WO2002050935A2 - Niedertemperatur-brennstoffzelle mit verbundleiterplatte aus einer legierung - Google Patents

Niedertemperatur-brennstoffzelle mit verbundleiterplatte aus einer legierung Download PDF

Info

Publication number
WO2002050935A2
WO2002050935A2 PCT/DE2001/004637 DE0104637W WO0250935A2 WO 2002050935 A2 WO2002050935 A2 WO 2002050935A2 DE 0104637 W DE0104637 W DE 0104637W WO 0250935 A2 WO0250935 A2 WO 0250935A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
low
circuit board
temperature fuel
composite
Prior art date
Application number
PCT/DE2001/004637
Other languages
English (en)
French (fr)
Other versions
WO2002050935A3 (de
Inventor
Herbert Hartnack
Josef Lersch
Arno Mattejat
Karl Strasser
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE50102644T priority Critical patent/DE50102644D1/de
Priority to EP01989393A priority patent/EP1344268B1/de
Priority to US10/451,238 priority patent/US6849351B2/en
Priority to JP2002551932A priority patent/JP3978138B2/ja
Priority to CA002432115A priority patent/CA2432115C/en
Publication of WO2002050935A2 publication Critical patent/WO2002050935A2/de
Publication of WO2002050935A3 publication Critical patent/WO2002050935A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a low-temperature fuel cell with an electrode and a composite printed circuit board which electrically connects the electrode to an electrode of an adjacent low-temperature fuel cell.
  • Electrical energy and heat are generated in a fuel cell by combining hydrogen (H 2 ) and oxygen (0 2 ) in an electrochemical reaction.
  • hydrogen and oxygen are supplied to the fuel cell either in their pure form or as fuel gas with a hydrogen content and as air.
  • the type of these operating gases that are supplied to the fuel cell depends essentially on the operating environment in which the fuel cell is operated.
  • a fuel cell of a fuel cell system which is operated, for example, in a hermetically sealed room, is usually operated with pure oxygen and pure hydrogen.
  • These operating gases react to water (H 2 0) essentially without residues during operation of the fuel cell, so that the fuel cell system generates virtually no exhaust gases.
  • a low-temperature fuel cell is understood to mean a fuel cell that is operated in a temperature range up to 200 ° C.
  • At least one electrolyte electrode insert lies under an upper composite printed circuit board which covers the fuel cell stack. unit, a further composite circuit board, a further electrolyte electrode unit, a "further composite circuit board etc.
  • the electrolyte electrode unit comprises two electrodes - an anode and a cathode - and an electrolyte arranged between anode and cathode and designed as a membrane
  • an electrolyte electrode unit lying between two adjacent composite printed circuit boards forms a fuel cell with the composite printed circuit boards directly or indirectly adjoining it on both sides , wherein the electrodes do not have to lie directly on the Veribund circuit board, but are connected to it electrically, for example via contact or protective layers.
  • the operating gases are additionally humidified.
  • the composite circuit board is therefore not only exposed to the operating gases, but also to water. Water and pure oxygen, for example, form at the operating temperature of Low temperature fuel cells an extremely aggressive medium.
  • a low-temperature fuel cell of the type mentioned at the outset in which the composite circuit board 50 to 65% by weight of nickel, 12 to 22% by weight of chromium, 10 to 18% by weight of molybdenum, 4 to 10% by weight. -% iron and 0.5 to 5 wt .-% tungsten.
  • Such a composite printed circuit board is very corrosion-resistant to oxygen, even in combination with water and at elevated temperatures.
  • such a composite circuit board is easily mechanically deformable. It can be brought into the desired shape by simply bending it without cracking, and it can be used to impress shapes, channels or spacers, for example, using the deep-drawing process.
  • a composite circuit board made of the above-mentioned materials can be easily welded using various methods and it can be easily connected gas-tight to neighboring components. Another advantage is that the composite circuit board is gas-tight and does not become brittle in a hydrogen environment. It also dissipates electricity and heat particularly well.
