JP4070425B2 - Compression capacity controller for refrigeration cycle - Google Patents

Compression capacity controller for refrigeration cycle Download PDF

Info

Publication number
JP4070425B2
JP4070425B2 JP2001123750A JP2001123750A JP4070425B2 JP 4070425 B2 JP4070425 B2 JP 4070425B2 JP 2001123750 A JP2001123750 A JP 2001123750A JP 2001123750 A JP2001123750 A JP 2001123750A JP 4070425 B2 JP4070425 B2 JP 4070425B2
Authority
JP
Japan
Prior art keywords
pressure
chamber
valve
discharge
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001123750A
Other languages
Japanese (ja)
Other versions
JP2002285973A (en
Inventor
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2001123750A priority Critical patent/JP4070425B2/en
Priority to EP02715833A priority patent/EP1363021A1/en
Priority to PCT/JP2002/000364 priority patent/WO2002057628A1/en
Priority to US10/217,556 priority patent/US20030035733A1/en
Publication of JP2002285973A publication Critical patent/JP2002285973A/en
Application granted granted Critical
Publication of JP4070425B2 publication Critical patent/JP4070425B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • F04B49/225Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves with throttling valves or valves varying the pump inlet opening or the outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1809Controlled pressure
    • F04B2027/1813Crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1886Open (not controlling) fluid passage
    • F04B2027/1895Open (not controlling) fluid passage between crankcase and suction chamber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、自動車用空調装置等に用いられる冷凍サイクルの圧縮容量制御装置に関する。
【0002】
【従来の技術】
自動車用空調装置の冷凍サイクルに用いられる圧縮機は、エンジンにベルトで直結されているので回転数制御を行うことができない。そこで、エンジンの回転数に制約されることなく適切な冷房能力を得るために、圧縮容量(吐出量)を変えることができる容量可変圧縮機が用いられている。
【0003】
そのような容量可変圧縮機は一般に、吸入管路に通じる吸入室から吸入した冷媒を圧縮して吐出管路に通じる吐出室に吐出し、電磁制御弁等で圧力制御される調圧室の圧力変化により冷媒の吐出量を変化させるようになっている。
【0004】
【発明が解決しようとする課題】
従来の装置においては、冷媒を圧縮する必要がない運転状態のときに圧縮機を駆動しないようにするために、エンジンに直結されたベルトの回転を受けるプーリー部分に電磁クラッチ等が設けられており、圧縮機を作動させないようにするためにわざわざ装置コストがかかっていた。
【0005】
そこで本発明は、圧縮機を作動させないようにするためのクラッチを必要とせず、装置コストを大幅に低減することができる冷凍サイクルの圧縮容量制御装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の目的を達成するため、本発明の冷凍サイクルの圧縮容量制御装置は、吸入管路に通じる吸入室から吸入した冷媒を圧縮して吐出管路に通じる吐出室に吐出し、電磁制御弁により圧力制御される調圧室の圧力変化によって冷媒の吐出量を変化させるようにした容量可変圧縮機を有する冷凍サイクルの圧縮容量制御装置において、電磁制御弁は、調圧室の圧力と吐出室の圧力との差圧を所定の差圧に保つように、調圧室と吐出室との間を連通及び閉塞することにより調圧室の圧力を変化させ、かつ、電磁力を変化させることにより所定の差圧を変化させるものであり、さらに、調圧室と吐出室との間を連通及び閉塞させる弁体を閉弁方向に付勢する第1のスプリングと、弁体を開弁方向に付勢するよう配置されて第1のスプリングより大きな付勢力を有する第2のスプリングとを有し、通電がない状態の時に弁体を開状態に維持して容量可変圧縮機が可変範囲のミニマムの吐出量の状態になるようにしたものである。
【0009】
また、吐出室と吸入室との間の差圧が所定以下になると吸入管路と吸入室との間を閉じる吸入路開閉弁が設けられていてもよい。
【0010】
【発明の実施の形態】
図面を参照して本発明の実施例を説明する。
図1において、10は斜板式の容量可変圧縮機であり、自動車の空調用冷凍サイクルに用いられているものである。冷媒としてはR134A等が用いられるが、二酸化炭素を冷媒とする冷凍サイクルに本発明を適用してもよい。
【0011】
11は、気密に構成されたクランク室12(調圧室)内に配置された回転軸であり、エンジンに直結された駆動ベルト(図示せず)によって回転駆動されるプーリー13の軸位置に連結されていて、回転軸11の回転にしたがって、回転軸11に対して傾斜してクランク室12内に配置された揺動板14が揺動する。
【0012】
クランク室12内の周辺部に配置されたシリンダ15内には、ピストン17が往復動自在に配置されており、ロッド18によってピストン17と揺動板14とが連結されている。
【0013】
その結果、揺動板14が揺動すると、ピストン17がシリンダ15内で往復動して、吸入室3からシリンダ15内に低圧(吸入圧力Ps)の冷媒が吸入され、その冷媒がシリンダ15内で圧縮されて、高圧(吐出圧力Pd)になった冷媒が吐出室4に吐出される。
【0014】
吸入室3には、その上流側の蒸発器(図示せず)側から吸入管路1を経由して冷媒が送り込まれ、吐出室4からはその下流側の凝縮器(図示せず)側へ吐出管路2を経由して高圧冷媒が送り出される。
【0015】
揺動板14の傾斜角度はクランク室12の圧力(クランク室圧力Pc)によって変化し、その揺動板14の傾斜角度によってシリンダ15からの冷媒の吐出量(即ち、圧縮容量)が変化する。
【0016】
吐出量は、揺動板14が実線で示されるように傾斜している時が多く、二点鎖線で示されるように傾斜していない時は少なくなる。そして、揺動板14が回転軸11に対して垂直になれば吐出量はゼロになる。
【0017】
ただし、揺動板14が次第に傾斜のない状態(二点鎖線に近づく状態)に移行するにしたがって、回転軸11を囲んで装着されたミニマム確保バネ19が揺動板14によって次第に圧縮される。
【0018】
その結果、ミニマム確保バネ19から揺動板14への反力が次第に大きくなって、揺動板14が回転軸11に対して垂直の向きまでは到達せず、吐出量が最大吐出量の例えば3〜5%程度より少なくならないようになっている。
【0019】
そのような、吐出量がミニマムの運転状態をミニマム運転という。なお、そのようなミニマム確保バネ19は公知であり、例えば波状バネとコイルバネとを組み合わせた構成になっている。
【0020】
20は、クランク室圧力(Pc)を自動制御して圧縮容量制御を行うための電磁ソレノイド制御の容量制御電磁弁(電磁制御弁)である。21は電磁コイル、22は固定鉄芯である。
【0021】
可動鉄芯23と弁体25は、固定鉄芯22内を通過する状態に配置されて軸線方向に進退自在なロッド24によって連結され、両端側から圧縮コイルスプリング27,28によって付勢されている。
