WO2002056259A1 - Appareil support de verification tridimensionnelle, procede de verification de structure tridimensionnelle, support d'enregistrement et programme - Google Patents

Appareil support de verification tridimensionnelle, procede de verification de structure tridimensionnelle, support d'enregistrement et programme Download PDF

Info

Publication number
WO2002056259A1
WO2002056259A1 PCT/JP2001/010778 JP0110778W WO02056259A1 WO 2002056259 A1 WO2002056259 A1 WO 2002056259A1 JP 0110778 W JP0110778 W JP 0110778W WO 02056259 A1 WO02056259 A1 WO 02056259A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
information
dimensional
grayscale
substance
Prior art date
Application number
PCT/JP2001/010778
Other languages
English (en)
French (fr)
Inventor
Eisaku Katayama
Norio Baba
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to JP2002556845A priority Critical patent/JP3619837B2/ja
Priority to EP20010273174 priority patent/EP1363245A1/en
Publication of WO2002056259A1 publication Critical patent/WO2002056259A1/ja
Priority to US10/612,820 priority patent/US6828555B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/22Treatment of data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2611Stereoscopic measurements and/or imaging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2617Comparison or superposition of transmission images; Moiré

Definitions

  • the present invention relates to an image processing device, an image processing method, a storage medium, and a program.
  • This application is related to the following Japanese patent application. For those designated countries that are permitted to be incorporated by reference to the literature, the contents described in the following application shall be incorporated into this application by reference and shall be part of the description of this application.
  • an object of the present invention is to solve such a problem. Disclosure of the invention
  • the first embodiment of the present invention provides a three-dimensional structure verification support device that supports verification of a three-dimensional structure by verifying the validity of a three-dimensional calculation image calculated to indicate a three-dimensional structure of a substance.
  • the first display section which rotates and displays the 3D estimated shadow image, which estimates and displays the three-dimensional structure of the substance by adding a shadow to the 3D calculation image, and is obtained by experimental structural analysis
  • a second display unit for displaying the image of the substance three-dimensionally while rotating it in accordance with the three-dimensional estimated shadow image.
  • the second display unit displays a plurality of shaded two-dimensional images obtained from a plurality of angles as images sequentially in an angular order, thereby obtaining a material.
  • the image may be displayed three-dimensionally while rotating.
  • the two-dimensional image may be a gray-scale image obtained by a transmission electron microscope.
  • the three-dimensional estimated shadow image is obtained by processing a plurality of grayscale image information obtained by, for example, a transmission electron microscope.
  • a shape calculation unit that calculates shape information indicating the outer shell of the substance, and a density image indicated by the density indicated in the density image information.
  • a distribution part that generates grayscale distribution information by stretching and distributing it to an angle and multiple grayscale distribution information based on multiple grayscale image information obtained from multiple angles are overlapped to represent a substance as three-dimensional image information
  • a second superimposing unit that generates three-dimensional grayscale information, a first superimposing unit that superimposes the three-dimensional grayscale information on the shape information by the second superimposing unit, and a three-dimensional grayscale information around the shape indicated by the shape information.
  • a three-dimensional image generation unit having an information processing unit for extracting only existing grayscale information to generate a three-dimensional image may be further provided.
  • the image processing apparatus further includes a three-dimensional image generation unit having a shape calculation unit that calculates shape information, and an image information generation unit that generates three-dimensional calculation images by distributing the grayscale information of the grayscale image information around the outer shell. You may.
  • a second aspect of the present invention is a three-dimensional structure verification method for verifying a three-dimensional structure by verifying a three-dimensional calculation image calculated to indicate a three-dimensional structure of a substance. Displaying the 3D estimated shadow image with shadows and the image of the material obtained by the experimental structural analysis simultaneously while rotating, and comparing the 3D estimated shadow image with the image A three-dimensional structure verification method is provided.
  • the three-dimensional structure verification method of the second embodiment a plurality of shaded two-dimensional images obtained from a plurality of angles are displayed continuously in the order of the angle, so that the three-dimensional image can be rotated while rotating the material image. May be displayed.
  • the two-dimensional image is a grayscale image obtained by, for example, a transmission electron microscope.
  • a plurality of grayscale image information obtained by a transmission electron microscope may be processed to obtain a three-dimensional estimated shadow image.
  • the grayscale image information is generated by extending the grayscale image information at the imaged angle and distributing the grayscale image information. Generates three-dimensional grayscale information represented by image information, superimposes the three-dimensional grayscale information on the shape information, and extracts only the grayscale information existing around the outer shell indicated by the shape information from the three-dimensional grayscale information to calculate three-dimensional Images may be generated.
  • An image may be generated.
  • a program for supporting verification of a three-dimensional structure is stored by verifying a three-dimensional calculation image calculated to indicate a three-dimensional structure of a substance.
  • the recording medium wherein the program includes a first display module for rotating and displaying the three-dimensional estimated shadow image in which the three-dimensional calculation image is shaded, and a material image obtained by experimental structural analysis. And a second display module for displaying the three-dimensional estimated shadow image while rotating it simultaneously with the three-dimensional estimated shadow image.
  • a fourth aspect of the present invention is a program that supports verification of a three-dimensional structure by verifying a three-dimensional calculation image calculated to indicate a three-dimensional structure of a substance.
  • the first display module which rotates and displays the 3D estimated shadow image with shadows, and displays the image of the substance obtained by experimental structural analysis while rotating it at the same time as the 3D estimated shadow image
  • a second display module that performs the program.
  • the program calculates shape information indicating an outer shell of the substance using a plurality of pieces of first image information of the substance viewed from a plurality of angles.
  • a distribution module that generates density distribution information by extending the density indicated in the density image information obtained by the transmission electron microscope to the angle at which the density image information is captured, and a distribution module that generates density distribution information.
  • a second superimposition module that generates three-dimensional grayscale information that represents a substance as three-dimensional image information by superimposing multiple grayscale distribution information based on multiple grayscale image information obtained from A first superimposition module that superimposes the dimensional information on the shape information, and extracts only the information about the shape around the shape indicated by the shape information from the 3D intensity information to generate a 3D calculation image
  • An information processing module may be further provided.
  • the program includes a shape calculation module for calculating shape information indicating an outer shell of the material using a plurality of pieces of first image information of the material viewed from a plurality of angles, and a shading obtained by a transmission electron microscope. And an image information generation module that generates a three-dimensional calculation image by distributing the shading information of the image information around the outer shell.
  • FIG. 1 shows a configuration of a three-dimensional structure verification support apparatus 100 according to an embodiment of the present invention.
  • FIG. 2 shows the configuration of the three-dimensional image generation unit 200.
  • FIG. 3 shows the configuration of the shape calculation unit 260.
  • FIG. 4 shows an example of a hardware configuration diagram of the three-dimensional image generation unit 200.
  • FIG. 5 is a diagram for explaining a method for obtaining grayscale image information.
  • FIG. 6 is a diagram illustrating a method for obtaining grayscale image information.
  • FIG. 7 is a diagram illustrating a method for obtaining grayscale image information.
  • FIG. 8 shows longitudinal section information as an example of three-dimensional shading information.
  • FIG. 9 shows another example of vertical section information of the three-dimensional density information.
  • FIG. 10 shows longitudinal section information of an example of a superimposed image by the first superimposing unit 280.
  • FIG. 11 shows a vertical cross-sectional view of an example of a three-dimensional reconstructed image by the information processing section 300.
  • FIG. 12 is a diagram illustrating a second operation example of the three-dimensional image generation unit 200.
  • FIG. 13 is a diagram illustrating a second operation example of the three-dimensional image generation unit 200.
  • FIG. 14 shows a display example of the display device 800 by the three-dimensional structure verification support device 100. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a three-dimensional structure verification support apparatus 100 which is an example of an embodiment of the present invention.
  • the three-dimensional structure verification support device 100 includes a three-dimensional image generation unit 200, a first display unit 120, and a second display unit 140.
  • the first display section 120 is the shaded section 122 It has a degree designation part 1 2 4.
  • the three-dimensional structure verification support device 100 converts a three-dimensional reconstructed image, which is an example of a three-dimensional calculated image, from three-dimensional reconstructed images based on grayscale image information that is a projection image obtained by a projection-type imaging device such as a transmission electron microscope. It is calculated using the image generation unit 200.
  • the three-dimensional structure verification support apparatus 100 uses the first display unit 120 to add a shadow to the three-dimensional reconstructed image to estimate and display the three-dimensional structure of the substance.
  • the display device 800 is rotated and displayed, and an image of the substance obtained by an experimental structure analysis such as a transmission electron microscope is stereoscopically displayed on the display device 800 using the second display unit 140. To rotate.
  • the three-dimensional structure verification support apparatus 100 simultaneously rotates and displays the three-dimensional estimated shadow image and the image obtained by the experimental structure analysis at substantially the same angle, thereby displaying the three-dimensional estimated shadow image and the image.
