WO2015093502A1 - Pressure control valve and variable displacement compressor using same - Google Patents
Pressure control valve and variable displacement compressor using same Download PDFInfo
- Publication number
- WO2015093502A1 WO2015093502A1 PCT/JP2014/083334 JP2014083334W WO2015093502A1 WO 2015093502 A1 WO2015093502 A1 WO 2015093502A1 JP 2014083334 W JP2014083334 W JP 2014083334W WO 2015093502 A1 WO2015093502 A1 WO 2015093502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- chamber
- valve
- control
- discharge
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B27/00—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
- F04B27/08—Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
- F04B27/14—Control
- F04B27/16—Control of pumps with stationary cylinders
- F04B27/18—Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
- F04B27/1804—Controlled by crankcase pressure
- F04B2027/184—Valve controlling parameter
- F04B2027/1845—Crankcase pressure
Definitions
- the present invention relates to a pressure control valve for a variable displacement compressor, which adjusts the supply amount of the working fluid flowing from the discharge chamber to the control chamber to adjust the pressure of the control chamber, thereby varying the discharge capacity.
- the present invention relates to the variable capacity compressor used.
- variable capacity swash plate compressor using R134a as a refrigerant
- a pressure sensitive member such as a bellows or a diaphragm
- Ps falls below a predetermined value
- the valve body increases the control chamber pressure by opening the air supply passage (passage that connects the discharge chamber and the control chamber) or closing the bleed passage (passage that connects the control chamber and the suction chamber).
- the discharge angle is autonomously controlled so that the inclination angle of the plate is reduced and Ps is maintained at the predetermined value (see Patent Document 1).
- the conventional pressure control valve causes the discharge pressure Pd to act on one side of the valve body and the suction pressure Ps to act on the other side, whereby the valve body operates based on the differential pressure between Pd and Ps. Therefore, by using a compressor using such a pressure control valve for a refrigeration cycle, autonomous control is performed so that the differential pressure between Pd and Ps becomes constant. Since the differential pressure between Pd and Ps can be adjusted by a solenoid that urges the external load on the valve body, when the cooling capacity is determined to be excessive, the set differential pressure between Pd and Ps is reduced. By adjusting the current of the solenoid, the discharge capacity of the compressor can be reduced and the cooling capacity can be reduced.
- a pressure sensor is separately provided on the high-pressure side of the refrigeration circuit to constantly monitor whether the detected high-pressure exceeds the predetermined pressure, and when the discharge pressure exceeds the predetermined pressure, the pressure is It was necessary to protect the refrigeration cycle by reducing the current applied to the control valve. Moreover, in the case of providing fail-safe control at the time of detecting a high pressure abnormality by such a high pressure sensor, if the high pressure sensor fails, the abnormal high pressure may be overlooked and the refrigeration circuit may be damaged.
- the present invention has been made in view of such circumstances, and uses a pressure control valve capable of autonomously controlling the pressure (discharge capacity) of the control chamber by following the fluctuation of the high pressure quickly.
- the main problem is to provide a variable capacity compressor.
- a pressure control valve includes a housing, a drive shaft provided in the housing, a swash plate that rotates with the drive shaft and has a variable inclination angle with respect to the drive shaft. And a plurality of cylinders provided in the housing and having an axis parallel to the drive shaft, and a plurality of cylinders slidably disposed in the cylinder and reciprocating in the cylinder as the swash plate rotates.
- a piston a compression chamber defined by the cylinder and the piston, a control chamber formed on the anti-compression chamber side of the piston, and a working fluid sucked into the compression chamber in the piston suction stroke And a discharge chamber into which the working fluid compressed in the compression chamber is discharged during the compression stroke of the piston, and discharge capacity is increased when the pressure in the control chamber increases.
- a variable displacement compressor that decreases, and adjusts the supply amount of the working fluid from the discharge chamber to the control chamber by adjusting the opening of an air supply passage connecting the discharge chamber and the control chamber
- the pressure of the control chamber is adjusted, and the air supply passage is opened based on only the pressure of the discharge chamber among the pressure of the discharge chamber, the pressure of the suction chamber, and the pressure of the control chamber. It is characterized by adjusting the degree.
- adjusting the opening of the air supply passage based only on the pressure in the discharge chamber among the pressure in the discharge chamber, the pressure in the suction chamber, and the pressure in the control chamber means that the pressure in the suction chamber and the pressure in the control chamber are adjusted. It means that the opening of the air supply passage is adjusted by applying at least the pressure of the discharge chamber without acting.
- the opening of the air supply passage is adjusted based only on the pressure in the discharge chamber, the pressure in the control chamber is quickly increased only on the basis of the pressure change in the discharge chamber regardless of the pressure change in the suction chamber or the control chamber. Will be adjusted.
- the opening of the air supply passage is adjusted based only on the pressure in the discharge chamber.
- the discharge capacity is autonomously controlled so as to maintain it, and it is possible to avoid a high pressure abnormality without performing a control to reduce the discharge capacity based on a signal from the outside by providing a pressure sensor on the high pressure side Become.
- a high-pressure introduction space that communicates with the discharge chamber
- a pressure adjustment space that communicates with the control chamber
- a valve port that communicates the high-pressure introduction space and the pressure adjustment space
- a valve opening / closing member that can be opened and closed, and the pressure of the discharge chamber introduced into the high-pressure introduction space acts on one end side of the operation direction of the valve opening / closing member in the direction of opening the valve opening, and the operation of the valve opening / closing member
- An atmospheric pressure or a vacuum pressure may be applied to the other end side in the direction.
- the pressure in the direction of opening the valve opening acting on one end side of the valve opening / closing member is the pressure of the discharge chamber, and the pressure acting on the other end side is atmospheric pressure or vacuum pressure.
- the valve opening / closing member can be opened / closed depending only on the pressure in the discharge chamber, and the pressure fluctuation of the discharge chamber pressure can be followed quickly.
- the valve opening increases and the pressure in the control chamber increases, so that the inclination angle of the swash plate decreases and the discharge capacity of the compressor decreases. It will be autonomously controlled to limit the rise in discharge pressure.
- the valve opening / closing member has one end in the operation direction facing the valve opening, the valve opening can be opened / closed from the pressure adjustment space, and the discharge introduced into the high pressure introduction space.
- the pressure of the chamber acts on one end side in the operation direction of the valve port opening / closing member via the valve port, the atmospheric pressure or the vacuum pressure acts on the other end side in the operation direction of the valve port opening / closing member. Good.
- the external force provision means which provides the external force which can be adjusted to the direction which closes the said valve opening with respect to the said valve opening / closing member.
- the opening of the air supply passage is adjusted based only on the pressure of the discharge chamber among the pressure of the discharge chamber, the pressure of the suction chamber, and the pressure of the control chamber. Therefore, it is possible to quickly and autonomously adjust the pressure in the control chamber based only on the pressure change in the discharge chamber regardless of the pressure change in the suction chamber or the control chamber. It is possible to avoid a high-pressure abnormality without controlling the discharge capacity based on this signal.
- FIG. 1 is a schematic configuration diagram of a refrigeration cycle according to an embodiment of the present invention.
- FIG. 2 is a sectional view of the variable capacity compressor according to the embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing a configuration example of the pressure control valve according to the embodiment of the present invention.
- FIG. 4 is a flowchart showing a control example of the pressure control valve according to the present invention.
- FIG. 5 is a sectional view showing another configuration example of the pressure control valve according to the embodiment of the present invention.
- FIG. 6 is a sectional view showing still another configuration example of the pressure control valve according to the embodiment of the present invention.
- the refrigeration cycle 1 shows a refrigeration cycle 1 in which a variable capacity compressor 3 having a pressure control valve 2 according to the present invention is used.
- the refrigeration cycle 1 is suitable for the case where CO2 is used as a refrigerant, and has a pressure control valve 2 for changing the discharge capacity, and a variable capacity compressor (hereinafter referred to as a compressor) capable of compressing the refrigerant to a supercritical region. 3) a radiator 4 that cools the compressed refrigerant, an internal heat exchanger 5 that exchanges heat between the high-pressure line 9 and the low-pressure line 10, an expansion device 6 that decompresses the refrigerant, and evaporates the refrigerant.
- An evaporator 7 and an accumulator 8 for gas-liquid separation of the refrigerant flowing out of the evaporator 7 are provided.
- the discharge side of the compressor 3 is connected to the high-pressure passage 5 a of the internal heat exchanger 5 via the radiator 4, and the outflow side of the high-pressure passage 5 a is connected to the expansion device 6.
- a path from the discharge side to the inflow side of the expansion device 6 is a high pressure line 9.
- the outflow side of the expansion device 6 is connected to the evaporator 7, and the outflow side of the evaporator 7 is connected to the low-pressure passage 5 b of the internal heat exchanger 5 via the accumulator 8.
- the outflow side of the low pressure passage 5 b is connected to the suction side of the compressor 3, and the path from the outflow side of the expansion device 6 to the suction side of the compressor 3 is a low pressure line 10.
- a post-evaporation temperature sensor 11 for detecting the air temperature immediately after the evaporator 7 is provided.
- a signal corresponding to the actual air temperature immediately after the evaporator (actual post-evaporation temperature) detected by the actual post-evaporation temperature sensor 11 is detected by the outside air temperature (Ta) detected by the external air temperature sensor and the vehicle interior temperature sensor.
- the vehicle interior temperature (Tinc), the amount of solar radiation detected by the solar radiation amount detection sensor 16 (Qsun), and the like are input to the control unit 12 together with signals corresponding to each.
- the control unit 12 inputs the above-described various signals (sensor values) as data, a memory unit composed of a read-only memory (ROM) or a random access memory (RAM), and calls a program stored in the memory unit.
- a central processing unit (CPU) that calculates control data based on the data, and determines and supplies a current to be supplied to an excitation coil 58 of a pressure control valve 2 described later based on the control data calculated by the central processing unit.
- An output circuit is provided.
- the compressor 3 is, for example, a variable displacement swash plate type compressor as shown in FIG. 2, and is assembled to a cylinder block 21 and a rear side (right side in the drawing) of the cylinder block 21 via a valve plate 22.
- the rear head 23 and the front head 24 assembled so as to close the front side (left side in the drawing) of the cylinder block 21 are configured.
- the front head 24, the cylinder block 21, the valve plate 22, and the rear head 23 ⁇ are fastened in the axial direction by fastening bolts (not shown) to constitute a housing of the entire compressor.
- a control chamber 26 defined by the front head 24 and the cylinder block 21 accommodates a drive shaft 27 having one end protruding from the front head 24.
- a drive pulley connected to a vehicle engine (not shown) through a belt is fixed to a portion of the drive shaft 27 ⁇ protruding from the front head 24 ⁇ so that the rotation of the engine is transmitted.
- one end side of the drive shaft 27 is hermetically sealed with the front head 24 through a seal member 28 provided between the front shaft 24 and is rotatably supported by radial bearings 29 and 30.
- the other end of the drive shaft 27 is rotatably supported by radial bearings 31 and 32 accommodated in the cylinder block 21.
- a thrust flange 33 that rotates integrally with the drive shaft 27 is fixed to the drive shaft 27 in the control chamber 26.
- the thrust flange 33 is rotatably supported by a front head 24 via a thrust bearing 34 and is connected to a swash plate 36 via a link member 35.
- the swash plate 36 is attached so as to be tiltable about the drive shaft 27, and is rotated integrally with the rotation of the thrust flange 33.
- the swash plate 36 is disposed in a state of being pressed from both axial sides by an elastic member 37 such as a coil spring interposed between the thrust flange 33 and an elastic member 38 such as a coil spring disposed on the opposite side. Therefore, the drive shaft 27 is allowed to move in the axial direction.
- the cylinder block 21 is formed with a support recess 39 in which the radial bearings 31, 32 are accommodated, and a plurality of cylinder bores 40 ⁇ arranged at equal intervals on the circumference around the support recess 39. And piston 41 is inserted in each cylinder bore 40 so that reciprocating sliding is possible.
- the piston 41 is configured by joining a head portion 41a inserted into the cylinder bore 40 and an engaging portion 41b protruding into the control chamber 26 in the axial direction.
- the engaging portion 41b is connected to a pair of shoes 42. It is moored to the peripheral portion of the swash plate 36 via
- the thrust flange 33, the swash plate 36, and the piston 41 constitute a compression mechanism that converts the rotation of the drive shaft 27 into the compression action of the working fluid.