【0022】
29は、シール用のOリングである。なお、二つの圧縮コイルスプリング27,28の付勢力は、開弁用スプリング28の方が閉弁用スプリング27より大きく設定されている。
【0023】
弁座26は、クランク室12に連通するクランク室連通路5と吐出室4に連通する吐出室連通路6との間に形成されており、弁体25がクランク室連通路5側から弁座26に対向して配置されている。クランク室連通路5と吸入管路1との間は、細いリーク路7を介して連通している。
【0024】
このような構成により、弁体25には吐出圧力(Pd)とクランク室圧力(Pc)との差圧(Pd−Pc)が開き方向に作用し、閉じ方向には、容量制御電磁弁20の電磁力(圧縮コイルスプリング27,28の付勢力を含む)が作用する。
【0025】
したがって、電磁コイル21への通電電流値が一定で容量制御電磁弁20の電磁力が一定の状態では、吐出圧力(Pd)とクランク室圧力(Pc)の差圧(Pd−Pc)の変動に伴って弁体25が開閉されて差圧(Pd−Pc)が一定に維持され、それによりクランク室圧力(Pc)が吐出圧力(Pd)に対応する値に制御されて、圧縮容量(吐出量)が一定に維持される。
【0026】
そして、電磁コイル21への通電電流値を変化させて容量制御電磁弁20の電磁力を変えると、それに対応して、一定に保たれる差圧(Pd−Pc)が変化し、それによって圧縮容量(吐出量)が異なるレベルで一定に維持された状態になる。
【0027】
即ち、容量制御電磁弁20の電磁力が小さくされると、一定に保たれる差圧(Pd−Pc)が小さくなるので、クランク室圧力(Pc)が吐出圧力(Pd)に近づく方向に上昇し、揺動板14が回転軸11に対して垂直になる方向に近づいて冷媒の吐出量が小さくなる。
【0028】
逆に、容量制御電磁弁20の電磁力が大きくされると、一定に保たれる差圧(Pd−Pc)が大きくなるので、クランク室圧力(Pc)が吐出圧力(Pd)から遠ざかる方向に下がり、回転軸11に対する揺動板14の傾斜角度が大きくなって、冷媒の吐出量が大きくなる。
【0029】
なお、電磁コイル21への通電電流値の制御は、エンジン、車室内外の温度、蒸発器センサその他各種条件を検知する複数のセンサからの検知信号が、CPU等を内蔵する制御部40に入力され、その演算結果に基づく制御信号が制御部40から電磁コイル21に送られて行われる。電磁コイル21の駆動回路は、図示が省略されている。
【0030】
そして、電磁コイル21への通電が停止された状態では、容量制御電磁弁20の弁体25を付勢する二つの圧縮コイルスプリング27,28の付勢力の差から、弁体25が弁座26から離れた開状態になる。
【0031】
すると、吐出圧力(Pd)とクランク室圧力(Pc)との差圧がなくなって(即ち、Pd−Pc≒0)揺動板14が回転軸11に対して垂直の向きになろうとするが、その手前で、揺動板14の傾斜状態がミニマム確保バネ19からの反力とバランスして、圧縮機10はミニマム運転を維持する状態になる。
【0032】
このように、容量制御電磁弁20の電磁コイル21への通電を止めれば圧縮機10がミニマム運転状態になるので、圧縮機10を運転する必要がない場合でも回転軸11を回転駆動させた状態のままにしておくことができる。
【0033】
図2は、本発明の関連技術の容量制御電磁弁20を示しており、圧縮機10は第1の実施例と同様なので図示を省略してある。また、リーク路は適宜配置される。
【0034】
この実施例においては、弁体25の裏側に弁座26と受圧面積の等しいピストンロッド25pが一体に設けられていて、ピストンロッド25pの裏面に面する空間に吸入室連通路8が接続され、ピストンロッド25pの側面に面する空間にクランク室連通路5が接続され、弁体25側から見て弁座26の裏側の空間に吐出室連通路6が接続されている。
【0035】
その結果、ピストンロッド25pと弁体25等にかかるクランク室圧力(Pc)がキャンセルされて、吐出圧力(Pd)と吸入圧力(Ps)との差圧(Pd−Ps)によって弁体25が開閉動作し、それによってクランク室12と吐出室4との間が開閉されて圧縮容量制御が行われる。
【0036】
そして、電磁コイル21への通電を止めれば、二つの圧縮コイルスプリング27,28の付勢力の差によって弁体25が弁座26から離れた開状態になって、ミニマム運転が維持される状態になる。
【0037】
このように、本発明は、クランク室12の圧力(Pc)と吐出室4の圧力(Pd)との差圧を所定の差圧に保つように、クランク室12と吐出室4との間を連通及び閉塞し、容量制御電磁弁20の電磁力を変化させることにより上記の差圧が変化してクランク室12の圧力(Pc)が変化し、それによって吐出量が変化するようにした装置に適用することができ、さらにその他の方式で制御される装置に適用することもできる。
【0038】
図3は、本発明の第の実施例を示しており、第1の実施例と同じ構成の装置に、さらに、吐出室4と吸入室3との間の差圧が所定以下になると吸入管路1と吸入室3との間を閉じる吸入路開閉弁30を設けたものである。
【0039】
この実施例においては、吸入管路1と吸入室3との間に形成された弁座31に吸入管路1側から対向する状態に配置された弁体32が、閉弁方向に圧縮コイルスプリング33によって付勢されて配置されている。34は、冷媒の通過を妨げないように大きな切り欠きが形成されたスプリング受けである。
【0040】
そして、吐出室4の圧力(Pd)と吸入室3の圧力(Ps)を表裏両面から受ける受圧ピストン35が弁体32に連結されており、吐出室4の圧力(Pd)と吸入室3の圧力(Ps)との差圧(Pd−Ps)が一定より大きい状態では、弁体32が弁座31から離れて吸入路開閉弁30が開いており、ミニマム運転状態になって差圧(Pd−Ps)が一定より小さくなると弁体32が弁座31に押し付けられて吸入路開閉弁30が閉じた状態になる。
【0041】
このようにすれば、ミニマム運転時に吸入管路1の低圧冷媒が圧縮機10に吸い込まれないので、冬季のように負荷の小さいときのミニマム運転時に蒸発器のフィンが凍りつかないようにすることができる。
【0042】
【発明の効果】
本発明によれば、電磁制御弁への通電がない状態において、容量可変圧縮機が可変範囲のミニマムの吐出量の状態を維持するようにしたことにより、圧縮機を作動させないようにするためのクラッチを必要とせず、装置コストを大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例の冷凍サイクルの圧縮容量制御装置の全体構成を示す縦断面図である。
【図2】 本発明の関連技術の容量制御電磁弁の縦断面図である。
【図3】 本発明の第の実施例の冷凍サイクルの圧縮容量制御装置の全体構成を示す縦断面図である。
【符号の説明】
1 吸入管路
2 吐出管路
3 吸入室
4 吐出室
10 圧縮機(容量可変圧縮機)
12 クランク室(調圧室)
14 揺動板
19 ミニマム確保バネ
20 容量制御電磁弁(電磁制御弁)
27,28 圧縮コイルスプリング
30 吸入路開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compression capacity control device for a refrigeration cycle used in an automotive air conditioner or the like.
[0002]
[Prior art]
Since the compressor used in the refrigeration cycle of the air conditioner for automobiles is directly connected to the engine with a belt, the rotational speed cannot be controlled. Therefore, a variable capacity compressor capable of changing the compression capacity (discharge amount) is used in order to obtain an appropriate cooling capacity without being restricted by the rotational speed of the engine.
[0003]
Such a variable capacity compressor generally compresses the refrigerant sucked from the suction chamber leading to the suction pipe and discharges it to the discharge chamber leading to the discharge pipe, and the pressure of the pressure regulating chamber controlled by an electromagnetic control valve or the like. The refrigerant discharge amount is changed by the change.