  • the composite printed circuit board comprises two metal sheets forming a cavity, the composite printed circuit board in an expedient embodiment being able to consist essentially of only the metal sheets forming the cavity. Due to the above-mentioned choice of material for the composite circuit board, it is not necessary to produce the composite circuit board in a compact form for reasons of stability. In addition, the material of the composite circuit board is sufficiently hard and so elastic that two thin sheets forming a cavity give the composite circuit board sufficient stability.
  • the cavity can be designed with supply and discharge channels in such a way that, during operation of the fuel cell, it serves as a cooling water chamber through which cooling water or heating water flows.
  • a composite circuit board through which cooling water flows and made of two sheets forming a cavity solves this problem simply and effectively.
  • the composite circuit board has sufficient stability to be able to absorb cooling water under pressure without the risk of cracks or leaks.
  • the plates expediently have a thickness between 0.08 mm and 0.3 mm in the region of the cavity.
  • the above-mentioned special choice of materials makes it possible to produce the metal sheets for the composite printed circuit board particularly thin and yet with sufficient stability.
  • the elasticity and simultaneous tensile strength of the material also prevents the cavity of the composite printed circuit board from bursting at a pressure difference of a few bar between the inner and outer surroundings of the cavity.
  • the extremely small thickness of the metal sheets ensures that particularly good heat transport between the gas spaces and the cavity in the composite printed circuit board is ensured.
  • the low-temperature fuel cell is suitable for operation with pure oxygen and pure hydrogen.
  • a composite printed circuit board as described above shows very good corrosion resistance, even against moist pure oxygen and pure hydrogen.
  • the electrolyte electrode unit 3 consists of an anode 7, an electrolyte 9 and a cathode 11.
  • the electrolyte electrode unit 3 and the composite printed circuit boards 5 are mounted in seals 13.
  • the composite circuit boards 5 each consist of two sheets 15, 17, which form a cavity 19 between them.
  • a further low-temperature fuel cell is arranged adjacent to the low-temperature fuel cell 1 and also comprises an electrolyte-electrode unit 20 with two electrodes 21.
  • the two sheets 15, 17 of the composite printed circuit boards 5 each contain 57% by weight of nickel, 16% by weight of molybdenum, 15% by weight
  • the two sheets 15 and 17 of the composite printed circuit boards 5 are essentially 0.15 mm thick over their entire surface and are provided with embossings 22. The two sheets 15, 17 are welded together within the external seals 13 of the low-temperature fuel cell 1.
  • the low-temperature fuel cell 1 is a polymer electrolyte membrane fuel cell (PEM fuel cell), which is designed to be operated with pure oxygen and pure hydrogen as operating gases.
  • PEM fuel cell polymer electrolyte membrane fuel cell
  • humidified hydrogen flows into the anode gas space 23 of the low-temperature fuel cell 1, which is arranged between the anode 7 and the sheet 17 of one of the composite circuit boards 5.
  • oxygen moistened with water flows into the cathode gas chamber 25 of the low-temperature fuel cell 1, which is arranged between the cathode 11 and the sheet 15 of the other of the two composite printed circuit boards 5.
  • cooling water flows from an axial channel 27 in the flow direction 29 into the cavity 19 of the composite circuit boards 5 during operation of the low-temperature fuel cell 1
  • Course in flow direction 19 flows into a further axial channel 3-1 and is discharged from there to the fuel cell.
  • the sheets 15, 17 of the composite circuit board 5 are very corrosion-resistant to humidified hydrogen and humidified oxygen even at a temperature of up to 200 ° C. In addition, they are deformable and elastic enough without being damaged to withstand a pressure difference of up to 10 bar between the operating gas spaces 23, 25 and the cavities 19.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Bei einer Verbundleiterplatte (5) einer Niedertemperatur-Brenn-stoffzelle (1) besteht das Problem, dass sie sehr korrosionsbe-ständig gegen mit Wasser befeuchteten reinen Sauerstoff und reinen Wasserstoff sein muss und gleichzeitig mechanisch be-arbeitbar sein sollte. Die Erfindung schlägt zur Lösung des Problems eine Verbundleiterplatte (5) aus 50 bis 65 Gew.-% Ni, 12, bis 22 Gew.-% Cr, 10 bis 18 Gew.-% Mo, 4 bis 10 Gew.-% Fe und 0,5 bis 5 Gew.-% W vor.