- the swash plate is synchronized with the compression mechanism. 36 rotates integrally, and this rotational motion is converted into a reciprocating linear motion of the piston 41 via the shoe 42, and is formed between the piston 41 and the valve plate 22 in the cylinder bore 40 by the reciprocating motion of the piston 41.
- the volume of the compression chamber 43 is changed.
- the rear head 23 is joined to the cylinder block 21 via the valve plate 22, thereby defining a discharge chamber 44 and a suction chamber 45 formed around the discharge chamber 44.
- the valve plate 22 has a suction hole 46 that communicates the suction chamber 45 and the compression chamber 43 via a suction valve (not shown), and a discharge hole 47 that communicates the discharge chamber 44 and the compression chamber 43 via a discharge valve (not shown). And are formed.
- the discharge capacity of the compressor is determined by the stroke of the piston 41.
- This stroke is the pressure applied to the front surface of the piston 41, that is, the pressure in the compression chamber 43 (pressure in the cylinder bore 40) and the pressure applied to the back surface of the piston 41. That is, it is determined by the pressure difference with the pressure in the control chamber 26 (control chamber pressure Pc). Specifically, if the pressure in the control chamber 26 is increased, the differential pressure between the compression chamber 43 and the control chamber 26 is reduced, so that the inclination angle (swing angle) of the swash plate 36 is reduced. If the stroke of the piston 41 is reduced and the discharge capacity is reduced. Conversely, if the pressure in the control chamber 26 is lowered, the differential pressure between the compression chamber 43 and the control chamber 26 is increased. (Swinging angle) is increased, and therefore, the stroke of the piston 41 is increased and the discharge capacity is increased.
- an air supply passage 48 that connects the discharge chamber 44 and the control chamber 26 is formed in the cylinder block 21, the valve plate 22, and the rear head 23, and a pressure control valve is provided on the air supply passage 48. 2 is provided.
- the pressure control valve 2 is mounted in a control valve mounting hole 49 formed in the rear head 23, and the pressure in the control chamber 26 (control chamber pressure Pc) is adjusted by adjusting the opening of the air supply passage 48. Is controlling.
- the pressure control valve 2 includes a drive unit 51 and a tip block unit 52.
- the drive unit 51 includes a fixed iron core 53 that is screwed to the tip block 52, a plate-like upper case member 54 that is locked to the fixed iron core 53, and a cylindrical cylindrical case 55 that is screwed to the upper case member 54.
- a lower case member 56 that is caulked and fixed to the lower end of the cylindrical case 55, a cylindrical cylinder 56 that is housed in the cylindrical case 55 and fixed to the fixed iron core 53, and is fixed around the cylinder 56.
- a sealing block 63 that is airtightly fitted to the end portion via an O-ring 62 and screwed into the lower case member 56, and a spring 64 that is elastically mounted between the fixed iron core 53 and the plunger 59. Configured.
- the end portion of the valve body 61 is slidably inserted into a rod insertion hole 65 formed in the sealing block 63, and the insertion portion of the sealing block 63 is airtight by an O-ring 66. .
- a back pressure chamber 69 defined by the valve body 61 inserted therein is formed in the rod insertion hole 65 of the sealing block 63, and the back pressure chamber 69 is formed in the sealing block 63.
- Atmospheric pressure or vacuum pressure Po is introduced through the communication hole 70.
- Reference numeral 67 denotes a support member that supports the upper portion of the valve body 61 at several locations in the circumferential direction, and 68 denotes a lead wire that supplies current to the exciting coil 58.
- the distal end block portion 52 includes a block body 71 that is engaged with the fixed iron core 53 on the proximal end side in the axial direction, and a valve seat member 72 that is engaged with the distal end side of the block body 71. Therefore, a filter mounting member 74 containing a filter 73 is assembled at the tip of the block main body 71 of the tip block 52, and the filter 73 is interposed between the filter 73 and the valve seat member 72. A high-pressure introduction space 75 communicating with the discharge chamber 44 is formed.
- a valve body 61 inserted through the shaft hole 60 protrudes between the valve seat member 72 and the fixed iron core 53 and communicates with the control chamber 26 via a communication hole 76 formed in the block body 71 in the radial direction.
- a communicating pressure adjusting space 77 is formed.
- the pressure adjusting space 77 communicates with a space 78 in which a spring 64 between the fixed iron core 53 and the plunger 59 is accommodated via a gap between the shaft hole 60 and the valve body 61.
- a space 79 between the plunger 59 and the sealing block 63 via a clearance between the pressure adjusting space 77 and the space 78 between the fixed iron core 53 and the plunger 59.
- the space 79 between the plunger 59 and the sealing block 63 has a control chamber pressure Pc.
- the valve seat member 72 is formed with a valve port 80 that communicates the high-pressure introduction space 75 and the pressure adjustment space 77, and the valve port 80 moves the valve body 61 from the pressure adjustment space 77 to the valve port 80. It is possible to open and close by separating and contacting the peripheral edge.
- the rod-shaped valve element 61 constitutes a valve opening / closing member that opens and closes the valve opening 80.
- the control chamber pressure Pc does not act directly on the axial direction of the valve body 61, and also on the plunger 59 fixed to the valve body 61. Since the front and rear in the axial direction becomes the control chamber pressure Pc, the control chamber pressure Pc does not act in the axial direction of the valve body 61 via the plunger 59. In contrast, the discharge chamber pressure Pd acts on the tip of the valve body 61 in the opening direction via the valve port 80, and the atmospheric pressure or vacuum introduced into the back pressure chamber 69 at the end of the valve body 61. Pressure acts.
- an elastic force (spring pressure) by the spring 64 acts in the opening direction of the valve body 61 via the plunger 59, and an electromagnetic force induced by the excitation coil 58 acts in the closing direction of the valve body 61. Therefore, among the pressure in the discharge chamber 44 (discharge chamber pressure Pd), the pressure in the suction chamber 45 (suction chamber pressure Ps), and the pressure in the control chamber 26 (control chamber pressure Pc), the valve body 61 acts in the axial direction. The pressure is only the pressure of the discharge chamber 44 (discharge chamber pressure Pd), and the valve body moves to a position where the discharge chamber pressure Pd and back pressure Po (atmospheric pressure or vacuum pressure), spring pressure, and electromagnetic force are balanced. It will be. Since the spring pressure and the back pressure are constant, the valve opening pressure of the valve body 61 is adjusted by electromagnetic force, and the valve body 61 having this valve opening pressure is opened and closed according to the discharge chamber pressure Pd.
- the current supplied to the excitation coil 58 is input when each sensor value (outside air temperature, vehicle interior temperature, solar radiation amount, actual post-evaporation temperature, etc.) is input in the control unit 12 ( Step 90), calculate the air temperature immediately after the target evaporator (target post-evaporation temperature) (step 92), and based on the difference between the actual air temperature immediately after the evaporator (actual post-evaporation temperature) and the target post-evaporation temperature, The supply current value of the exciting coil 58 is determined so that the actual post-evaporation temperature approaches the target post-evaporation temperature (step 94).
- the discharge chamber pressure directly acts on the valve body, so the discharge pressure corresponding to the current should be maintained.
- the discharge capacity is controlled autonomously. Accordingly, it is possible to quickly avoid a high pressure abnormality without providing a pressure sensor or the like for measuring the pressure on the high pressure side of the refrigeration cycle 1 and performing control for reducing the discharge capacity based on an external signal.
- the pressure control valve 2 described above is not limited to the above configuration example as long as the same purpose can be achieved, and may be modified as shown in FIG. 5, for example.
- a communication hole is formed in a bellows 81 in which atmospheric pressure or vacuum pressure acting on the end of the valve body 61 is interposed between the sealing block 3 and the end of the valve body 61.
- 70 may be supplied via the bellows 81, and atmospheric pressure or vacuum pressure may be applied to the valve body 61 via the bellows 81.
- the bellows 81 is fixed to the end of the valve body 61 and the sealing block 63, and the control chamber pressure Pc in the space 79 between the plunger 59 and the sealing member 63 acts on the end of the valve body 61 in the axial direction. It is attached so as not to.
- control chamber pressure Pc does not act in the axial direction of the valve body, and the pressure of the discharge chamber 44 (discharge chamber pressure Pd), the pressure of the suction chamber 45 (suction chamber pressure Ps), Of the pressure in the control chamber 26 (control chamber pressure Pc), the pressure acting in the axial direction of the valve body 61 can be only the pressure in the discharge chamber 44 (discharge chamber pressure Pd). It is possible to achieve the same effect.
- the pressure control valve 2 may be configured as shown in FIG.
- the pressure control valve 2 shown here includes a drive portion 51 and a tip block portion 52 as in the case of the pressure control valve.
- the drive unit 51 includes a fixed iron core 101, a lower case member 102 that is screwed to the end side of the fixed iron core 101, a cylindrical cylindrical case 103 that is caulked and fixed to the lower case member 102, and the cylindrical case 103
- a cylindrical cylinder 104 that is housed inside and fixed to the distal end side of the fixed iron core 101, a bobbin 105 that is fixed around the fixed iron core 101 and the cylinder 104, and an excitation coil 106 that is wound around the bobbin 105.
- a plunger 107 that is slidably inserted into the cylinder 104, a valve body 108 that is fixed to the plunger 107 with its axis aligned with the plunger and that protrudes into the end block 52, and a fixed iron core.
- the sealing member 110 that is secretly fitted to the opening end on the distal end side of the 101 via the O-ring 109 and the opening end on the front end side of the fixed iron core 101 are fixed.
- a spring receiver 111 which is is configured by a spring 112 which is elastically interposed between the spring receiving 111 and the valve body 108.
- the distal end block portion 52 includes a block main body 115 that is locked and fixed to the cylinder 104 via the O-ring 113 and the spacer 114 on the base end side in the axial direction.
- the block main body 115 includes the block main body 115.
- a high-pressure introduction space 117 that communicates with the discharge chamber 44 via a communication passage 116 that is formed in a radial direction and accommodates the plunger 107, and a communication passage that is formed in the high-pressure introduction space 117 and the block body 115 in the axial direction.
- the valve head housing space 120 closed by a lid 119 provided at the tip of the block main body 115, and the communication passage 121 formed in the block main body 115 in the radial direction.
- a pressure adjustment space 122 communicating with the control chamber 26 is formed.
- the valve body 108 is slidably inserted into a shaft hole 123 formed in the block body 115 from the high-pressure introduction space 117 to the valve head housing space 120.
- the valve head 108a of the valve body 108 is It is accommodated in the head accommodating space 120, and the shaft hole 123 can be opened and closed from the valve head accommodating space 120.
- the pressure adjustment space 122 is formed between the inner peripheral surface of the shaft hole 123 and the small diameter portion 108b formed by reducing the diameter in front of the valve head portion 108a of the valve body 108. Between the space 122 and the valve head housing space 120 where the high pressure introduction space 117 communicates, the valve body 108 (the valve head 108a) is opened and closed (separated from the opening periphery of the shaft hole 123). It has become.
- a bellows 124 is interposed between the lid 119 and the valve body 108 (valve head 108a).
- the bellows 124 is fixed to the lid 119 and the valve head 108a, and the inside thereof is set to atmospheric pressure or vacuum pressure Po.
- the discharge chamber pressure Pd of the valve head housing space 120 is set to the valve head 108a. It is attached to the tip of the so as not to act in the axial direction.
- control chamber pressure Pc does not act in the axial direction of the valve body 108, and the discharge chamber pressure Pd is applied to the valve body 108 from between the plunger 107 and the spring receiver 111 in the high pressure introduction space 117.
- the atmospheric pressure or the vacuum pressure Po sealed in the bellows 124 acts on the tip of the valve body 108.
- an elastic force (spring pressure) by the spring 112 acts in the opening direction of the valve body 108 and an electromagnetic force induced by the exciting coil 106 acts in the closing direction of the valve body 108 via the plunger 107.
- valve body 108 acts in the axial direction.
- the pressure is only the pressure of the discharge chamber 44 (discharge chamber pressure Pd), and the valve is placed at a position where the discharge chamber pressure Pd and the pressure in the bellows 124 (atmospheric pressure or vacuum pressure Po), spring pressure, and electromagnetic force are balanced.
- the body 108 (valve head 108a) moves.