[0004]
[Problems to be solved by the invention]
In the conventional apparatus, an electromagnetic clutch or the like is provided in a pulley portion that receives rotation of a belt directly connected to the engine so as not to drive the compressor in an operation state in which it is not necessary to compress the refrigerant. In order to prevent the compressor from being operated, the cost of the apparatus has been bothered.
[0005]
Accordingly, an object of the present invention is to provide a compression capacity control device for a refrigeration cycle that does not require a clutch for preventing operation of the compressor and can significantly reduce the device cost.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a compression capacity control device for a refrigeration cycle according to the present invention compresses a refrigerant sucked from a suction chamber that leads to a suction pipe and discharges it to a discharge chamber that leads to a discharge pipe. in the compression capacity control apparatus for a refrigeration cycle having a variable displacement compressor so as to vary the discharge amount of the refrigerant by the pressure change in the pressure regulating chamber to be pressure controlled, solenoid control valves, pressure regulating chamber pressure and the discharge chamber of the The pressure in the pressure regulating chamber is changed by communicating and closing between the pressure regulating chamber and the discharge chamber, and the electromagnetic force is changed so as to keep the pressure difference from the pressure at a predetermined pressure. The first spring for urging the valve body that communicates and closes the pressure regulating chamber and the discharge chamber in the valve closing direction, and the valve body in the valve opening direction. Larger than the first spring And a second spring having a biasing force, is obtained as a variable capacity compressor is in a state of minimum discharge amount of the variable range by maintaining the valve body in the open state when the state without energization .
[0009]
In addition, a suction path opening / closing valve that closes between the suction pipe and the suction chamber may be provided when the differential pressure between the discharge chamber and the suction chamber becomes a predetermined pressure or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 10 denotes a swash plate type variable capacity compressor, which is used in an air conditioning refrigeration cycle of an automobile. R134A or the like is used as the refrigerant, but the present invention may be applied to a refrigeration cycle using carbon dioxide as the refrigerant.
[0011]
Reference numeral 11 denotes a rotating shaft disposed in an airtight crank chamber 12 (pressure regulating chamber), which is connected to the shaft position of a pulley 13 that is rotationally driven by a driving belt (not shown) directly connected to the engine. As the rotary shaft 11 rotates, the swing plate 14 disposed in the crank chamber 12 is tilted with respect to the rotary shaft 11 and swings.
[0012]
A piston 17 is disposed in a reciprocating manner in a cylinder 15 disposed in the periphery of the crank chamber 12, and the piston 17 and the swing plate 14 are connected by a rod 18.
[0013]
As a result, when the swing plate 14 swings, the piston 17 reciprocates in the cylinder 15, and a low-pressure (suction pressure Ps) refrigerant is sucked into the cylinder 15 from the suction chamber 3. Then, the refrigerant that has been compressed at the high pressure (discharge pressure Pd) is discharged into the discharge chamber 4.
[0014]