  • This is a device that supports the verification of the three-dimensional structure by comparing the two images and displaying the differences between the two images in an easy-to-find manner.
  • the resolution of the obtained image is often lower than desired.However, even when the resolution of the image is low, the three-dimensional structure verification support device 100 Since the image is displayed while rotating it, it is possible to compare these two rotating images and discover the difference between the 3D reconstructed image and the image.
  • the three-dimensional image generation unit 200 uses the first image information viewed from a plurality of angles and a plurality of projection image information obtained by a transmission electron microscope or the like, that is, grayscale image information, to obtain a three-dimensional structure of the object. It is a device that obtains three-dimensional information about Here, gray-scale image information can be used as the first image information.
  • FIG. 2 shows an example of the configuration of the three-dimensional image generation unit 200.
  • the three-dimensional image generation unit 200 includes a distribution unit 220, a second superposition unit 240, a shape calculation unit 260, a first superposition unit 280, and an information processing unit 3. 0, an image information generation unit 320 and an output unit 360.
  • the distribution unit 220 generates gray-scale distribution information by stretching a plurality of gray-scale image information acquired from the outside to each of the angles at which the gray-scale image is captured, that is, the projected angle, and distributing them. Output to the superimposition section 240 of 2. As a specific example, the distribution unit 220 distributes the density of the grayscale image information in a direction in which the grayscale information is uniformly extended.
  • the second superimposing unit 240 generates three-dimensional grayscale information by superimposing a plurality of grayscale distribution information obtained by the distribution unit 220 while maintaining the angle, and outputs the three-dimensional grayscale information to the first superimposing unit 280.
  • the generated three-dimensional shading information is information that represents the subject as three-dimensional image information. There is a possibility that false information is included in the three-dimensional shading information here.
  • the shape calculation unit 260 calculates height information of a specific point of a subject, that is, a processing target point from three or more pieces of image information viewed from three or more angles, and obtains height information of a plurality of processing target points. Is used to calculate shape information indicating the outer shell of the subject.
  • FIG. 3 shows an example of the configuration of the shape calculation unit 260.
  • the shape calculation unit 260 includes a position correspondence unit 262, a height information calculation unit 264, and a shape information calculation unit 266.
  • the position correspondence unit 262 recognizes the positions of a plurality of processing target points in two pieces of image information that are consecutive in the angle order, associates them with each other, and outputs them to the height information calculation unit 264.
  • the positions of the processing target points in the first image information and the second image information that are continuous in the order of the angles are associated with each other, and the second image information and the third angle
  • the position of the processing target point is associated with the image information. This association is sequentially performed for other image combinations such as third and fourth image information,.
  • Each processing target point is associated with each of two or more image combinations.
  • the position correspondence unit 262 determines a reference line in the image information, and measures the distance between the reference line and the processing target point. If the difference between the reference line and the processing target point in the two images constituting the image combination is equal to or greater than a certain value, the position correspondence unit performs position recognition and association of the processing reference line again.
  • each piece of image information is an image obtained by rotating the subject by a predetermined angle around the same rotation as the rotation center and capturing an image, or the first among three or more pieces of image information.
  • the second image is an image obtained by imaging the subject by rotating it at a predetermined angle around one rotation axis
  • the third image is the rotation center of the subject around another rotation axis.
  • the height information calculation unit 264 calculates the height information of the processing target points associated in the two pieces of image information by the position correspondence unit 262, and outputs it to the shape information calculation unit 266. I do.
  • the processing performed by the height information calculation unit 264 is the same as the processing of the so-called stereoscopic method.
  • the height information calculation unit 264 calculates a plurality of pieces of height information of each processing target point.
  • the height information calculator 264 calculates height information to be output by the least squares error method based on a plurality of pieces of height information. If the error according to the least squares error method is equal to or more than a certain value, the position correspondence unit 262 re-detects the position of the processing target point.
  • the shape information calculation unit 266 calculates the shape information of the subject using the height information of the processing target point calculated by the height information calculation unit 264 and the plane information of the processing target point obtained from the image information. I do.
  • the shape information calculation unit 26 converts the calculated shape information to the image information
  • the first superimposing unit 280 generates a superimposed image by superimposing the shape information obtained by the shape calculating unit 260 on the three-dimensional grayscale information obtained by the second superimposing unit 240.
  • the information processing unit 300 uses the superimposed image output by the first superimposing unit 280 to extract only information existing around the shape information or overlapping with the shape information from the three-dimensional density distribution information. Then, a 3D reconstructed image is generated and output to the output unit 360.
  • a 3D reconstructed image is generated and output to the output unit 360.
  • the image information generation unit 320 distributes the grayscale image information obtained from the outside around the relevant portion of the outer shell indicated by the shape information calculated by the shape calculation unit 260, thereby forming a three-dimensional reconstructed image of the subject. Is generated, and the generated three-dimensional reconstructed image is output to the output unit 360.
  • the image information generation unit 320 is located within a certain range from the location of the outer shell. Three-dimensional gray image information is generated by evenly distributing the gray image information density only in the area.
  • the image information generation unit 320 since the image information generation unit 320 generates a three-dimensional reconstructed image of the subject without going through the process of stretching and superimposing the grayscale image information at the imaged angle, false information does not occur.
  • the output unit 360 outputs the shape information from the shape calculation unit 260, the 3D reconstructed image from the image information generation unit 320, and the 3D reconstructed image from the information processing unit 300 to an external printer. Alternatively, it is output to a display device or the like.
  • the shaded portion 122 of the first display portion 120 shades the three-dimensional reconstructed image calculated by the three-dimensional image generation portion 200 to perform three-dimensional estimated shadowing.
  • An image is generated, and the generated three-dimensional estimated shadow image is output to the display device 800 while being rotated and displayed.
  • a shadowing method a method is used in which a tangent is drawn from a virtual light source to an object in an image, and the density of a portion of the object on the side opposite to the virtual light source is determined based on a contact point with the tangent. There is.
  • a gradation may be added when increasing the density.
  • the angle designation section 124 of the first display section 120 outputs to the shadow section 122 to instruct the rotation angle of the three-dimensional estimated shadow image.
  • the first display unit 120 displays the display device 800 by the shadow unit 122 continuously changing the angle of the three-dimensional estimated shadow image while following the instruction of the angle designating unit 124. Then, the three-dimensional estimated shadow image is rotated and displayed on the display device 800.
  • the second display unit 140 stereoscopically displays the image of the substance obtained by the experimental structural analysis while rotating it in accordance with the three-dimensional estimated shadow image.
  • the second display unit 140 continuously displays a two-dimensional image of a plurality of shaded substances taken from a plurality of angles in the order of angles, so that the two-dimensional images can be stereoscopically rotated while rotating the substance. indicate.
  • the gray-scale image by a is a transmission electron microscope an example of a two-dimensional image as it is used, also c it is possible to stereoscopically view the structure of the material, two-dimensional image of the material with a plurality of shadow Are displayed consecutively in angle order,
  • the first display unit 120 sets the display angle of the three-dimensional estimated shadowed image to be the same as the imaging angle of the two-dimensional image displayed by the second display unit 140.
  • the angle designation unit 124 may receive the angle at which the two-dimensional image was captured from a keyboard or the like, and the second display unit 140 acquires angle information together with the two-dimensional image. Alternatively, the angle information may be output to the angle designation section 124.
  • the two-dimensional image is a projection image captured by, for example, a transmission electron microscope.
  • the three-dimensional structure verification support device 100 supports verification of the three-dimensional structure by verifying the validity of the three-dimensional reconstructed image calculated from the grayscale image information.
  • the three-dimensional structure verification support device 100 uses a three-dimensional calculated image, which is an image of a model created by simulation based on situation evidence. May be directly acquired by the shaded portion 1 2 2.
  • the three-dimensional structure verification support device 100 is a device that supports verification of the validity of the three-dimensional structure of the estimation model. In this case, the three-dimensional structure verification support device 100 may not include the three-dimensional image generation unit 200.
  • FIG. 4 shows an example of a hardware configuration diagram of the three-dimensional image generation unit 200.
  • the three-dimensional image generation unit 200 includes a CPU (central processing unit) 602, a ROM (read only memory) 604, a RAM (random access memory) 606, a display 6 08, a printer 610, an input device 612, a hard disk device 614, an FD (floppy disk) drive 616, and a CD—ROM (compact disk ROM) drive 618.
  • a CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • the CPU 602 performs processing based on the programs stored in the RAM 606 and the ROM 604.