- valve element 108 adjusts the valve opening pressure of the valve element 108 by electromagnetic force, and the valve element 108 having this valve opening pressure opens and closes according to the discharge chamber pressure Pd. It has come to be.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Provided are: a pressure control valve capable of autonomously controlling the pressure (discharge capacity) of a control chamber, quickly following fluctuation of high pressure; and a variable displacement compressor using this pressure control valve. [Solution] A pressure control valve (2), for adjusting the amount of working fluid supplied from a discharge chamber to a control chamber and adjusting the pressure of the control chamber by adjusting the opening degree of an air supply passage connecting the discharge chamber and the control chamber, is configured to be capable of adjusting the opening degree of the air supply passage on the basis of only the pressure (Pd) of the discharge chamber, from among the pressure (Pd) of the discharge chamber, the pressure (Ps) of an intake chamber, and the pressure (Pc) of the control chamber. The pressure control valve is provided with a high-pressure inlet space (75) interconnected with the discharge chamber, a pressure adjustment space (77) interconnected with the control chamber, a valve port (80) for interconnecting the high-pressure inlet space (75) and the pressure adjustment space (77), and a valve body (61) capable of opening and closing the valve port (80), one end side of the valve body (61) in the operating direction being subjected, in a direction that opens the valve port (80), to the discharge chamber pressure (Pd) led into the high-pressure inlet space (75), and the other end side of the valve body (61) in the operating direction being subjected to atmospheric pressure or a vacuum pressure (Po).
Description
本発明は、吐出室から制御室へ流入される作動流体の供給量を調節して制御室の圧力を調整し、吐出容量を可変させるようにしている可変容量圧縮機の圧力制御弁およびこれを用いた可変容量圧縮機に関する。
The present invention relates to a pressure control valve for a variable displacement compressor, which adjusts the supply amount of the working fluid flowing from the discharge chamber to the control chamber to adjust the pressure of the control chamber, thereby varying the discharge capacity. The present invention relates to the variable capacity compressor used.
R134aを冷媒に用いる可変容量斜板圧縮機においては、吸入圧力Psをベローズやダイアフロム等の感圧部材に作用させて、Psが所定の値を下回ったときに、感圧部材に連動して弁体が給気通路(吐出室と制御室とを連通する通路)を開く、または抽気通路(制御室と吸入室とを連通する通路)を閉じる等して制御室圧力を高め、これにより斜板の傾斜角を小さくして、Psが前記所定の値に保たれるように吐出容量を自律的に制御するようにしている(特許文献1参照)。
In a variable capacity swash plate compressor using R134a as a refrigerant, when the suction pressure Ps is applied to a pressure sensitive member such as a bellows or a diaphragm, and Ps falls below a predetermined value, the pressure sensitive member is interlocked. The valve body increases the control chamber pressure by opening the air supply passage (passage that connects the discharge chamber and the control chamber) or closing the bleed passage (passage that connects the control chamber and the suction chamber). The discharge angle is autonomously controlled so that the inclination angle of the plate is reduced and Ps is maintained at the predetermined value (see Patent Document 1).
これに対して、冷媒に二酸化炭素などを用いた超臨界サイクルの場合においては、外気温度が高いと冷媒がサイクルの高圧側で液化しないため、圧縮機の回転数が上昇するなどして冷媒循環量が冷房負荷に対して余剰となると、吸入圧力は緩慢に低下するのに対して、吐出圧力は急激に上昇するという特性を持つ。このため、吸入圧力を制御対象とした従前の制御弁を用いると、回転数上昇時に吐出圧力が急上昇しているにも関わらず、吸入圧力の低下が緩慢であるため圧縮機の吐出容量の低減が遅れ、圧縮機駆動トルクの上昇を招く恐れがある。
On the other hand, in the case of a supercritical cycle using carbon dioxide or the like as the refrigerant, if the outside air temperature is high, the refrigerant is not liquefied on the high pressure side of the cycle. When the amount becomes excessive with respect to the cooling load, the suction pressure gradually decreases, whereas the discharge pressure rapidly increases. For this reason, if a conventional control valve for controlling the suction pressure is used, the discharge pressure of the compressor is reduced because the suction pressure decreases slowly even though the discharge pressure suddenly increases when the rotational speed increases. May be delayed, leading to an increase in compressor driving torque.
このような課題に対応するために、制御対象である吸入圧力を吐出圧力の上昇に伴って大きくなるように制御する圧力制御弁や、吐出圧力と吸入圧力の圧力差を制御対象とした圧力制御弁を用いる圧縮機が提案されている(特許文献2,3参照)。これらの圧力制御弁を用いた可変容量圧縮機によれば、吐出圧力が圧力制御弁の弁体の開度を大きくする方向に作用するため、回転数の上昇によって吐出圧力が上昇した場合、上昇した吐出圧力により圧力制御弁の弁体が開き、制御室圧が上昇して自律的に圧縮機の吐出容量を減少させ、以って吐出圧力の上昇を速やかに抑えることが可能となる。
In order to deal with such problems, a pressure control valve that controls the suction pressure to be controlled so as to increase as the discharge pressure increases, or a pressure control that controls the pressure difference between the discharge pressure and the suction pressure. A compressor using a valve has been proposed (see Patent Documents 2 and 3). According to the variable capacity compressor using these pressure control valves, the discharge pressure acts in the direction of increasing the opening degree of the valve body of the pressure control valve. The valve body of the pressure control valve is opened by the discharged pressure, and the control chamber pressure is increased to autonomously decrease the discharge capacity of the compressor, thereby promptly suppressing the increase in the discharge pressure.
このように、従来の圧力制御弁は、弁体の一方側に吐出圧力Pdを作用させ、他方側に吸入圧力Psを作用させて、これによりPdとPsの差圧に基づき弁体が動作するようになっているため、このような圧力制御弁を用いた圧縮機を冷凍サイクルに利用することにより、PdとPsの差圧が一定となるよう自律制御される。このPdとPsの差圧は、弁体に外部荷重を付勢するソレノイドにより調整することができるため、冷房能力が余剰と判断された場合には、PdとPsの設定差圧が小さくなるよう、ソレノイドの電流を調節することにより圧縮機の吐出容量を減らし、冷房能力を低減することが可能となる。
Thus, the conventional pressure control valve causes the discharge pressure Pd to act on one side of the valve body and the suction pressure Ps to act on the other side, whereby the valve body operates based on the differential pressure between Pd and Ps. Therefore, by using a compressor using such a pressure control valve for a refrigeration cycle, autonomous control is performed so that the differential pressure between Pd and Ps becomes constant. Since the differential pressure between Pd and Ps can be adjusted by a solenoid that urges the external load on the valve body, when the cooling capacity is determined to be excessive, the set differential pressure between Pd and Ps is reduced. By adjusting the current of the solenoid, the discharge capacity of the compressor can be reduced and the cooling capacity can be reduced.
しかしながら、冷媒に二酸化炭素などの超臨界流体を用いた冷凍サイクルの場合、R134a等のフロン系の冷媒を用いた冷凍サイクルに比べて、圧力が非常に高いため、吐出側の配管や熱交換器が異常高圧圧力によって不具合をきたさないよう考慮する必要がある。
例えば外気温度の上昇とともに、蒸発器側の熱負荷が増大した場合には、Pdが高くなるとともにPsも高くなるため、Pdが高くなっているにも関わらずPdとPsの圧力差はそれほど大きくならず、高圧異常の検出が遅れる恐れがある。このため、従来の構成においては、冷凍回路の高圧側に圧力センサを別途設け、検知した高圧圧力が所定の圧力を超えたかどうかを常時監視し、吐出圧力が所定の圧力を超えた場合に圧力制御弁への印加電流を減らすなどして冷凍サイクルの保護を図る必要があった。しかも、このような高圧センサによる高圧異常検出時のフェールセーフ制御を設ける場合には、高圧センサが故障すると、異常高圧を見逃して冷凍回路が損傷する恐れがある。 However, in the case of a refrigeration cycle using a supercritical fluid such as carbon dioxide as a refrigerant, the pressure is very high compared to a refrigeration cycle using a fluorocarbon refrigerant such as R134a. However, it is necessary to consider so as not to cause problems due to abnormally high pressure.
For example, when the heat load on the evaporator side increases as the outside air temperature rises, Pd increases and Ps also increases. Therefore, the pressure difference between Pd and Ps is so large even though Pd is high. In other words, the detection of the high pressure abnormality may be delayed. For this reason, in the conventional configuration, a pressure sensor is separately provided on the high-pressure side of the refrigeration circuit to constantly monitor whether the detected high-pressure exceeds the predetermined pressure, and when the discharge pressure exceeds the predetermined pressure, the pressure is It was necessary to protect the refrigeration cycle by reducing the current applied to the control valve. Moreover, in the case of providing fail-safe control at the time of detecting a high pressure abnormality by such a high pressure sensor, if the high pressure sensor fails, the abnormal high pressure may be overlooked and the refrigeration circuit may be damaged.
例えば外気温度の上昇とともに、蒸発器側の熱負荷が増大した場合には、Pdが高くなるとともにPsも高くなるため、Pdが高くなっているにも関わらずPdとPsの圧力差はそれほど大きくならず、高圧異常の検出が遅れる恐れがある。このため、従来の構成においては、冷凍回路の高圧側に圧力センサを別途設け、検知した高圧圧力が所定の圧力を超えたかどうかを常時監視し、吐出圧力が所定の圧力を超えた場合に圧力制御弁への印加電流を減らすなどして冷凍サイクルの保護を図る必要があった。しかも、このような高圧センサによる高圧異常検出時のフェールセーフ制御を設ける場合には、高圧センサが故障すると、異常高圧を見逃して冷凍回路が損傷する恐れがある。 However, in the case of a refrigeration cycle using a supercritical fluid such as carbon dioxide as a refrigerant, the pressure is very high compared to a refrigeration cycle using a fluorocarbon refrigerant such as R134a. However, it is necessary to consider so as not to cause problems due to abnormally high pressure.
For example, when the heat load on the evaporator side increases as the outside air temperature rises, Pd increases and Ps also increases. Therefore, the pressure difference between Pd and Ps is so large even though Pd is high. In other words, the detection of the high pressure abnormality may be delayed. For this reason, in the conventional configuration, a pressure sensor is separately provided on the high-pressure side of the refrigeration circuit to constantly monitor whether the detected high-pressure exceeds the predetermined pressure, and when the discharge pressure exceeds the predetermined pressure, the pressure is It was necessary to protect the refrigeration cycle by reducing the current applied to the control valve. Moreover, in the case of providing fail-safe control at the time of detecting a high pressure abnormality by such a high pressure sensor, if the high pressure sensor fails, the abnormal high pressure may be overlooked and the refrigeration circuit may be damaged.
本発明は係る事情に鑑みてなされたものであり、高圧圧力の変動に速やかに追従して制御室の圧力(吐出容量)を自律的に制御することが可能な圧力制御弁とこれを用いた可変容量圧縮機を提供することを主たる課題としている。
The present invention has been made in view of such circumstances, and uses a pressure control valve capable of autonomously controlling the pressure (discharge capacity) of the control chamber by following the fluctuation of the high pressure quickly. The main problem is to provide a variable capacity compressor.
上記課題を達成するために、本発明に係る圧力制御弁は、ハウジングと、このハウジング内に設けられる駆動軸と、この駆動軸と共に回転すると共に前記駆動軸に対する傾斜角度が可変自在である斜板と、前記ハウジング内に設けられ、前記駆動軸と平行な軸を有する複数のシリンダと、該シリンダに摺動自在に配され、前記斜板の回転に伴って前記シリンダ内を往復動する複数のピストンと、前記シリンダと前記ピストンとによって画成される圧縮室と、前記ピストンの反圧縮室側に形成される制御室と、前記ピストンの吸入行程において前記圧縮室に吸入される作動流体を収容する吸入室と、前記ピストンの圧縮行程において前記圧縮室で圧縮された前記作動流体が吐出される吐出室とを有し、前記制御室の圧力が上昇すると吐出容量が減少する可変容量型圧縮機に用いられ、前記吐出室と前記制御室とを接続する給気通路の開度を調節することにより前記吐出室から前記制御室への前記作動流体の供給量を調節して前記制御室の圧力を調整するものであって、前記吐出室の圧力、前記吸入室の圧力、前記制御室の圧力のうち、前記吐出室の圧力のみに基づき、前記給気通路の開度を調節することを特徴としている。
In order to achieve the above object, a pressure control valve according to the present invention includes a housing, a drive shaft provided in the housing, a swash plate that rotates with the drive shaft and has a variable inclination angle with respect to the drive shaft. And a plurality of cylinders provided in the housing and having an axis parallel to the drive shaft, and a plurality of cylinders slidably disposed in the cylinder and reciprocating in the cylinder as the swash plate rotates. Contains a piston, a compression chamber defined by the cylinder and the piston, a control chamber formed on the anti-compression chamber side of the piston, and a working fluid sucked into the compression chamber in the piston suction stroke And a discharge chamber into which the working fluid compressed in the compression chamber is discharged during the compression stroke of the piston, and discharge capacity is increased when the pressure in the control chamber increases. Used in a variable displacement compressor that decreases, and adjusts the supply amount of the working fluid from the discharge chamber to the control chamber by adjusting the opening of an air supply passage connecting the discharge chamber and the control chamber The pressure of the control chamber is adjusted, and the air supply passage is opened based on only the pressure of the discharge chamber among the pressure of the discharge chamber, the pressure of the suction chamber, and the pressure of the control chamber. It is characterized by adjusting the degree.