Description

Beschreibung
Niedertemperatur-Brennstoffzelle
Die Erfindung betrifft eine Niedertemperatur-Brennstoffzelle mit einer Elektrode und einer Verbundleiterplatte, die die Elektrode mit einer Elektrode einer benachbarten Niedertemperatur-Brennstoffzelle elektrisch verbindet.
In einer Brennstoffzelle wird durch die Zusammenführung von Wasserstoff (H2) und Sauerstoff (02) in einer elektrochemischen Reaktion elektrische Energie und Wärme erzeugt. Hierfür wird der Brennstoffzelle Wasserstoff und Sauerstoff entweder in ihrer reinen Form oder als Brenngas mit einem Wasserstoff- anteil und als Luft zugeführt. Die Art dieser Betriebsgase, die der Brennstoffzelle zugeführt werden, hängt wesentlich von der Betriebsumgebung ab, in der die Brennstoffzelle betrieben wird. Eine Brennstoffzelle einer Brennstoffzellenan- lage, die beispielsweise in einem hermetisch verschlossenen Raum betrieben wird, wird üblicherweise mit reinem Sauerstoff und reinem Wasserstoff betrieben. Diese Betriebsgase reagieren während des Betriebs der Brennstoffzelle im wesentlichen rückstandsfrei zu Wasser (H20) , so dass die Brennstoffzellen- anlage so gut wie keine Abgase erzeugt.
In Abhängigkeit von ihrer Betriebstemperatur werden Brennstoffzellen in Nieder-, Mittel- und Hochtemperatur-Brennstoffzellen eingeteilt, die sich wiederum durch verschiedene technische Ausführungsformen voneinander unterscheiden. Unter einer Niedertemperaturbrennstoffzelle wird eine Brennstoffzelle verstanden, die in einem Temperaturbereich bis 200 °C betrieben wird.
Bei einem sich aus einer Vielzahl von planaren Brennstoffzel- len zusammensetzenden Brennstoffzellenstapel liegen unter einer oberen Verbundleiterplatte, welche den Brennstoffzellenstapel abdeckt, wenigstens eine Elektrolyt-Elektroden-Ein- heit, eine weitere Verbundleiterplatte, eine weitere Elektrolyt-Elektroden-Einheit, eine "weitere Verbundleiterplatte usw.. Die Elektrolyt-Elektroden-Einheit umfasst dabei zwei Elektroden - eine Anode und eine Kathode - und einen zwischen Anode und Kathode angeordneten und als Membran ausgeführten Elektrolyten. Dabei bildet jeweils eine zwischen zwei benachbarten Verbundleiterplatten liegende Elektrolyt-Elektroden- Einheit mit den beidseitig an ihr mittelbar oder unmittelbar anliegenden Verbundleiterplatten eine Brennstoffzelle. Eine Verbundleiterplatte dient unter anderem der elektrischen Verbindung einer Elektrode einer Brennstoffzelle mit der an der Verbundleiterplatte anliegenden Elektrode der benachbarten Brennstoffzelle, wobei die Elektroden nicht unmittelbar an der Veribundleiterplatte anliegen müssen sondern mit ihr bei- spielsweise über Kontakt- oder Schutzschichten elektrisch in Verbindung stehen.
'Zwischen der Anode einer Brennstoffzelle und der der Anode benachbarten Verbundleiterplatte ist der Anodengasraum der Brennstoffzelle ausgebildet. Durch den Anodengasraum strömt während des Betriebs der Brennstoffzelle Wasserstoff (H2) oder Wasserstoffhaltiges Betriebsgas. Auf der anderen Seite der Verbundleiterplatte befindet sich der Kathodengasraum der benachbarten Brennstoffzelle, der zwischen der Verbundleiter- platte und der Kathode der benachbarten Brennstoffzelle ausgebildet ist. Durch den Kathodengasraum strömt während des Betriebs dieser Brennstoffzelle Sauerstoff oder sauerstoff- haltiges Betriebsgas. Insbesondere beim Betrieb mit reinem Sauerstoff und reinem Wasserstoff ist die Verbundleiterplatte extrem korrosiven Betriebsgasen ausgesetzt. Bei manchen Niedertemperatur-Brennstoffzellen, insbesondere bei Polymer- Elektrolyt-Membran-Brennstoffzellen (PEM-Brennstoffzellen) , werden die Betriebsgase zusätzlich befeuchtet. Die Verbundleiterplatte ist somit nicht nur den Betriebsgasen, sondern zusätzlich auch noch Wasser ausgesetzt. Wasser und beispielsweise reiner Sauerstoff bilden bei der Betriebstemperatur von Niedertemperatur-Brennstoffzellen ein extrem aggressives Medium.
