルの圧縮容量制御装 置に関する。 背景技術  The present invention relates to a compression capacity control device for a refrigeration cycle used for an air conditioner for a vehicle or the like. Background art
自動車用空調装置の冷凍サイクルに用いられる圧縮機は、 エンジンにベルトで 直結されているので回転数制御を行うことができない。 そこで、 エンジンの回転 数に制約されることなく適切な冷房能力を得るために、 圧縮容量 (吐出量) を変 えることができる容量可変圧縮機が用いられている。  The compressor used in the refrigeration cycle of an automotive air conditioner cannot control the rotation speed because it is directly connected to the engine by a belt. Therefore, in order to obtain an appropriate cooling capacity without being restricted by the engine speed, a variable displacement compressor that can change the compression capacity (discharge rate) is used.
そのような容量可変圧縮機は一般に、 吸入管路に通じる吸入室から吸入した冷 媒を圧縮して吐出管路に通じる吐出室に吐出し、 電磁制御弁等で圧力制御される 調圧室の圧力変化により冷媒の吐出量を変化させるようになつている。  Such a variable displacement compressor generally compresses refrigerant sucked from a suction chamber leading to a suction pipe and discharges the compressed refrigerant into a discharge chamber leading to a discharge pipe. The discharge amount of the refrigerant is changed by the pressure change.
従来の装置においては、 冷媒を圧縮する必要がない運転状態のときに圧縮機を 駆動しないようにするために、 エンジンに直結されたベルトの回転を受けるプー リ一部分に電磁クラツチ等が設けられており、 圧縮機を作動させないようにする ためにわざわざ装置コストがかかっていた。 発明の開示  In a conventional device, an electromagnetic clutch or the like is provided on a part of a pulley that receives rotation of a belt directly connected to an engine in order to prevent the compressor from being driven in an operating state where it is not necessary to compress the refrigerant. In order to prevent the operation of the compressor, the equipment cost was incurred. Disclosure of the invention
そこで本発明は、 圧縮機を作動させないようにするためのクラッチを必要とせ ず、 装置コストを大幅に低減することができる冷凍サイクルの圧縮容量制御装置 を提供することを目的とする。  Therefore, an object of the present invention is to provide a compression capacity control device for a refrigeration cycle that does not require a clutch for preventing the operation of the compressor and can greatly reduce the cost of the device.
上記の目的を達成するため、 本発明の冷凍サイクルの圧縮容量制御装置は、 吸 入管路に通じる吸入室から吸入した冷媒を圧縮して吐出管路に通じる吐出室に吐 出し、 電磁制御弁により圧力制御される調圧室の圧力変化によって冷媒の吐出量 を変化させるようにした容量可変圧縮機を有する冷凍サイクルの圧縮容量制御装 置において、 電磁制御弁への通電がない状態においては、 容量可変圧縮機が可変 範囲のミニマムの吐出量の状態になるようにしたものである。 In order to achieve the above object, a compression capacity control device for a refrigeration cycle according to the present invention compresses refrigerant sucked from a suction chamber leading to a suction pipe, discharges the compressed refrigerant to a discharge chamber leading to a discharge pipe, and uses an electromagnetic control valve. A compression capacity control device for a refrigeration cycle having a variable capacity compressor in which the discharge amount of refrigerant is changed by a change in pressure in a pressure-controlled pressure regulating chamber. When the solenoid valve is not energized, the variable displacement compressor is set to a variable discharge range with a minimum discharge amount.
なお、 電磁制御弁が、 調圧室の圧力と吸入室の圧力の少なくとも一方と吐出室 の圧力との差圧を所定の差圧に保つように、 調圧室と吐出室との間を連通及び閉 塞し、 電磁制御弁の電磁力を変化させることにより差圧が変化して調圧室の圧力 が変化し、 冷媒の吐出量が制御されるようにしたものであってもよい。  The electromagnetic control valve communicates between the pressure regulating chamber and the discharge chamber such that the pressure difference between at least one of the pressure in the pressure regulating chamber and the pressure in the suction chamber and the pressure in the discharge chamber is maintained at a predetermined pressure. The pressure difference may be changed by changing the electromagnetic force of the electromagnetic control valve to change the pressure of the pressure regulating chamber, thereby controlling the discharge amount of the refrigerant.
そして、 電磁制御弁への通電がない状態の時に電磁制御弁を開状態に維持する 付勢手段が設けられており、 電磁制御弁が開状態を維持することによって容量可 変圧縮機が可変範囲のミニマムの吐出量の状態になるようにしてもよい。  A biasing means is provided for maintaining the electromagnetic control valve in the open state when the electromagnetic control valve is not energized. May be set to the minimum discharge amount.