ここで、吐出室の圧力、吸入室の圧力、制御室の圧力のうち、吐出室の圧力のみに基づき給気通路の開度を調節するとは、吸入室の圧力、及び、制御室の圧力を作用させずに吐出室の圧力を少なくとも作用させて給気通路の開度を調節することを意味する。
Here, adjusting the opening of the air supply passage based only on the pressure in the discharge chamber among the pressure in the discharge chamber, the pressure in the suction chamber, and the pressure in the control chamber means that the pressure in the suction chamber and the pressure in the control chamber are adjusted. It means that the opening of the air supply passage is adjusted by applying at least the pressure of the discharge chamber without acting.
したがって、給気通路の開度が、吐出室の圧力のみに基づいて調節されるので、吸入室や制御室の圧力変化に拘らず、吐出室の圧力変化のみに基づいて制御室の圧力が速やかに調整されることになる。
Therefore, since the opening of the air supply passage is adjusted based only on the pressure in the discharge chamber, the pressure in the control chamber is quickly increased only on the basis of the pressure change in the discharge chamber regardless of the pressure change in the suction chamber or the control chamber. Will be adjusted.
即ち、熱負荷や圧縮機回転数の上昇によりシステムの高圧側圧力が上昇する環境下においても、吐出室の圧力のみに基づいて給気通路の開度が調整されるので、所定の吐出圧を維持するように吐出容量が自律的に制御されることになり、高圧側に圧力センサを設けて外部からの信号に基づき吐出容量を減らす制御を行わなくても高圧異常を回避することが可能となる。
That is, even in an environment where the high pressure side pressure of the system increases due to an increase in heat load or compressor speed, the opening of the air supply passage is adjusted based only on the pressure in the discharge chamber. The discharge capacity is autonomously controlled so as to maintain it, and it is possible to avoid a high pressure abnormality without performing a control to reduce the discharge capacity based on a signal from the outside by providing a pressure sensor on the high pressure side Become.
具体的な圧力制御弁の構成としては、吐出室に連通する高圧導入空間と、制御室に連通する圧力調整空間と、高圧導入空間と圧力調整空間とを連通する弁口と、この弁口を開閉可能な弁口開閉部材とを備え、弁口開閉部材の動作方向の一端側に高圧導入空間に導入された吐出室の圧力が弁口を開放させる方向に作用し、弁口開閉部材の動作方向の他端側に大気圧または真空圧を作用させるようにするとよい。
As a specific configuration of the pressure control valve, a high-pressure introduction space that communicates with the discharge chamber, a pressure adjustment space that communicates with the control chamber, a valve port that communicates the high-pressure introduction space and the pressure adjustment space, A valve opening / closing member that can be opened and closed, and the pressure of the discharge chamber introduced into the high-pressure introduction space acts on one end side of the operation direction of the valve opening / closing member in the direction of opening the valve opening, and the operation of the valve opening / closing member An atmospheric pressure or a vacuum pressure may be applied to the other end side in the direction.
このような構成によれば、弁口開閉部材(弁体)の一端側に作用する弁口を開放させる方向の圧力を吐出室の圧力とし、他端側に作用する圧力を大気圧または真空圧とすることで、吐出室の圧力のみに依存して弁口開閉部材を開閉動作させ、吐出室圧の圧力変動に速やかに追従させることが可能となる。
例えば、吐出室圧力が上昇した場合には、弁開度が大きくなって制御室の圧力が上昇するように作用するため、斜板の傾斜角が小さくなり、圧縮機の吐出容量を減少させて吐出圧力の上昇を制限するよう自律的に制御されることになる。 According to such a configuration, the pressure in the direction of opening the valve opening acting on one end side of the valve opening / closing member (valve element) is the pressure of the discharge chamber, and the pressure acting on the other end side is atmospheric pressure or vacuum pressure. Thus, the valve opening / closing member can be opened / closed depending only on the pressure in the discharge chamber, and the pressure fluctuation of the discharge chamber pressure can be followed quickly.
For example, when the discharge chamber pressure increases, the valve opening increases and the pressure in the control chamber increases, so that the inclination angle of the swash plate decreases and the discharge capacity of the compressor decreases. It will be autonomously controlled to limit the rise in discharge pressure.
例えば、吐出室圧力が上昇した場合には、弁開度が大きくなって制御室の圧力が上昇するように作用するため、斜板の傾斜角が小さくなり、圧縮機の吐出容量を減少させて吐出圧力の上昇を制限するよう自律的に制御されることになる。 According to such a configuration, the pressure in the direction of opening the valve opening acting on one end side of the valve opening / closing member (valve element) is the pressure of the discharge chamber, and the pressure acting on the other end side is atmospheric pressure or vacuum pressure. Thus, the valve opening / closing member can be opened / closed depending only on the pressure in the discharge chamber, and the pressure fluctuation of the discharge chamber pressure can be followed quickly.
For example, when the discharge chamber pressure increases, the valve opening increases and the pressure in the control chamber increases, so that the inclination angle of the swash plate decreases and the discharge capacity of the compressor decreases. It will be autonomously controlled to limit the rise in discharge pressure.
上記構成を実現するために、例えば、弁口開閉部材は、その動作方向の一端側が弁口に対向し、この弁口を圧力調整空間から開閉可能であり、前記高圧導入空間に導入された吐出室の圧力が前記弁口を介して前記弁口開閉部材の動作方向の一端側に作用し、前記弁口開閉部材の動作方向の他端側に大気圧または真空圧が作用される構成にするとよい。
In order to realize the above-described configuration, for example, the valve opening / closing member has one end in the operation direction facing the valve opening, the valve opening can be opened / closed from the pressure adjustment space, and the discharge introduced into the high pressure introduction space. When the pressure of the chamber acts on one end side in the operation direction of the valve port opening / closing member via the valve port, the atmospheric pressure or the vacuum pressure acts on the other end side in the operation direction of the valve port opening / closing member. Good.
また、前記弁口開閉部材に対して前記弁口を閉鎖する方向に調整可能な外力を付与する外力付与手段をさらに備えるようにしてもよい。
外力付与手段により弁口開閉部材に対して弁口を閉鎖する方向に外力を付与することにより、この弁口開閉部材を弁口から開放させる方向へ作用する吐出室の圧力に対抗させることができ、この外力を調整することによりこれに対抗する自律的に制御される吐出室の圧力を外部から調整することが可能となる。 Moreover, you may make it further provide the external force provision means which provides the external force which can be adjusted to the direction which closes the said valve opening with respect to the said valve opening / closing member.
By applying an external force to the valve opening / closing member in the direction of closing the valve opening / closing member by the external force applying means, it is possible to counter the pressure of the discharge chamber acting in the direction of opening the valve opening / closing member from the valve opening. By adjusting this external force, it is possible to adjust the pressure of the discharge chamber that is autonomously controlled against this from the outside.
外力付与手段により弁口開閉部材に対して弁口を閉鎖する方向に外力を付与することにより、この弁口開閉部材を弁口から開放させる方向へ作用する吐出室の圧力に対抗させることができ、この外力を調整することによりこれに対抗する自律的に制御される吐出室の圧力を外部から調整することが可能となる。 Moreover, you may make it further provide the external force provision means which provides the external force which can be adjusted to the direction which closes the said valve opening with respect to the said valve opening / closing member.
By applying an external force to the valve opening / closing member in the direction of closing the valve opening / closing member by the external force applying means, it is possible to counter the pressure of the discharge chamber acting in the direction of opening the valve opening / closing member from the valve opening. By adjusting this external force, it is possible to adjust the pressure of the discharge chamber that is autonomously controlled against this from the outside.
以上述べたように、本発明に係る圧力調整弁を用いれば、給気通路の開度が、吐出室の圧力、吸入室の圧力、制御室の圧力のうち吐出室の圧力のみに基づいて調節されるので、吸入室や制御室の圧力変化に拘らず、吐出室の圧力変化のみに基づき制御室の圧力を速やかに自律調整することが可能となり、高圧側に圧力センサ等を設けて外部からの信号に基づき吐出容量を制御しなくても高圧異常を回避することが可能となる。
As described above, when the pressure regulating valve according to the present invention is used, the opening of the air supply passage is adjusted based only on the pressure of the discharge chamber among the pressure of the discharge chamber, the pressure of the suction chamber, and the pressure of the control chamber. Therefore, it is possible to quickly and autonomously adjust the pressure in the control chamber based only on the pressure change in the discharge chamber regardless of the pressure change in the suction chamber or the control chamber. It is possible to avoid a high-pressure abnormality without controlling the discharge capacity based on this signal.
以下、本発明の実施形態を添付図面を参照しながら説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
図1において、本発明に係る圧力制御弁2を備えた可変容量圧縮機3が用いられる冷凍サイクル1が示されている。この冷凍サイクル1は、CO2を冷媒とする場合に適したものであり、吐出容量を可変するための圧力制御弁2を有すると共に冷媒を超臨界域まで圧縮可能とする可変容量圧縮機(以下、圧縮機という)3、圧縮された冷媒を冷却する放熱器4、高圧ライン9と低圧ライン10との冷媒を熱交換する内部熱交換器5、冷媒を減圧する膨張装置6、冷媒を蒸発気化する蒸発器7、蒸発器7から流出された冷媒を気液分離するアキュムレータ8を有して構成されている。
1 shows a refrigeration cycle 1 in which a variable capacity compressor 3 having a pressure control valve 2 according to the present invention is used. The refrigeration cycle 1 is suitable for the case where CO2 is used as a refrigerant, and has a pressure control valve 2 for changing the discharge capacity, and a variable capacity compressor (hereinafter referred to as a compressor) capable of compressing the refrigerant to a supercritical region. 3) a radiator 4 that cools the compressed refrigerant, an internal heat exchanger 5 that exchanges heat between the high-pressure line 9 and the low-pressure line 10, an expansion device 6 that decompresses the refrigerant, and evaporates the refrigerant. An evaporator 7 and an accumulator 8 for gas-liquid separation of the refrigerant flowing out of the evaporator 7 are provided.
この冷凍サイクル1では、圧縮機3の吐出側を放熱器4を介して内部熱交換器5の高圧通路5aに接続し、この高圧通路5aの流出側を膨張装置6に接続し、圧縮機3の吐出側から膨張装置6の流入側に至る経路を高圧ライン9としている。また、膨張装置6の流出側は、蒸発器7に接続され、この蒸発器7の流出側は、アキュムレータ8を介して内部熱交換器5の低圧通路5bに接続されている。そして、低圧通路5bの流出側を圧縮機3の吸入側に接続し、膨張装置6の流出側から圧縮機3の吸入側に至る経路を低圧ライン10としている。
In this refrigeration cycle 1, the discharge side of the compressor 3 is connected to the high-pressure passage 5 a of the internal heat exchanger 5 via the radiator 4, and the outflow side of the high-pressure passage 5 a is connected to the expansion device 6. A path from the discharge side to the inflow side of the expansion device 6 is a high pressure line 9. The outflow side of the expansion device 6 is connected to the evaporator 7, and the outflow side of the evaporator 7 is connected to the low-pressure passage 5 b of the internal heat exchanger 5 via the accumulator 8. The outflow side of the low pressure passage 5 b is connected to the suction side of the compressor 3, and the path from the outflow side of the expansion device 6 to the suction side of the compressor 3 is a low pressure line 10.