Aus der WO 00/59056 ist eine Brennstoffzelle mit einer Ver- bundleiterplatte aus einer Chrombasislegierung bekannt. Eine solche Verbundleiterplatte weist allerdings den Nachteil auf, dass sie relativ spröde ist. Sie ist daher schlecht verformbar und sehr schlecht verschweißbar und muss außerdem relativ dick ausgeführt werden, um eine nötige Stabilität zu erhal- ten.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine Niedertemperatur-Brennstoffzelle mit einer Verbundleiterplatte anzugeben, die besonders korrosionsbeständig und gut mechanisch v-erarbeitbar ist.
Diese Aufgabe wird durch eine Niedertemperatur-Brennstoffzelle der eingangs genannten Art gelöst, bei der die Verbundleiterplatte 50 bis 65 Gew.-% Nickel, 12 bis 22 Gew.-% Chrom, 10 bis 18 Gew.-% Molybdän, 4 bis 10 Gew.-% Eisen und 0,5 bis 5 Gew.-% Wolfram umfasst.
Eine derartig zusammengesetzte Verbundleiterplatte ist gegen Sauerstoff auch in Verbindung mit Wasser und bei erhöhten Temperaturen sehr korrosionsbeständig. Außerdem ist eine solche Verbundleiterplatte einfach mechanisch verformbar. So lässt sie sich durch einfaches Verbiegen ohne Rissbildung in die gewünschte Form bringen und es können ihr beispielsweise mit dem Verfahren des Tiefziehens gewünschte Formen, Kanäle oder Abstandhalter eingeprägt werden. Außerdem ist eine Verbundleiterplatte aus den oben genannten Materialien mittels verschiedener Verfahren gut schweißbar und sie lässt sich mit Nachbarbauteilen auf einfache Weise gasdicht verbinden. Als weiterer Vorteil sei erwähnt, dass die Verbundleiterplatte gasdicht ist und in einer Wasserstoffumgebung nicht ver- sprödet . Außerdem leitet sie besonders gut Strom und Wärme ab. In vorteilhafter Ausgestaltung der Erfindung umfasst die Verbundleiterplatte zwei einen Hohlraum bildende Bleche, wobei die Verbundleiterplatte in zweckmäßiger Ausgestaltung ledig- lieh im wesentlichen aus den den Hohlraum bildenden Blechen bestehen kann. Durch die obengenannte Materialwahl für die Verbundleiterplatte ist es nicht notwendig, die Verbundleiterplatte aus Stabilitätsgründen in einer kompakten Form herzustellen. Außerdem ist das Material der Verbundleiterplatte ausreichend hart und so elastisch, dass zwei einen Hohlraum bildende dünne Bleche der Verbundleiterplatte eine genügende Stabilität verleihen. Der Hohlraum kann hierbei mit Zu- und Ableitungskanälen derart gestaltet sein, dass er während des Betriebs der Brennstoffzelle als Kühlwasserraum dient, der von Kühlwasser oder auch von Heizwasser durchströmt wird.
Dies ist insbesondere für Niedertemperatur-Brennstoffzellen von besonderem Vorteil, da bei solchen Brennstoffzellen Wärme in erheblichem Umfang aus der Brennstoffzelle abgeführt werden muss. Eine von Kühlwasser durchströmte Verbundleiterplat- te aus zwei einen Hohlraum bildenden Blechen löst dieses Problem einfach und effektiv. Zudem weist die Verbundleiterplatte eine genügende Stabilität auf, um auch unter Druck stehendes Kühlwasser ohne Gefahr von Rissen oder Undichtigkeiten aufnehmen zu können.
