JP2008032026A - Compression capacity control device of refrigerating cycle - Google Patents

Compression capacity control device of refrigerating cycle Download PDF

Info

Publication number
JP2008032026A
JP2008032026A JP2007273275A JP2007273275A JP2008032026A JP 2008032026 A JP2008032026 A JP 2008032026A JP 2007273275 A JP2007273275 A JP 2007273275A JP 2007273275 A JP2007273275 A JP 2007273275A JP 2008032026 A JP2008032026 A JP 2008032026A
Authority
JP
Japan
Prior art keywords
pressure
chamber
discharge
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007273275A
Other languages
Japanese (ja)
Inventor
Hisatoshi Hirota
久寿 広田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2007273275A priority Critical patent/JP2008032026A/en
Publication of JP2008032026A publication Critical patent/JP2008032026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compression capacity control device of a refrigerating cycle with high response, which quickly increases the compression capacity to a predetermined value without time delay when the electromagnetic force of a solenoid-controlled valve is changed. <P>SOLUTION: A capacity control valve 20 allowing a crankcase 12 to communicate with a discharge chamber 4 and closing the crankcase from the discharge chamber is installed so as to keep the pressure difference between the pressure in the pressure regulating chamber 12 and the pressure in the discharge chamber 4 at a predetermined set value. The set pressure difference is changed by changing the electromagnetic force of the capacity control valve 20 so as to control the discharged amount of a refrigerant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、自動車用空調装置等に用いられる冷凍サイクルの圧縮容量制御装置に関する。   The present invention relates to a compression capacity control device for a refrigeration cycle used in an automotive air conditioner or the like.

自動車用空調装置の冷凍サイクルに用いられる圧縮機は、エンジンにベルトで直結されているので回転数制御を行うことができない。そこで、エンジンの回転数に制約されることなく適切な冷房能力を得るために、圧縮容量(吐出量)を変えることができる容量可変圧縮機が用いられている。   Since the compressor used in the refrigeration cycle of the air conditioner for automobiles is directly connected to the engine with a belt, the rotational speed cannot be controlled. Therefore, a variable capacity compressor capable of changing the compression capacity (discharge amount) is used in order to obtain an appropriate cooling capacity without being restricted by the rotational speed of the engine.

容量可変圧縮機としては、いわゆる斜板式、ロータリー式、スクロール式などがあるが、ここでは、気密に形成されたクランク室内で傾斜角可変に設けられた揺動板を回転させてピストンを往復動させるようにした、いわゆる斜板式を例にとって説明する。   There are so-called swash plate type, rotary type, scroll type, etc. as variable capacity compressors, but here, the piston is reciprocated by rotating a rocking plate provided with variable inclination angle in an airtight crank chamber. A so-called swash plate type will be described as an example.

斜板式の容量可変圧縮機は、内圧が変化すると圧縮機の容量を変化させるように作用するクランク室が圧縮容量制御のための調圧室になっており、吸入圧力(Ps)の変化に対応してクランク室圧力(Pc)を自動制御して容量を変化させるようになっている。   In the swash plate type variable capacity compressor, the crank chamber that acts to change the capacity of the compressor when the internal pressure changes is a pressure regulating chamber for controlling the compression capacity, and responds to changes in the suction pressure (Ps). The crank chamber pressure (Pc) is automatically controlled to change the capacity.

しかし、そのように吸入圧力(Ps)を基準にした容量制御を行うためには、圧縮容量制御装置にダイアフラム又はベローズのような可撓性膜材を可動に配置しなければならないので、装置が大がかりになり、装置コストも高いものになる。   However, in order to perform capacity control based on the suction pressure (Ps) as described above, a flexible membrane material such as a diaphragm or a bellows must be movably disposed in the compression capacity control device. Large scale and high equipment cost.