このような冷凍サイクル1においては、冷媒として二酸化炭素(CO2 )が用いられると、圧縮機3で圧縮された冷媒は、高温高圧の超臨界状態の冷媒として放熱器4に入り、ここで放熱して冷却する。その後、内部熱交換器5において蒸発器7から流出する低温冷媒と熱交換して更に冷やされ、液化されることなく膨張装置6へ送られる。そして、この膨張装置6において減圧されて低温低圧の湿り蒸気となり、蒸発器7においてここを通過する空気と熱交換してガス状となり、しかる後に内部熱交換器5において高圧ライン9の高温冷媒と熱交換して加熱され、圧縮機3へ戻される。
In such a refrigeration cycle 1, when carbon dioxide (CO 2 ) is used as a refrigerant, the refrigerant compressed by the compressor 3 enters the radiator 4 as a high-temperature and high-pressure supercritical refrigerant, and releases heat here. And cool. Thereafter, the internal heat exchanger 5 exchanges heat with the low-temperature refrigerant flowing out from the evaporator 7, and is further cooled and sent to the expansion device 6 without being liquefied. Then, the pressure is reduced in the expansion device 6 to become low-temperature and low-pressure wet steam, and heat is exchanged with the air passing therethrough in the evaporator 7 to become a gaseous state. Thereafter, in the internal heat exchanger 5, Heat is exchanged and returned to the compressor 3.
前記蒸発器7の通風部分の下流側端部には、蒸発器7の直後の空気温度を検出する実エバ後温度センサ11が設けられている。この実エバ後温度センサ11によって検出されたエバポレータ直後の実際の空気温度(実エバ後温度)に対応する信号は、外気温センサによって検出された外気温度(Ta)、車室内温度センサによって検出された車室内温度(Tinc)、日射量検出センサ16によって検出された日射量(Qsun)等のそれぞれに対応する信号と共に、コントロールユニット12に入力される。
At the downstream end of the ventilation portion of the evaporator 7, a post-evaporation temperature sensor 11 for detecting the air temperature immediately after the evaporator 7 is provided. A signal corresponding to the actual air temperature immediately after the evaporator (actual post-evaporation temperature) detected by the actual post-evaporation temperature sensor 11 is detected by the outside air temperature (Ta) detected by the external air temperature sensor and the vehicle interior temperature sensor. The vehicle interior temperature (Tinc), the amount of solar radiation detected by the solar radiation amount detection sensor 16 (Qsun), and the like are input to the control unit 12 together with signals corresponding to each.
このコントロールユニット12は、前述した各種信号(センサ値)をデータとして入力する入力回路、読出専用メモリ(ROM)やランダムアクセスメモリ(RAM)からなるメモリ部、前記メモリ部に格納されたプログラムを呼び出して前記データに基づき制御データを演算する中央演算処理装置(CPU)、この中央演算処理装置によって演算された制御データに基づき後述する圧力制御弁2の励磁コイル58へ供給する電流を決定し供給する出力回路等を備えている。
The control unit 12 inputs the above-described various signals (sensor values) as data, a memory unit composed of a read-only memory (ROM) or a random access memory (RAM), and calls a program stored in the memory unit. A central processing unit (CPU) that calculates control data based on the data, and determines and supplies a current to be supplied to an excitation coil 58 of a pressure control valve 2 described later based on the control data calculated by the central processing unit. An output circuit is provided.
前記圧縮機3は、例えば図2に示すような容量可変斜板式圧縮機であり、シリンダブロック21 と、このシリンダブロック21 のリア側( 図中、右側) にバルブプレート22 を介して組み付けられたリアヘッド23 と、シリンダブロック21 のフロント側( 図中、左側) を閉塞するように組み付けられたフロントヘッド24 とを有して構成されている。これらフロントヘッド24 、シリンダブロック21 、バルブプレート22 、及び、リアヘッド23 は、図示しない締結ボルト により軸方向に締結されており、圧縮機全体のハウジングを構成している。
The compressor 3 is, for example, a variable displacement swash plate type compressor as shown in FIG. 2, and is assembled to a cylinder block 21 and a rear side (right side in the drawing) of the cylinder block 21 via a valve plate 22. The rear head 23 and the front head 24 assembled so as to close the front side (left side in the drawing) of the cylinder block 21 are configured. The front head 24, the cylinder block 21, the valve plate 22, and the rear head 23 軸 are fastened in the axial direction by fastening bolts (not shown) to constitute a housing of the entire compressor.
フロントヘッド24 とシリンダブロック21とによって画成される制御室26 には、一端がフロントヘッド24 から突出する駆動軸27 が収容されている。この駆動軸27 のフロントヘッド24 から突出した部分には、図示しない車両のエンジンにベルトを介して連結される駆動プーリが固定され、エンジンの回転が伝達されるようになっている。
A control chamber 26 defined by the front head 24 and the cylinder block 21 accommodates a drive shaft 27 having one end protruding from the front head 24. A drive pulley connected to a vehicle engine (not shown) through a belt is fixed to a portion of the drive shaft 27 突出 protruding from the front head 24 、 so that the rotation of the engine is transmitted.
また、この駆動軸27 の一端側は、フロントヘッド24との間に設けられたシール部材28を介してフロントヘッド24との間が気密よく封じられると共にラジアル軸受29,30にて回転自在に支持されており、駆動軸27の他端側は、シリンダブロック21に収容されたラジアル軸受31,32にて回転自在に支持されている。
Further, one end side of the drive shaft 27 is hermetically sealed with the front head 24 through a seal member 28 provided between the front shaft 24 and is rotatably supported by radial bearings 29 and 30. The other end of the drive shaft 27 is rotatably supported by radial bearings 31 and 32 accommodated in the cylinder block 21.
この駆動軸27には、制御室26内において、該駆動軸27と一体に回転するスラストフランジ33が固定されている。このスラストフランジ33は、フロントヘッド24に対してスラスト軸受34を介して回転自在に支持されており、リンク部材35を介して斜板36に連結されている。
A thrust flange 33 that rotates integrally with the drive shaft 27 is fixed to the drive shaft 27 in the control chamber 26. The thrust flange 33 is rotatably supported by a front head 24 via a thrust bearing 34 and is connected to a swash plate 36 via a link member 35.
斜板36は、駆動軸27を中心に傾動可能に取り付けられているもので、スラストフランジ33の回転に同期して一体に回転するようになっている。この斜板36は、スラストフランジ33との間に介在するコイルバネ等の弾性部材37とその反対側に配されたコイルバネ等の弾性部材38とにより軸方向の両側から押圧された状態で配置されており、駆動軸27の軸方向への移動を許容するようになっている。
The swash plate 36 is attached so as to be tiltable about the drive shaft 27, and is rotated integrally with the rotation of the thrust flange 33. The swash plate 36 is disposed in a state of being pressed from both axial sides by an elastic member 37 such as a coil spring interposed between the thrust flange 33 and an elastic member 38 such as a coil spring disposed on the opposite side. Therefore, the drive shaft 27 is allowed to move in the axial direction.
シリンダブロック21には、前記ラジアル軸受31,32が収容される支持凹部39 と、この支持凹部39を中心とする円周上に等間隔に配された複数のシリンダボア40 とが形成されている。そして、それぞれのシリンダボア40には、ピストン41が往復摺動可能に挿入されている。
The cylinder block 21 is formed with a support recess 39 in which the radial bearings 31, 32 are accommodated, and a plurality of cylinder bores 40 配 arranged at equal intervals on the circumference around the support recess 39. And piston 41 is inserted in each cylinder bore 40 so that reciprocating sliding is possible.
ピストン41は、シリンダボア40内に挿入される頭部41aと、制御室26に突出する係合部41bとを軸方向に接合して構成されているもので、係合部41bを一対のシュー42を介して斜板36の周縁部分に係留させている。
The piston 41 is configured by joining a head portion 41a inserted into the cylinder bore 40 and an engaging portion 41b protruding into the control chamber 26 in the axial direction. The engaging portion 41b is connected to a pair of shoes 42. It is moored to the peripheral portion of the swash plate 36 via
このようなスラストフランジ33、斜板36、及びピストン41によって、駆動軸27の回転を作動流体の圧縮作用に変換する圧縮機構が構成され、駆動軸27が回転すると、これに同期して斜板36が一体に回転し、この回転運動がシュー42を介してピストン41の往復直線運動に変換され、ピストン41の往復動により、シリンダボア40内においてピストン41とバルブプレート22との間に形成された圧縮室43の容積が変更されるようになっている。
The thrust flange 33, the swash plate 36, and the piston 41 constitute a compression mechanism that converts the rotation of the drive shaft 27 into the compression action of the working fluid. When the drive shaft 27 rotates, the swash plate is synchronized with the compression mechanism. 36 rotates integrally, and this rotational motion is converted into a reciprocating linear motion of the piston 41 via the shoe 42, and is formed between the piston 41 and the valve plate 22 in the cylinder bore 40 by the reciprocating motion of the piston 41. The volume of the compression chamber 43 is changed.
リアヘッド23は、シリンダブロック21にバルブプレート22を介して接合されることで、吐出室44と、この吐出室44の周囲に形成された吸入室45とが画成されている。バルブプレート22には、吸入室45と圧縮室43とを図示しない吸入弁を介して連通する吸入孔46と、吐出室44と圧縮室43とを図示しない吐出弁を介して連通する吐出孔47とが形成されている。
The rear head 23 is joined to the cylinder block 21 via the valve plate 22, thereby defining a discharge chamber 44 and a suction chamber 45 formed around the discharge chamber 44. The valve plate 22 has a suction hole 46 that communicates the suction chamber 45 and the compression chamber 43 via a suction valve (not shown), and a discharge hole 47 that communicates the discharge chamber 44 and the compression chamber 43 via a discharge valve (not shown). And are formed.
圧縮機の吐出容量は、ピストン41のストロークによって決定され、このストロークは、ピストン41の前面にかかる圧力、即ち圧縮室43の圧力(シリンダボア40内の圧力)と、ピストン41の背面にかかる圧力、即ち制御室26内の圧力(制御室圧Pc)との差圧によって決定される。具体的には、制御室26内の圧力を高くすれば、圧縮室43と制御室26との差圧が小さくなるので、斜板36の傾斜角度(揺動角度)が小さくなり、このため、ピストン41のストロークが小さくなって吐出容量が小さくなり、逆に、制御室26の圧力を低くすれば、圧縮室43と制御室26との差圧が大きくなるので、斜板36の傾斜角度(揺動角度)が大きくなり、このため、ピストン41のストロークが大きくなって吐出容量が大きくなる。
The discharge capacity of the compressor is determined by the stroke of the piston 41. This stroke is the pressure applied to the front surface of the piston 41, that is, the pressure in the compression chamber 43 (pressure in the cylinder bore 40) and the pressure applied to the back surface of the piston 41. That is, it is determined by the pressure difference with the pressure in the control chamber 26 (control chamber pressure Pc). Specifically, if the pressure in the control chamber 26 is increased, the differential pressure between the compression chamber 43 and the control chamber 26 is reduced, so that the inclination angle (swing angle) of the swash plate 36 is reduced. If the stroke of the piston 41 is reduced and the discharge capacity is reduced. Conversely, if the pressure in the control chamber 26 is lowered, the differential pressure between the compression chamber 43 and the control chamber 26 is increased. (Swinging angle) is increased, and therefore, the stroke of the piston 41 is increased and the discharge capacity is increased.
このような圧縮機において、シリンダブロック21、バルブプレート22、及びリアヘッド23には、吐出室44と制御室26とを連通する給気通路48が形成され、この給気通路48上に圧力制御弁2が設けられている。この圧力制御弁2は、リアヘッド23に形成された制御弁装着孔49に装着されているもので、給気通路48の開度を調節することで、制御室26の圧力(制御室圧Pc)を制御している。
In such a compressor, an air supply passage 48 that connects the discharge chamber 44 and the control chamber 26 is formed in the cylinder block 21, the valve plate 22, and the rear head 23, and a pressure control valve is provided on the air supply passage 48. 2 is provided. The pressure control valve 2 is mounted in a control valve mounting hole 49 formed in the rear head 23, and the pressure in the control chamber 26 (control chamber pressure Pc) is adjusted by adjusting the opening of the air supply passage 48. Is controlling.