Refrigerant is fed into the suction chamber 3 from the upstream evaporator (not shown) side via the suction pipe 1, and from the discharge chamber 4 to the downstream condenser (not shown) side. High-pressure refrigerant is sent out via the discharge pipe 2.
[0015]
The inclination angle of the swing plate 14 changes depending on the pressure of the crank chamber 12 (crank chamber pressure Pc), and the refrigerant discharge amount (that is, the compression capacity) from the cylinder 15 changes depending on the inclination angle of the swing plate 14.
[0016]
The discharge amount is often when the oscillating plate 14 is inclined as indicated by the solid line, and is decreased when it is not inclined as indicated by the two-dot chain line. When the swing plate 14 is perpendicular to the rotating shaft 11, the discharge amount becomes zero.
[0017]
However, as the swing plate 14 gradually shifts to a state without inclination (a state approaching the two-dot chain line), the minimum securing spring 19 that is mounted around the rotating shaft 11 is gradually compressed by the swing plate 14.
[0018]
As a result, the reaction force from the minimum securing spring 19 to the swinging plate 14 gradually increases, and the swinging plate 14 does not reach the direction perpendicular to the rotation shaft 11, and the discharge amount is, for example, the maximum discharge amount. It does not become less than about 3-5%.
[0019]
Such an operation state in which the discharge amount is minimum is called minimum operation. Such a minimum securing spring 19 is publicly known, and has a configuration in which, for example, a wave spring and a coil spring are combined.
[0020]
Reference numeral 20 denotes an electromagnetic solenoid control capacity control solenoid valve (electromagnetic control valve) for automatically controlling the crank chamber pressure (Pc) to perform compression capacity control. 21 is an electromagnetic coil, and 22 is a fixed iron core.
[0021]
The movable iron core 23 and the valve body 25 are arranged in a state of passing through the fixed iron core 22 and are connected by a rod 24 that can advance and retreat in the axial direction, and are biased by compression coil springs 27 and 28 from both ends. .
[0022]
Reference numeral 29 denotes an O-ring for sealing. The urging force of the two compression coil springs 27 and 28 is set to be larger in the valve opening spring 28 than in the valve closing spring 27.
[0023]
The valve seat 26 is formed between the crank chamber communication passage 5 communicating with the crank chamber 12 and the discharge chamber communication passage 6 communicating with the discharge chamber 4, and the valve body 25 is connected to the valve seat from the crank chamber communication passage 5 side. 26 is arranged to face 26. The crank chamber communication path 5 and the suction pipe line 1 communicate with each other through a narrow leak path 7.
[0024]
With such a configuration, the differential pressure (Pd−Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) acts on the valve body 25 in the opening direction, and in the closing direction, the displacement control solenoid valve 20 Electromagnetic force (including the urging force of the compression coil springs 27 and 28) acts.
[0025]
Therefore, in a state where the current value supplied to the electromagnetic coil 21 is constant and the electromagnetic force of the capacity control solenoid valve 20 is constant, the pressure difference (Pd−Pc) varies between the discharge pressure (Pd) and the crank chamber pressure (Pc). Accordingly, the valve body 25 is opened and closed, and the differential pressure (Pd−Pc) is kept constant, whereby the crank chamber pressure (Pc) is controlled to a value corresponding to the discharge pressure (Pd), and the compression capacity (discharge amount) ) Is kept constant.
[0026]