Zweckmäßigerweise weisen die Bleche im Bereich des Hohlraums eine Dicke zwischen 0,08 mm und 0,3 mm auf. Durch die oben genannte besondere Materialwahl ist es möglich, die Bleche für die Verbundleiterplatte besonders dünn und trotzdem mit ausreichender Stabilität herzustellen. Die Elastizität und gleichzeitige Zugfestigkeit des Materials unterbindet außerdem ein Platzen des Hohlraums der Verbundleiterplatte bei einer Druckdifferenz zwischen innerem und äußerer Umgebung des Hohlraums von einigen bar. Durch die außerordentlich geringe Dicke der Bleche wird erreicht, dass ein besonders guter Wärmetransport zwischen den Gasräumen und dem Hohlraum in der Verbundleiterplatte gewährleistet ist. In weiterer vorteilhafter Ausgestaltung der Erfindung ist die Niedertemperatur-Brennstoffzelle geeignet für den Betrieb mit reinem Sauerstoff und reinem Wasserstoff. Eine wie oben be- schriebene Verbundleiterplatte zeigt eine sehr gute Korrosionsbeständigkeit auch gegen feuchten reinen Sauerstoff und reinen Wasserstoff.
Ein Ausführungsbeispiel der Erfindung wird anhand einer Figur erläutert. Sie zeigt in schematischer Darstellung einen
Schnitt durch eine Niedertemperatur-Brennstof'fzelle 1, die eine Elektrolyt-Elektroden-Einheit 3 und zwei an die Elektrolyt-Elektroden-Einheit 3 angrenzende Verbundleiterplatten 5 umfasst. Die Elektrolyt-Elektroden-Einheit 3 besteht aus ei- ner Anode 7,- einem Elektrolyten 9 und einer Kathode 11. Die Elektrolyt-Elektroden-Einheit 3 und die Verbundleiterplatten 5 sind in Dichtungen 13 gelagert. Die Verbundleiterplatten 5 bestehen jeweils aus zwei Blechen 15, 17, die zwischen sich einen Hohlraum 19 bilden. Benachbart zur Niedertemperatur- Brennstoffzelle 1 ist eine weitere Niedertemperatur- Brennstoffzelle angeordnet, die ebenfalls eine Elektrolyt- Elektroden-Einheit- 20 mit zwei Elektroden 21 umfasst.
Die beiden Bleche 15, 17 der Verbundleiterplatten 5 enthalten jeweils 57 Gew.-% Nickel, 16 Gew.-% Molybdän, 15 Gew.-%
Chrom, 5 Gew.-% Eisen, 4 Gew.-% Wolfram, 1,5 Gew.-% Kobalt, 0,5 Gew.-% Mangan und 1 Gew.-% sonstige Metalle und Verunreinigungen. Die beiden Bleche 15 und 17 der Verbundleiterplatten 5 sind über ihre gesamte Fläche im wesentlichen 0,15 mm dick und sind mit Prägungen 22 versehen. Innerhalb der außenliegenden Dichtungen 13 der Niedertemperatur-Brennstoffzelle 1 sind die beiden Bleche 15, 17 zusammengeschweißt.
Die Niedertemperatur-Brennstoffzelle 1 ist eine Polymer- Elektrolyt-Membran-Brennstoffzelle (PEM-Brennstoffzelle) , die dazu ausgelegt ist, mit reinem Sauerstoff und reinem Wasserstoff als Betriebsgase betrieben zu werden. Während des Be- triebs der Niedertemperatur-Brennstoffzelle 1 strömt befeuchteter Wasserstoff in den Anodengasraum 23 der Niedertemperatur-Brennstoffzelle 1, der zwischen der Anode 7 und dem Blech 17 einer der Verbundleiterplatten 5 angeordnet ist. Außerdem strömt mit Wasser befeuchteter Sauerstoff in den Kathodengasraum 25 der Niedertemperatur-Brennstoffzelle 1, der zwischen der Kathode 11 und dem Blech 15 der anderen der beiden Verbundleiterplatten 5 angeordnet ist. Zum Abtransport der Reaktionswärme strömt während des Betriebs der Niedertemperatur- Brennstoffzelle 1 Kühlwasser aus einem Axialkanal 27 in Strömungsrichtung 29 in den Hohlraum 19 der Verbundleiterplatten 5. Die durch die Bleche 15, 17 in den Hohlraum 19 einströmende Reaktionswärme wird vom Kühlwasser aufgenommen, das im weiteren Verlauf in Strömungsrichtung 19 in einen weiteren Axialkanal 3-1 strömt und von dort aus der Brennstoffzelle abgeführt wird. Die Bleche 15, 17 der Verbundleiterplatte 5 sind sehr korrosionsbeständig gegen befeuchteten Wasserstoff und befeuchteten Sauerstoff auch bei einer Temperatur von bis zu 200 °C. Außerdem sind sie ohne Schaden zu nehmen defor- mierbar und elastisch genug, um einem Druckunterschied von bis zu 10 bar zwischen den Betriebsgasräumen 23, 25 und den Hohlräumen 19 zu widerstehen.