図3において、圧力制御弁2の具体的構成例が示されており、以下、この圧力制御弁2について詳述する。
圧力制御弁2は、駆動部51と先端ブロック部52とから構成されている。駆動部51は、先端ブロック部52と螺合する固定鉄心53と、この固定鉄心53に係止する板状の上ケース部材54と、この上ケース部材54が螺合する円筒状の円筒ケース55と、この円筒ケース55の下端にかしめ固定される下ケース部材56と、前記円筒ケース55内に収納されると共に固定鉄心53に固定される円筒状のシリンダ56と、このシリンダ56の周囲に固定されるボビン57と、このボビン57に巻回される励磁コイル58と、固定鉄心53と同軸上に配置され、シリンダ56の内部に摺動自在に挿入されるプランジャ59と、このプランジャ59と軸心を一致させて該プランジャ59に固定され、前記固定鉄心53の中央に設けられた軸孔60を挿通するロッド状の弁体61と、シリンダ56の下ケース部材側の開口端部にOリング62を介して気密に嵌合され、下ケース部材56に螺合された封止ブロック63と、固定鉄心53とプランジャ59との間に弾装されたスプリング64とを有して構成されている。 In FIG. 3, a specific configuration example of thepressure control valve 2 is shown, and the pressure control valve 2 will be described in detail below.
Thepressure control valve 2 includes a drive unit 51 and a tip block unit 52. The drive unit 51 includes a fixed iron core 53 that is screwed to the tip block 52, a plate-like upper case member 54 that is locked to the fixed iron core 53, and a cylindrical cylindrical case 55 that is screwed to the upper case member 54. A lower case member 56 that is caulked and fixed to the lower end of the cylindrical case 55, a cylindrical cylinder 56 that is housed in the cylindrical case 55 and fixed to the fixed iron core 53, and is fixed around the cylinder 56. A bobbin 57, an exciting coil 58 wound around the bobbin 57, a plunger 59 arranged coaxially with the fixed iron core 53 and slidably inserted into the cylinder 56, and the plunger 59 and shaft A rod-shaped valve body 61 that is fixed to the plunger 59 with its center aligned and is inserted through a shaft hole 60 provided in the center of the fixed iron core 53, and an opening on the lower case member side of the cylinder 56. A sealing block 63 that is airtightly fitted to the end portion via an O-ring 62 and screwed into the lower case member 56, and a spring 64 that is elastically mounted between the fixed iron core 53 and the plunger 59. Configured.
圧力制御弁2は、駆動部51と先端ブロック部52とから構成されている。駆動部51は、先端ブロック部52と螺合する固定鉄心53と、この固定鉄心53に係止する板状の上ケース部材54と、この上ケース部材54が螺合する円筒状の円筒ケース55と、この円筒ケース55の下端にかしめ固定される下ケース部材56と、前記円筒ケース55内に収納されると共に固定鉄心53に固定される円筒状のシリンダ56と、このシリンダ56の周囲に固定されるボビン57と、このボビン57に巻回される励磁コイル58と、固定鉄心53と同軸上に配置され、シリンダ56の内部に摺動自在に挿入されるプランジャ59と、このプランジャ59と軸心を一致させて該プランジャ59に固定され、前記固定鉄心53の中央に設けられた軸孔60を挿通するロッド状の弁体61と、シリンダ56の下ケース部材側の開口端部にOリング62を介して気密に嵌合され、下ケース部材56に螺合された封止ブロック63と、固定鉄心53とプランジャ59との間に弾装されたスプリング64とを有して構成されている。 In FIG. 3, a specific configuration example of the
The
弁体61の末端部は、封止ブロック63に穿設されたロッド挿入孔65に摺動可能に挿入され、この封止ブロック63への挿入部分はOリング66により気密性が確保されている。
The end portion of the valve body 61 is slidably inserted into a rod insertion hole 65 formed in the sealing block 63, and the insertion portion of the sealing block 63 is airtight by an O-ring 66. .
そして、封止ブロック63のロッド挿入孔65には、ここに挿入された弁体61により画成される背圧室69が形成され、この背圧室69には封止ブロック63に形成された連通孔70を介して大気圧又は真空圧Poが導入されるようになっている。なお、67は、弁体61の上部を周方向の数か所で支持するサポート部材であり、68は、励磁コイル58に電流を供給するリード線である。
A back pressure chamber 69 defined by the valve body 61 inserted therein is formed in the rod insertion hole 65 of the sealing block 63, and the back pressure chamber 69 is formed in the sealing block 63. Atmospheric pressure or vacuum pressure Po is introduced through the communication hole 70. Reference numeral 67 denotes a support member that supports the upper portion of the valve body 61 at several locations in the circumferential direction, and 68 denotes a lead wire that supplies current to the exciting coil 58.
先端ブロック部52は、軸方向の基端側で固定鉄心53に羅合させたブロック本体71と、このブロック本体71の先端側に羅合させた弁座部材72とを有して構成されているもので、先端ブロック部52のブロック本体71の先端部には、フィルタ73を収容したフィルタ装着部材74が羅合され、フィルタ73と弁座部材72との間には、フィルタ73を介して前記吐出室44と連通する高圧導入空間75が形成されている。
The distal end block portion 52 includes a block body 71 that is engaged with the fixed iron core 53 on the proximal end side in the axial direction, and a valve seat member 72 that is engaged with the distal end side of the block body 71. Therefore, a filter mounting member 74 containing a filter 73 is assembled at the tip of the block main body 71 of the tip block 52, and the filter 73 is interposed between the filter 73 and the valve seat member 72. A high-pressure introduction space 75 communicating with the discharge chamber 44 is formed.
また、弁座部材72と固定鉄心53との間には、軸孔60を挿通する弁体61が突出すると共にブロック本体71に径方向に形成された連通孔76を介して前記制御室26と連通する圧力調整空間77が形成されている。この圧力調整空間77は、軸孔60の弁体61との間の隙間を介して固定鉄心53とプランジャ59との間のスプリング64が収容された空間78に連通しており、また、プラジャ59とシリンダ56との間のクリアランスを介してプランジャ59と封止ブロック63との間の空間79にも連通しており、したがって、圧力調整空間77、固定鉄心53とプランジャ59との間の空間78、プランジャ59と封止ブロック63との間の空間79は制御室圧Pcとなっている。
Further, a valve body 61 inserted through the shaft hole 60 protrudes between the valve seat member 72 and the fixed iron core 53 and communicates with the control chamber 26 via a communication hole 76 formed in the block body 71 in the radial direction. A communicating pressure adjusting space 77 is formed. The pressure adjusting space 77 communicates with a space 78 in which a spring 64 between the fixed iron core 53 and the plunger 59 is accommodated via a gap between the shaft hole 60 and the valve body 61. And a space 79 between the plunger 59 and the sealing block 63 via a clearance between the pressure adjusting space 77 and the space 78 between the fixed iron core 53 and the plunger 59. The space 79 between the plunger 59 and the sealing block 63 has a control chamber pressure Pc.
前記弁座部材72には、前記高圧導入空間75と前記圧力調整空間77とを連通する弁口80が形成され、この弁口80は、前記圧力調整空間77から弁体61を該弁口80の周縁に離接させることにより開閉可能となっている。このロッド状の弁体61によって弁口80を開閉させる弁口開閉部材が構成されている。
The valve seat member 72 is formed with a valve port 80 that communicates the high-pressure introduction space 75 and the pressure adjustment space 77, and the valve port 80 moves the valve body 61 from the pressure adjustment space 77 to the valve port 80. It is possible to open and close by separating and contacting the peripheral edge. The rod-shaped valve element 61 constitutes a valve opening / closing member that opens and closes the valve opening 80.
以上の構成において、弁体61に作用する圧力を見ると、制御室圧Pcは、弁体61の軸方向には直接作用せず、また、弁体61に固定されたプランジャ59に対しても軸方向の前後が制御室圧Pcとなるので、プランジャ59を介して制御室圧Pcが弁体61の軸方向に作用することもない。これに対して、弁体61の先端には弁口80を介して吐出室圧Pdが開方向に作用し、また、弁体61の末端には背圧室69に導入される大気圧または真空圧が作用する。また、スプリング64による弾性力(スプリング圧)がプランジャ59を介して弁体61の開方向に作用すると共に励磁コイル58による誘起される電磁力が弁体61の閉方向に作用する。したがって、吐出室44の圧力(吐出室圧Pd)、吸入室45の圧力(吸入室圧Ps)、制御室26の圧力(制御室圧Pc)のうちで、弁体61の軸方向に作用する圧力は、吐出室44の圧力(吐出室圧Pd)のみであり、この吐出室圧Pdと背圧Po(大気圧または真空圧)、スプリング圧、および電磁力がバランスした位置に弁体が動くことになる。スプリング圧および背圧は一定であるので、電磁力によって弁体61の開弁圧が調整され、この開弁圧を有する弁体61が吐出室圧Pdに応じて開閉されることになる。
In the above configuration, when the pressure acting on the valve body 61 is viewed, the control chamber pressure Pc does not act directly on the axial direction of the valve body 61, and also on the plunger 59 fixed to the valve body 61. Since the front and rear in the axial direction becomes the control chamber pressure Pc, the control chamber pressure Pc does not act in the axial direction of the valve body 61 via the plunger 59. In contrast, the discharge chamber pressure Pd acts on the tip of the valve body 61 in the opening direction via the valve port 80, and the atmospheric pressure or vacuum introduced into the back pressure chamber 69 at the end of the valve body 61. Pressure acts. Further, an elastic force (spring pressure) by the spring 64 acts in the opening direction of the valve body 61 via the plunger 59, and an electromagnetic force induced by the excitation coil 58 acts in the closing direction of the valve body 61. Therefore, among the pressure in the discharge chamber 44 (discharge chamber pressure Pd), the pressure in the suction chamber 45 (suction chamber pressure Ps), and the pressure in the control chamber 26 (control chamber pressure Pc), the valve body 61 acts in the axial direction. The pressure is only the pressure of the discharge chamber 44 (discharge chamber pressure Pd), and the valve body moves to a position where the discharge chamber pressure Pd and back pressure Po (atmospheric pressure or vacuum pressure), spring pressure, and electromagnetic force are balanced. It will be. Since the spring pressure and the back pressure are constant, the valve opening pressure of the valve body 61 is adjusted by electromagnetic force, and the valve body 61 having this valve opening pressure is opened and closed according to the discharge chamber pressure Pd.
なお、励磁コイル58へ供給する電流は、図4に示されるように、コントロールユニット12において、各センサ値(外気温度、車室内温度、日射量、実エバ後温度等)が入力されると(ステップ90)、目標とするエバポレータ直後の空気温度(目標エバ後温度)を算出し(ステップ92)、実際のエバポレータ直後の空気温度(実エバ後温度)と目標エバ後温度との差に基づき、実エバ後温度を目標エバ後温度に近づけるような励磁コイル58の供給電流値が決定される(ステップ94)。
As shown in FIG. 4, the current supplied to the excitation coil 58 is input when each sensor value (outside air temperature, vehicle interior temperature, solar radiation amount, actual post-evaporation temperature, etc.) is input in the control unit 12 ( Step 90), calculate the air temperature immediately after the target evaporator (target post-evaporation temperature) (step 92), and based on the difference between the actual air temperature immediately after the evaporator (actual post-evaporation temperature) and the target post-evaporation temperature, The supply current value of the exciting coil 58 is determined so that the actual post-evaporation temperature approaches the target post-evaporation temperature (step 94).
したがって、このような圧力制御弁2を用いることで、吐出室圧Pd、吸入室圧Ps、制御室圧Pcのうちで、吐出室圧Pdのみが弁体61に作用して弁開度が自律的に制御されるので、励磁コイル58の電流を任意に調整することにより、電流に対応した吐出圧となるように圧縮機3の吐出容量が制御されることとなる。このため、上述のように、実エバ後温度を目標温度(目標エバ後温度)に近づけるように励磁コイル58の電流を調節することにより、好ましい空調を得ることが可能となる。
Therefore, by using such a pressure control valve 2, only the discharge chamber pressure Pd acts on the valve body 61 among the discharge chamber pressure Pd, the suction chamber pressure Ps, and the control chamber pressure Pc, and the valve opening degree is autonomous. Therefore, by arbitrarily adjusting the current of the exciting coil 58, the discharge capacity of the compressor 3 is controlled so that the discharge pressure corresponds to the current. For this reason, as described above, it is possible to obtain preferable air conditioning by adjusting the current of the exciting coil 58 so that the actual post-evaporation temperature approaches the target temperature (target post-evaporation temperature).