そこで、クランク室圧力(Pc)と吸入圧力(Ps)との差圧を所定の差圧に保つようにクランク室と吸入室との間を連通及び閉塞する電磁制御弁を設け、その電磁制御弁の電磁力を変化させることにより差圧が変化して圧縮容量が制御されるようにしたものがある(特開平5−87047号)。そのようにすることにより、シンプルで簡単な構造になり、装置コストも低減される。   Therefore, an electromagnetic control valve is provided for communicating and closing between the crank chamber and the suction chamber so as to keep the differential pressure between the crank chamber pressure (Pc) and the suction pressure (Ps) at a predetermined differential pressure. There is one in which the differential pressure is changed by changing the electromagnetic force of the motor to control the compression capacity (Japanese Patent Laid-Open No. 5-87047). By doing so, the structure is simple and simple, and the cost of the apparatus is reduced.

は、冷凍サイクルの「エンタルピ−冷媒圧力」の特性を示す線図であるが、クランク室圧力(Pc)と吸入圧力(Ps)との差圧(Pc−Ps)に基づいて圧縮機の容量を制御すると、それによって吐出圧力(Pd)が変化し、それによってさらにクランク室圧力(Pc)と吸入圧力(Ps)との差圧(Pc−Ps)が変化するという制御が、冷凍サイクル全体を系とするフィードバック制御により繰り返される。そのため、電磁制御弁の電磁力を変えたとき、吐出量が所定値になるまでに時間遅れが発生し、圧縮容量制御が迅速に行われない欠点がある。 FIG. 2 is a diagram showing the characteristics of the “enthalpy-refrigerant pressure” of the refrigeration cycle. The compressor is based on the pressure difference (Pc−Ps) between the crank chamber pressure (Pc) and the suction pressure (Ps). When the capacity is controlled, the discharge pressure (Pd) changes accordingly, and thereby the differential pressure (Pc−Ps) between the crank chamber pressure (Pc) and the suction pressure (Ps) further changes. It is repeated by feedback control using as a system. Therefore, when the electromagnetic force of the electromagnetic control valve is changed, there is a drawback that a time delay occurs until the discharge amount reaches a predetermined value, and the compression capacity control is not performed quickly.

そこで本発明は、電磁制御弁の電磁力を変えたとき、圧縮容量が時間遅れなく速やかに所定値になるレスポンスの速い冷凍サイクルの圧縮容量制御装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a compression capacity control device for a refrigeration cycle having a quick response in which the compression capacity quickly reaches a predetermined value without time delay when the electromagnetic force of the electromagnetic control valve is changed.

上記の目的を達成するため、本発明の冷凍サイクルの圧縮容量制御装置は、低圧冷媒管路に通じる吸入室から吸入した冷媒を圧縮して高圧冷媒管路に通じる吐出室に吐出し、調圧室の圧力変化により冷媒の吐出量を変化させる容量可変圧縮機、を有する冷凍サイクルの圧縮容量制御装置において、調圧室と吐出室との間を連通及び閉塞する電磁制御弁を設け、電磁制御弁は、圧縮コイルスプリングによって開き方向に付勢されている弁体が調圧室の圧力と吐出室の圧力との差圧に基づいて調圧室と吐出室との間を連通及び閉塞することにより調圧室の圧力を変化させ、これによって、差圧が、電磁制御弁の電磁力を変化させることにより設定される設定差圧に維持されるようにしたものである。 In order to achieve the above object, the compression capacity control device of the refrigeration cycle of the present invention compresses the refrigerant sucked from the suction chamber that leads to the low-pressure refrigerant pipe and discharges it to the discharge chamber that leads to the high-pressure refrigerant pipe. In a compression capacity control device of a refrigeration cycle having a variable capacity compressor that changes the discharge amount of refrigerant according to a change in chamber pressure , an electromagnetic control valve that communicates and closes the pressure regulating chamber and the discharge chamber is provided, and electromagnetic control In the valve, the valve body urged in the opening direction by the compression coil spring communicates and closes the pressure regulating chamber and the discharge chamber based on the pressure difference between the pressure in the pressure regulating chamber and the pressure in the discharge chamber. Thus, the pressure in the pressure regulating chamber is changed, whereby the differential pressure is maintained at the set differential pressure set by changing the electromagnetic force of the electromagnetic control valve .