  • the display 608 displays various information.
  • the printer 610 prints various information.
  • the input device 6 12 inputs settings and the like for the three-dimensional image generation unit 200.
  • the FD drive 616 reads data or a program from the floppy disk 620 and transfers it to the CPU 602.
  • the CD-ROM drive 618 reads data or a program from the CD-ROM 622 and passes it to the CPU 602.
  • Hard disk 618 can be FD drive 616 or CD-ROM drive In addition to storing the data or program read by the CPU 618 or the data created by the CPU 602 executing the program, the stored data or program is read to the CPU 602. hand over.
  • the program is read from a CD-ROM 622 having a program for realizing the above-described functional units of the three-dimensional image generation unit 200 and installed on the hard disk 6
  • the function unit of the three-dimensional image generation unit 200 is realized by reading out the program from 618 and executing the program by the CPU 602.
  • the above-described program realizes a shadowing module for realizing the shadowing unit 122, an angle specifying module for realizing the angle specifying unit 124, and a second display unit Display module, distribution module for realizing distribution section 220, second superimposition module for realizing second superposition section 240, and shape calculation section 260 Module, a first superimposing module for realizing the first superimposing unit 280, an information processing module for realizing the information processing unit 300, and an image information generating unit 320 And an output module for realizing the output unit 360.
  • the operation of each module is substantially the same as the operation of the corresponding function unit, and a description thereof will be omitted.
  • the above-mentioned program may be stored in the floppy disk 620 or another recording medium such as MO or MD instead of the CD-RQM 622.
  • FIGS. 1 and 2 a first operation example of the three-dimensional image generation unit 200 will be described with reference to FIGS.
  • two hemispherical subjects 400 arranged side by side in parallel and upward are imaged by a projection-type imaging device, and a three-dimensional image generation unit 200 generates a three-dimensional reconstructed image.
  • the step of obtaining grayscale image information will be described.
  • the subject is imaged from at least three different angles (in this example, the A direction, the B direction, and the C direction), and projection image information, that is, gray image information 420 , 440 and 460.
  • the distance between the angles in the A direction and the B direction And the interval between the angles in the B and C directions is preferably set to the same value 0.
  • the directions B and C may be angles rotated from the direction A around the same axis 401 as the center of rotation, and the angles rotated respectively from the direction A around the different axes 401 and 402 as the center of rotation. May be.
  • the grayscale image information 420, 440, and 460 are input to the three-dimensional image generation unit 200.
  • the grayscale image information 420, 440, and 460 also serve as the first image information.
  • the distribution unit 220 of the three-dimensional image generation unit 200 extends each of the grayscale image information 420, 440, and 460 in the imaging direction to obtain the grayscale distribution information 425,
  • the second superimposing unit generates 3 4 5 and 4 6 5, and superimposes the density distribution information 4 2 5, 4 4 5 and 4 6 5 while maintaining the angle to obtain 3D density information. Generate.
  • FIG. 8 shows an example of vertical section information of the three-dimensional density information in this example.
  • the three-dimensional shading information indicates that an object exists in a portion where all shading distribution information overlaps.
  • Figure 7 shows the overlap of the shade distribution information 4 25, 4 45, and 4 65, i.e., information 4 70, 4 72, 4 7 4, 4 7 6, and 4 7 8. , Indicates that the subject 400 exists. However, originally, there are only two subjects 400, and three of the above five pieces of information are false information. '
  • FIG. 9 shows another example of the longitudinal section information of the three-dimensional density information in this example.
  • the densities of the grayscale image information 420, 440, and 460 are different from each other.
  • the grayscale distribution information 4 25, 445, and 4665 are obtained by extending the grayscale of the grayscale image information 420, 4440, and 460 at the angle at which the image was captured and distributing them uniformly. It is.
  • a portion other than the information 470 to 478 may have a density equal to or higher than one of the information 470 to 478, so that false information may further increase.
  • the shape calculation unit 260 of the three-dimensional image generation unit 200 obtains shape information 260 representing the outer shell of the object 400 from the grayscale image information 420, 440, and 460. calculate.
  • the shape calculation unit 260 cannot calculate the entire outer shell of the subject 400, and is a part commonly included in the visual fields in the A direction, the B direction, and the C direction in the figure.
  • the subject The outer shell is calculated only for the spherical portion of 400.
  • the first superimposing unit 280 of the three-dimensional image generating unit 200 superimposes the shape information by the shape calculating unit 260 on the three-dimensional gray image information.
  • FIG. 10 shows longitudinal section information of a superimposed image by the first superimposing unit 280 in this example.
  • two pieces of shape information 265 from the shape calculation unit 260 overlap information 470 and information 472, respectively. Therefore, the information processing unit 300 0
  • 472 is the true information representing the object, information 474, 476, and 478 are judged to be false information, and only information 470 and 472 are extracted to perform 3D reconstruction.
  • the image is output to the output unit 360 as a constituent image.
  • the information processing unit 300 when the reliability of the shape information 2 65 is high, the information processing unit 300 is high.
  • the information processing unit 300 sets information existing within a predetermined distance from the shape information 265 as information 470 and information 472. Also, by displaying the superimposition information by the first superimposition unit 280 on a display or the like, the operation of the information processing unit 300 may be substituted by a person. False information can be removed by adding human judgment to the dimensionally reconstructed image. In this case, false information can be removed according to the situation.
  • FIG. 11 is a longitudinal sectional view of a three-dimensional reconstructed image by the information processing unit 300 in this example. It can be seen that the three-dimensional reconstructed image by the information processing unit 300 accurately reproduces the subject 400.
  • the output unit 360 outputs the shape information 26 by the shape calculation unit 260 as necessary.
  • information processing section 300 that is, information 470 and information 472 are output to a display device or a printing device.
  • the three-dimensional image generation unit 200 includes a distribution unit 220, a second superposition unit 240, a shape calculation unit 260, a first superposition unit 280, Information Processing Department 3 Using 0 0, a more accurate 3D reconstructed image is obtained.
  • the three-dimensional image generation unit 200 performs three-dimensional reconstruction of the subject 400 using the grayscale image information 420, 440, and 460 as in the first operation example. Get the image.
  • the shape calculation unit 260 calculates shape information 265. Then, as illustrated in FIG. 13, the gray-scale image information 4 2 0, 4 4 0, and 4 6 0 are distributed only around the image information generation unit 3 20 A portion where all pieces of image information overlap, that is, information 470 and information 472 is defined as a three-dimensional reconstructed image. As a result, false information is not included in the three-dimensional reconstructed image.
  • the image information generation unit 320 when the reliability of the shape information 265 is high, the image information generation unit 320 outputs a three-dimensional reconstructed image in consideration of the shape information 265. When the boundary of the information 470 and the boundary of the information 472 are not separated, the image information generation unit 320 outputs information existing within a predetermined distance from the shape information 265, and outputs the information. 470 and 472.
  • the image information generation unit 320 when the reliability of the shape information 265 is high, the image information generation unit 320 outputs a three-dimensional reconstructed image in consideration of the shape information 265. Also, when the focus of the gradation distribution information 4 25, 4 45, and 4 65 is not clear, the boundary of the information 4 70 and the boundary of 4 7 2 are not clear.
  • the 'image information generation unit 320 sets information existing within a predetermined distance from the shape information 265 as information 470 and 472. For example, when the thickness D of the subject 400 is known, the density information of the grayscale image information 420, 440, and 460 is evenly distributed within the range of the thickness D from the outer shell. At this time, it is more preferable that the above-mentioned density information is distributed within the range of the thickness D in the projection direction.
  • the three-dimensional image generation unit 200 obtains a more accurate three-dimensional reconstructed image using the shape calculation unit 260 and the image information generation unit 320.
  • the three-dimensional image generation unit 2000 particularly exerts the above-described effects when there is a limit on the angle at which the image can be captured. For example, when image information obtained from a transmission electron microscope is used as projection image information, there is a limit to the angle at which images can be taken. However, the three-dimensional image generation unit 200 can be used to reduce the three-dimensional structure of the subject at the molecular level. It becomes possible to clarify.
  • a detailed example is when you want to clarify the structure of a cell's protein and its changes.
  • the form of the protein obtained by the so-called quick-freezing deep-etch replica method is imaged by a transmission electron microscope and processed by the three-dimensional image generation unit 200 to remove false information, that is, a so-called ghost.
  • three-dimensional information indicating the three-dimensional structure of the subject protein can be obtained.
  • FIG. 14 shows a display example of the display device 800 by the three-dimensional structure verification support device 100.
  • the display image 8200 is a display image by the first display unit 120, that is, a three-dimensional estimated shadow image
  • the display image 8400 is a display image by the second display unit 140, that is, an experiment. It is an image obtained by typical structural analysis.
  • the three-dimensional estimated shadow image and the image obtained by the experimental structural analysis are displayed while being rotated in parallel according to the stereostructure verification support device 100. In addition, it is possible to easily compare two rotated images. Therefore, the three-dimensional structure can be easily verified.
  • a three-dimensional structure verification support suitable for supporting the verification of the validity of an estimated model of a material structure or a three-dimensional calculated image such as a three-dimensional reconstructed image.
  • An apparatus, a three-dimensional structure verification method, a recording medium, and a program can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Image Processing (AREA)
  • Image Generation (AREA)
  • Processing Or Creating Images (AREA)

Description

明 細 書 立体構造検証支援装置、 立体構造検証方法、 記録媒体、 及びプログラム 技術分野
本発明は、 画像処理装置、 画像処理方法、 記憶媒体及びプログラムに関する。 また本出願は、下記の日本特許出願に関連する。文献の参照による組み込みが認 められる指定国については、下記の出願に記載された内容を参照により本出願に 組み込み、 本出願の記載の一部とする。
特願 2 0 0 1— 7 5 2 出願日 2 0 0 1年 1月 5日 背景技術
物質の構造解析を高い空間分解能で決定するには、 X線回折や多次元 NMR法 などの構造解析法を用いることが必須である。物質が X線回折の対象となるには、 その物質が良質の結晶を作ること、そして同型置換などにより位相を決定できる ことが必須である。 また、物質が多次元 NMR法の対象となるには、物質の分子 量が大きくないこと、そして高濃度で溶解度の高い試料が大量に得られることが 必須である。
上述した条件を満たさない物質は電子顕微鏡により構造解析せざるを得ない。 しカゝし、汎用されるクライオ電子顕微鏡法ではコントラス,トが低い上に、電子線 照射による物質の損傷が著しく、単一分子の立体構造を解析 ·決定することは困 難である。
特に、複数の分子が複合体を形成する場合、或いは機能遂行に伴って構造変化 をする場合、たとえ個々の分子の構造が既知であっても、それら複数の分子をど のように組み合わせるべき力、、或いは機能遂行に伴って分子構造がどのように変 化するかを適格に解析する手段はなかった。 このような場合は、既存の状況証拠 を組み合わせて最も確からしい構造を推定して仮想モデルを構築するのみであ つた。 しかし、 この仮想モデルの妥当性を検証することはできなかった。
そこで本発明は、 このような問題を解決することを目的とする。 発明の開示
即ち、本発明の第 1の形態は、物質の立体構造を示すために算出された 3次元 算出画像の妥当性を検証することで、立体構造を検証することを支援する立体構 造検証支援装置であって、 3次元算出画像に影を付けることで物質の立体構造を 推定表示する 3次元推定付影画像を、 回転しながら表示させる第 1の表示部と、 実験的な構造解析により得られた物質の画像を、 3次元推定付影画像に合わせて 回転しながら立体的に表示させる第 2の表示部と、を備えることを特徴とする立 体構造検証支援装置を提供する。
第 1の形態の立体構造検証支援装置において、第 2の表示部は、複数の角度か ら得られた複数の影付きの 2次元画像を画像として角度順に連続して表示する ことで、 物質の画像を回転しながら立体的に表示してもよい。 この場合、 2次元 画像は、 透過型電子顕微鏡により得られた濃淡画像であってもよい。
3次元推定付影画像は、例えば透過型電子顕微鏡により得られた複数の濃淡画 像情報を処理して得られる。
複数の角度から見た物質の複数の第 1の画像情報を用いて、物質の外殻を示す 形状情報を算出する形状算出部と、濃淡画像情報に示される濃度をそれぞれ濃淡 画像情報を撮像した角度に引き延ばして分布させることで濃淡分布情報を生成 する分布部と、複数の角度から得られた複数の濃淡画像情報による複数の濃淡分 布情報を重ねて、物質を 3次元の画像情報で表す 3次元濃淡情報を生成する第 2 の重畳部と、第 2の重畳部による 3次元濃淡情報を形状情報に重ねる第 1の重畳 部と、 3次元濃淡情報から、形状情報が示す形状の周囲に存在する濃淡情報のみ を抽出して 3次元画像を生成する情報加工部と、を有する 3次元画像生成部を更 に備えてもよい。
複数の角度から見た物質の複数の第 1の画像情報を用いて、物質の外殻を示す 形状情報を算出する形状算出部と、濃淡画像情報の濃淡情報を、外殻の周辺に分 布させて 3次元算出画像を生成する画像情報生成部と、を有する 3次元画像生成 部を更に備えてもよい。
本発明の第 2の形態は、物質の立体構造を示すために算出された 3次元算出画 像を検証することで、立体構造を検証する立体構造検証方法であって、 3次元算 出画像に影を付けた 3次元推定付影画像と、実験的な構造解析により得られた物 質の画像とを、 同時に回転しながら表示して、 3次元推定付影画像と画像とを比 較することを特徴とする立体構造検証方法を提供する。
第 2の形態の立体構造検証方法において、複数の角度から得られた複数の影付 きの 2次元画像を、角度順に連続して表示することで、物質の画像を回転しなが ら立体的に表示してもよい。 この場合、 2次元画像は、例えば透過型電子顕微鏡 により得られた濃淡画像である。
透過型電子顕微鏡により得られた複数の濃淡画像情報を処理して、 3次元推定 付影画像を得てもよい。
複数の角度から見た物質の複数の第 1の画像情報を用いて、物質の外殻を示す 形状情報を算出し、投影型の撮像装置により得られた物質の濃淡画像情報に示さ れる濃度をそれぞれ濃淡画像情報を撮像した角度に引き延ばして分布させるこ とで濃淡分布情報を生成し、複数の角度から得られた複数の濃淡画像情報による 複数の濃淡分布情報を重ねて、物質を 3次元の画像情報で表す 3次元濃淡情報を 生成し、 3次元濃淡情報を形状情報に重ね、 3次元濃淡情報から、形状情報が示 す外殻の周囲に存在する濃淡情報のみを抽出して 3次元算出画像を生成しても よい。
複数の角度から見た物質の複数の第 1の画像情報を用いて、物質の外殻を示す 形状情報を算出し、濃淡画像情報の濃淡情報を、外殻の周辺に分布させて 3次元 算出画像を生成してもよい。
本発明の第 3の形態は、物質の立体構造を示すために算出された 3次元算出画 像を検証することで、立体構造を検証することを支援するプログラムを格納した 記録媒体であって、プログラムは、 3次元算出画像に影を付けた 3次元推定付影 画像を回転しながら表示する第 1の表示モジュールと、実験的な構造解析により 得られた物質の画像を、 3次元推定付影画像と同時に回転しながら表示する第 2 の表示モジュールと、 を備えることを特徴とする記録媒体を提供する。
本発明の第 4の形態は、物質の立体構造を示すために算出された 3次元算出画 像を検証することで、 立体構造を検証することを支援するプログラムであって、 3次元算出画像に影を付けた 3次元推定付影画像を回転しながら表示する第 1 の表示モジュールと、実験的な構造解析により得られた物質の画像を、 3次元推 定付影画像と同時に回転しながら表示する第 2の表示モジュールと、を備えるこ とを特徴とするプログラムを提供する。
第 3の形態の記録媒体、及び第 4の形態のプログラムにおいて、プログラムは、 複数の角度から見た物質の複数の第 1の画像情報を用いて、物質の外殻を示す形 状情報を算出する形状算出モジュールと、透過型電子顕微鏡により得られた濃淡 画像情報に示される濃度をそれぞれ濃淡画像情報を撮像した角度に引き延ばし て分布させることで濃淡分布情報を生成する分布モジュールと、複数の角度から 得られた複数の濃淡画像情報による複数の濃淡分布情報を重ねて、物質を 3次元 の画像情報で表す 3次元濃淡情報を生成する第 2の重畳モジュールと、第 2の重 畳部による 3次元濃淡情報を形状情報に重ねる第 1の重畳モジュールと、 3次元 濃淡情報から、形状情報が示す形状の周囲に存在する濃淡情報のみを抽出して 3 次元算出画像を生成する情報加工モジュールと、 更に備えてもよい。
また、プログラムは、複数の角度から見た物質の複数の第 1の画像情報を用いて、 物質の外殻を示す形状情報を算出する形状算出モジュールと、 透過型電子顕微鏡に より得られた濃淡画像情報の濃淡情報を、 外殻の周辺に分布させて 3次元算出画像 を生成する画像情報生成モジュールと、 を備えてもよい。
なお上記の発明の概要は、 本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又発明となりうる。 図面の簡単な説明
図 1は、本発明の一実施の形態である立体構造検証支援装置 1 0 0の構成を 示す。
図 2は、 3次元画像生成部 2 0 0の構成を示す。
図 3は、 形状算出部 2 6 0の構成を示す。
図 4は、 3次元画像生成部 2 0 0のハードウェア構成図の一例を示す。
図 5は、 濃淡画像情報を得る方法を説明する図である。
図 6は、 濃淡画像情報を得る方法を説明する図である。
図 7は、 濃淡画像情報を得る方法を説明する図である。
図 8は、 3次元濃淡情報の一例の縦断面情報を示す。
図 9は、 3次元濃淡情報の縦断面情報の他の例を示す。
図 1 0は、 第 1の重畳部 2 8 0による重畳画像の一例の縦断面情報を示す。 図 1 1は、情報加工部 3 0 0による 3次元再構成画像の一例の縦断面図を示 す。
図 1 2は、 3次元画像生成部 2 0 0の第 2の動作例を説明する図である。 図 1 3は、 3次元画像生成部 2 0 0の第 2の動作例を説明する図である。 図 1 4は、立体構造検証支援装置 1 0 0による表示装置 8 0 0の表示例を示 す。 発明を実施するための最良の形態
以下、 発明の実施の形態を通じて本発明を説明するが、 以下の実施形態はクレー ムにかかる発明を限定するものではなく、 又実施形態の中で説明されている特徴の 組み合わせの全てが発明の解決手段に必須であるとは限らない。 図 1は、本発明の実施の形態の一例である立体構造検証支援装置 1 0 0を示す。 立体構造検証支援装置 1 0 0は 3次元画像生成部 2 0 0と、第 1の表示部 1 2 0 及び第 2の表示部 1 4 0を備える。第 1の表示部 1 2 0は、付影部 1 2 2及ぴ角 度指定部 1 2 4を有する。立体構造検証支援装置 1 0 0は、透過型電子顕微鏡な どの投影型の撮像装置により得られた投影画像である濃淡画像情報から、 3次元 算出画像の一例である 3次元再構成画像を 3次元画像生成部 2 0 0を用いて算 出する。 また、 立体構造検証支援装置 1 0 0は、第 1の表示部 1 2 0を用いて 3 次元再構成画像に影を付けることで物質の立体構造を推定表示する 3次元推定 付影画像にして、表示装置 8 0 0に回転表示させると共に、透過型電子顕微鏡な どの実験的な構造解析により得られた物質の画像を第 2の表示部 1 4 0を用い て表示装置 8 0 0に立体的に回転表示させる。すなわち、立体構造検証支援装置 1 0 0は、 3次元推定付影画像及び実験的な構造解析による画像を同時に概略同 じ角度に回転させて表示することで、 3次元推定付影画像と画像とを比較し、 2 つの画像の違いを見つけやすく表示することで、立体構造の検証を支援する装置 である。 ここで、 3次元推定付影画像と実験的な構造解析による画像は並列表示 されるのが好ましい。
透過型電子顕微鏡等において、 得られた画像の解像度が希望より低い場合が 多々あるが、画像の解像度が低い場合にも、立体構造検証支援装置 1 0 0力 S 3次 元再構成画像と画像を回転しつつ表示するので、これら 2つの回転している画像 を比較して、 3次元再構成画像と画像との違いを発見することが可能になる。
3次元画像生成部 2 0 0は複数の角度から見た第 1の画像情報と、透過型電子 顕微鏡等により得られた複数の投影画像情報すなわち濃淡画像情報を用いて、被 写体の立体構造に関する 3次元情報を得る装置である。ここで第 1の画像情報と して濃淡画像情報を用いることもできる。
図 2は 3次元画像生成部 2 0 0の構成の一例を示す。本例において、 3次元画 像生成部 2 0 0は、 分布部 2 2 0、 第 2の重畳部 2 4 0、 形状算出部 2 6 0、 第 1の重畳部 2 8 0、 情報加工部 3 0 0、画像情報生成部 3 2 0、及ぴ出力部 3 6 0を備える。
分布部 2 2 0は、外部から取得した複数の濃淡画像情報を各々撮像した角度す なわち投影した角度に引き延ばして分布させることで濃淡分布情報を生成し、第 2の重畳部 2 4 0に出力する。具体例として、分布部 2 2 0は濃淡画像情報の濃 淡を均等に引き延ばした方向に分布させる。
第 2の重畳部 2 4 0は分布部 2 2 0による複数の濃淡分布情報を、角度を維持 したまま重ねることで 3次元濃淡情報を生成し、第 1の重畳部 2 8 0に出力する c 生成した 3次元濃淡情報は被写体を 3次元の画像情報で表す情報となる。ここで の 3次元濃淡情報中には偽情報が含まれる可能性がある。
形状算出部 2 6 0は、 3つ以上の角度から見た 3つ以上の画像情報から被写体 の特定の点すなわち処理対象点の高さ情報を算出し、複数の処理対象点の高さ情 報を用いて被写体の外殻を示す形状情報を算出する。
図 3は形状算出部 2 6 0の構成の一例を示す。形状算出部 2 6 0は、位置対応 部 2 6 2、 高さ情報算出部 2 6 4、 及び形状情報算出部 2 6 6を備える。
位置対応部 2 6 2は、角度順において連続する 2枚の画像情報中の複数の処理 対象点の位置を認識して各々対応付け、 高さ情報算出部 2 6 4に出力する。
詳細には、例えば角度順において連続する第 1の画像情報及ぴ第 2の画像情報 中の処理対象点の位置を対応付け、さらに第 2の画像情報とその直後の角度であ る第 3の画像情報において処理対象点の位置を対応付ける。この対応付けを第 3 及び第 4の画像情報、 · · ·といった他の画像組合せに対しても順次行う。 各処 理対象点は、 2組以上の画像組合せにおいてそれぞれ対応付けられる。
また、位置対応部 2 6 2は、 画像情報中に基準線を定めておき、 この基準線と 処理対象点との距離も測定する。画像組合せを構成する 2枚の画像中における基 準線ど処理対象点との距離の差が一定以上である場合、位置対応部は当該処理基 準線の位置認識 ·対応付けを再度行う。
ここで、各画像情報が同一の回転を回転中心として被写体を予め定められた角 度ずつ回転して撮像することにより得られた画像であったり、或いは 3つ以上の 画像情報のうち、第 1及ぴ第 2の画像は一の回転軸を回転中心として被写体を予 め定められた角度回転して撮像して得られた画像であり、第 3の画像は被写体を 他の回転軸を回転中心として第 1の画像を撮像した位置から予め定められた角 度ほど回転して撮像して得られた画像である場合、位置対応部は、前記した予め 定められた角度を用いて、 処理対象点の位置を対応付ける。
高さ情報算出部 2 6 4は、位置対応部 2 6 2により 2枚の画像情報内で対応付 けられた処理対象点の高さ情報を各々算出し、形状情報算出部 2 6 6に出力する。 高さ情報算出部 2 6 4で行う処理は、いわゆる立体視法の処理と同じである。 こ こで、各処理対象点は、少なくとも 2組以上の画像組合せにおいてそれぞれ対応 付けられているため、高さ情報算出部 2 6 4は各処理対象点の高さ情報を複数算 出する。高さ情報算出部 2 6 4は、複数の高さ情報を基にした最小二乗誤差法に より、 出力すべき高さ情報を算出する。 ここで最小二乗誤差法による誤差が一定 以上である場合、 位置対応部 2 6 2は、 処理対象点の位置を再検出する。
形状情報算出部 2 6 6は、高さ情報算出部 2 6 4が算出した処理対象点の高さ 情報と、画像情報から求められる処理対象点の平面情報とを用いて被写体の形状 情報を算出する。形状情報算出部 2 6 6は算出した形状情報を画像情報生成部 3
2 0及ぴ第 1の重畳部 2 8 0に出力する。
図 2に戻り、第 1の重畳部 2 8 0は、第 2の重畳部 2 4 0による 3次元濃淡情 報に、形状算出部 2 6 0による形状情報を重ねて重畳画像を生成し、情報加工部
3 0 0に出力する。
情報加工部 3 0 0は、第 1の重畳部 2 8 0が出力した重畳画像を用いて、 3次 元濃淡分布情報から、形状情報の周辺に存在する或いは形状情報と重なる情報の みを抽出して 3次元再構成画像を生成し、 出力部 3 6 0に出力する。 3次元濃淡 情報に偽情報が含まれる場合、偽情報と形状情報とは重なり得ない。従って、 情 報加工部 3 0 0が抽出する情報には偽情報は含まれない。その結果、 3次元再構 成画像はより正確に被写体の 3次元構造を示す画像となる。
画像情報生成部 3 2 0は、形状算出部 2 6 0が算出した形状情報が示す外殻の 該当個所周辺に、外部から取得した濃淡画像情報を分布させることで、被写体の 3次元再構成画像を生成し、生成した 3次元再構成画像を出力部 3 6 0に出力す る。 例として、 画像情報生成部 3 2 0は、外殻の当該箇所から一定の範囲にある 領域にのみ濃淡画像情報の濃度を均等に分布させることで 3次元濃淡画像情報 を生成する。
ここで、画像情報生成部 3 2 0は、濃淡画像情報を撮像した角度に引き延ばし て重ねるという過程を経ずに被写体の 3次元再構成画像を生成するため、偽情報 が発生することはない。
出力部 3 6 0は、形状算出部 2 6 0による形状情報、画像情報生成部 3 2 0に よる 3次元再構成画像、及ぴ情報加工部 3 0 0による 3次元再構成画像を外部の プリンター或いは表示装置等に出力する。
図 1に戻り、第 1の表示部 1 2 0の付影部 1 2 2は、 3次元画像生成部 2 0 0 により算出された 3次元再構成画像に影付けを行つて 3次元推定付影画像を生 成し、生成した 3次元推定付影画像を回転させつつ表示装置 8 0 0に出力して表 示する。 影付け方法としては、仮想的な光源から画像中の物体に接線を引き、 物 体において、接線との接点を基準に前記した仮想的な光源とは反対側にある部分 の濃度を濃くする方法がある。 ここで、濃度を濃くする際にグラデーションを付 けてもよい。
第 1の表示部 1 2 0の角度指定部 1 2 4は、 3次元推定付影画像の回転角度を 指示するために付影部 1 2 2に出力する。
つまり、第 1の表示部 1 2 0は、付影部 1 2 2が角度指定部 1 2 4の指示に従 いつつ 3次元推定付影画像の角度を連続的に変えて表示装置 8 0 0に出力する ことで、 表示装置 8 0 0に 3次元推定付影画像を回転表示する。
第 2の表示部 1 4 0は、実験的な構造解析により得られた物質の画像を、 3次 元推定付影画像に合わせて回転しながら立体的に表示する。
一例として、第 2の表示部 1 4 0は複数の角度から撮像された複数の影付きの 物質の 2次元画像を、角度順に連続して表示することで、物質を回転しながら立 体的に表示する。 これにより、 2次元画像の一例である透過型電子顕微鏡による 濃淡画像をそのまま使用して、物質の構造を立体的に表示することが可能になる c また、複数の影付きの物質の 2次元画像を角度順に連続して表示する場合、第 1の表示部 1 2 0は、 3次元推定付影画像の表示角度が、第 2の表示部 1 4 0に より表示されている 2次元画像の撮像角度と同じになるようにする。具体的には、 角度指定部 1 2 4は 2次元画像を撮像した角度をキーボード等から入力しても らつてもよく、第 2の表示部 1 4 0が 2次元画像とともに角度情報を取得し、そ の角度情報を角度指定部 1 2 4に出力してもよい。 ここで 2次元画像は、例えば 透過型電子顕微鏡で撮像された投影画像である。
なお、 図 1の構成によれば、 立体構造検証支援装置 1 0 0は、濃淡画像情報か ら算出した 3次元再構成画像の妥当性を検証することで立体構造を検証するこ とを支援する装置である。 これに対し、 立体構造検証支援装置 1 0 0を、濃淡画 像情報から 3次元再構成画像を算出する代わりに、状況証拠に基づいてシミュレ ーシヨンで作成されたモデルの画像である 3次元算出画像を直接付影部 1 2 2 で取得する構成としてもよい。 これにより、 立体構造検証支援装置 1 0 0は、推 定モデルの立体構造の妥当性の検証を支援する装置となる。 この場合、立体構造 検証支援装置 1 0 0は 3次元画像生成部 2 0 0を備えなくてもよい。
図 4は、 3次元画像生成部 2 0 0のハードウエア構成図の一例を示す。本例に おいて、 3次元画像生成部 2 0 0は、 C P U (central processing unit) 6 0 2 、 R OM (read only memory) 6 0 4 、 R AM (random access memory) 6 0 6 、 ディスプレイ 6 0 8、 プリンター 6 1 0、 入力装置 6 1 2 、 ハードディスク装置 6 1 4 、 F D (floppy disk) ドライブ 6 1 6、 及ぴ C D— R OM (compact disk ROM) ドライブ 6 1 8を有する。
C P U 6 0 2は、 R AM 6 0 6及ぴ R OM 6 0 4に格納されたプログラムに基 づいて処理を行う。 ディスプレイ 6 0 8は、各種情報を表示する。 プリンター 6 1 0は各種情報を印刷する。入力装置 6 1 2は、 3次元画像生成部 2 0 0に対す る設定等を入力する。 F Dドライブ 6 1 6は、 フロッピーディスク 6 2 0からデ ータ又はプログラムを読み取って C P U 6 0 2に渡す。 C D— R OMドライブ 6 1 8は、 C D— R OM 6 2 2からデータ又はプログラムを読み取って C P U 6 0 2に渡す。ハードディスク 6 1 8は、 F Dドライブ 6 1 6又は C D— R OMドラ イブ 6 1 8によって読み出されたデータ又はプログラムや、 C P U 6 0 2がプロ グラムを実行することにより作成されたデータを記憶するとともに、記憶したデ ータ又はプログラムを読み取って C P U 6 0 2に渡す。
本例では、上述した 3次元画像生成部 2 0 0の各機能部を実現するプログラム を有する C D— R OM 6 2 2力 ら、当該プログラムを読み出してハードディスク 6 1 8にインストールさせておき、ハードディスク 6 1 8から当該プログラムを 読出して C P U 6 0 2が実行することにより、上記 3次元画像生成部 2 0 0の機 能部を実現する。
前記したプログラムは、 より具体的には、付影部 1 2 2を実現するための付影 モジュール、角度指定部 1 2 4を実現するための角度指定モジュール、第 2の表 示部を実現するための第 2の表示モジュール、分布部 2 2 0を実現するための分 布モジュール、第 2の重畳部 2 4 0を実現するための第 2の重畳モジュール、形 状算出部 2 6 0を実現するための形状算出モジュール、第 1の重畳部 2 8 0を実 現するための第 1の重畳モジュール、情報加工部 3 0 0を実現するための情報加 ェモジュール、画像情報生成部 3 2 0を実現するための画像情報生成モジュール、 及ぴ出力部 3 6 0を実現するための出力モジュールを有する。各モジュールの動 作は対応する機能部の動作と概略同じであるため説明を省略する。また、前記し たプログラムは、 C D— R QM 6 2 2ではなくフロッピーディスク 6 2 0や、 M Oや MDなど他の記録媒体に格納されてもよい。
次に、図 5〜図 1 2を用いて 3次元画像生成部 2 0 0の第 1の動作例を説明す る。本例では、並列かつ上向きに並んだ 2つの半球状の被写体 4 0 0を投影型の 撮像装置で撮像し、 3次元画像生成部 2 0 0を用いて 3次元再構成画像を生成す る。
まず、 濃淡画像情報を得る段階について説明する。 図 5、 図 6、 図 7に示すよ うに、 少なくとも異なる 3つの角度 (本例では A方向、 B方向、 及ぴ C方向) か ら被写体を撮像して投影画像情報すなわち濃淡画像情報 4 2 0、 4 4 0、及ぴ 4 6 0を得る。 ここで、 図 5および図 6に示すように A方向と B方向の角度の間隔 と、 B方向と C方向の角度の間隔を各々等しい値 0とするのが好ましい。
また、 B方向および C方向は同一の軸 4 0 1を回転中心として A方向から回転 した角度でもよく、異なる軸 4 0 1および 4 0 2を回転中心として A方向からそ れぞれ回転した角度でもよい。
そして、濃淡画像情報 4 2 0、 4 4 0、 及ぴ 4 6 0を 3次元画像生成部 2 0 0 に入力する。 ここで濃淡画像情報 4 2 0、 4 4 0、及ぴ 4 6 0は第 1の画像情報 も兼ねる。
本例において、 3次元画像生成部 2 0 0の分布部 2 2 0は、各濃淡画像情報 4 2 0、 4 4 0、及ぴ 4 6 0を撮像方向に引き延ばして濃淡分布情報 4 2 5 , 4 4 5、 及ぴ 4 6 5を生成し、 第 2の重畳部が、 濃淡分布情報 4 2 5、 4 4 5、 及ぴ 4 6 5を角度を維持したまま重ね合わせて 3次元濃淡情報を生成する。
図 8は、本例における 3次元濃淡情報の縦断面情報の一例を示す。 3次元濃淡 情報は、全ての濃淡分布情報が重なった部分に物体が存在することを示す。図 7 は、濃淡分布情報 4 2 5、 4 4 5、及ぴ 4 6 5の全てが重なった部分すなわち情 報 4 7 0、 4 7 2、 4 7 4、 4 7 6、 及び 4 7 8に、 被写体 4 0 0が存在するこ とを示す。 し力 し、 本来被写体 4 0 0は 2つのみであり、 上記した 5つの情報の うち 3つは偽情報である。'
図 9は、本例における 3次元濃淡情報の縦断面情報の他の例を示す。本例にお いて、濃淡画像情報 4 2 0 , 4 4 0、及ぴ 4 6 0の濃度はそれぞれ異なっている。 また、 濃淡分布情報 4 2 5、 4 4 5、 及ぴ 4 6 5は、 濃淡画像情報 4 2 0、 4 4 0、及び 4 6 0の濃淡を撮像した角度に引き延ばして均等に分布させたものであ る。 この場合、情報 4 7 0〜4 7 8以外の部分も情報 4 7 0〜4 7 8の一つと同 等以上の濃度を有する可能性があるため、 偽情報がさらに増える場合もある。 また、 3次元画像生成部 2 0 0の形状算出部 2 6 0は濃淡画像情報 4 2 0、 4 4 0、及ぴ 4 6 0から被写体 4 0 0の外殻を示す形状情報 2 6 5を算出する。 こ こで形状算出部 2 6 0は被写体 4 0 0の外殻全体は算出できず、図中 A方向、 B 方向および C方向の視野に共通して含まれる部分となる。本例においては被写体 4 0 0の球状部のみ外殻が算出される。
そして、 3次元画像生成部 2 0 0の第 1の重畳部 2 8 0は 3次元濃淡画像情報 に形状算出部 2 6 0による形状情報を重畳する。
図 1 0は本例における第 1の重畳部 2 8 0による重畳画像の縦断面情報を示 す。 本例において、形状算出部 2 6 0による 2つの形状情報 2 6 5は、 それぞれ 情報 4 7 0及ぴ 4 7 2に重なる。 従って、 情報加工部 3 0 0は、 情報 4 7 0及ぴ
4 7 2が物体を表す真の情報であり、情報 4 7 4 , 4 7 6及び 4 7 8が偽情報で あると判断し、情報 4 7 0及び 4 7 2のみを抽出して 3次元再構成画像として出 力部 3 6 0に出力する。
この結果、 偽情報が 3次元再構成画像に含まれることはなくなる。
ここで、形状情報 2 6 5の信頼性が高い場合、情報加工部 3 0 0は形状情報 2
6 5を加味した 3次元再構成画像を出力する。 また、濃淡分布情報 4 2 5 , 4 4 5及ぴ 4 6 5の焦点がはっきりしていない場合などは情報 4 7 0の境界及ぴ 4
7 2の境界は明確にはならない。 この場合、情報加工部 3 0 0は形状情報 2 6 5 から予め定められた距離内に存在する情報を、 情報 4 7 0及ぴ 4 7 2とする。 また、第 1の重畳部 2 8 0による重畳情報をディスプレイ等に表示させること で、 情報加工部 3 0 0の動作を人が代理してもよく、 また、情報加工部 3 0 0に よる 3次元再構成画像に人の判断を加味することで偽情報を取り除いてもよレ、。 この場合、 より状況に即して偽情報を取り除くことができる。
図 1 1は本例における情報加工部 3 0 0による 3次元再構成画像の縦断面図 を示す。情報加工部 3 0 0による 3次元再構成画像は被写体 4 0 0を精度よく再 現していることがわかる。
そして、 出力部 3 6 0は、必要に応じて形状算出部 2 6 0による形状情報 2 6
5、及び情報加工部 3 0 0による 3次元再構成画像すなわち情報 4 7 0及び情報 4 7 2を表示装置或いは印刷装置等に出力する。
すなわち、 第 1の動作例では、 3次元画像生成部 2 0 0は、 分布部 2 2 0、 第 2の重畳部 2 4 0、形状算出部 2 6 0、第 1の重畳部 2 8 0、 及ぴ情報加工部 3 0 0を用いて、 より正確な 3次元再構成画像を得る。
次に、図 1 2及び図 1 3を用いて 3次元画像生成部 2 0 0の第 2の動作例を説 明する。本例において、 3次元画像生成部 2 0 0は第 1の動作例と同様に濃淡画 像情報 4 2 0、 4 4 0、及ぴ 4 6 0を用いて被写体 4 0 0の 3次元再構成画像を 得る。
まず、図 1 2に例示するように形状算出部 2 6 0は形状情報 2 6 5を算出する。 そして、 図 1 3に例示するように画像情報生成部 3 2 0力 形状情報 2 6 5の 周囲にのみ濃淡画像情報 4 2 0、 4 4 0、及ぴ 4 6 0を分布させ、 3つの濃淡画 像情報がすべて重なった部分すなわち情報 4 7 0及ぴ 4 7 2を 3次元再構成画 像とする。 この結果、 3次元再構成画像に偽情報が含まれることはなくなる。
ここで、形状情報 2 6 5の信頼性が高い場合、画像情報生成部 3 2 0は形状情 報 2 6 5を加味した 3次元再構成画像を出力する。 また、情報 4 7 0の境界及ぴ 4 7 2の境界がはつきりしない場合、画像情報生成部 3 2 0は形状情報 2 6 5力 ら予め定められた距離内に存在する情報を、情報 4 7 0及び 4 7 2とする。 ここ で、形状情報 2 6 5の信頼性が高い場合、画像情報生成部 3 2 0は形状情報 2 6 5を加味した 3次元再構成画像を出力する。 また、濃淡分布情報 4 2 5、 4 4 5 及び 4 6 5の焦点がはっきりしていない場合などは情報 4 7 0の境界及ぴ 4 7 2の境界は明確にはならない。 この場合、'画像情報生成部 3 2 0は形状情報 2 6 5から予め定められた距離内に存在する情報を、 情報 4 7 0及び 4 7 2とする。 例えば、被写体 4 0 0の厚み Dが既知である場合は外殻から厚み Dの範囲内に濃 淡画像情報 4 2 0、 4 4 0、及ぴ 4 6 0の濃度情報を均等に分布させる。 このと き、前記した濃淡情報は、投影方向に厚み Dの範囲内で分布させるのが更に好ま しい。
すなわち、第 2の動作例では、 3次元画像生成部 2 0 0は、形状算出部 2 6 0、 画像情報生成部 3 2 0を用いてより正確な 3次元再構成画像を得る。
3次元画像生成部 2 0 0は、撮像可能な角度に制限がある場合に、特に上述し た効果を発揮する。 例えば、透過型電子顕微鏡より得た画像情報を投影画像情報とする場合、撮像 可能な角度には制限があるが、 3次元画像生成部 2 0 0を用いることで被写体の 分子レベルの立体構造を明らかにすることが可能となる。
詳細な例としては、細胞の蛋白質の構造やその変化を明ら力にしたい場合があ る。 この場合、 いわゆる急速凍結ディープエッチ'レプリカ法により得られる蛋 白質の型を透過型電子顕微鏡により撮像し、 3次元画像生成部 2 0 0で処理する ことで、偽情報すなわちいわゆるゴーストを取り除いた状態で、被写体である蛋 白質の立体構造を示す 3次元情報を得ることができる。
図 1 4は、立体構造検証支援装置 1 0 0による表示装置 8 0 0の表示例を示す。 本例において、表示画像 8 2 0は第1の表示部1 2 0による表示画像すなわち 3 次元推定付影画像であり、表示画像 8 4 0は第 2の表示部 1 4 0による表示画像 すなわち実験的な構造解析により得られた画像である。 図 1 4に示すように、立 体構造検証支援装置 1 0 0によれば、 3次元推定付影画像と実験的な構造解析に より得られた画像とが並列に回転されつつ表示されるため、 2つの回転画像の比 較を容易に行える。 従って、 立体構造の検証をより容易に行える。
以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実 施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改 良を加えることができる。その様な変更又は改良を加えた形態も本発明の技術的 範囲に含まれ得ることが、 特許請求の範囲の記載から明らかである。 産業上の利用可能性
上記説明から明らかなように、本発明によれば、物質の構造の推定モデル或い は 3次元再構成画像等の 3次元算出画像の妥当性の検証を支援するのに好適な 立体構造検証支援装置、 立体構造検証方法、記録媒体、及びプログラムを提供す ることができる。

Claims

請 求 の 範 囲
1 .物質の立体構造を示すために算出された 3次元算出画像の妥当性を検証する ことで、 立体構造を検証することを支援する立体構造検証支援装置であって、 前記 3次元算出画像に影を付けることで前記物質の立体構造を推定表示する 3次元推定付影画像を、 回転しながら表示させる第 1の表示部と、
実験的な構造解析により得られた前記物質の画像を、前記 3次元推定付影画像 に合わせて回転しながら立体的に表示させる第 2の表示部と、
を備えることを特徴とする立体構造検証支援装置。
2 . 前記第 2の表示部は、複数の角度から得られた複数の影付きの 2次元画像を 前記画像として角度順に連続して表示することで、前記物質を回転しながら立体 的に表示することを特徴とする請求項 1に記載の立体構造検証支援装置。
3 . 前記 2次元画像は、透過型電子顕微鏡により得られた濃淡画像であることを 特徴とする請求項 2に記載の立体構造検証支援装置。
4 . 前記 3次元推定付影画像は、透過型電子顕微鏡により得られた複数の濃淡画 像情報を処理して得られることを特徴とする請求項 1に記載の立体構造検証支
5 . 複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質の 外殻を示す形状情報を算出する形状算出部と、
前記濃淡画像情報に示される濃度をそれぞれ前記濃淡画像情報を撮像した角 度に引き延ばして分布させることで濃淡分布情報を生成する分布部と、
複数の角度から得られた複数の前記濃淡画像情報による複数の前記濃淡分布 情報を重ねて、前記物質を 3次元の画像情報で表す 3次元濃淡情報を生成する第 2の重畳部と、
前記第 2の重畳部による前記 3次元濃淡情報を前記形状情報に重ねる第 1の 重畳部と、
前記 3次元濃淡情報から、前記形状情報が示す形状の周囲に存在する濃淡情報 のみを抽出して前記 3次元画像を生成する情報加工部と、
を有する 3次元画像生成部を更に備えることを特徴とする請求項 3に記載の 立体構造検証支援装置。
6 .複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質の 外殻を示す形状情報を算出する形状算出部と、
前記濃淡画像情報の濃淡情報を、前記外殻の周辺に分布させて 3次元算出画像 を生成する画像情報生成部と、
を有する 3次元画像生成部を更に備えることを特徴とする請求項 3に記載の 立体構造検証支援装置。
7 . 物質の立体構造を示すために算出された 3次元算出画像を検証することで、 立体構造を検証する立体構造検証方法であって、
前記 3次元算出画像に影を付けた 3次元推定付影画像と、実験的な構造解析に より得られた前記物質の画像とを、 同時に回転しながら表示して、前記 3次元推 定付影画像と前記画像とを比較して立体構造を検証することを特徴とする立体 構造検証方法。
8 .複数の角度から得られた複数の影付きの 2次元画像を前記画像として角度順 に連続して表示することで、前記物質の画像を回転しながら立体的に表示するこ とを特徴とする請求項 7に記載の立体構造検証方法。
9 . 前記 2次元画像は、透過型電子顕微鏡により得られた濃淡画像であることを 特徴とする請求項 8に記載の立体構造検証方法。
1 0 . 透過型電子顕微鏡により得られた複数の濃淡画像情報を処理して、前記 3 次元推定付影画像を得ることを特徴とする請求項 7に記載の立体構造検証方法。
1 1 . 複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質 の外殻を示す形状情報を算出し、
投影型の撮像装置により得られた前記物質の濃淡画像情報に示される濃度を それぞれ前記濃淡画像情報を撮像した角度に引き延ばして分布させることで濃 淡分布情報を生成し、 複数の角度から得られた複数の前記濃淡画像情報による複数の前記濃淡分布 情報を重ねて、 前記物質を 3次元の画像情報で表す 3次元濃淡情報を生成し、 前記 3次元濃淡情報を前記形状情報に重ね、前記 3次元濃淡情報から、前記形 状情報が示す外殻の周囲に存在する濃淡情報のみを抽出して前記 3次元算出画 像を生成することを特徴とする請求項 7に記載の立体構造検証方法。
1 2 . 複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質 の外殻を示す形状情報を算出し、
前記濃淡画像情報の濃淡情報を、前記外殻の周辺に分布させて 3次元算出画像 を生成することを特徴とする請求項 7に記載の立体構造検証方法。
1 3 .物質の立体構造を示すために算出された 3次元算出画像を検証することで、 立体構造を検証することを支援するプログラムを格納した記録媒体であって、前 記プログラムは、
前記 3次元算出画像に影を付けた 3次元推定付影画像を回転しながら表示 する第 1の表示モジュールと、
実験的な構造解析により得られた前記物質の画像を、前記 3次元推定付影画像 と同時に回転しながら表示する第 2の表示モジユールと、
を備えることを特徴とする記録媒体。
1 4 . 前記プログラムは、
複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質の外 殻を示す形状情報を算出する形状算出モジュールと、
透過型電子顕微鏡により得られた濃淡画像情報に示される濃度をそれぞれ前 記濃淡画像情報を撮像した角度に引き延ばして分布させることで濃淡分布情報 を生成する分布モジュールと、
複数の角度から得られた複数の前記濃淡画像情報による複数の前記濃淡分布 情報を重ねて、前記物質を 3次元の画像情報で表す 3次元濃淡情報を生成する第 2の重畳モジュールと、
前記第 2の重畳部による前記 3次元濃淡情報を前記形状情報に重ねる第 1の 重畳モジユーノレと、
前記 3次元濃淡情報から、前記形状情報が示す形状の周囲に存在する濃淡情報 のみを抽出して前記 3次元算出画像を生成する情報加工モジュールと、
を更に備えることを特徴とする請求項 1 3に記載の記録媒体。
1 5 . 前記プログラムは、
複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質の外 殻を示す形状情報を算出する形状算出モジュールと、
透過型電子顕微鏡により得られた前記濃淡画像情報の濃淡情報を、前記外殻の 周辺に分布させて 3次元算出画像を生成する画像情報生成モジユールと、
を備えることを特徴とする請求項 1 3に記載の記録媒体。
1 6 .物質の立体構造を示すために算出された 3次元算出画像を検証することで、 立体構造を検証することを支援するプログラムであって、
前記 3次元算出画像に影を付けた 3次元推定付影画像を回転しながら表示 する第 1の表示モジュールと、
実験的な構造解析により得られた前記物質の画像を、前記 3次元推定付影画像 と同時に回転しながら表示する第 2の表示モジュールと、
を備えることを特徴とするプログラム。
1 7 . 更に、
複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質の外 殻を示す形状情報を算出する形状算出モジュールと、
透過型電子顕微鏡により得られた濃淡画像情報に示される濃度をそれぞれ前 記濃淡画像情報を撮像した角度に引き延ばして分布させることで濃淡分布情報 を生成する分布モジユールと、
複数の角度から得られた複数の前記濃淡画像情報による複数の前記濃淡分布 情報を重ねて、前記物質を 3次元の画像情報で表す 3次元濃淡情報を生成する第 2の重畳モジュールと、
前記第 2の重畳部による前記 3次元濃淡情報を前記形状情報に重ねる第 1の 重畳モジュールと、
前記 3次元濃淡情報から、前記形状情報が示す形状の周囲に存在する濃淡情報 のみを抽出して前記 3次元算出画像を生成する情報加工モジュールと、
を更に備えることを特徴とする請求項 1 6に記載のプログラム。
1 8 . 更に、
複数の角度から見た前記物質の複数の第 1の画像情報を用いて、前記物質の外 殻を示す形状情報を算出する形状算出モジュールと、
透過型電子顕微鏡により得られた前記濃淡画像情報の濃淡情報を、前記外殻の 周辺に分布させて 3次元算出画像を生成する画像情報生成モジュールと、 を備えることを特徴とする請求項 1 6に記載のプログラム。
PCT/JP2001/010778 2001-01-05 2001-12-10 Appareil support de verification tridimensionnelle, procede de verification de structure tridimensionnelle, support d'enregistrement et programme WO2002056259A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002556845A JP3619837B2 (ja) 2001-01-05 2001-12-10 立体構造検証支援装置、立体構造検証方法、記録媒体、及びプログラム
EP20010273174 EP1363245A1 (en) 2001-01-05 2001-12-10 Three-dimensional verification supporting apparatus, three-dimensional structure verification method, record medium, and program
US10/612,820 US6828555B2 (en) 2001-01-05 2003-07-02 Three-dimensional structure verification supporting apparatus, three-dimensional structure verification method, recording medium, and program therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001000752 2001-01-05
JP2001-752 2001-01-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/612,820 Continuation US6828555B2 (en) 2001-01-05 2003-07-02 Three-dimensional structure verification supporting apparatus, three-dimensional structure verification method, recording medium, and program therefor

Publications (1)

Publication Number Publication Date
WO2002056259A1 true WO2002056259A1 (fr) 2002-07-18

Family

ID=18869482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010778 WO2002056259A1 (fr) 2001-01-05 2001-12-10 Appareil support de verification tridimensionnelle, procede de verification de structure tridimensionnelle, support d'enregistrement et programme

Country Status (4)

Country Link
US (1) US6828555B2 (ja)
EP (1) EP1363245A1 (ja)
JP (1) JP3619837B2 (ja)
WO (1) WO2002056259A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006062132A1 (ja) * 2004-12-07 2006-06-15 The University Of Tokyo 立体画像再構成装置、立体画像再構成方法、及び立体画像再構成プログラム
US7880738B2 (en) 2005-07-14 2011-02-01 Molsoft Llc Structured documents and systems, methods and computer programs for creating, producing and displaying three dimensional objects and other related information in those structured documents
CN103426199B (zh) * 2013-08-09 2016-08-10 中国科学院自动化研究所 一种三维几何场景的低噪声实时全局光照绘制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219075A (ja) * 1986-03-20 1987-09-26 Hitachi Medical Corp 三次元画像の半透明表示方法
JPH0470983A (ja) * 1990-07-05 1992-03-05 Toshiba Corp 立体表示装置
JPH0798215A (ja) * 1993-09-29 1995-04-11 Toppan Printing Co Ltd 視差画像作成方法および装置
EP0919956A2 (en) * 1997-11-26 1999-06-02 Picker International, Inc. Image display
US6051834A (en) * 1991-05-15 2000-04-18 Hitachi, Ltd. Electron microscope
JP2001312717A (ja) * 2000-04-28 2001-11-09 Inst Of Physical & Chemical Res 3次元形状解析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016427B2 (ja) * 1998-02-02 2000-03-06 日本電気株式会社 原子座標生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62219075A (ja) * 1986-03-20 1987-09-26 Hitachi Medical Corp 三次元画像の半透明表示方法
JPH0470983A (ja) * 1990-07-05 1992-03-05 Toshiba Corp 立体表示装置
US6051834A (en) * 1991-05-15 2000-04-18 Hitachi, Ltd. Electron microscope
JPH0798215A (ja) * 1993-09-29 1995-04-11 Toppan Printing Co Ltd 視差画像作成方法および装置
EP0919956A2 (en) * 1997-11-26 1999-06-02 Picker International, Inc. Image display
JP2001312717A (ja) * 2000-04-28 2001-11-09 Inst Of Physical & Chemical Res 3次元形状解析方法

Also Published As

Publication number Publication date
US6828555B2 (en) 2004-12-07
JPWO2002056259A1 (ja) 2004-05-20
JP3619837B2 (ja) 2005-02-16
EP1363245A1 (en) 2003-11-19
US20040069946A1 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
CN100485720C (zh) 一种基于序列静态图像的360°环视全景生成方法
Lanzavecchia et al. Conical tomography of freeze-fracture replicas: a method for the study of integral membrane proteins inserted in phospholipid bilayers
JP2017117462A (ja) フーリエタイコグラフィによって取得された画像の物理レジストレーション
JP5009377B2 (ja) レンチキュラ印刷のための方法およびシステム
JP5524692B2 (ja) 情報処理装置および方法ならびにプログラム
RU2469298C2 (ru) Способ восстановления изображения с использованием объемной рентгеновской фотосъемки
JP2008513882A (ja) ビデオイメージ処理システム及びビデオイメージ処理方法
JP3603204B2 (ja) 立体構造検証支援装置、立体構造検証支援方法、及びプログラム
FR2856170A1 (fr) Procede d'imagerie radiographique pour la reconstruction tridimensionnelle, dispositif et programme d'ordinateur pour mettre en oeuvre ce procede
WO2023071302A1 (zh) 一种图片合成方法、装置、电子设备及存储介质
JP4840876B2 (ja) 3次元像合成方法および装置
EP3692499B1 (fr) Procede d'imagerie radiographique, dispositif de traitement d'image radiographique et dispositif d'imagerie radiographique
JP2005521960A (ja) 三次元医療画像の立体的な観察のための方法、システム及びコンピュータプログラム
JP2005521960A5 (ja)
JPWO2005009242A1 (ja) 医用画像処理装置及び方法
JP3619837B2 (ja) 立体構造検証支援装置、立体構造検証方法、記録媒体、及びプログラム
JP4752468B2 (ja) 断面像再構成装置およびそれを用いたx線撮影装置
JP4710081B2 (ja) 画像作成システム及び画像作成方法
JP4174122B2 (ja) 画像処理方法、装置および記録媒体
JP3625624B2 (ja) テクスチャ情報付与方法、テクスチャ情報付与プログラムを記録した媒体およびテクスチャ情報付与装置
JPH09138850A (ja) 表面形状再構成装置
JP3603203B2 (ja) 画像処理装置、画像処理方法、記録媒体、及びプログラム
Baba et al. A novel “ghost”-free tomographic image reconstruction method applicable to rotary-shadowed replica specimens
KR100731266B1 (ko) 3차원 입체 영상의 신호 처리 장치 및 방법
JP2018142267A (ja) 物体判定装置、物体判定方法、プログラム、および特徴量列のデータ構造

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002556845

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10612820

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001273174

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001273174

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001273174

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)