また、熱負荷や圧縮機回転数の上昇によりシステム側の高圧が上昇する場合でも、吐出室の圧力が直接的に弁体に作用しているため、電流に対応した吐出圧を維持するように自律的に吐出容量が制御されることになる。これにより、冷凍サイクル1の高圧側に圧力を測定する圧力センサなどを設けて外部からの信号に基づき吐出容量を減らす制御を行わなくても高圧異常を速やかに回避することが可能となる。
Also, even when the high pressure on the system side increases due to an increase in heat load or compressor speed, the discharge chamber pressure directly acts on the valve body, so the discharge pressure corresponding to the current should be maintained. The discharge capacity is controlled autonomously. Accordingly, it is possible to quickly avoid a high pressure abnormality without providing a pressure sensor or the like for measuring the pressure on the high pressure side of the refrigeration cycle 1 and performing control for reducing the discharge capacity based on an external signal.
なお、上述した圧力制御弁2は、同様の目的を達成できるものであれば上記構成例に限定されるものではなく、例えば、図5に示されるように変形させてもよい。
この図5に示される変形例においては、前記弁体61の末端部に作用する大気圧または真空圧を封止ブロック3と弁体61の末端との間に介在させたベローズ81内に連通孔70を介して供給し、このベローズ81を介して大気圧または真空圧を弁体61に作用させるようにしてもよい。このベローズ81は、弁体61の末端および封止ブロック63に固着されており、プランジャ59と封止部材63との間の空間79の制御室圧Pcが弁体61の末端に軸方向に作用しないように取り付けられている。 Note that thepressure control valve 2 described above is not limited to the above configuration example as long as the same purpose can be achieved, and may be modified as shown in FIG. 5, for example.
In the modification shown in FIG. 5, a communication hole is formed in abellows 81 in which atmospheric pressure or vacuum pressure acting on the end of the valve body 61 is interposed between the sealing block 3 and the end of the valve body 61. 70 may be supplied via the bellows 81, and atmospheric pressure or vacuum pressure may be applied to the valve body 61 via the bellows 81. The bellows 81 is fixed to the end of the valve body 61 and the sealing block 63, and the control chamber pressure Pc in the space 79 between the plunger 59 and the sealing member 63 acts on the end of the valve body 61 in the axial direction. It is attached so as not to.
この図5に示される変形例においては、前記弁体61の末端部に作用する大気圧または真空圧を封止ブロック3と弁体61の末端との間に介在させたベローズ81内に連通孔70を介して供給し、このベローズ81を介して大気圧または真空圧を弁体61に作用させるようにしてもよい。このベローズ81は、弁体61の末端および封止ブロック63に固着されており、プランジャ59と封止部材63との間の空間79の制御室圧Pcが弁体61の末端に軸方向に作用しないように取り付けられている。 Note that the
In the modification shown in FIG. 5, a communication hole is formed in a
したがって、このような構成においても、制御室圧Pcが弁体の軸方向に作用することはなく、吐出室44の圧力(吐出室圧Pd)、吸入室45の圧力(吸入室圧Ps)、制御室26の圧力(制御室圧Pc)のうちで、弁体61の軸方向に作用する圧力は、吐出室44の圧力(吐出室圧Pd)のみとすることが可能となり、前記構成例と同様の作用効果を奏することが可能となる。
Therefore, even in such a configuration, the control chamber pressure Pc does not act in the axial direction of the valve body, and the pressure of the discharge chamber 44 (discharge chamber pressure Pd), the pressure of the suction chamber 45 (suction chamber pressure Ps), Of the pressure in the control chamber 26 (control chamber pressure Pc), the pressure acting in the axial direction of the valve body 61 can be only the pressure in the discharge chamber 44 (discharge chamber pressure Pd). It is possible to achieve the same effect.
また、圧力制御弁2は図6に示されるような構成としてもよい。
ここで示される圧力制御弁2は、前記圧力制御弁と同様に駆動部51と先端ブロック部52とから構成されている。駆動部51は、固定鉄心101と、この固定鉄心101の末端側に螺合された下ケース部材102と、この下ケース部材102にかしめ固定された円筒状の円筒ケース103と、この円筒ケース103内に収納されると共に固定鉄心101の先端側に固定される円筒状のシリンダ104と、固定鉄心101及びシリンダ104の周囲に固定されるボビン105と、このボビン105に巻回される励磁コイル106と、シリンダ104の内部に摺動自在に挿入されるプランジャ107と、このプランジャ107と軸心を一致させて該プランジャに固定され、先端ブロック部52内に突出された弁体108と、固定鉄心101の末端側の開口端部にOリング109を介して機密に嵌合された封止部材110と、固定鉄心101の先端側開口端に固定されたバネ受け111と、このバネ受け111と弁体108との間に弾装されたスプリング112とを有して構成されている。 Further, thepressure control valve 2 may be configured as shown in FIG.
Thepressure control valve 2 shown here includes a drive portion 51 and a tip block portion 52 as in the case of the pressure control valve. The drive unit 51 includes a fixed iron core 101, a lower case member 102 that is screwed to the end side of the fixed iron core 101, a cylindrical cylindrical case 103 that is caulked and fixed to the lower case member 102, and the cylindrical case 103 A cylindrical cylinder 104 that is housed inside and fixed to the distal end side of the fixed iron core 101, a bobbin 105 that is fixed around the fixed iron core 101 and the cylinder 104, and an excitation coil 106 that is wound around the bobbin 105. A plunger 107 that is slidably inserted into the cylinder 104, a valve body 108 that is fixed to the plunger 107 with its axis aligned with the plunger and that protrudes into the end block 52, and a fixed iron core. The sealing member 110 that is secretly fitted to the opening end on the distal end side of the 101 via the O-ring 109 and the opening end on the front end side of the fixed iron core 101 are fixed. A spring receiver 111 which is is configured by a spring 112 which is elastically interposed between the spring receiving 111 and the valve body 108.
ここで示される圧力制御弁2は、前記圧力制御弁と同様に駆動部51と先端ブロック部52とから構成されている。駆動部51は、固定鉄心101と、この固定鉄心101の末端側に螺合された下ケース部材102と、この下ケース部材102にかしめ固定された円筒状の円筒ケース103と、この円筒ケース103内に収納されると共に固定鉄心101の先端側に固定される円筒状のシリンダ104と、固定鉄心101及びシリンダ104の周囲に固定されるボビン105と、このボビン105に巻回される励磁コイル106と、シリンダ104の内部に摺動自在に挿入されるプランジャ107と、このプランジャ107と軸心を一致させて該プランジャに固定され、先端ブロック部52内に突出された弁体108と、固定鉄心101の末端側の開口端部にOリング109を介して機密に嵌合された封止部材110と、固定鉄心101の先端側開口端に固定されたバネ受け111と、このバネ受け111と弁体108との間に弾装されたスプリング112とを有して構成されている。 Further, the
The
先端ブロック部52は、軸方向の基端側でOリング113を介してシリンダ104にスペーサ114を介して係止固定されたブロック本体115を備え、このブロック本体115には、該ブロック本体115に径方向に穿設された連通路116を介して吐出室44と連通し、前記プランジャ107を収容する高圧導入空間117と、この高圧導入空間117とブロック本体115に軸方向に形成された連通路118を介して連通し、該ブロック本体115の先端部に設けられた蓋体119によって閉塞された弁頭部収容空間120と、ブロック本体115に径方向に穿設された連通路121を介して前記制御室26に連通する圧力調整空間122とが形成されている。
The distal end block portion 52 includes a block main body 115 that is locked and fixed to the cylinder 104 via the O-ring 113 and the spacer 114 on the base end side in the axial direction. The block main body 115 includes the block main body 115. A high-pressure introduction space 117 that communicates with the discharge chamber 44 via a communication passage 116 that is formed in a radial direction and accommodates the plunger 107, and a communication passage that is formed in the high-pressure introduction space 117 and the block body 115 in the axial direction. 118, the valve head housing space 120 closed by a lid 119 provided at the tip of the block main body 115, and the communication passage 121 formed in the block main body 115 in the radial direction. A pressure adjustment space 122 communicating with the control chamber 26 is formed.
前記弁体108は、ブロック本体115に高圧導入空間117から弁頭部収容空間120にかけて穿設された軸孔123に摺動可能に挿通され、この弁体108の弁頭部108aは、前記弁頭部収容空間120に収容され、弁頭部収容空間120から軸孔123を開閉可能としている。前記圧力調整空間122は、軸孔123の内周面と弁体108の弁頭部108aの手前で径を小さくして形成した小径部108bとの間に形成されるもので、したがって、圧力調整空間122と高圧導入空間117が連通する弁頭部収容空間120との間は、弁体108(弁頭部108a)の開閉(軸孔123の開口周縁への離接)によって開閉されるようになっている。
The valve body 108 is slidably inserted into a shaft hole 123 formed in the block body 115 from the high-pressure introduction space 117 to the valve head housing space 120. The valve head 108a of the valve body 108 is It is accommodated in the head accommodating space 120, and the shaft hole 123 can be opened and closed from the valve head accommodating space 120. The pressure adjustment space 122 is formed between the inner peripheral surface of the shaft hole 123 and the small diameter portion 108b formed by reducing the diameter in front of the valve head portion 108a of the valve body 108. Between the space 122 and the valve head housing space 120 where the high pressure introduction space 117 communicates, the valve body 108 (the valve head 108a) is opened and closed (separated from the opening periphery of the shaft hole 123). It has become.
また、弁頭部収容空間120には、蓋体119と弁体108(弁頭部108a)との間にベローズ124が介在されている。このベローズ124は、蓋体119と弁頭部108aとに固着されて内部が大気圧または真空圧Poに設定されているもので、弁頭部収容空間120の吐出室圧Pdが弁頭部108aの先端に軸方向に作用しないように取り付けられている。
In the valve head housing space 120, a bellows 124 is interposed between the lid 119 and the valve body 108 (valve head 108a). The bellows 124 is fixed to the lid 119 and the valve head 108a, and the inside thereof is set to atmospheric pressure or vacuum pressure Po. The discharge chamber pressure Pd of the valve head housing space 120 is set to the valve head 108a. It is attached to the tip of the so as not to act in the axial direction.
このような構成においても、制御室圧Pcは、弁体108の軸方向には作用せず、吐出室圧Pdは高圧導入空間117のプランジャ107とバネ受け111との間から弁体108に対して開方向に作用し、また、弁体108の先端にはベローズ124に封入される大気圧または真空圧Poが作用する。また、スプリング112による弾性力(スプリング圧)が弁体108の開方向に作用すると共に励磁コイル106により誘起される電磁力がプランジャ107を介して弁体108の閉方向に作用する。したがって、吐出室44の圧力(吐出室圧Pd)、吸入室45の圧力(吸入室圧Ps)、制御室26の圧力(制御室圧Pc)のうちで、弁体108の軸方向に作用する圧力は、吐出室44の圧力(吐出室圧Pd)のみであり、この吐出室圧Pdとベローズ124内の圧力(大気圧または真空圧Po)、スプリング圧、および電磁力がバランスした位置に弁体108(弁頭部108a)が動くことになる。スプリング圧およびベローズ124の内圧は一定であるので、弁体108は、電磁力によって弁体108の開弁圧が調整され、この開弁圧を有する弁体108が吐出室圧Pdに応じて開閉されるようになっている。
Even in such a configuration, the control chamber pressure Pc does not act in the axial direction of the valve body 108, and the discharge chamber pressure Pd is applied to the valve body 108 from between the plunger 107 and the spring receiver 111 in the high pressure introduction space 117. Further, the atmospheric pressure or the vacuum pressure Po sealed in the bellows 124 acts on the tip of the valve body 108. Further, an elastic force (spring pressure) by the spring 112 acts in the opening direction of the valve body 108 and an electromagnetic force induced by the exciting coil 106 acts in the closing direction of the valve body 108 via the plunger 107. Therefore, among the pressure in the discharge chamber 44 (discharge chamber pressure Pd), the pressure in the suction chamber 45 (suction chamber pressure Ps), and the pressure in the control chamber 26 (control chamber pressure Pc), the valve body 108 acts in the axial direction. The pressure is only the pressure of the discharge chamber 44 (discharge chamber pressure Pd), and the valve is placed at a position where the discharge chamber pressure Pd and the pressure in the bellows 124 (atmospheric pressure or vacuum pressure Po), spring pressure, and electromagnetic force are balanced. The body 108 (valve head 108a) moves. Since the spring pressure and the internal pressure of the bellows 124 are constant, the valve element 108 adjusts the valve opening pressure of the valve element 108 by electromagnetic force, and the valve element 108 having this valve opening pressure opens and closes according to the discharge chamber pressure Pd. It has come to be.