なお、調圧室が気密に形成されたクランク室であり、そのクランク室内で回転軸に対して傾斜角可変に設けられて回転軸の回転運動によって駆動されて揺動運動をする揺動体と、揺動体に連結されて往復動することにより吸入室からシリンダ内に吸入した冷媒を圧縮して吐出室に吐出するピストンとを有するものであってもよい。 The pressure regulating chamber is an airtightly formed crank chamber, and an oscillating body that is provided with a variable inclination angle with respect to the rotating shaft in the crank chamber and is driven by the rotating motion of the rotating shaft to perform an oscillating motion; It may have a piston that is connected to the rocking body and reciprocates to compress the refrigerant sucked into the cylinder from the suction chamber and discharge it into the discharge chamber .

本発明によれば、調圧室の圧力と吐出室の圧力との差圧を所定の差圧に保つように、調圧室と吐出室との間を連通及び閉塞する電磁制御弁を設け、電磁制御弁の電磁力を変化させることにより設定差圧が変化して冷媒の吐出量が制御されるようにしたことにより、容量制御が行われることによって変動する吐出圧力自体の大きさに基づいて制御が行われ、圧縮機部分だけでフィードバック制御が行われるので、電磁制御弁の電磁力を変えたとき、圧縮容量が時間遅れなく速やかに所定値になりレスポンスの速い圧縮容量制御を行うことができる。 According to the present invention, so as to maintain the differential pressure between the pressure of the pressure and ejection outlet chamber of the pressure regulating chamber to a predetermined pressure difference, the electromagnetic control valve that communicates and blocks the between the regulating chamber and the discharge chamber is provided Since the set differential pressure is changed by changing the electromagnetic force of the electromagnetic control valve so that the discharge amount of the refrigerant is controlled, it is based on the magnitude of the discharge pressure itself that fluctuates due to the volume control. Therefore, when the electromagnetic force of the electromagnetic control valve is changed, the compression capacity quickly reaches a predetermined value without time delay, and the compression capacity control with quick response is performed. Can do.

図面を参照して本発明の実施の形態を説明する。
図1において、10は斜板式の容量可変圧縮機であり、自動車の空調用冷凍サイクルに用いられているものである。冷媒としては、一般的なR134A等が用いられるが、二酸化炭素を冷媒とする冷凍サイクルに本発明を適用してもよい。
Referring to the drawings that explains the embodiment of the present invention.
In FIG. 1, reference numeral 10 denotes a swash plate type variable capacity compressor, which is used in an air conditioning refrigeration cycle of an automobile. As the refrigerant, general R134A or the like is used, but the present invention may be applied to a refrigeration cycle using carbon dioxide as a refrigerant.

11は、気密に構成されたクランク室12(調圧室)内に配置され、駆動プーリ13によって回転駆動される回転軸であり、回転軸11に対して傾斜してクランク室12内に配置された揺動板14が、回転軸11の回転にしたがって揺動する。   Reference numeral 11 denotes a rotating shaft that is disposed in an airtight crank chamber 12 (pressure-regulating chamber) and is rotationally driven by a driving pulley 13. The rotating shaft 11 is inclined with respect to the rotating shaft 11 and is disposed in the crank chamber 12. The swinging plate 14 swings according to the rotation of the rotating shaft 11.

クランク室12内の周辺部に配置されたシリンダ15内には、ピストン17が往復動自在に配置されており、ロッド18によってピストン17と揺動板14とが連結されている。   A piston 17 is disposed in a reciprocating manner in a cylinder 15 disposed in the periphery of the crank chamber 12, and the piston 17 and the swing plate 14 are connected by a rod 18.