When the electromagnetic current of the capacity control solenoid valve 20 is changed by changing the value of the energization current to the electromagnetic coil 21, the differential pressure (Pd-Pc) kept constant correspondingly changes, thereby compressing. The capacity (discharge amount) is kept constant at different levels.
[0027]
That is, when the electromagnetic force of the capacity control solenoid valve 20 is reduced, the differential pressure (Pd−Pc) that is kept constant decreases, so that the crank chamber pressure (Pc) increases in a direction approaching the discharge pressure (Pd). Then, the swinging plate 14 approaches a direction perpendicular to the rotating shaft 11, and the discharge amount of the refrigerant decreases.
[0028]
Conversely, when the electromagnetic force of the capacity control solenoid valve 20 is increased, the differential pressure (Pd−Pc) that is kept constant increases, so that the crank chamber pressure (Pc) moves away from the discharge pressure (Pd). The angle of inclination of the rocking plate 14 with respect to the rotating shaft 11 increases, and the amount of refrigerant discharged increases.
[0029]
In addition, control of the energization current value to the electromagnetic coil 21 is performed by inputting detection signals from a plurality of sensors for detecting various conditions such as an engine, a temperature inside and outside the vehicle, an evaporator sensor, and the like to a control unit 40 incorporating a CPU and the like. Then, a control signal based on the calculation result is sent from the control unit 40 to the electromagnetic coil 21 and performed. The drive circuit for the electromagnetic coil 21 is not shown.
[0030]
In a state where the energization to the electromagnetic coil 21 is stopped, the valve body 25 is moved to the valve seat 26 due to the difference between the urging forces of the two compression coil springs 27 and 28 that urge the valve body 25 of the capacity control electromagnetic valve 20. Opened away from
[0031]
Then, the pressure difference between the discharge pressure (Pd) and the crank chamber pressure (Pc) disappears (that is, Pd−Pc≈0), and the swing plate 14 tends to be perpendicular to the rotating shaft 11. Before that, the inclined state of the swing plate 14 balances with the reaction force from the minimum securing spring 19, and the compressor 10 is in a state of maintaining the minimum operation.
[0032]
As described above, if the energization of the electromagnetic coil 21 of the capacity control solenoid valve 20 is stopped, the compressor 10 enters the minimum operation state. Therefore, even when the compressor 10 need not be operated, the rotary shaft 11 is driven to rotate. Can be left alone.
[0033]
FIG. 2 shows a capacity control solenoid valve 20 according to the related art of the present invention, and the compressor 10 is omitted because it is the same as that of the first embodiment. Further, the leak path is appropriately arranged.
[0034]
In this embodiment, a piston rod 25p having the same pressure receiving area as the valve seat 26 is integrally provided on the back side of the valve body 25, and the suction chamber communication passage 8 is connected to a space facing the back surface of the piston rod 25p. The crank chamber communication path 5 is connected to the space facing the side surface of the piston rod 25p, and the discharge chamber communication path 6 is connected to the space on the back side of the valve seat 26 when viewed from the valve body 25 side.
[0035]
As a result, the crank chamber pressure (Pc) applied to the piston rod 25p and the valve body 25 is canceled, and the valve body 25 is opened and closed by the differential pressure (Pd−Ps) between the discharge pressure (Pd) and the suction pressure (Ps). By operating, the space between the crank chamber 12 and the discharge chamber 4 is opened and closed, and the compression capacity control is performed.
[0036]