また、 吐出室と吸入室との間の差圧が所定以下になると吸入管路と吸入室との 間を閉じる吸入路開閉弁が設けられていてもよい。  Further, a suction path opening / closing valve that closes between the suction pipe line and the suction chamber when the pressure difference between the discharge chamber and the suction chamber becomes equal to or less than a predetermined value may be provided.
本発明の上記および他の目的、 特徴および利点は本発明の例として好ましい実 施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。 図面の簡単な説明  The above and other objects, features and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings which illustrate preferred embodiments of the present invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施例の冷凍サイクルの圧縮容量制御装置の全体構成 を示す縦断面図である。  FIG. 1 is a longitudinal sectional view showing the overall configuration of a compression capacity control device for a refrigeration cycle according to a first embodiment of the present invention.
図 2は、 本発明の第 2の実施例の容量制御電磁弁の縦断面図である。  FIG. 2 is a longitudinal sectional view of a capacity control solenoid valve according to a second embodiment of the present invention.
図 3は、 本発明の第 3の実施例の冷凍サイクルの圧縮容量制御装置の全体構成 を示す縦断面図である。 発明を実施するための最良の形態  FIG. 3 is a longitudinal sectional view showing an overall configuration of a compression capacity control device for a refrigeration cycle according to a third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
図面を参照して本発明の実施例を説明する。  Embodiments of the present invention will be described with reference to the drawings.
図 1において、 1 0は斜板式の容量可変圧縮機であり、 自動車の空調用冷凍サ ィクルに用いられているものである。 冷媒としては R 1 3 4 A等が用いられるが、 二酸化炭素を冷媒とする冷凍サイクルに本発明を適用してもよい。  In FIG. 1, reference numeral 10 denotes a swash plate type variable displacement compressor which is used for an air conditioning refrigeration cycle of an automobile. R134A or the like is used as the refrigerant, but the present invention may be applied to a refrigeration cycle using carbon dioxide as the refrigerant.
1 1は、 気密に構成されたクランク室 1 2 (調圧室) 内に配置された回転軸で あり、 エンジンに直結された駆動ベルト (図示せず) によって回転駆動されるプ ーリ一 1 3の軸位置に連結されていて、 回転軸 1 1の回転にしたがって、 回転軸 1 1に対して傾斜してクランク室 1 2内に配置された揺動板 1 4が揺動する。 クランク室 1 2内の周辺部に配置されたシリンダ 1 5内には、 ピストン 1 7が 往復動自在に配置されており、 ロッド 1 8によってピストン 1 7と揺動板 1 4と が連結されている。 Reference numeral 1 denotes a rotating shaft disposed in an airtight crank chamber 12 (pressure regulating chamber), which is a rotary shaft driven by a drive belt (not shown) directly connected to the engine. 3 is connected to the axis position, and the rotation axis The swing plate 14 arranged in the crank chamber 12 at an angle with respect to 11 swings. A piston 17 is arranged reciprocally in a cylinder 15 arranged in a peripheral part in the crank chamber 12, and the piston 17 and the rocking plate 14 are connected by a rod 18. I have.
その結果、 揺動板 1 4が揺動すると、 ピストン 1 7がシリンダ 1 5内で往復動 して、 吸入室 3からシリンダ 1 5内に低圧 (吸入圧力 P s ) の冷媒が吸入され、 その冷媒がシリンダ 1 5内で圧縮されて、 高圧 (吐出圧力 P d ) になった冷媒が 吐出室 4に吐出される。  As a result, when the oscillating plate 14 oscillates, the piston 17 reciprocates in the cylinder 15, and a low-pressure (suction pressure P s) refrigerant is sucked into the cylinder 15 from the suction chamber 3. The refrigerant is compressed in the cylinder 15, and the high-pressure refrigerant (discharge pressure P d) is discharged into the discharge chamber 4.
吸入室 3には、 その上流側の蒸発器 (図示せず) 側から吸入管路 1を経由して 冷媒が送り込まれ、 吐出室 4からはその下流側の凝縮器 (図示せず) 側へ吐出管 路 2を経由して高圧冷媒が送り出される。  Refrigerant is fed into the suction chamber 3 from the upstream side of the evaporator (not shown) via the suction pipe 1, and from the discharge chamber 4 to the downstream side of the condenser (not shown). The high-pressure refrigerant is sent out via the discharge line 2.
揺動板 1 4の傾斜角度はクランク室 1 2の圧力 (クランク室圧力 P c ) によつ て変化し、 その揺動板 1 4の傾斜角度によってシリンダ 1 5からの冷媒の吐出量 (即ち、 圧縮容量) が変化する。  The tilt angle of the oscillating plate 14 changes depending on the pressure in the crank chamber 12 (crank chamber pressure P c), and the amount of refrigerant discharged from the cylinder 15 (ie, , Compression capacity).
吐出量は、 揺動板 1 4が実線で示されるように傾斜している時が多く、 二点鎖 線で示されるように傾斜していない時は少なくなる。 そして、 揺動板 1 4が回転 軸 1 1に対して垂直になれば吐出量はゼロになる。  The discharge amount is often large when the oscillating plate 14 is inclined as shown by the solid line, and decreased when it is not inclined as shown by the two-dot chain line. When the rocking plate 14 is perpendicular to the rotation axis 11, the discharge amount becomes zero.
ただし、 揺動板 1 4が次第に傾斜のない状態 (二点鎖線に近づく状態) に移行 するにしたがって、 回転軸 1 1を囲んで装着されたミニマム確保パネ 1 9が揺動 板 1 4によって次第に圧縮される。  However, as the rocking plate 14 gradually shifts to a state without inclination (a state approaching the two-dot chain line), the minimum securing panel 19 mounted around the rotating shaft 11 is gradually turned by the rocking plate 14. Compressed.
その結果、 ミニマム確保バネ 1 9から揺動板 1 4への反力が次第に大きくなつ て、 揺動板 1 4が回転軸 1 1に対して垂直の向きまでは到達せず、 吐出量が最大 吐出量の例えば 3〜 5 %程度より少なくならないようになっている。  As a result, the reaction force from the minimum securing spring 19 to the oscillating plate 14 gradually increases, and the oscillating plate 14 does not reach the direction perpendicular to the rotating shaft 11 and the discharge amount is maximized. For example, the discharge amount should not be less than about 3 to 5%.
そのような、 吐出量がミニマムの運転状態をミニマム運転という。 なお、 その ようなミニマム確保バネ 1 9は公知であり、 例えば波状パネとコイルパネとを組 み合わせた構成になっている。  Such an operation state in which the discharge amount is minimum is called minimum operation. Such a minimum securing spring 19 is publicly known, and has, for example, a configuration in which a corrugated panel and a coil panel are combined.
2 0は、 クランク室圧力 (P c ) を自動制御して圧縮容量制御を行うための電 磁ソレノイド制御の容量制御電磁弁 (電磁制御弁) である。 2 1は電磁コイル、 2 2は固定鉄芯である。 可動鉄芯 23と弁体 25は、 固定鉄芯 22内を通過する状態に配置されて軸線 方向に進退自在なロッド 24によつて連結され、 両端側から圧縮コィルスプリン グ 27, 28によって付勢されている。 Reference numeral 20 denotes a capacity control solenoid valve (electromagnetic control valve) for electromagnetic solenoid control for performing compression capacity control by automatically controlling the crank chamber pressure (P c). 21 is an electromagnetic coil and 22 is a fixed iron core. The movable iron core 23 and the valve body 25 are arranged so as to pass through the fixed iron core 22 and are connected by an axially movable rod 24, and are urged by compression coil springs 27, 28 from both ends. ing.
29は、 シール用の〇リングである。 なお、 二つの圧縮コイルスプリング 27, 28の付勢力は、 開弁用スプリング 28の方が閉弁用スプリング 27より大きく 設定されている。  29 is an o-ring for sealing. The biasing force of the two compression coil springs 27, 28 is set to be larger in the valve-opening spring 28 than in the valve-closing spring 27.
弁座 26は、 クランク室 12に連通するクランク室連通路 5と吐出室 4に連通 する吐出室連通路 6との間に形成されており、 弁体 25がクランク室連通路 5側 から弁座 26に対向して配置されている。 クランク室連通路 5と吸入管路 1との 間は、 細いリ一ク路 7を介して連通している。  The valve seat 26 is formed between the crank chamber communication passage 5 communicating with the crank chamber 12 and the discharge chamber communication passage 6 communicating with the discharge chamber 4, and the valve body 25 is connected to the valve seat from the crank chamber communication passage 5 side. It is arranged facing 26. The communication between the crank chamber communication passage 5 and the suction pipe line 1 is communicated via a thin leak passage 7.
このような構成により、 弁体 25には吐出圧力 (Pd) とクランク室圧力 (P c) との差圧 (Pd_Pc) が開き方向に作用し、 閉じ方向には、 容量制御電磁 弁 20の電磁力 (圧縮コイルスプリング 27, 28の付勢力を含む) が作用する。 したがって、 電磁コイル 21への通電電流値が一定で容量制御電磁弁 20の電 磁力が一定の状態では、 吐出圧力 (Pd) とクランク室圧力 (Pc) の差圧 (P d— P c) の変動に伴って弁体 25が開閉されて差圧 (Pd— Pc) が一定に維 持され、 それによりクランク室圧力 (P c) が吐出圧力 (Pd) に対応する値に 制御されて、 圧縮容量 (吐出量) が一定に維持される。  With such a configuration, the differential pressure (Pd_Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) acts on the valve body 25 in the opening direction, and in the closing direction, the electromagnetic force of the displacement control solenoid valve 20 The force (including the biasing force of the compression coil springs 27 and 28) acts. Therefore, when the current flowing through the electromagnetic coil 21 is constant and the electromagnetic force of the displacement control solenoid valve 20 is constant, the differential pressure (Pd—Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) is The valve body 25 is opened and closed in accordance with the fluctuation, and the differential pressure (Pd-Pc) is kept constant, whereby the crank chamber pressure (Pc) is controlled to a value corresponding to the discharge pressure (Pd), and the compression is performed. The volume (discharge volume) is kept constant.
そして、 電磁コイル 21への通電電流値を変化させて容量制御電磁弁 20の電 磁力を変えると、 それに対応して、 一定に保たれる差圧 (Pd— P c) が変化し、 それによつて圧縮容量 (吐出量) が異なるレベルで一定に維持された状態になる。 即ち、 容量制御電磁弁 20の電磁力が小さくされると、 一定に保たれる差圧 (Pd— Pc) が小さくなるので、 クランク室圧力 (Pc) が吐出圧力 (Pd) に近づく方向に上昇し、 揺動板 14が回転軸 1 1に対して垂直になる方向に近づ いて冷媒の吐出量が小さくなる。  When the electromagnetic current of the displacement control solenoid valve 20 is changed by changing the value of the current flowing through the solenoid coil 21, the differential pressure (Pd-Pc) that is kept constant changes correspondingly. Thus, the compression capacity (discharge rate) is kept constant at different levels. That is, when the electromagnetic force of the displacement control solenoid valve 20 is reduced, the constant pressure difference (Pd-Pc) decreases, so that the crank chamber pressure (Pc) increases in a direction approaching the discharge pressure (Pd). However, the swinging plate 14 approaches a direction perpendicular to the rotation axis 11 and the refrigerant discharge amount decreases.
逆に、 容量制御電磁弁 20の電磁力が大きくされると、 一定に保たれる差圧 (Pd— Pc) が大きくなるので、 クランク室圧力 (P c) が吐出圧力 (Pd) から遠ざかる方向に下がり、 回転軸 11に対する揺動板 14の傾斜角度が大きく なって、 冷媒の吐出量が大きくなる。 なお、 電磁コイル 2 1への通電電流値の制御は、 エンジン、 車室内外の温度、 蒸発器センサその他各種条件を検知する複数のセンサからの検知信号が、 C P U 等を内蔵する制御部 4 0に入力され、 その演算結果に基づく制御信号が制御部 4 0から電磁コイル 2 1に送られて行われる。 電磁コイル 2 1の駆動回路は、 図示 が省略されている。 Conversely, if the electromagnetic force of the displacement control solenoid valve 20 is increased, the pressure difference (Pd—Pc) that is kept constant increases, so that the crank chamber pressure (Pc) moves away from the discharge pressure (Pd). And the inclination angle of the swing plate 14 with respect to the rotating shaft 11 increases, so that the refrigerant discharge amount increases. The current supplied to the electromagnetic coil 21 is controlled by detecting signals from the engine, the temperature inside and outside the vehicle, evaporator sensors, and other sensors for detecting various conditions. And a control signal based on the calculation result is sent from the control unit 40 to the electromagnetic coil 21 to be performed. The drive circuit of the electromagnetic coil 21 is not shown.
そして、 電磁コイル 2 1への通電が停止された状態では、 容量制御電磁弁 2 0 の弁体 2 5を付勢する二つの圧縮コイルスプリング 2 7 , 2 8の付勢力の差から、 弁体 2 5が弁座 2 6から離れた開状態になる。  When the power supply to the electromagnetic coil 21 is stopped, the difference between the urging forces of the two compression coil springs 27 and 28 for urging the valve body 25 of the displacement control electromagnetic valve 20 indicates the valve body. 25 is opened away from the valve seat 26.
すると、 吐出圧力 (P d ) とクランク室圧力 (P c ) との差圧がなくなって (即ち、 P d— P c 0 ) 揺動板 1 4が回転軸 1 1に対して垂直の向きになろう とするが、 その手前で、 揺動板 1 4の傾斜状態がミニマム確保パネ 1 9からの反 力とバランスして、 圧縮機 1 0はミニマム運転を維持する状態になる。  Then, the differential pressure between the discharge pressure (P d) and the crank chamber pressure (P c) disappears (that is, P d — P c 0). Before this, the tilting state of the rocking plate 14 is balanced with the reaction force from the minimum securing panel 19, and the compressor 10 is in a state of maintaining the minimum operation.
このように、 容量制御電磁弁 2 0の電磁コイル 2 1への通電を止めれば圧縮機 1 0がミニマム運転状態になるので、 圧縮機 1 0を運転する必要がない場合でも 回転軸 1 1を回転駆動させた状態のままにしておくことができる。  In this way, if the power supply to the electromagnetic coil 21 of the displacement control solenoid valve 20 is stopped, the compressor 10 enters the minimum operation state, so that even when it is not necessary to operate the compressor 10, the rotating shaft 11 can be operated. It can be kept in a state of being driven to rotate.
図 2は、 本発明の第 2の実施例の容量制御電磁弁 2 0を示しており、 圧縮機 1 0は第 1の実施例と同様なので図示を省略してある。 また、 リーク路は適宜配置 される。  FIG. 2 shows a displacement control solenoid valve 20 according to a second embodiment of the present invention. The compressor 10 is the same as that of the first embodiment and is not shown. In addition, leak paths will be arranged as appropriate.
この実施例においては、 弁体 2 5の裏側に弁座 2 6と受圧面積の等しいピストン ロッド 2 5 pがー体に設けられていて、 ピストンロッド 2 5 pの裏面に面する空 間に吸入室連通路 8が接続され、 ピストンロッド 2 5 pの側面に面する空間にク ランク室連通路 5が接続され、 弁体 2 5側から見て弁座 2 6の裏側の空間に吐出 室連通路 6が接続されている。 In this embodiment, a piston rod 25p having the same pressure receiving area as the valve seat 26 is provided on the back side of the valve body 25, and suction is performed in a space facing the back surface of the piston rod 25p. The chamber communication passage 8 is connected, the crank chamber communication passage 5 is connected to the space facing the side surface of the piston rod 25 p, and the discharge chamber connection is provided in the space behind the valve seat 26 when viewed from the valve body 25 side. Passage 6 is connected.
その結果、 ピストンロッド 2 5 pと弁体 2 5等にかかるクランク室圧力 (P c ) がキャンセルされて、 吐出圧力 (P d) と吸入圧力 (P s ) との差圧 (P d 一 P s ) によって弁体 2 5が開閉動作し、 それによつてクランク室 1 2と吐出室 As a result, the crank chamber pressure (P c) applied to the piston rod 25 p and the valve body 25, etc. is canceled, and the differential pressure (P d -P d) between the discharge pressure (P d) and the suction pressure (P s) s) causes the valve body 25 to open and close, which causes the crank chamber 12 and the discharge chamber
4との間が開閉されて圧縮容量制御が行われる。 4 is opened and closed to control the compression capacity.
そして、 電磁コイル 2 1への通電を止めれば、 二つの圧縮コイルスプリング 2 Then, when the energization of the electromagnetic coil 2 1 is stopped, two compression coil springs 2
7 , 2 8の付勢力の差によって弁体 2 5が弁座 2 6から離れた開状態になって、 ミニマム運転が維持される状態になる。 Due to the difference between the urging forces of 7, 28, the valve body 25 is opened away from the valve seat 26, A state in which the minimum operation is maintained.
このように、 本発明は、 クランク室 12の圧力 (P c) と吸入管路 1の圧力 (P s) の少なくとも一方と吐出室 4の圧力 (Pd) との差圧を所定の差圧に保 つように、 クランク室 12と吐出室 4との間を連通及び閉塞し、 容量制御電磁弁 20の電磁力を変化させることにより上記の差圧が変化してクランク室 12の圧 力 (Pc) が変化し、 それによつて吐出量が変化するようにした装置に適用する ことができ、 さらにその他の方式で制御される装置に適用することもできる。 図 3は、 本発明の第 3の実施例を示しており、 第 1の実施例と同じ構成の装置 に、 さらに、 吐出室 4と吸入室 3との間の差圧が所定以下になると吸入管路 1と 吸入室 3との間を閉じる吸入路開閉弁 30を設けたものである。  As described above, according to the present invention, the pressure difference between at least one of the pressure (Pc) in the crank chamber 12 and the pressure (Ps) in the suction pipe 1 and the pressure (Pd) in the discharge chamber 4 is reduced to a predetermined pressure difference. The pressure difference between the crank chamber 12 and the discharge chamber 4 is changed by changing the electromagnetic force of the displacement control solenoid valve 20 by changing the electromagnetic force of the displacement control solenoid valve 20 to maintain the pressure (Pc ) Can be applied to a device in which the discharge amount changes accordingly, and further to a device controlled by another method. FIG. 3 shows a third embodiment of the present invention. In the apparatus having the same configuration as that of the first embodiment, when the pressure difference between the discharge chamber 4 and the suction chamber 3 becomes lower than a predetermined value, suction is performed. A suction passage opening / closing valve 30 that closes between the pipe 1 and the suction chamber 3 is provided.