したがって、揺動板14が揺動すると、ピストン17がシリンダ15内で往復動して、吸入室3からシリンダ15内に低圧(吸入圧力Ps)の冷媒が吸入され、その冷媒がシリンダ15内で圧縮されて、高圧(吐出圧力Pd)になった冷媒が吐出室4に吐出される。   Therefore, when the swing plate 14 swings, the piston 17 reciprocates in the cylinder 15, and a low-pressure (suction pressure Ps) refrigerant is sucked into the cylinder 15 from the suction chamber 3. The refrigerant that has been compressed to a high pressure (discharge pressure Pd) is discharged into the discharge chamber 4.

吸入室3には、その上流側の蒸発器(図示せず)側から吸入管路1を経由して冷媒が送り込まれ、吐出室4からはその下流側の凝縮器(図示せず)側へ吐出管路2を経由して高圧冷媒が送り出される。   Refrigerant is fed into the suction chamber 3 from the upstream evaporator (not shown) side via the suction pipe 1, and from the discharge chamber 4 to the downstream condenser (not shown) side. High-pressure refrigerant is sent out via the discharge pipe 2.

揺動板14の傾斜角度はクランク室12の圧力(Pc)によって変化し、揺動板14の傾斜角度によってシリンダ15からの冷媒の吐出量(即ち、圧縮容量)が変化する。
20は、クランク室圧力(Pc)を自動制御して圧縮容量制御を行うための電磁ソレノイド制御の容量制御弁(電磁制御弁)である。21は電磁コイル、22は固定鉄芯である。
The inclination angle of the swing plate 14 changes depending on the pressure (Pc) in the crank chamber 12, and the refrigerant discharge amount (that is, the compression capacity) from the cylinder 15 changes depending on the tilt angle of the swing plate 14.
Reference numeral 20 denotes an electromagnetic solenoid control capacity control valve (electromagnetic control valve) for automatically controlling the crank chamber pressure (Pc) to control the compression capacity. 21 is an electromagnetic coil, and 22 is a fixed iron core.

可動鉄芯23と弁体25は、固定鉄芯22内を通過する状態に配置されて軸線方向に進退自在なロッド24によって連結され、両端側から圧縮コイルスプリング27,28によって付勢されている。29は、シール用のOリングである。   The movable iron core 23 and the valve body 25 are arranged in a state of passing through the fixed iron core 22 and are connected by a rod 24 that can advance and retreat in the axial direction, and are biased by compression coil springs 27 and 28 from both ends. . Reference numeral 29 denotes an O-ring for sealing.

弁座26は、クランク室12に連通するクランク室連通路5と吐出室4に連通する吐出室連通路6との間に形成されており、弁体25がクランク室連通路5側から弁座26に対向して配置されている。なお、クランク室連通路5と吸入管路1との間は、細いリーク路7を介して連通している。   The valve seat 26 is formed between the crank chamber communication passage 5 communicating with the crank chamber 12 and the discharge chamber communication passage 6 communicating with the discharge chamber 4, and the valve body 25 is connected to the valve seat from the crank chamber communication passage 5 side. 26 is arranged to face 26. The crank chamber communication path 5 and the suction pipe line 1 communicate with each other through a narrow leak path 7.

このような構成により、弁体25には吐出圧力(Pd)とクランク室圧力(Pc)との差圧(Pd−Pc)が開き方向に作用し、閉じ方向には、容量制御弁20の電磁力(圧縮コイルスプリング27,28の付勢力を含む)が作用する。   With such a configuration, the differential pressure (Pd−Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) acts on the valve body 25 in the opening direction, and the electromagnetic force of the capacity control valve 20 in the closing direction. A force (including the biasing force of the compression coil springs 27 and 28) acts.

したがって、電磁コイル21への通電電流値が一定で容量制御弁20の電磁力が一定の状態では、吐出圧力(Pd)とクランク室圧力(Pc)の差圧(Pd−Pc)の変動に伴って弁体25が開閉されて差圧(Pd−Pc)が一定に維持され、それによってクランク室圧力(Pc)が吐出圧力(Pd)に対応する値に制御され、圧縮容量(吐出量)が一定に維持される。   Therefore, in a state where the current value supplied to the electromagnetic coil 21 is constant and the electromagnetic force of the capacity control valve 20 is constant, the pressure difference (Pd−Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) varies. Thus, the valve body 25 is opened and closed, and the differential pressure (Pd−Pc) is maintained constant, whereby the crank chamber pressure (Pc) is controlled to a value corresponding to the discharge pressure (Pd), and the compression capacity (discharge amount) is increased. Maintained constant.