Claims

Patentansprüche
1. Niedertemperatur-Brennstoffzelle (1) .mit einer Elektrode (7, 11) und einer Verbundleiterplatte (5), die die Elektrode (7, 11) mit einer Elektrode (21) einer benachbarten Niedertemperatur-Brennstoffzelle elektrisch verbindet, d a d u r c h g e k e n n z e i c h n e t , dass die Verbundleiterplatte (5) 50 bis 65 Gew.-% Ni, 12 bis 22 Gew.-% Cr, 10 bis 18 Gew.-% Mo, 4 bis 10 Gew.-% Fe und 0,5 bis 5 Gew-% W enthält.
2. Niedertemperatur-Brennstoffzelle (1) nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Verbundleiterplatte (5) zwei einen Hohlraum (19) bildenden Blechen (15,- 17) umfasst.
3. Niedertemperatur-Brennstoffzelle (1) nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass die Bleche (15, 17) im Bereich des Hohlraums (19) eine Dicke zwi- sehen 0,08 mm und 0,3 mm aufweisen.
4. Niedertemperatur-Brennstoffzelle (1) nach einem der vorhergehenden Ansprüche, geeignet für den Betrieb mit reinem Sauerstoff und reinem Wasserstoff.
PCT/DE2001/004637 2000-12-20 2001-12-10 Niedertemperatur-brennstoffzelle mit verbundleiterplatte aus einer legierung WO2002050935A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50102644T DE50102644D1 (de) 2000-12-20 2001-12-10 Niedertemperatur-brennstoffzelle
EP01989393A EP1344268B1 (de) 2000-12-20 2001-12-10 Niedertemperatur-brennstoffzelle
US10/451,238 US6849351B2 (en) 2000-12-20 2001-12-10 Low-temperature fuel cell
JP2002551932A JP3978138B2 (ja) 2000-12-20 2001-12-10 低温燃料電池
CA002432115A CA2432115C (en) 2000-12-20 2001-12-10 Low-temperature fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10063720.5 2000-12-20
DE10063720A DE10063720A1 (de) 2000-12-20 2000-12-20 Niedertemperatur-Brennstoffzelle

Publications (2)

Publication Number Publication Date
WO2002050935A2 true WO2002050935A2 (de) 2002-06-27
WO2002050935A3 WO2002050935A3 (de) 2002-12-12

Family

ID=7668082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004637 WO2002050935A2 (de) 2000-12-20 2001-12-10 Niedertemperatur-brennstoffzelle mit verbundleiterplatte aus einer legierung

Country Status (6)

Country Link
US (1) US6849351B2 (de)
EP (1) EP1344268B1 (de)
JP (1) JP3978138B2 (de)
CA (1) CA2432115C (de)
DE (2) DE10063720A1 (de)
WO (1) WO2002050935A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846798A1 (fr) * 2002-11-05 2004-05-07 Helion Plaque bipolaire a deux plaques metalliques embouties pour pile a combustible
JP2007537574A (ja) * 2004-05-11 2007-12-20 ゼネラル・モーターズ・コーポレーション 導電性被覆金属バイポーラプレートのレーザ溶接
EP2639868A1 (de) * 2012-03-13 2013-09-18 Siemens Aktiengesellschaft Bipolarplatte sowie elektrochemische Zelle mit einer solchen Bipolarplatte

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700642B2 (ja) 2001-12-11 2005-09-28 日産自動車株式会社 燃料電池
JP2005317479A (ja) * 2004-04-30 2005-11-10 Daido Steel Co Ltd 燃料電池用金属セパレータ及びその製造方法、燃料電池用金属素材及び燃料電池
US8062797B2 (en) * 2004-05-07 2011-11-22 Ardica Technologies, Inc. Articles of clothing and personal gear with on-demand power supply for electrical devices
JP4792213B2 (ja) * 2004-07-29 2011-10-12 東海ゴム工業株式会社 固体高分子型燃料電池用セパレータおよびそれを用いた固体高分子型燃料電池用セル
JP4852840B2 (ja) * 2004-11-17 2012-01-11 日産自動車株式会社 セパレータ
DE102005027065B4 (de) * 2005-06-11 2010-09-30 Elringklinger Ag Distanzhalteranordnung und Brennstoffzelleneinheit für einen Brennstoffzellenstapel
US20070036711A1 (en) * 2005-08-11 2007-02-15 Ardica Technologies Inc. Hydrogen generator
US8187758B2 (en) * 2005-08-11 2012-05-29 Ardica Technologies Inc. Fuel cell apparatus with a split pump
CN101971402A (zh) * 2008-01-29 2011-02-09 阿尔迪卡技术公司 用于从燃料电池阳极排出非燃料材料的系统
US9034531B2 (en) 2008-01-29 2015-05-19 Ardica Technologies, Inc. Controller for fuel cell operation
US20100053852A1 (en) * 2008-09-02 2010-03-04 Cheng Uei Precision Industry Co., Ltd. Display Device
US8741004B2 (en) 2009-07-23 2014-06-03 Intelligent Energy Limited Cartridge for controlled production of hydrogen
US20110020215A1 (en) * 2009-07-23 2011-01-27 Ryu Wonhyoung Chemical hydride formulation and system design for controlled generation of hydrogen
US8808410B2 (en) 2009-07-23 2014-08-19 Intelligent Energy Limited Hydrogen generator and product conditioning method
US20110053016A1 (en) * 2009-08-25 2011-03-03 Daniel Braithwaite Method for Manufacturing and Distributing Hydrogen Storage Compositions
US9083008B2 (en) * 2010-04-22 2015-07-14 GM Global Technology Operations LLC Formed plate assembly for PEM fuel cell
US8940458B2 (en) 2010-10-20 2015-01-27 Intelligent Energy Limited Fuel supply for a fuel cell
WO2012058687A2 (en) 2010-10-29 2012-05-03 Ardica Technologies Pump assembly for a fuel cell system
US9169976B2 (en) 2011-11-21 2015-10-27 Ardica Technologies, Inc. Method of manufacture of a metal hydride fuel supply
US10122025B2 (en) * 2012-08-24 2018-11-06 Ford Global Technologies, Llc Proton exchange membrane fuel cell with stepped channel bipolar plate
DE202015104300U1 (de) * 2015-08-14 2016-08-19 Reinz-Dichtungs-Gmbh Separatorplatte für ein elektrochemisches System

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412655A2 (de) * 1989-07-12 1991-02-13 Medtronic, Inc. Elektrische Vorrichtung mit Glasdichtungen enthaltenden Durchführungen
US5366823A (en) * 1992-12-17 1994-11-22 United Technologies Corporation Metal compression pad
US5747185A (en) * 1995-11-14 1998-05-05 Ztek Corporation High temperature electrochemical converter for hydrocarbon fuels
DE19649456A1 (de) * 1996-11-28 1998-06-04 Siemens Ag Hochtemperatur-Brennstoffzelle
US5770033A (en) * 1993-07-13 1998-06-23 Lynntech, Inc. Methods and apparatus for using gas and liquid phase cathodic depolarizers
DE19732859C1 (de) * 1997-07-30 1998-11-05 Siemens Ag Verwendung eines Verfahrens zum Auflösen einer ausgehärteten Chrom(III)-Oxidschicht beim Zerlegen eines Hochtemperatur-Brennstoffzellenstapels
EP0889536A1 (de) * 1997-07-03 1999-01-07 Siemens Aktiengesellschaft Metallische bipolare Platte für Hochtemperatur-Brennstoffzellenstapel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950562A (en) * 1988-04-21 1990-08-21 Toa Nenryo Kogyo Kabushiki Kaisha Solid electrolyte type fuel cells
JPH0935745A (ja) 1995-07-17 1997-02-07 Hitachi Ltd Ni基合金材の正極容器を持ったナトリウム−硫黄電池
DE10025108A1 (de) * 2000-05-20 2001-11-29 Forschungszentrum Juelich Gmbh Hochtemperaturwerkstoff
AT4810U1 (de) * 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412655A2 (de) * 1989-07-12 1991-02-13 Medtronic, Inc. Elektrische Vorrichtung mit Glasdichtungen enthaltenden Durchführungen
US5366823A (en) * 1992-12-17 1994-11-22 United Technologies Corporation Metal compression pad
US5770033A (en) * 1993-07-13 1998-06-23 Lynntech, Inc. Methods and apparatus for using gas and liquid phase cathodic depolarizers
US5747185A (en) * 1995-11-14 1998-05-05 Ztek Corporation High temperature electrochemical converter for hydrocarbon fuels
DE19649456A1 (de) * 1996-11-28 1998-06-04 Siemens Ag Hochtemperatur-Brennstoffzelle
EP0889536A1 (de) * 1997-07-03 1999-01-07 Siemens Aktiengesellschaft Metallische bipolare Platte für Hochtemperatur-Brennstoffzellenstapel
DE19732859C1 (de) * 1997-07-30 1998-11-05 Siemens Ag Verwendung eines Verfahrens zum Auflösen einer ausgehärteten Chrom(III)-Oxidschicht beim Zerlegen eines Hochtemperatur-Brennstoffzellenstapels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 06, 30. Juni 1997 (1997-06-30) & JP 09 035745 A (HITACHI LTD), 7. Februar 1997 (1997-02-07) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2846798A1 (fr) * 2002-11-05 2004-05-07 Helion Plaque bipolaire a deux plaques metalliques embouties pour pile a combustible
JP2007537574A (ja) * 2004-05-11 2007-12-20 ゼネラル・モーターズ・コーポレーション 導電性被覆金属バイポーラプレートのレーザ溶接
EP2639868A1 (de) * 2012-03-13 2013-09-18 Siemens Aktiengesellschaft Bipolarplatte sowie elektrochemische Zelle mit einer solchen Bipolarplatte
WO2013135322A1 (de) * 2012-03-13 2013-09-19 Siemens Aktiengesellschaft Bipolarplatte sowie elektrochemische zelle mit einer solchen bipolarplatte
US9595724B2 (en) 2012-03-13 2017-03-14 Siemens Aktiengesellschaft Bipolar plate and electrochemical cell comprising such a bipolar plate

Also Published As

Publication number Publication date
DE50102644D1 (de) 2004-07-22
US6849351B2 (en) 2005-02-01
EP1344268A2 (de) 2003-09-17
JP3978138B2 (ja) 2007-09-19
CA2432115C (en) 2008-04-22
JP2004516626A (ja) 2004-06-03
CA2432115A1 (en) 2002-06-27
EP1344268B1 (de) 2004-06-16
DE10063720A1 (de) 2002-07-11
WO2002050935A3 (de) 2002-12-12
US20040048135A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
EP1344268B1 (de) Niedertemperatur-brennstoffzelle
DE69716351T2 (de) Elektrochemische Membranzelle mit Gasdiffusionselektroden, die mit porösen, flachen Metallstromkollektoren mit hochverteilten Kontaktflächen in Kontakt stehen
DE69837848T2 (de) Eine brennstofzellenanordnung
DE69217132T2 (de) Brennstoffzellenstapel mit vollständig im Innern angeordneten Sammelkanälen
DE102010020168B4 (de) Bipolarplatten aus für niedrigen Kontaktwiderstand beschichtetem rostfreiem Stahl für Brennstoffzellen
DE60017604T2 (de) Bipolarer separatorplatte mit verbesserten nassdichtungen
EP1844513B1 (de) Interkonnektor für hochtemperaturbrennstoffzellen
DE102008029628A1 (de) Bipolarplatten-Diffusionsmedienanordnung mit niedrigem elektrischen Widerstand
DE102007022202B4 (de) Brennstoffzellenstapel mit einer nichtpermeablen Beilage mit niedrigem Kontaktwiderstand
WO1998025316A1 (de) Werkstoff für brennstoffzellen-interkonnektoren
DE102005005117B4 (de) Hochtemperaturbrennstoffzelle, Brennstoffzellenstapel, Verfahren zur Herstellung eines Interkonnektors
DE102009037148B4 (de) Festoxid-Brennstoffzellen-System
DE102016200055A1 (de) Flussfeldplatte und Bipolarplatte sowie Brennstoffzelle
WO2018165682A1 (de) Poröses formteil für elektrochemisches modul
DE102007061061A1 (de) Brennstoffzellenstapel
WO1995022179A1 (de) Elektrochemische zelle
EP2335314B1 (de) Planare hochtemperatur-brennstoffzelle
EP1358692B1 (de) Brennstoffzelle
EP2342777A1 (de) Tubulare hochtemperatur-brennstoffzelle, verfahren zu deren herstellung und eine solche enthaltende brennstoffzellenanlage
WO2019068116A1 (de) Stromübertragungssystem
WO2018165683A1 (de) Funktionalisiertes, poröses gasführungsteil für elektrochemisches modul
EP2850687B1 (de) Elektrischer energiespeicher
EP1173898A1 (de) Hochtemperatur-brennstoffzelle
DE102021117551A1 (de) Elektrochemischer Reaktionszellenstapel
DE102004034620A1 (de) Fluiddurchströmbare Vorrichtung und Betriebsverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001989393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002551932

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2432115

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10451238

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001989393

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001989393

Country of ref document: EP