この実施例においては、 吸入管路 1と吸入室 3との間に形成された弁座 31に 吸入管路 1側から対向する状態に配置された弁体 32が、 閉弁方向に圧縮コイル スプリング 33によって付勢されて配置されている。 34は、 冷媒の通過を妨げ ないように大きな切り欠きが形成されたスプリング受けである。  In this embodiment, a valve body 32 disposed on a valve seat 31 formed between the suction pipe 1 and the suction chamber 3 so as to face from the suction pipe 1 side is provided with a compression coil spring in a valve closing direction. It is arranged biased by 33. Reference numeral 34 denotes a spring receiver in which a large cutout is formed so as not to hinder the passage of the refrigerant.
そして、 吐出室 4の圧力 (Pd) と吸入室 3の圧力 (P s) を表裏両面から受 ける受圧ピストン 35が弁体 32に連結されており、 吐出室 4の圧力 (Pd) と 吸入室 3の圧力 (P s) との差圧 (Pd_P s) が一定より大きい状態では、 弁 体 32が弁座 31から離れて吸入路開閉弁 30が開いており、 ミニマム運転状態 になって差圧 (Pd— P s) が一定より小さくなると弁体 32が弁座 31に押し 付けられて吸入路開閉弁 30が閉じた状態になる。  A pressure receiving piston 35 that receives the pressure (Pd) of the discharge chamber 4 and the pressure (P s) of the suction chamber 3 from both sides is connected to the valve body 32, and the pressure (Pd) of the discharge chamber 4 and the suction chamber When the pressure difference (Pd_Ps) from the pressure (Ps) in Step 3 is larger than a certain value, the valve body 32 separates from the valve seat 31 and the suction passage opening / closing valve 30 is opened. When (Pd-Ps) becomes smaller than a certain value, the valve element 32 is pressed against the valve seat 31, and the suction path on-off valve 30 is closed.
このようにすれば、 ミニマム運転時に吸入管路 1の低圧冷媒が圧縮機 10に吸 い込まれないので、 冬季のように負荷の小さいときのミニマム運転時に蒸発器の フィンが凍りつかないようにすることができる。  In this way, the low-pressure refrigerant in the suction line 1 is not sucked into the compressor 10 during the minimum operation, so that the fins of the evaporator do not freeze during the minimum operation when the load is small as in winter. be able to.
本発明によれば、 電磁制御弁への通電がない状態において、 容量可変圧縮機が 可変範囲のミニマムの吐出量の状態を維持するようにしたことにより、 圧縮機を 作動させないようにするためのクラッチを必要とせず、 装置コストを大幅に低減 することができる。  According to the present invention, the variable displacement compressor maintains the state of the minimum discharge amount in the variable range in a state where power is not supplied to the electromagnetic control valve, so that the compressor is not operated. This eliminates the need for a clutch, thus greatly reducing equipment costs.
上記については単に本発明の原理を示すものである。 さらに、 多数の変形、 変 更が当業者にとって可能であり、 本発明は上記に示し、 説明した正確な構成およ び応用例に限定されるものではなく、 対応するすべての変形例および均等物は、 添付の請求項およびその均等物による本発明の範囲とみなされる。 The above merely illustrates the principles of the invention. In addition, many modifications and changes are possible for those skilled in the art and It is not limited to the examples and applications, but all corresponding variations and equivalents are considered to be within the scope of the present invention by the appended claims and their equivalents.

Claims

請 求 の 範 囲 The scope of the claims
1 . 吸入管路に通じる吸入室から吸入した冷媒を圧縮して吐出管路に通じる吐出 室に吐出し、 電磁制御弁により圧力制御される調圧室の圧力変化によって前記冷 媒の吐出量を変化させるようにした容量可変圧縮機を有する冷凍サイクルの圧縮 容量制御装置において、 1. The refrigerant sucked from the suction chamber leading to the suction pipe is compressed and discharged to the discharge chamber leading to the discharge pipe, and the discharge amount of the refrigerant is changed by the pressure change of the pressure control chamber pressure-controlled by the electromagnetic control valve. In a compression capacity control device of a refrigeration cycle having a variable capacity compressor adapted to vary,
前記電磁制御弁への通電がない状態においては、 前記容量可変圧縮機が可変範 囲のミニマムの吐出量の状態になるようにしたことを特徴とする冷凍サイクルの 圧縮容量制御装置。  A compression capacity control device for a refrigeration cycle, characterized in that the capacity variable compressor is set to a variable range of a minimum discharge amount when no power is supplied to the electromagnetic control valve.