そして、電磁コイル21への通電電流値を変化させて容量制御弁20の電磁力を変えると、それに対応して、一定に保たれる差圧(Pd−Pc)が変化し、それによって圧縮容量(吐出量)が異なるレベルで一定に維持された状態になる。   And if the electromagnetic current of the capacity control valve 20 is changed by changing the value of the energization current to the electromagnetic coil 21, the differential pressure (Pd-Pc) kept constant correspondingly changes, and thereby the compression capacity (Discharge amount) is kept constant at different levels.

即ち、容量制御弁20の電磁力が小さくされると、一定に保たれる差圧(Pd−Pc)が小さくなるので、クランク室圧力(Pc)が吐出圧力(Pd)に近づく方向に上昇し、吐出量が小さくなる。   That is, when the electromagnetic force of the capacity control valve 20 is decreased, the differential pressure (Pd−Pc) that is kept constant decreases, so that the crank chamber pressure (Pc) increases in a direction approaching the discharge pressure (Pd). The discharge amount becomes small.

逆に、容量制御弁20の電磁力が大きくされると、一定に保たれる差圧(Pd−Pc)が大きくなるので、クランク室圧力(Pc)が吐出圧力(Pd)から遠ざかる方向に下がり、吐出量が大きくなる。   Conversely, when the electromagnetic force of the capacity control valve 20 is increased, the differential pressure (Pd−Pc) that is kept constant increases, so that the crank chamber pressure (Pc) decreases in a direction away from the discharge pressure (Pd). The discharge amount becomes large.

このようにして吐出圧力(Pd)とクランク室圧力(Pc)との差圧(Pd−Pc)に基づいて行われる圧縮容量制御は、容量制御が行われることにより直接変動する吐出圧力(Pd)自体の大きさに基づいているので、圧縮機10部分だけでフィードバック制御が行われる。その結果、電磁コイル21への通電電流値が変わったとき吐出量が所定値になるまでに時間遅れがなく、迅速な圧縮容量制御が行われる。   The compression capacity control performed based on the differential pressure (Pd−Pc) between the discharge pressure (Pd) and the crank chamber pressure (Pc) in this way is the discharge pressure (Pd) that varies directly by the capacity control. Since it is based on the size of itself, feedback control is performed only by the compressor 10 portion. As a result, when the energization current value to the electromagnetic coil 21 changes, there is no time delay until the discharge amount reaches a predetermined value, and rapid compression capacity control is performed.

電磁コイル21への通電電流値の制御は、エンジン、車室内外の温度、蒸発器センサその他各種条件を検知する複数のセンサからの検知信号が、CPU等を内蔵する制御部40に入力され、その演算結果に基づく制御信号が制御部40から電磁コイル21に送られて行われる。なお、電磁コイル21の駆動回路は図示が省略されている。   The control of the energization current value to the electromagnetic coil 21 is performed by inputting detection signals from a plurality of sensors for detecting various conditions such as an engine, a temperature inside and outside the vehicle, an evaporator sensor, and the like to a control unit 40 incorporating a CPU and the like. A control signal based on the calculation result is sent from the control unit 40 to the electromagnetic coil 21 and performed. The drive circuit for the electromagnetic coil 21 is not shown.

本発明の第1の実施の形態の冷凍サイクルの圧縮容量制御装置の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the compression capacity control apparatus of the refrigerating cycle of the 1st Embodiment of this invention. 冷凍サイクルの「エンタルピ−冷媒圧力」の特性を示す線図である。It is a diagram which shows the characteristic of "enthalpy-refrigerant pressure" of a refrigerating cycle.