If the energization of the electromagnetic coil 21 is stopped, the valve element 25 is opened away from the valve seat 26 due to the difference in the urging force of the two compression coil springs 27 and 28, and the minimum operation is maintained. Become.
[0037]
As described above, the present invention provides a gap between the crank chamber 12 and the discharge chamber 4 so that the differential pressure between the pressure (Pc ) of the crank chamber 12 and the pressure (Pd ) of the discharge chamber 4 is kept at a predetermined differential pressure. By connecting and closing, and changing the electromagnetic force of the capacity control solenoid valve 20, the above differential pressure changes and the pressure (Pc) of the crank chamber 12 changes, thereby changing the discharge amount. The present invention can be applied to a device controlled by another method.
[0038]
Figure 3 shows a second embodiment of the present invention, the apparatus having the same configuration as that of the first embodiment, further, the suction and the pressure difference between the discharge chamber 4 and the suction chamber 3 becomes less than a predetermined A suction path opening / closing valve 30 for closing the space between the pipe line 1 and the suction chamber 3 is provided.
[0039]
In this embodiment, a valve body 32 disposed in a state of facing the valve seat 31 formed between the suction pipe 1 and the suction chamber 3 from the suction pipe 1 side is a compression coil spring in the valve closing direction. It is urged by 33 and arranged. Reference numeral 34 denotes a spring receiver in which a large notch is formed so as not to prevent the passage of the refrigerant.
[0040]
A pressure receiving piston 35 that receives the pressure (Pd) of the discharge chamber 4 and the pressure (Ps) of the suction chamber 3 from both the front and back surfaces is connected to the valve body 32, and the pressure (Pd) of the discharge chamber 4 and the suction chamber 3 In a state where the pressure difference (Pd−Ps) with respect to the pressure (Ps) is larger than a certain level, the valve body 32 is separated from the valve seat 31 and the suction passage opening / closing valve 30 is opened, and the minimum operation state is entered and the pressure difference (Pd When -Ps) becomes smaller than a certain value, the valve body 32 is pressed against the valve seat 31 and the suction passage opening / closing valve 30 is closed.
[0041]
In this way, since the low-pressure refrigerant in the suction pipe 1 is not sucked into the compressor 10 during the minimum operation, it is possible to prevent the fins of the evaporator from freezing during the minimum operation when the load is small as in winter. it can.
[0042]
【The invention's effect】
According to the present invention, the variable displacement compressor maintains the minimum discharge amount in the variable range in a state where the electromagnetic control valve is not energized, so that the compressor is not operated. A clutch is not required, and the apparatus cost can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an overall configuration of a compression capacity control device for a refrigeration cycle according to a first embodiment of the present invention.
FIG. 2 is a longitudinal sectional view of a capacity control solenoid valve according to the related art of the present invention.
FIG. 3 is a longitudinal sectional view showing the overall configuration of a compression capacity control device for a refrigeration cycle according to a second embodiment of the present invention.
[Explanation of symbols]
1 Suction line 2 Discharge line 3 Suction chamber 4 Discharge chamber 10 Compressor (variable capacity compressor)
12 Crank chamber (pressure regulating chamber)
14 Oscillating plate 19 Minimum securing spring 20 Capacity control solenoid valve (electromagnetic control valve)
27, 28 Compression coil spring 30 Suction path on-off valve