2 . 前記電磁制御弁が、 前記調圧室の圧力と前記吸入室の圧力の少なくとも一方 と前記吐出室の圧力との差圧を所定の差圧に保つように、 前記調圧室と前記吐出 室との間を連通及び閉塞し、 前記電磁制御弁の電磁力を変化させることにより前 記差圧が変化して前記調圧室の圧力が変化し、 前記冷媒の吐出量が制御される請 求の範囲第 1項記載の冷凍サイクルの圧縮容量制御装置。 2. The pressure control chamber and the discharge chamber are configured to maintain a pressure difference between at least one of the pressure of the pressure control chamber and the pressure of the suction chamber and the pressure of the discharge chamber at a predetermined pressure difference. By communicating with and closing the chamber, and changing the electromagnetic force of the electromagnetic control valve, the differential pressure changes to change the pressure in the pressure regulating chamber, and the discharge amount of the refrigerant is controlled. 2. The compression capacity control device for a refrigeration cycle according to claim 1.
3 . 前記電磁制御弁への通電がない状態の時に前記電磁制御弁を開状態に維持す る付勢手段が設けられており、 前記電磁制御弁が開状態を維持することによって 前記容量可変圧縮機が可変範囲のミニマムの吐出量の状態になる請求の範囲第 1 又は 2項記載の冷凍サイクルの圧縮容量制御装置。  3. An urging means is provided for maintaining the electromagnetic control valve in an open state when the electromagnetic control valve is not energized, and the variable displacement compression is performed by maintaining the electromagnetic control valve in an open state. 3. The compression capacity control device for a refrigeration cycle according to claim 1, wherein the compressor is in a state of a minimum discharge amount in a variable range.
4 . 前記吐出室と前記吸入室との間の差圧が所定以下になると前記吸入管路と前 記吸入室との間を閉じる吸入路開閉弁が設けられている請求の範囲第 1、 2又は 3項記載の冷凍サイクルの圧縮容量制御装置。  4. A suction path opening / closing valve that closes between the suction pipe line and the suction chamber when a pressure difference between the discharge chamber and the suction chamber becomes a predetermined pressure or less. Or the compression capacity control device for a refrigeration cycle according to item 3.
PCT/JP2002/000364 2001-01-19 2002-01-18 Compression displacement controller of refrigerating cycle WO2002057628A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP02715833A EP1363021A1 (en) 2001-01-19 2002-01-18 Compression displacement controller of refrigerating cycle
US10/217,556 US20030035733A1 (en) 2001-01-19 2002-08-13 Compression capacity control device for refrigeration cycle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001011513 2001-01-19
JP2001-011513 2001-01-19
JP2001123750A JP4070425B2 (en) 2001-01-19 2001-04-23 Compression capacity controller for refrigeration cycle
JP2001-123750 2001-04-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/217,556 Continuation US20030035733A1 (en) 2001-01-19 2002-08-13 Compression capacity control device for refrigeration cycle

Publications (1)

Publication Number Publication Date
WO2002057628A1 true WO2002057628A1 (en) 2002-07-25

Family

ID=26607967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000364 WO2002057628A1 (en) 2001-01-19 2002-01-18 Compression displacement controller of refrigerating cycle

Country Status (4)

Country Link
US (1) US20030035733A1 (en)
EP (1) EP1363021A1 (en)
JP (1) JP4070425B2 (en)
WO (1) WO2002057628A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388719A2 (en) * 2002-08-09 2004-02-11 TGK Co., Ltd. Air conditioning system

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152674B2 (en) * 2002-06-04 2008-09-17 株式会社テージーケー Capacity control valve for variable capacity compressor
JP4107141B2 (en) * 2003-02-21 2008-06-25 株式会社デンソー Limiter device
JP2005098597A (en) * 2003-09-25 2005-04-14 Tgk Co Ltd Refrigerating cycle
US20050089417A1 (en) * 2003-10-27 2005-04-28 Thar Technologies, Inc. Positive displacement pump
JP4412184B2 (en) * 2005-01-27 2010-02-10 株式会社豊田自動織機 Variable capacity compressor
KR101186459B1 (en) * 2005-04-08 2012-09-27 이글 고오교 가부시키가이샤 Capacity control valve
JP2007177627A (en) * 2005-12-27 2007-07-12 Sanden Corp Discharge capacity control valve of variable displacement compressor
JP5064918B2 (en) 2007-07-17 2012-10-31 サンデン株式会社 Capacity control system for variable capacity compressor
EP2194273B1 (en) * 2007-10-02 2013-04-24 Sanden Corporation Variable displacement compressor
JP5075682B2 (en) * 2008-03-05 2012-11-21 サンデン株式会社 Capacity control system for variable capacity compressor
JP5281320B2 (en) * 2008-05-28 2013-09-04 サンデン株式会社 Capacity control system for variable capacity compressor
DE112014001574T5 (en) * 2013-03-22 2015-12-03 Sanden Holdings Corporation Control valve and variable displacement compressor provided with the control valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189899A (en) * 1993-12-27 1995-07-28 Toyota Autom Loom Works Ltd Variable displacement compressor
JPH07189895A (en) * 1993-12-27 1995-07-28 Toyota Autom Loom Works Ltd Clutchless one side piston type variable displacement compressor
JPH10153178A (en) * 1996-11-22 1998-06-09 Toyota Autom Loom Works Ltd Variable capacity compressor
EP0881387A2 (en) * 1997-05-26 1998-12-02 Zexel Corporation Clutchless variable capacity swash plate compressor
EP0953765A2 (en) * 1998-04-13 1999-11-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement type swash plate compressor and displacement control valve
JP2000161209A (en) * 1998-11-27 2000-06-13 Calsonic Corp Swash plate type variable displacement compressor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567947B2 (en) * 1989-06-16 1996-12-25 株式会社豊田自動織機製作所 Variable capacity compressor
JPH08109880A (en) * 1994-10-11 1996-04-30 Toyota Autom Loom Works Ltd Operation control system for variable displacement type compressor
EP0855505B1 (en) * 1997-01-24 2004-03-31 Kabushiki Kaisha Toyota Jidoshokki Variable displacement compressor
JPH1182297A (en) * 1997-09-08 1999-03-26 Toyota Autom Loom Works Ltd Variable delivery compressor
JP4160669B2 (en) * 1997-11-28 2008-10-01 株式会社不二工機 Control valve for variable displacement compressor
JP2000346241A (en) * 1999-06-07 2000-12-15 Toyota Autom Loom Works Ltd Check valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07189899A (en) * 1993-12-27 1995-07-28 Toyota Autom Loom Works Ltd Variable displacement compressor
JPH07189895A (en) * 1993-12-27 1995-07-28 Toyota Autom Loom Works Ltd Clutchless one side piston type variable displacement compressor
JPH10153178A (en) * 1996-11-22 1998-06-09 Toyota Autom Loom Works Ltd Variable capacity compressor
EP0881387A2 (en) * 1997-05-26 1998-12-02 Zexel Corporation Clutchless variable capacity swash plate compressor
EP0953765A2 (en) * 1998-04-13 1999-11-03 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Variable displacement type swash plate compressor and displacement control valve
JP2000161209A (en) * 1998-11-27 2000-06-13 Calsonic Corp Swash plate type variable displacement compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388719A2 (en) * 2002-08-09 2004-02-11 TGK Co., Ltd. Air conditioning system
EP1388719A3 (en) * 2002-08-09 2004-02-25 TGK Co., Ltd. Air conditioning system
US6966195B2 (en) 2002-08-09 2005-11-22 Tgk Co., Ltd. Air conditioning system

Also Published As

Publication number Publication date
EP1363021A1 (en) 2003-11-19
US20030035733A1 (en) 2003-02-20
JP2002285973A (en) 2002-10-03
JP4070425B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP3963619B2 (en) Compression capacity controller for refrigeration cycle
US6230507B1 (en) Hybrid compressor and control method
US6105380A (en) Refrigerating system and method of operating the same
US6484523B2 (en) Vehicle air conditioner with refrigerant flow-amount control of compressor
US6149401A (en) Variable discharge-amount compressor for refrigerant cycle
EP1036940A2 (en) Variable displacement compressor
JP3576866B2 (en) Refrigeration cycle with bypass line for vehicles
WO2002057628A1 (en) Compression displacement controller of refrigerating cycle
US20030167784A1 (en) Two-stage compressor for an automotive air conditioner, which can be driven by a vehicle running engine and an electric motor different therefrom
US7210911B2 (en) Controller for variable displacement compressor and control method for the same
JPH10141223A (en) Variable displacement compressor
US6705102B2 (en) Vehicular air-conditioner
JPH06341378A (en) Capacity control device of variable capacity compressor
JPH11324930A (en) Variable capacity type compressor
JP3490557B2 (en) Capacity control device for variable capacity compressor
JPH10274153A (en) Variable capacity type compressor
EP1186776A2 (en) Control valve for variable displacement compressor
EP1046818B1 (en) Capacity controller of a compressor with variable capacity
JP3886290B2 (en) Capacity control device for variable capacity compressor
JP3092358B2 (en) Clutchless structure in one-side piston type variable displacement compressor.
JP2002070730A (en) Pressure controller for variable displacement compressor
JP2006348957A (en) Compression capacity control device of refrigerating cycle
JPH11291752A (en) Clutch controller for externally controlled variable displacement compressor
JP2006348957A5 (en)
JP2008032026A (en) Compression capacity control device of refrigerating cycle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10217556

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002715833

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002715833

Country of ref document: EP