符号の説明Explanation of symbols

1 吸入管路
2 吐出管路
3 吸入室
4 吐出室
5 クランク室連通路
6 吐出室連通路
10 圧縮機
12 クランク室(調圧室)
20 容量制御弁(電磁制御弁)
21 電磁コイル
22 固定鉄芯
23 可動鉄芯
25 弁体
26 弁座
28 圧縮コイルスプリング
DESCRIPTION OF SYMBOLS 1 Suction line 2 Discharge line 3 Suction chamber 4 Discharge chamber 5 Crank chamber communication path 6 Discharge chamber communication path 10 Compressor 12 Crank chamber (pressure regulation chamber)
20 Capacity control valve (Electromagnetic control valve)
21 Electromagnetic coil 22 Fixed iron core 23 Movable iron core 25 Valve element 26 Valve seat 28 Compression coil spring

Claims (3)

低圧冷媒管路に通じる吸入室から吸入した冷媒を圧縮して高圧冷媒管路に通じる吐出室に吐出し、調圧室の圧力変化により上記冷媒の吐出量を変化させる容量可変圧縮機、を有する冷凍サイクルの圧縮容量制御装置において、
上記調圧室と上記吐出室との間を連通及び閉塞する電磁制御弁を設け、
上記電磁制御弁は、圧縮コイルスプリングによって開き方向に付勢されている弁体が上記調圧室の圧力と上記吐出室の圧力との差圧に基づいて上記調圧室と上記吐出室との間を連通及び閉塞することにより上記調圧室の圧力を変化させ、これによって、上記差圧が、上記電磁制御弁の電磁力を変化させることにより設定される設定差圧に維持されるようにしたことを特徴とする冷凍サイクルの圧縮容量制御装置。
A variable capacity compressor that compresses the refrigerant sucked from the suction chamber that leads to the low-pressure refrigerant pipe and discharges it to the discharge chamber that leads to the high-pressure refrigerant pipe, and changes the discharge amount of the refrigerant by the pressure change in the pressure regulating chamber; In the compression capacity control device of the refrigeration cycle,
An electromagnetic control valve for communicating and closing between the pressure regulating chamber and the discharge chamber is provided,
In the electromagnetic control valve, the valve body urged in the opening direction by a compression coil spring has a pressure difference between the pressure regulating chamber and the discharge chamber based on a pressure difference between the pressure in the pressure regulating chamber and the pressure in the discharge chamber. The pressure in the pressure regulating chamber is changed by communicating and closing between them, so that the differential pressure is maintained at a set differential pressure set by changing the electromagnetic force of the electromagnetic control valve. A compression capacity control device for a refrigeration cycle.
上記調圧室が気密に形成されたクランク室であり、そのクランク室内で回転軸に対して傾斜角可変に設けられて上記回転軸の回転運動によって駆動されて揺動運動をする揺動体と、上記揺動体に連結されて往復動することにより上記吸入室からシリンダ内に吸入した冷媒を圧縮して上記吐出室に吐出するピストンとを有する請求項1記載の冷凍サイクルの圧縮容量制御装置。A crank chamber in which the pressure regulating chamber is formed in an airtight manner, a swinging body that is provided with a variable inclination angle with respect to the rotating shaft in the crank chamber and is driven by the rotating motion of the rotating shaft to swing. 2. The compression capacity control device for a refrigeration cycle according to claim 1, further comprising a piston that is reciprocally connected to the rocking body to compress refrigerant sucked into the cylinder from the suction chamber and discharge the refrigerant into the discharge chamber. 低圧冷媒管路に通じる吸入室から吸入した冷媒を圧縮して高圧冷媒管路に通じる吐出室に吐出し、調圧室の圧力変化により上記冷媒の吐出量を変化させる容量可変圧縮機の容量制御弁において、Capacity control of a variable capacity compressor that compresses the refrigerant sucked from the suction chamber that leads to the low-pressure refrigerant pipe and discharges it to the discharge chamber that leads to the high-pressure refrigerant pipe and changes the discharge amount of the refrigerant according to the pressure change in the pressure regulating chamber In the valve
上記吐出室に連通する第1の空間と上記調圧室に連通する第2の空間との間に形成された弁座と、  A valve seat formed between a first space communicating with the discharge chamber and a second space communicating with the pressure regulating chamber;
上記第2の空間にて上記弁座に対向して開閉するように配置された弁体と、  A valve element disposed to open and close the valve seat in the second space;
上記弁体を開き方向に付勢する圧縮コイルスプリングと、  A compression coil spring that biases the valve body in the opening direction;
電磁力によって上記弁体を閉じ方向に付勢することにより上記吐出室の圧力と上記調圧室の圧力との差圧が一定に維持されるべき設定差圧を設定する電磁ソレノイドと、  An electromagnetic solenoid for setting a set differential pressure at which the differential pressure between the pressure in the discharge chamber and the pressure regulating chamber should be kept constant by urging the valve body in the closing direction by electromagnetic force;
を備えていることを特徴とする容量可変圧縮機の容量制御弁。  A capacity control valve for a variable capacity compressor.
JP2007273275A 2007-10-22 2007-10-22 Compression capacity control device of refrigerating cycle Pending JP2008032026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007273275A JP2008032026A (en) 2007-10-22 2007-10-22 Compression capacity control device of refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007273275A JP2008032026A (en) 2007-10-22 2007-10-22 Compression capacity control device of refrigerating cycle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006271054A Division JP2006348957A (en) 2006-10-02 2006-10-02 Compression capacity control device of refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2008032026A true JP2008032026A (en) 2008-02-14