したがって、このような圧力制御弁2においても、吸入室圧Ps,制御室圧Pc,吐出室圧Pdのうち、吐出室圧Pdのみが弁体108に作用して弁開度が自律的に制御されるので、励磁コイル106の電流を任意に調整することにより、電流に対応する吐出圧になるように圧縮機の吐出容量が制御されることとなる。
Therefore, also in such a pressure control valve 2, only the discharge chamber pressure Pd among the suction chamber pressure Ps, the control chamber pressure Pc, and the discharge chamber pressure Pd acts on the valve body 108, and the valve opening degree is controlled autonomously. Therefore, by arbitrarily adjusting the current of the exciting coil 106, the discharge capacity of the compressor is controlled so that the discharge pressure corresponds to the current.
また、熱負荷や圧縮機回転数の上昇によりシステム側の高圧が上昇する場合でも、吐出室44の圧力が直接的に弁体108に作用しているため、電流に対応した吐出圧を維持するように自律的に吐出容量が制御されることになり、冷凍サイクル1の高圧側に圧力を測定する圧力センサなどを設けて外部からの信号に基づき吐出容量を減らす制御を行わなくても高圧異常を速やかに回避することが可能となる。
Even when the high pressure on the system side increases due to an increase in the heat load or the compressor rotation speed, the discharge pressure corresponding to the current is maintained because the pressure in the discharge chamber 44 acts directly on the valve element 108. In this way, the discharge capacity is controlled autonomously, so that a high pressure abnormality can be achieved without providing a pressure sensor or the like for measuring the pressure on the high pressure side of the refrigeration cycle 1 and controlling the discharge capacity based on an external signal. Can be promptly avoided.
2 圧力制御弁
26 制御室
27 駆動軸
36 斜板
40 シリンダ
41 ピストン
43 圧縮室
44 吐出室
45 吸入室
48 給気通路
61,108 弁体
75,117 高圧導入空間
77,122 圧力調整空間
80 弁口
2Pressure control valve 26 Control chamber 27 Drive shaft 36 Swash plate 40 Cylinder 41 Piston 43 Compression chamber 44 Discharge chamber 45 Suction chamber 48 Air supply passage 61, 108 Valve body 75, 117 High pressure introduction space 77, 122 Pressure adjustment space 80 Valve port
26 制御室
27 駆動軸
36 斜板
40 シリンダ
41 ピストン
43 圧縮室
44 吐出室
45 吸入室
48 給気通路
61,108 弁体
75,117 高圧導入空間
77,122 圧力調整空間
80 弁口
2
Claims (5)
- ハウジングと、このハウジング内に設けられる駆動軸と、この駆動軸と共に回転すると共に前記駆動軸に対する傾斜角度が可変自在である斜板と、前記ハウジング内に設けられ、前記駆動軸と平行な軸を有する複数のシリンダと、該シリンダに摺動自在に配され、前記斜板の回転に伴って前記シリンダ内を往復動する複数のピストンと、前記シリンダと前記ピストンとによって画成される圧縮室と、前記ピストンの反圧縮室側に形成される制御室と、前記ピストンの吸入行程において前記圧縮室に吸入される作動流体を収容する吸入室と、前記ピストンの圧縮行程において前記圧縮室で圧縮された前記作動流体が吐出される吐出室とを有し、前記制御室の圧力が上昇すると吐出容量が減少する可変容量型圧縮機に用いられ、前記吐出室と前記制御室とを接続する給気通路の開度を調節することにより前記吐出室から前記制御室への前記作動流体の供給量を調節して前記制御室の圧力を調整する圧力制御弁において、
前記吐出室の圧力、前記吸入室の圧力、前記制御室の圧力のうち、前記吐出室の圧力のみに基づき、前記給気通路の開度を調節することを特徴とする圧力制御弁。 A housing, a drive shaft provided in the housing, a swash plate that rotates together with the drive shaft and has a variable inclination angle with respect to the drive shaft, and an axis provided in the housing and parallel to the drive shaft. A plurality of cylinders, a plurality of pistons slidably disposed in the cylinders and reciprocating in the cylinders as the swash plate rotates, and a compression chamber defined by the cylinders and the pistons A control chamber formed on the anti-compression chamber side of the piston, a suction chamber for storing a working fluid sucked into the compression chamber in the piston suction stroke, and compressed in the compression chamber in the piston compression stroke. A discharge chamber into which the working fluid is discharged, and is used in a variable capacity compressor whose discharge capacity decreases when the pressure in the control chamber increases, A pressure control valve for adjusting the pressure of the control chamber by adjusting the supply amount of the working fluid to the control chamber from the discharge chamber by adjusting the opening degree of the supply passage connecting the control chamber,
A pressure control valve that adjusts the opening degree of the air supply passage based only on the pressure of the discharge chamber among the pressure of the discharge chamber, the pressure of the suction chamber, and the pressure of the control chamber. - 前記吐出室に連通する高圧導入空間と、前記制御室に連通する圧力調整空間と、前記高圧導入空間と前記圧力調整空間とを連通する弁口と、この弁口を開閉可能な弁口開閉部材とを備え、
前記弁口開閉部材の動作方向の一端側に前記高圧導入空間に導入された前記吐出室の圧力が前記弁口を開放させる方向に作用し、前記弁口開閉部材の動作方向の他端側に大気圧または真空圧が作用することを特徴とする請求項1記載の圧力制御弁。 A high-pressure introduction space communicating with the discharge chamber, a pressure adjustment space communicating with the control chamber, a valve port communicating the high-pressure introduction space and the pressure adjustment space, and a valve opening / closing member capable of opening and closing the valve port And
The pressure of the discharge chamber introduced into the high-pressure introduction space on one end side in the operation direction of the valve opening / closing member acts in a direction to open the valve opening, and on the other end side in the operation direction of the valve opening / closing member. The pressure control valve according to claim 1, wherein atmospheric pressure or vacuum pressure acts. - 前記弁口開閉部材は、その動作方向の一端側が前記弁口に対向し、この弁口を前記圧力調整空間から開閉可能であり、
前記高圧導入空間に導入された前記吐出室の圧力が前記弁口を介して前記弁口開閉部材の一端側に作用し、
前記弁口開閉部材の動作方向の他端側に大気圧または真空圧が作用することを特徴とする請求項2記載の圧力制御弁。 The valve port opening / closing member has one end side in the operation direction facing the valve port, and the valve port can be opened / closed from the pressure adjustment space,
The pressure of the discharge chamber introduced into the high pressure introduction space acts on one end side of the valve opening / closing member via the valve opening,
The pressure control valve according to claim 2, wherein atmospheric pressure or vacuum pressure acts on the other end side in the operation direction of the valve opening / closing member. - 前記弁口開閉部材に対して前記弁口を閉鎖する方向に調整可能な外力を付与する外力付与手段を備えることを特徴とする請求項2又は3のいずれかに記載の圧力制御弁。 4. The pressure control valve according to claim 2, further comprising external force applying means for applying an external force adjustable in a direction of closing the valve port to the valve port opening / closing member.
- 請求項1乃至4のいずれかに記載の圧力制御弁を用いた可変容量圧縮機。 A variable capacity compressor using the pressure control valve according to any one of claims 1 to 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112014005944.7T DE112014005944T5 (en) | 2013-12-20 | 2014-12-17 | Pressure control valve and adjustable compressor using this valve |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-263674 | 2013-12-20 | ||
JP2013263674A JP2015121097A (en) | 2013-12-20 | 2013-12-20 | Pressure control valve and variable displacement compressor using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015093502A1 true WO2015093502A1 (en) | 2015-06-25 |
Family
ID=53402847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/083334 WO2015093502A1 (en) | 2013-12-20 | 2014-12-17 | Pressure control valve and variable displacement compressor using same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2015121097A (en) |
DE (1) | DE112014005944T5 (en) |
WO (1) | WO2015093502A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3951175A4 (en) * | 2019-04-03 | 2022-11-30 | Eagle Industry Co., Ltd. | Capacity control valve |
US11754194B2 (en) | 2019-04-03 | 2023-09-12 | Eagle Industry Co., Ltd. | Capacity control valve |
US11821540B2 (en) | 2019-04-03 | 2023-11-21 | Eagle Industry Co., Ltd. | Capacity control valve |
US11988296B2 (en) | 2019-04-24 | 2024-05-21 | Eagle Industry Co., Ltd. | Capacity control valve |
US12031531B2 (en) | 2019-04-24 | 2024-07-09 | Eagle Industry Co., Ltd. | Capacity control valve |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161796A (en) * | 1998-11-24 | 2000-06-16 | Toyota Autom Loom Works Ltd | Air conditioner |
JP2004204786A (en) * | 2002-12-26 | 2004-07-22 | Toyota Industries Corp | Valve gear |
JP2006194175A (en) * | 2005-01-14 | 2006-07-27 | Tgk Co Ltd | Control valve for variable displacement compressor |
-
2013
- 2013-12-20 JP JP2013263674A patent/JP2015121097A/en active Pending
-
2014
- 2014-12-17 DE DE112014005944.7T patent/DE112014005944T5/en not_active Withdrawn
- 2014-12-17 WO PCT/JP2014/083334 patent/WO2015093502A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000161796A (en) * | 1998-11-24 | 2000-06-16 | Toyota Autom Loom Works Ltd | Air conditioner |
JP2004204786A (en) * | 2002-12-26 | 2004-07-22 | Toyota Industries Corp | Valve gear |
JP2006194175A (en) * | 2005-01-14 | 2006-07-27 | Tgk Co Ltd | Control valve for variable displacement compressor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3951175A4 (en) * | 2019-04-03 | 2022-11-30 | Eagle Industry Co., Ltd. | Capacity control valve |
US11754194B2 (en) | 2019-04-03 | 2023-09-12 | Eagle Industry Co., Ltd. | Capacity control valve |
EP4234997A3 (en) * | 2019-04-03 | 2023-10-11 | Eagle Industry Co., Ltd. | Capacity control valve |
US11821540B2 (en) | 2019-04-03 | 2023-11-21 | Eagle Industry Co., Ltd. | Capacity control valve |
US12072035B2 (en) | 2019-04-03 | 2024-08-27 | Eagle Industry Co., Ltd. | Capacity control valve |
US11988296B2 (en) | 2019-04-24 | 2024-05-21 | Eagle Industry Co., Ltd. | Capacity control valve |
US12031531B2 (en) | 2019-04-24 | 2024-07-09 | Eagle Industry Co., Ltd. | Capacity control valve |
Also Published As
Publication number | Publication date |
---|---|
DE112014005944T5 (en) | 2016-09-29 |
JP2015121097A (en) | 2015-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100392121B1 (en) | capacity control system of capacity variable type compressor | |
WO2015093502A1 (en) | Pressure control valve and variable displacement compressor using same | |
KR100325789B1 (en) | Variable displacement compressors and control valves for variable displacement compressors | |
JP4160669B2 (en) | Control valve for variable displacement compressor | |
JP2004116407A (en) | Capacity control valve and method for controlling the same | |
KR20130119354A (en) | Control valve for variable displacement compressor | |
JP3726759B2 (en) | Control device for variable capacity compressor | |
KR102178579B1 (en) | Variable displacement compressor and mounting structure of flow sensor | |
WO2001000992A1 (en) | Variable-capacity control for refrigerating cycle | |
JP2004116349A (en) | Capacity control valve for variable capacity compressor | |
JP2002070732A (en) | Variable displacement controller for refrigeration cycle | |
JP2010048498A (en) | Refrigerating cycle | |
EP1455143A1 (en) | Control device of variable displacement compressor and variable displacement control device of refrigerating cycle | |
JP2017133393A (en) | Variable displacement swash plate compressor | |
JP4501112B2 (en) | Control unit for variable capacity compressor | |
JP5292540B2 (en) | Expansion device | |
US8500415B2 (en) | Variable displacement compressor | |
JP5519199B2 (en) | Variable capacity swash plate compressor and air conditioning system using the same | |
JP5075425B2 (en) | Volume control valve for variable capacity compressor | |
JP4091232B2 (en) | Control valve for variable capacity compressor | |
JPH03199677A (en) | Variable volume type swash plate compressor | |
JP2014043823A (en) | On-off valve of refrigeration device, compressor, and refrigeration device | |
JP2002070730A (en) | Pressure controller for variable displacement compressor | |
JP4474697B2 (en) | Control valve | |
US7874813B2 (en) | Variable displacement compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14870838 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014005944 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14870838 Country of ref document: EP Kind code of ref document: A1 |