Claims (2)

吸入管路に通じる吸入室から吸入した冷媒を圧縮して吐出管路に通じる吐出室に吐出し、電磁制御弁により圧力制御される調圧室の圧力変化によって上記冷媒の吐出量を変化させるようにした容量可変圧縮機を有する冷凍サイクルの圧縮容量制御装置において、
上記電磁制御弁は、上記調圧室の圧力と上記吐出室の圧力との差圧を所定の差圧に保つように、上記調圧室と上記吐出室との間を連通及び閉塞することにより上記調圧室の圧力を変化させ、かつ、電磁力を変化させることにより上記所定の差圧を変化させるものであり、さらに、上記調圧室と上記吐出室との間を連通及び閉塞させる弁体を閉弁方向に付勢する第1のスプリングと、上記弁体を開弁方向に付勢するよう配置されて上記第1のスプリングより大きな付勢力を有する第2のスプリングとを有し、通電がない状態の時に上記弁体を開状態に維持して上記容量可変圧縮機が可変範囲のミニマムの吐出量の状態になるようにしたことを特徴とする冷凍サイクルの圧縮容量制御装置。
The refrigerant sucked from the suction chamber leading to the suction pipe is compressed and discharged to the discharge chamber leading to the discharge pipe, and the discharge amount of the refrigerant is changed by the pressure change of the pressure regulating chamber pressure-controlled by the electromagnetic control valve. In the compression capacity control device of the refrigeration cycle having the variable capacity compressor,
The electromagnetic control valve, so as to maintain the differential pressure between the pressure of the pressure and the discharge chamber of the pressure regulating chamber to a predetermined pressure difference, by communicating and occlusion between said pressure regulating chamber and the discharge chamber A valve for changing the pressure in the pressure regulating chamber and changing the predetermined differential pressure by changing an electromagnetic force, and further communicating and closing the pressure regulating chamber and the discharge chamber. A first spring that biases the body in the valve closing direction, and a second spring that is arranged to bias the valve body in the valve opening direction and has a larger biasing force than the first spring, A compression capacity control device for a refrigeration cycle, wherein the valve body is maintained in an open state when no power is supplied so that the variable capacity compressor is in a minimum discharge amount range of a variable range.
上記吐出室と上記吸入室との間の差圧が所定以下になると上記吸入管路と上記吸入室との間を閉じる吸入路開閉弁が設けられている請求項1記載の冷凍サイクルの圧縮容量制御装置。2. The compression capacity of the refrigeration cycle according to claim 1, further comprising a suction passage opening / closing valve that closes between the suction pipe and the suction chamber when a differential pressure between the discharge chamber and the suction chamber becomes a predetermined value or less. Control device.
JP2001123750A 2001-01-19 2001-04-23 Compression capacity controller for refrigeration cycle Expired - Fee Related JP4070425B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001123750A JP4070425B2 (en) 2001-01-19 2001-04-23 Compression capacity controller for refrigeration cycle
EP02715833A EP1363021A1 (en) 2001-01-19 2002-01-18 Compression displacement controller of refrigerating cycle
PCT/JP2002/000364 WO2002057628A1 (en) 2001-01-19 2002-01-18 Compression displacement controller of refrigerating cycle
US10/217,556 US20030035733A1 (en) 2001-01-19 2002-08-13 Compression capacity control device for refrigeration cycle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001011513 2001-01-19
JP2001-11513 2001-01-19
JP2001123750A JP4070425B2 (en) 2001-01-19 2001-04-23 Compression capacity controller for refrigeration cycle