Family

ID=39121685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007273275A Pending JP2008032026A (en) 2007-10-22 2007-10-22 Compression capacity control device of refrigerating cycle

Country Status (1)

Country Link
JP (1) JP2008032026A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223179A (en) * 1998-02-06 1999-08-17 Toyota Autom Loom Works Ltd Method and device for controlling operation of variable displacement compressor
JPH11294328A (en) * 1998-04-16 1999-10-26 Toyota Autom Loom Works Ltd Control valve and variable capacity compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223179A (en) * 1998-02-06 1999-08-17 Toyota Autom Loom Works Ltd Method and device for controlling operation of variable displacement compressor
JPH11294328A (en) * 1998-04-16 1999-10-26 Toyota Autom Loom Works Ltd Control valve and variable capacity compressor

Similar Documents

Publication Publication Date Title
JP3963619B2 (en) Compression capacity controller for refrigeration cycle
JP4456906B2 (en) Control valve for variable capacity compressor
JPWO2019146674A1 (en) Capacity control valve
JP4422512B2 (en) Control valve for variable capacity compressor
JP4070425B2 (en) Compression capacity controller for refrigeration cycle
JP2001012358A (en) Variable capacity control device for refrigerating cycle
WO2015093502A1 (en) Pressure control valve and variable displacement compressor using same
JPH06341378A (en) Capacity control device of variable capacity compressor
KR100986939B1 (en) Displacement control valve of variable displacement compressor
JP3490557B2 (en) Capacity control device for variable capacity compressor
JPWO2002101237A1 (en) Variable capacity compressor
JP3886290B2 (en) Capacity control device for variable capacity compressor
JP2006070902A (en) Variable displacement type compressor
JP2008032026A (en) Compression capacity control device of refrigerating cycle
JP4418309B2 (en) Control valve for variable capacity compressor
JP2006348957A (en) Compression capacity control device of refrigerating cycle
JP3612140B2 (en) Capacity controller for variable capacity compressor
JP2006348957A5 (en)
JP3678824B2 (en) Capacity controller for variable capacity compressor
JP2004316429A (en) Control valve for variable capacitance type compressor
JP3996357B2 (en) Variable capacity compressor and capacity control valve for variable capacity compressor
JPH06330856A (en) Capacity controller of displacement variable compressor
JP2002070730A (en) Pressure controller for variable displacement compressor
US20170363080A1 (en) Control valve for compressor
JP2002168173A (en) Control device for variable displacement compressor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005