JPH06341378A - Capacity control device of variable capacity compressor - Google Patents

Capacity control device of variable capacity compressor

Info

Publication number
JPH06341378A
JPH06341378A JP5133083A JP13308393A JPH06341378A JP H06341378 A JPH06341378 A JP H06341378A JP 5133083 A JP5133083 A JP 5133083A JP 13308393 A JP13308393 A JP 13308393A JP H06341378 A JPH06341378 A JP H06341378A
Authority
JP
Japan
Prior art keywords
pressure
chamber
crank chamber
refrigerant
suction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5133083A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP5133083A priority Critical patent/JPH06341378A/en
Publication of JPH06341378A publication Critical patent/JPH06341378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To provide a capacity control device for variable capacity compressor which can simply obtain a capacity change according to necessity by the use of a constant differential pressure valve and can nevertheless acquire a high compressing efficiency. CONSTITUTION:A capacity control device for a variable capacity compressor is equipped with a low pressure communication path 25 which is to put a crank chamber 12 in communication with a suction chamber 20 so that a refrigerant is leaked from inside of the crank chamber 12 into the suction chamber 20, a high pressure communication path 27 which puts a discharge chamber 21 in communication with the crank chamber 12 so that the refrigerant is leaked from inside of the discharge chamber 21 into the crank chamber 12, and a solenoid-operated constant differential pressure valve 30 which opens and closes the high pressure communication path 27 so that the differential pressure Pc-Ps between the pressure Pc in the crank chamber 12 and the pressure Ps in the suction chamber 20 is adjusted to any pressure constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車用空調装置
(以下「カーエアコン」という)などの冷凍サイクル中
で冷媒を圧縮するために用いられる容量可変圧縮機の容
量制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacity control device for a capacity variable compressor used for compressing a refrigerant in a refrigeration cycle of an automobile air conditioner (hereinafter referred to as "car air conditioner").

【0002】カーエアコンの圧縮機はエンジンにベルト
で直結されているので、回転数制御を行うことができな
い。そこで、エンジンの回転数に制約されることなく適
切な冷房能力を得るために、冷媒の容量(吐出量)を変
えることができる容量可変圧縮機が用いられている。
Since the compressor of a car air conditioner is directly connected to the engine by a belt, the rotation speed cannot be controlled. Therefore, a variable capacity compressor capable of changing the capacity (discharge amount) of the refrigerant is used in order to obtain an appropriate cooling capacity without being restricted by the engine speed.

【0003】そのような容量可変圧縮機においては、エ
ンジンによって回転駆動される軸に取り付けた揺動体に
圧縮用ピストンを連結して、揺動体の角度を変えること
によってピストンのストロークを変え、それによって冷
媒の容量を変えるようにしている。
In such a variable displacement compressor, a compression piston is connected to an oscillating body mounted on a shaft which is rotationally driven by an engine, and the stroke of the piston is changed by changing the angle of the oscillating body. The capacity of the refrigerant is changed.

【0004】[0004]

【従来の技術】そのような容量可変圧縮機において、必
要に応じて揺動体の角度を変えるために、従来は、圧縮
機に吸入される冷媒の圧力を所定圧力に制御するように
電磁力によって駆動される電磁定圧弁を設け、圧縮機に
吸入される冷媒の圧力を変えることによって揺動体の角
度を変えて冷媒の容量を制御していた。
2. Description of the Related Art In such a variable capacity compressor, in order to change the angle of an oscillating body as required, conventionally, an electromagnetic force is used to control the pressure of the refrigerant sucked into the compressor to a predetermined pressure. A driven electromagnetic constant pressure valve is provided, and the pressure of the refrigerant sucked into the compressor is changed to change the angle of the oscillator to control the capacity of the refrigerant.

【0005】しかし、そのような電磁駆動の定圧弁は、
ほぼ不変な物理量である大気圧を基準としてそれと比較
する必要があるため、ベローズやダイアフラムなどを用
いて気密でしかも動作のなめらかな構成にしなければな
らないだけでなく、非常に強力な電磁装置を必要とする
ので、装置が大型でコスト高になる欠点があった。
However, such an electromagnetically driven constant pressure valve is
Since it is necessary to compare it with the atmospheric pressure, which is an almost invariable physical quantity, as a reference, it is necessary to use a bellows, a diaphragm, etc. to make an airtight and smooth structure, and also a very powerful electromagnetic device. Therefore, there is a drawback that the device is large and the cost is high.

【0006】そこで、揺動体が配置されたクランク室内
の圧力と冷媒を圧縮するシリンダに吸入される冷媒の圧
力との差圧を任意の一定差圧に保つ電磁駆動の定差圧弁
を設け、定差圧弁の電磁力を変えることによって、圧縮
機の容量を変えるようにしたものがある。
Therefore, an electromagnetically driven constant differential pressure valve for maintaining a differential pressure between the pressure in the crank chamber in which the oscillating body is arranged and the pressure of the refrigerant sucked into the cylinder for compressing the refrigerant at an arbitrary constant differential pressure is provided. There is one in which the capacity of the compressor is changed by changing the electromagnetic force of the differential pressure valve.

【0007】そこでは、シリンダで圧縮された高圧の冷
媒が吐出される吐出室とクランク室とを固定オリフィス
によっって連通させて、クランク室内の圧力を吐出室内
の圧力で補償し、吸入室内の圧力が低下したら定差圧弁
を開くことによって、クランク室内の冷媒を吸入室側へ
リークさせてその間の差圧が一定になるようになってい
る。
Here, the discharge chamber for discharging the high-pressure refrigerant compressed in the cylinder and the crank chamber are communicated with each other through a fixed orifice, and the pressure in the crank chamber is compensated by the pressure in the discharge chamber, and the suction chamber is compensated. When the pressure decreases, the constant differential pressure valve is opened so that the refrigerant in the crank chamber is leaked to the suction chamber side so that the differential pressure becomes constant.

【0008】このように、電磁駆動の定差圧弁によって
クランク室内の圧力と吸入室内の圧力との差圧を制御す
るようにすれば、小型な装置で簡単に容量変化を行うこ
とができる。
As described above, if the differential pressure between the pressure in the crank chamber and the pressure in the suction chamber is controlled by the electromagnetically driven constant differential pressure valve, the capacity can be easily changed with a small device.

【0009】[0009]

【発明が解決しようとする課題】しかし、クランク室と
吐出室とを固定オリフィスで連通させた構成では、吐出
室内の高圧冷媒が常時クランク室にリークして、吐出室
内の圧力を低下させることになる。
However, in the configuration in which the crank chamber and the discharge chamber are communicated with each other by the fixed orifice, the high-pressure refrigerant in the discharge chamber constantly leaks to the crank chamber to lower the pressure in the discharge chamber. Become.

【0010】そのため従来は、例えば圧縮能力100パ
ーセント発揮の高負荷の場合などでも、吐出室内の圧力
がクランク室へのリークによって低下して、高い圧縮効
率を得ることができない問題があった。
For this reason, conventionally, there has been a problem that even in the case of a high load, for example, where the compression capacity is 100%, the pressure in the discharge chamber is reduced by the leak to the crank chamber, and high compression efficiency cannot be obtained.

【0011】そこで本発明は、定差圧弁を用いて必要に
応じた容量変化を簡単に行うことができ、しかも高い圧
縮効率を得ることができる容量可変圧縮機の容量制御装
置を提供することを目的とする。
Therefore, the present invention is to provide a capacity control device for a capacity variable compressor which can easily change the capacity as required by using a constant differential pressure valve and can obtain high compression efficiency. To aim.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
め、本発明の容量可変圧縮機の容量制御装置は、気密に
形成されたクランク室12内で回転軸11に対して傾斜
角可変に設けられて上記回転軸11の回転運動によって
駆動されて揺動運動をする揺動体14と、上記揺動体1
4に連結されて往復動することにより吸入室20からの
冷媒をシリンダ15内に吸入して圧縮した後、吐出室2
1に吐出するピストン17とを有し、上記クランク室1
2内の圧力と上記吸入室20内の圧力との差によって上
記揺動体14の傾斜角を変化させて冷媒の吐出量を変化
させるようにした容量可変圧縮機1において、上記クラ
ンク室12と上記吸入室20とを連通させて上記クラン
ク室12内から上記吸入室20内に冷媒をリークさせる
ための低圧連通路25と、上記吐出室21と上記クラン
ク室12とを連通させて上記吐出室21内から上記クラ
ンク室12内に冷媒をリークさせるための高圧連通路2
7と、上記クランク室12内の圧力Pcと上記吸入室2
0内の圧力Psとの差圧Pc−Psを任意の一定圧に調
整するように上記高圧連通路27を開閉させる電磁駆動
の定差圧弁30とを設けたことを特徴とする。
In order to achieve the above object, a displacement control device for a variable displacement compressor according to the present invention has a variable inclination angle with respect to a rotary shaft 11 in an airtightly formed crank chamber 12. An oscillating body 14 which is provided and is oscillated by the rotational movement of the rotating shaft 11, and the oscillating body 1
4, the refrigerant from the suction chamber 20 is sucked into the cylinder 15 by being reciprocated and compressed, and then discharged into the discharge chamber 2.
And a piston 17 for discharging to the crank chamber 1
In the variable displacement compressor 1 in which the inclination angle of the oscillating body 14 is changed according to the difference between the pressure inside the suction chamber 20 and the pressure inside the suction chamber 20, the discharge amount of the refrigerant is changed. The low pressure communication passage 25 for communicating with the suction chamber 20 to leak the refrigerant from the crank chamber 12 into the suction chamber 20, and the discharge chamber 21 and the crank chamber 12 are communicated with each other. High pressure communication passage 2 for leaking the refrigerant from the inside into the crank chamber 12
7, the pressure Pc in the crank chamber 12 and the suction chamber 2
An electromagnetically driven constant differential pressure valve 30 for opening and closing the high pressure communication passage 27 is provided so as to adjust the differential pressure Pc-Ps with respect to the pressure Ps within 0 to an arbitrary constant pressure.

【0013】[0013]

【作用】吸入室20内の圧力Psが低下した場合には、
クランク室12内の圧力Pcは、低圧連通路25を介す
る吸入室20への冷媒のリークによって、差圧Pc−P
sが一定になるまで低下する。このときは、定差圧弁3
0が閉じていて、吐出室21とクランク室12との間は
連通しない。
When the pressure Ps in the suction chamber 20 decreases,
The pressure Pc in the crank chamber 12 is a differential pressure Pc-P due to the leakage of the refrigerant into the suction chamber 20 through the low pressure communication passage 25.
It decreases until s becomes constant. At this time, the constant differential pressure valve 3
0 is closed, and there is no communication between the discharge chamber 21 and the crank chamber 12.

【0014】クランク室12内の圧力Pcがさらにそれ
以下に低下したり、吸入室20内の圧力Psが上昇した
場合には、定差圧弁30が作動して高圧連通路27が開
き、吐出室21内の冷媒がクランク室12内に送られる
ことによって、クランク室12内の圧力Pcが上昇し、
クランク室12内の圧力Pcと吸入室20内の圧力Ps
との差圧が一定に維持される。
When the pressure Pc in the crank chamber 12 further decreases or the pressure Ps in the suction chamber 20 rises, the constant differential pressure valve 30 operates to open the high pressure communication passage 27, and the discharge chamber. By sending the refrigerant in 21 into the crank chamber 12, the pressure Pc in the crank chamber 12 rises,
Pressure Pc in the crank chamber 12 and pressure Ps in the suction chamber 20
The pressure difference between and is kept constant.

【0015】そして、定差圧弁30の駆動電磁力を変化
させれば、一定に維持される差圧が変わるので、それに
よって揺動体14の傾斜角が変化し、圧縮容量が変化す
る。
When the driving electromagnetic force of the constant differential pressure valve 30 is changed, the differential pressure that is maintained constant changes, so that the tilt angle of the oscillating body 14 changes and the compression capacity changes.

【0016】[0016]

【実施例】図面を参照して実施例を説明する。図1は、
カーエアコンに用いられる冷凍サイクルを示しており、
2は凝縮器、3は膨張弁、4は蒸発器である。受液器は
図示が省略されている。
Embodiments will be described with reference to the drawings. Figure 1
It shows the refrigeration cycle used for car air conditioners,
2 is a condenser, 3 is an expansion valve, and 4 is an evaporator. The liquid receiver is not shown.

【0017】圧縮機1には、蒸発器4から低圧の冷媒が
送り込まれ、圧縮機1で高圧に圧縮された冷媒が凝縮器
2に対して送り出される。以下、圧縮機1について説明
をする。
A low-pressure refrigerant is sent from the evaporator 4 to the compressor 1, and the high-pressure refrigerant compressed by the compressor 1 is sent to the condenser 2. The compressor 1 will be described below.

【0018】11は、気密に構成されたクランク室12
内に配置され、駆動プーリ13によって回転駆動される
回転軸であり、回転軸11に対して傾斜して配置された
揺動体14が、回転軸11の回転によって揺動する。
Reference numeral 11 denotes a crank chamber 12 which is airtightly constructed.
An oscillating body 14 that is disposed inside and is rotatably driven by a drive pulley 13 and that is inclined with respect to the rotating shaft 11 is oscillated by the rotation of the rotating shaft 11.

【0019】クランク室12内の周辺部に配置された複
数のシリンダ15内には、ピストン17が往復動自在に
配置されており、ロッド18によってピストン17と揺
動体14とが連結されている。
In a plurality of cylinders 15 arranged in the peripheral portion of the crank chamber 12, a piston 17 is reciprocally arranged, and a rod 18 connects the piston 17 and the oscillating body 14.

【0020】したがって、揺動体14が揺動すると、ピ
ストン17がシリンダ15内で往復動して、シリンダ1
5の奥に形成された吸入室20から冷媒をシリンダ15
内に吸入し、その冷媒を圧縮した後、吐出室21に吐出
する。
Therefore, when the oscillating body 14 oscillates, the piston 17 reciprocates in the cylinder 15 and the cylinder 1
The refrigerant is drawn from the suction chamber 20 formed in the back of the cylinder 5 into the cylinder 15
The refrigerant is sucked in, the refrigerant is compressed, and then discharged into the discharge chamber 21.

【0021】なお、各吸入室20どうし及び各吐出室2
1どうしは、各々連通路23,24を介して連通してお
り、吸入室20とクランク室12とは、リーク通路とな
る細い固定オリフィス25(低圧連通路)を介して連通
している。
The suction chambers 20 and the discharge chambers 2 are connected to each other.
One of them communicates with each other through communication passages 23 and 24, and the suction chamber 20 and the crank chamber 12 communicate with each other through a thin fixed orifice 25 (low pressure communication passage) serving as a leak passage.

【0022】揺動体14の傾斜角は、クランク室12内
の圧力Pcと吸入室20内の圧力Psとの差圧「Pc−
Ps」によって変化し、揺動体14の傾斜角が変わると
ピストン17のストロークが変化するので、圧縮機1の
吐出量(容量)が変化する。
The tilt angle of the oscillating body 14 is determined by the pressure difference "Pc-" between the pressure Pc in the crank chamber 12 and the pressure Ps in the suction chamber 20.
Ps ”, the stroke of the piston 17 changes when the tilt angle of the oscillating body 14 changes, so the discharge amount (capacity) of the compressor 1 changes.

【0023】30は電磁駆動の定差圧弁であり、電磁ソ
レノイド31に流す電流値を変えることによってクラン
ク室12内の圧力Pcと吸入室20内の圧力Psとの差
圧「Pc−Ps」を任意の一定圧に調整するためのもの
である。図2はその部分を拡大して示している。
Reference numeral 30 denotes an electromagnetically driven constant differential pressure valve, which changes the current value passed through the electromagnetic solenoid 31 to change the differential pressure "Pc-Ps" between the pressure Pc in the crank chamber 12 and the pressure Ps in the suction chamber 20. It is for adjusting to an arbitrary constant pressure. FIG. 2 shows the part in an enlarged manner.

【0024】吐出室21とクランク室12とは高圧連通
路27を介して連通可能になっており、定差圧弁30の
ボール弁32が、高圧連通路27を開閉するように吐出
室21側から弁座33に対向して、コイルバネ34で付
勢されて配置されている。この高圧連通路27以外に
は、吐出室21とクランク室12とを連通させるための
通路は形成されていない。
The discharge chamber 21 and the crank chamber 12 can communicate with each other through a high pressure communication passage 27, and a ball valve 32 of a constant differential pressure valve 30 opens and closes the high pressure communication passage 27 from the discharge chamber 21 side. It is arranged so as to face the valve seat 33 and be biased by a coil spring 34. A passage for communicating the discharge chamber 21 and the crank chamber 12 is not formed except the high pressure communication passage 27.

【0025】定差圧弁30の受圧部材35は、電磁ソレ
ノイド31の電磁コイル31aによって駆動される可動
鉄芯31bとロッド31cを介して連結されており、電
磁コイル31aへの通電電流値を考えることによって、
受圧部材35に加わる電磁力による付勢力が変化する。
The pressure receiving member 35 of the constant differential pressure valve 30 is connected to the movable iron core 31b driven by the electromagnetic coil 31a of the electromagnetic solenoid 31 via the rod 31c, and the value of the current supplied to the electromagnetic coil 31a should be considered. By
The urging force of the electromagnetic force applied to the pressure receiving member 35 changes.

【0026】受圧部材35とボール弁32との間は、高
圧連通路27の半部を介してクランク室12内と常時連
通しており、受圧部材35のもう一方の面側は、通路2
8を介して吸入室20と連通している。
The pressure receiving member 35 and the ball valve 32 are in constant communication with the inside of the crank chamber 12 through a half portion of the high pressure communication passage 27, and the other surface side of the pressure receiving member 35 is connected to the passage 2
8 communicates with the suction chamber 20.

【0027】したがって、定差圧弁30は、電磁力とコ
イルバネ34との均衡及びそれにクランク室12内の圧
力Pcと吸入室20内の圧力Psとの均衡がとれるよう
に作動し、Pc−Psが一定より小さくなると、ボール
弁32が弁座33から離れて高圧連通路27が開き、吐
出室21とクランク室12とが連通する。
Therefore, the constant differential pressure valve 30 operates so that the electromagnetic force and the coil spring 34 are balanced and the pressure Pc in the crank chamber 12 and the pressure Ps in the suction chamber 20 are balanced, and Pc-Ps is When it becomes smaller than a certain value, the ball valve 32 separates from the valve seat 33, the high pressure communication passage 27 opens, and the discharge chamber 21 and the crank chamber 12 communicate with each other.

【0028】なお、定差圧弁30は全体としてユニット
に形成されて圧縮機1に取り付けられており、リークを
防ぐ必要のある部分にはシール用のOリング39が装着
されている。40はフィルタである。
The constant differential pressure valve 30 is formed in a unit as a whole and is attached to the compressor 1, and an O-ring 39 for sealing is attached to a portion where leakage must be prevented. 40 is a filter.

【0029】図1に示される50は、定差圧弁30の電
磁コイル31aに加える電流値等を制御するための制御
部であり、膨張弁3の前後の配管に取り付けられた二つ
のサーミスタ6,7からの検出信号(即ち、冷媒温度情
報)を入力し、それに応じて電磁コイル31aに流す電
流値を制御し、その値のレベルは、設定部51からの入
力により自由に調整することができる。
Reference numeral 50 shown in FIG. 1 is a control unit for controlling the current value and the like applied to the electromagnetic coil 31a of the constant differential pressure valve 30, and the two thermistors 6 attached to the pipes before and after the expansion valve 3. The detection signal (that is, the refrigerant temperature information) from 7 is input, and the current value flowing through the electromagnetic coil 31a is controlled accordingly, and the level of the value can be freely adjusted by the input from the setting unit 51. .

【0030】このように構成された実施例装置によれ
ば、吸入室20内の圧力Psが低下した場合には、固定
オリフィス25を介する吸入室20への冷媒のリークに
よって、クランク室12内の圧力Pcが、差圧Pc−P
sが一定になるまで低下する。
According to the embodiment apparatus constructed as described above, when the pressure Ps in the suction chamber 20 is lowered, the refrigerant leaks into the suction chamber 20 through the fixed orifice 25, and thus the inside of the crank chamber 12 is closed. Pressure Pc is differential pressure Pc-P
It decreases until s becomes constant.

【0031】このように吸入室20内の圧力が低くて圧
縮機1が高負荷運転をする必要のある状態のときには、
定差圧弁30は開かず、高圧連通路27がボール弁32
によって塞がれているので、吐出室21内の冷媒はクラ
ンク室12内等へリークしない。したがって、吐出室2
1内の圧力Pdが高圧に維持される。
As described above, when the pressure in the suction chamber 20 is low and the compressor 1 needs to be operated under high load,
The constant differential pressure valve 30 does not open, and the high pressure communication passage 27 does not have the ball valve 32.
The refrigerant in the discharge chamber 21 does not leak into the crank chamber 12 or the like because it is blocked by. Therefore, the discharge chamber 2
The pressure Pd in 1 is maintained at a high pressure.

【0032】クランク室12内の圧力Pcがさらにそれ
以下に低下したり、吸入室20内の圧力Psが上昇した
場合には、定差圧弁30の力の均衡によってボール弁3
2が弁座33から離れて高圧連通路27が開き、吐出室
21内の高圧Pdの冷媒がクランク室12内に送られる
ことによって、クランク室12内の圧力Pcが上昇し、
クランク室12内の圧力Pcと吸入室20内の圧力Ps
との差圧Pc−Psが一定に維持される。
When the pressure Pc in the crank chamber 12 further drops below that or the pressure Ps in the suction chamber 20 rises, the ball valve 3 is balanced by the force balance of the constant differential pressure valve 30.
2 is separated from the valve seat 33, the high pressure communication passage 27 is opened, and the refrigerant of high pressure Pd in the discharge chamber 21 is sent into the crank chamber 12, whereby the pressure Pc in the crank chamber 12 rises,
Pressure Pc in the crank chamber 12 and pressure Ps in the suction chamber 20
The differential pressure Pc-Ps between and is maintained constant.

【0033】そして、制御部50からの制御によって定
差圧弁30の電磁コイル31に流される電流値が変われ
ば、クランク室12内の圧力Pcと吸入室20内の圧力
Psとの差圧Pc−Psが変化し、それによって揺動体
14の傾斜角が変わってピストン17のストロークが変
わり、容量が変化する。
If the value of the current passed through the electromagnetic coil 31 of the constant differential pressure valve 30 changes under the control of the control unit 50, the differential pressure Pc- between the pressure Pc in the crank chamber 12 and the pressure Ps in the suction chamber 20. Ps changes, whereby the tilt angle of the oscillating body 14 changes, the stroke of the piston 17 changes, and the capacity changes.

【0034】[0034]

【発明の効果】本発明の容量可変圧縮機の容量制御装置
によれば、圧縮機の容量を電流駆動の定差圧弁によって
容易に制御することができ、しかも、高負荷時には吐出
室からクランク室等の冷媒のリークが無いので、高い圧
縮効率で圧縮動作を行うことができる。
According to the capacity control device for a variable capacity compressor of the present invention, the capacity of the compressor can be easily controlled by a constant differential pressure valve driven by current, and moreover, when the load is high, the capacity of the discharge chamber to the crank chamber is reduced. Since there is no leakage of the refrigerant such as, the compression operation can be performed with high compression efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の容量可変圧縮機の縦断面図である。FIG. 1 is a vertical sectional view of a variable capacity compressor according to an embodiment.

【図2】実施例の定差圧弁の拡大断面図である。FIG. 2 is an enlarged cross-sectional view of a constant pressure differential valve of the embodiment.

【符号の説明】[Explanation of symbols]

1 容量可変圧縮機 11 回転軸 12 クランク室 14 揺動体 15 シリンダ 17 ピストン 20 吸入室 21 吐出室 25 固定オリフィス(低圧連通路) 27 高圧連通路 30 定差圧弁 31 電磁ソレノイド 32 ボール弁 DESCRIPTION OF SYMBOLS 1 Capacity variable compressor 11 Rotating shaft 12 Crank chamber 14 Oscillator 15 Cylinder 17 Piston 20 Suction chamber 21 Discharge chamber 25 Fixed orifice (low pressure communication passage) 27 High pressure communication passage 30 Constant differential pressure valve 31 Electromagnetic solenoid 32 Ball valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】気密に形成されたクランク室(12)内で
回転軸(11)に対して傾斜角可変に設けられて上記回
転軸(11)の回転運動によって駆動されて揺動運動を
する揺動体(14)と、 上記揺動体(14)に連結されて往復動することにより
吸入室(20)からの冷媒をシリンダ(15)内に吸入
して圧縮した後、吐出室(21)に吐出するピストン
(17)とを有し、 上記クランク室(12)内の圧力と上記吸入室(20)
内の圧力との差によって上記揺動体(14)の傾斜角を
変化させて冷媒の吐出量を変化させるようにした容量可
変圧縮機(1)において、 上記クランク室(12)と上記吸入室(20)とを連通
させて上記クランク室(12)内から上記吸入室(2
0)内に冷媒をリークさせるための低圧連通路(25)
と、 上記吐出室(21)と上記クランク室(12)とを連通
させて上記吐出室(21)内から上記クランク室(1
2)内に冷媒をリークさせるための高圧連通路(27)
と、 上記クランク室(12)内の圧力(Pc)と上記吸入室
(20)内の圧力(Ps)との差圧(Pc−Ps)を任
意の一定圧に調整するように上記高圧連通路(27)を
開閉させる電磁駆動の定差圧弁(30)とを設けたこと
を特徴とする容量制御装置。
1. A crank chamber (12) formed in an airtight manner is provided with a variable inclination angle with respect to a rotary shaft (11) and is driven by the rotary motion of the rotary shaft (11) to perform a swing motion. The oscillating body (14) is connected to the oscillating body (14) and reciprocates so that the refrigerant from the suction chamber (20) is sucked into the cylinder (15) and compressed, and then discharged to the discharge chamber (21). A discharge piston (17), and the pressure in the crank chamber (12) and the suction chamber (20).
In the variable capacity compressor (1) in which the inclination angle of the oscillating body (14) is changed by the difference between the internal pressure and the discharge amount of the refrigerant, the crank chamber (12) and the suction chamber ( 20) to communicate with the suction chamber (2) from the inside of the crank chamber (12).
0) Low pressure communication passage (25) for leaking the refrigerant into
The discharge chamber (21) and the crank chamber (12) are communicated with each other so that the crank chamber (1
2) High pressure communication passage (27) for leaking refrigerant into the inside
And the high pressure communication passage for adjusting the pressure difference (Pc-Ps) between the pressure (Pc) in the crank chamber (12) and the pressure (Ps) in the suction chamber (20) to an arbitrary constant pressure. An electromagnetically driven constant differential pressure valve (30) for opening and closing (27) is provided.
JP5133083A 1993-06-03 1993-06-03 Capacity control device of variable capacity compressor Pending JPH06341378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5133083A JPH06341378A (en) 1993-06-03 1993-06-03 Capacity control device of variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5133083A JPH06341378A (en) 1993-06-03 1993-06-03 Capacity control device of variable capacity compressor

Publications (1)

Publication Number Publication Date
JPH06341378A true JPH06341378A (en) 1994-12-13

Family

ID=15096458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5133083A Pending JPH06341378A (en) 1993-06-03 1993-06-03 Capacity control device of variable capacity compressor

Country Status (1)

Country Link
JP (1) JPH06341378A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164925A (en) * 1997-12-26 2000-12-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve for variable displacement compressors
EP1087137A2 (en) 1999-09-21 2001-03-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control of a variable displacement type compressor
EP1138946A2 (en) * 2000-03-30 2001-10-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve for variable displacement compressor
EP1179679A2 (en) * 2000-08-07 2002-02-13 Kabushiki Kaisha Toyota Jidoshokki Control valve of variable displacement compressor
EP1186777A2 (en) 2000-09-08 2002-03-13 Kabushiki Kaisha Toyota Jidoshokki Control valve for variable displacement type compressor
US6386834B1 (en) 1999-10-04 2002-05-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve of displacement variable compressor
US6389824B2 (en) 2000-02-07 2002-05-21 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Controller for variable displacement compressor
US6412294B2 (en) 2000-01-07 2002-07-02 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control device of variable displacement compressor
US6434956B1 (en) 1999-08-04 2002-08-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve and method for controlling an air-conditioning system
US6453685B2 (en) 2000-02-07 2002-09-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control apparatus and control method for variable displacement compressor
US6662582B2 (en) * 2001-07-31 2003-12-16 Tgk Co., Ltd. Displacement control valve
US6662581B2 (en) * 2001-07-25 2003-12-16 Tgk Co., Ltd. Variable displacement compressor and displacement control valve for variable displacement compressor
WO2009044781A1 (en) * 2007-10-02 2009-04-09 Sanden Corporation Variable displacement compressor
KR101332782B1 (en) * 2012-03-20 2013-11-25 한국기계연구원 Piston Pump
US10844860B2 (en) 2018-12-21 2020-11-24 Trane International Inc. Method of improved control for variable volume ratio valve

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6164925A (en) * 1997-12-26 2000-12-26 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve for variable displacement compressors
US6434956B1 (en) 1999-08-04 2002-08-20 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve and method for controlling an air-conditioning system
EP1087137A2 (en) 1999-09-21 2001-03-28 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control of a variable displacement type compressor
US6321545B1 (en) 1999-09-21 2001-11-27 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control apparatus for variable displacement type compressor
US6386834B1 (en) 1999-10-04 2002-05-14 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve of displacement variable compressor
US6412294B2 (en) 2000-01-07 2002-07-02 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control device of variable displacement compressor
US6453685B2 (en) 2000-02-07 2002-09-24 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control apparatus and control method for variable displacement compressor
US6389824B2 (en) 2000-02-07 2002-05-21 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Controller for variable displacement compressor
EP1138946A3 (en) * 2000-03-30 2003-08-20 Kabushiki Kaisha Toyota Jidoshokki Control valve for variable displacement compressor
EP1138946A2 (en) * 2000-03-30 2001-10-04 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Control valve for variable displacement compressor
EP1179679A2 (en) * 2000-08-07 2002-02-13 Kabushiki Kaisha Toyota Jidoshokki Control valve of variable displacement compressor
EP1179679A3 (en) * 2000-08-07 2003-08-13 Kabushiki Kaisha Toyota Jidoshokki Control valve of variable displacement compressor
EP1186777A2 (en) 2000-09-08 2002-03-13 Kabushiki Kaisha Toyota Jidoshokki Control valve for variable displacement type compressor
EP1186777A3 (en) * 2000-09-08 2003-12-10 Kabushiki Kaisha Toyota Jidoshokki Control valve for variable displacement type compressor
US6663356B2 (en) 2000-09-08 2003-12-16 Kabushiki Kaisha Toyota Jidoshokki Control valve for variable displacement type compressor
US6662581B2 (en) * 2001-07-25 2003-12-16 Tgk Co., Ltd. Variable displacement compressor and displacement control valve for variable displacement compressor
US6662582B2 (en) * 2001-07-31 2003-12-16 Tgk Co., Ltd. Displacement control valve
WO2009044781A1 (en) * 2007-10-02 2009-04-09 Sanden Corporation Variable displacement compressor
EP2194273A1 (en) * 2007-10-02 2010-06-09 Sanden Corporation Variable displacement compressor
EP2194273A4 (en) * 2007-10-02 2010-12-29 Sanden Corp Variable displacement compressor
US8500415B2 (en) 2007-10-02 2013-08-06 Sanden Corporation Variable displacement compressor
JP5430401B2 (en) * 2007-10-02 2014-02-26 サンデン株式会社 Variable capacity compressor
KR101332782B1 (en) * 2012-03-20 2013-11-25 한국기계연구원 Piston Pump
US10844860B2 (en) 2018-12-21 2020-11-24 Trane International Inc. Method of improved control for variable volume ratio valve
US11725661B2 (en) 2018-12-21 2023-08-15 Trane International Inc. Method of improved control for variable volume ratio valve

Similar Documents

Publication Publication Date Title
JP2001132650A (en) Compression capacity control device for refrigerating cycle
US4702677A (en) Variable displacement wobble plate type compressor with improved wobble angle return system
US4842488A (en) Slant plate type compressor with variable displacement mechanism
JPH06341378A (en) Capacity control device of variable capacity compressor
KR960001632B1 (en) Slant plate type compressor with variable displacement
JPH05288150A (en) Electromagnetic control valve
JP2003035269A (en) Variable displacement compressor and capacity control valve for variable displacement compressor
JPH02115577A (en) Variable capacity type swingable compressor
JP2003042062A (en) Capacity control valve
JPH1182296A (en) Variable delivery compressor
JPH0343685A (en) Capacity variable type oscillating compressor
WO1994011636A1 (en) Rocking swash plate type variable capacity compressor
JP2003328936A (en) Volume control valve for variable displacement compressor
JP2004011454A (en) Displacement control valve for variable displacement compressor
JPH0231799B2 (en)
JPH10141223A (en) Variable displacement compressor
JP4070425B2 (en) Compression capacity controller for refrigeration cycle
JPH01182580A (en) Variable displacement oscillating compressor
JP3490557B2 (en) Capacity control device for variable capacity compressor
JPH1182300A (en) Variable delivery compressor
WO2002101237A1 (en) Variable displacement compressor
JPS61145379A (en) Variable displacement compressor
JP3886290B2 (en) Capacity control device for variable capacity compressor
JPH06330856A (en) Capacity controller of displacement variable compressor
JPH10205443A (en) Variable displacement compressor