Publications (2)

Publication Number Publication Date
JP2002285973A JP2002285973A (en) 2002-10-03
JP4070425B2 true JP4070425B2 (en) 2008-04-02

Family

ID=26607967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123750A Expired - Fee Related JP4070425B2 (en) 2001-01-19 2001-04-23 Compression capacity controller for refrigeration cycle

Country Status (4)

Country Link
US (1) US20030035733A1 (en)
EP (1) EP1363021A1 (en)
JP (1) JP4070425B2 (en)
WO (1) WO2002057628A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152674B2 (en) * 2002-06-04 2008-09-17 株式会社テージーケー Capacity control valve for variable capacity compressor
JP2004067042A (en) 2002-08-09 2004-03-04 Tgk Co Ltd Air-conditioner
JP4107141B2 (en) * 2003-02-21 2008-06-25 株式会社デンソー Limiter device
JP2005098597A (en) * 2003-09-25 2005-04-14 Tgk Co Ltd Refrigerating cycle
US20050089417A1 (en) * 2003-10-27 2005-04-28 Thar Technologies, Inc. Positive displacement pump
JP4412184B2 (en) * 2005-01-27 2010-02-10 株式会社豊田自動織機 Variable capacity compressor
KR101186459B1 (en) * 2005-04-08 2012-09-27 이글 고오교 가부시키가이샤 Capacity control valve
JP2007177627A (en) * 2005-12-27 2007-07-12 Sanden Corp Discharge capacity control valve of variable displacement compressor
JP5064918B2 (en) * 2007-07-17 2012-10-31 サンデン株式会社 Capacity control system for variable capacity compressor
JP5430401B2 (en) * 2007-10-02 2014-02-26 サンデン株式会社 Variable capacity compressor
JP5075682B2 (en) * 2008-03-05 2012-11-21 サンデン株式会社 Capacity control system for variable capacity compressor
JP5281320B2 (en) 2008-05-28 2013-09-04 サンデン株式会社 Capacity control system for variable capacity compressor
CN105229352B (en) * 2013-03-22 2017-05-17 三电控股株式会社 Control valve and variable capacity compressor provided with said control valve

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2567947B2 (en) * 1989-06-16 1996-12-25 株式会社豊田自動織機製作所 Variable capacity compressor
JPH07189899A (en) * 1993-12-27 1995-07-28 Toyota Autom Loom Works Ltd Variable displacement compressor
JP3254872B2 (en) * 1993-12-27 2002-02-12 株式会社豊田自動織機 Clutchless one-sided piston type variable displacement compressor
JPH08109880A (en) * 1994-10-11 1996-04-30 Toyota Autom Loom Works Ltd Operation control system for variable displacement type compressor
JP3941141B2 (en) * 1996-11-22 2007-07-04 株式会社豊田自動織機 Variable capacity compressor
DE69822686T2 (en) * 1997-01-24 2004-09-23 Kabushiki Kaisha Toyota Jidoshokki, Kariya Variable flow compressor
JPH10325393A (en) * 1997-05-26 1998-12-08 Zexel Corp Variable displacement swash plate type clutchless compressor
JPH1182297A (en) * 1997-09-08 1999-03-26 Toyota Autom Loom Works Ltd Variable delivery compressor
JP4160669B2 (en) * 1997-11-28 2008-10-01 株式会社不二工機 Control valve for variable displacement compressor
JP3783434B2 (en) * 1998-04-13 2006-06-07 株式会社豊田自動織機 Variable capacity swash plate compressor and air conditioning cooling circuit
JP4031128B2 (en) * 1998-11-27 2008-01-09 カルソニックカンセイ株式会社 Swash plate type variable capacity compressor
JP2000346241A (en) * 1999-06-07 2000-12-15 Toyota Autom Loom Works Ltd Check valve

Also Published As

Publication number Publication date
WO2002057628A1 (en) 2002-07-25
JP2002285973A (en) 2002-10-03
US20030035733A1 (en) 2003-02-20
EP1363021A1 (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JP3963619B2 (en) Compression capacity controller for refrigeration cycle
JP4070425B2 (en) Compression capacity controller for refrigeration cycle
JP3576866B2 (en) Refrigeration cycle with bypass line for vehicles
US6848262B2 (en) Compressor device and control method for the same
JP2000009034A (en) Air conditioning system
JP4926343B2 (en) Compressor capacity control device
JP4118181B2 (en) Control valve for variable displacement swash plate compressor
JP3490557B2 (en) Capacity control device for variable capacity compressor
US6679078B2 (en) Variable displacement compressors and methods for controlling the same
JP3886290B2 (en) Capacity control device for variable capacity compressor
JP3612140B2 (en) Capacity controller for variable capacity compressor
JP3678824B2 (en) Capacity controller for variable capacity compressor
JP3792939B2 (en) Variable displacement compressor and displacement control valve
JP4049888B2 (en) Variable displacement swash plate compressor
JP2006348957A (en) Compression capacity control device of refrigerating cycle
JP2006348957A5 (en)
JP3717143B2 (en) Idling speed controller
JPH10153171A (en) Both heads piston type variable capacity compressor
JP2002070730A (en) Pressure controller for variable displacement compressor
JP3996357B2 (en) Variable capacity compressor and capacity control valve for variable capacity compressor
JP2008032026A (en) Compression capacity control device of refrigerating cycle
JP3092358B2 (en) Clutchless structure in one-side piston type variable displacement compressor.
JP2001090658A (en) Swash plate type variable displacement compressor
JPH0587047A (en) Compression capacity control device of refrigerating cycle
JPH10141242A (en) Variable displacement compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060928

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061010

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees