WO2002049423A1 - Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus - Google Patents

Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus Download PDF

Info

Publication number
WO2002049423A1
WO2002049423A1 PCT/ES2001/000493 ES0100493W WO0249423A1 WO 2002049423 A1 WO2002049423 A1 WO 2002049423A1 ES 0100493 W ES0100493 W ES 0100493W WO 0249423 A1 WO0249423 A1 WO 0249423A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulin
vector
expression
gene
stz
Prior art date
Application number
PCT/ES2001/000493
Other languages
English (en)
French (fr)
Inventor
Fatima Bosch Tubert
Efren Riu Pastor
Pedro Jose Otaegui Goya
Ma Del Tura Ferre Masferrer
Alejandro Mas Monteys
Original Assignee
Universitat Autonoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Autonoma De Barcelona filed Critical Universitat Autonoma De Barcelona
Priority to CA002432506A priority Critical patent/CA2432506A1/en
Priority to US10/451,091 priority patent/US20040055023A1/en
Priority to AU2002216125A priority patent/AU2002216125A1/en
Priority to EP01271144A priority patent/EP1360898A1/en
Publication of WO2002049423A1 publication Critical patent/WO2002049423A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0275Genetically modified vertebrates, e.g. transgenic
    • A01K67/0278Knock-in vertebrates, e.g. humanised vertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01002Glucokinase (2.7.1.2)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/15Humanized animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0306Animal model for genetic diseases
    • A01K2267/0325Animal model for autoimmune diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2799/00Uses of viruses
    • C12N2799/02Uses of viruses as vector
    • C12N2799/021Uses of viruses as vector for the expression of a heterologous nucleic acid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2830/00Vector systems having a special element relevant for transcription
    • C12N2830/008Vector systems having a special element relevant for transcription cell type or tissue specific enhancer/promoter combination

Definitions

  • the present invention relates to a transgenic double animal that simultaneously expresses the gene or cDNA (complementary DNA) of insulin and the gene or cDNA (complementary DNA) of glucokinase directed by a promoter or fusion of promoters that allow to express insulin and glucokinase in muscle and its use in the development of therapeutic approaches for diabetes mellitus.
  • Diabetes mellitus is the most common metabolic disease. It comprises a wide variety of syndromes with different etiologies that collectively affect 2 to 7% of the world's population. From 5 to 10% of patients can be grouped in the category of insulin-dependent diabetes mellitus or type 1 diabetes, which usually manifests before age 40, often during adolescence, and is the result of Autoimmune destruction of the ⁇ cells of the islets of Langerhans in the pancreas.
  • type 2 diabetes or non-insulin dependent diabetes mellitus which manifests itself in adult individuals, and which, at least in the early stages, is not characterized by an insulin deficiency but by the inability of the hormone to act efficiently in target tissues such as muscle, liver or adipose tissue [The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997). Diabetes Care 20, 1183-1197; McGarry, JD (1992). Science 258, 766-770; De Fronzo, RA (1997). Diab. Rev. 5, 177-269].
  • the incidence of type 2 diabetes in our country is around 10% of the population over 30 years old, although many patients are not detected until very advanced stages of the disease. Approximately 45% of men and 70% of women with type 2 diabetes are obese.
  • insulin-dependent diabetes mellitus is the result of autoimmune destruction of pancreatic ⁇ cells, leading to insulin deficiency, hyperglycemia and the development of microvascular, macrovascular complications. and neurological
  • Type 1 diabetes patients depend dramatically on the administration of the hormone.
  • the interruption or lack of insulin treatment leads, first, to hyperglycemia, then to coma and finally to death of the patient if the hormone is not injected.
  • insulin therapy allows most patients to lead an active life, this substitution is imperfect and greatly affects their lifestyle.
  • Intensive insulin therapy can delay and slow the onset and progression of microvascular complications.
  • this kind of treatment cannot be carried out in all diabetic patients, being inadvisable in both children and the elderly.
  • patients under this intensive insulin treatment have a high risk of hypoglycemia.
  • diabetes mellitus is currently the leading cause of blindness in adults and responsible for a third of cases of chronic renal failure.
  • Type 2 diabetes patients also have an increased risk of development of premature atherosclerosis and an increase in mortality due to myocardial infarction, cerebrovascular and peripheral vascular disease [Pickup JC and Williams, G. (1994). Chronic Complications of Diabetes, Blackwell Scientific Publications, Oxford, UK].
  • the trial conducted by the Diabetes Control and Complications Trial has shown that intensive insulin therapy (three or more daily injections) can delay the onset and progression of retinopathy, nephropathy and neuropathy in patients with type 1 diabetes [ The Diabetes Control and Complications Trial Research Group (1993). N. Engl. J. Med. 329, 977-986; American Diabetes Association (1993). Diabetes 42, 1555-1558].
  • An improvement in glycemic control could also reduce microvascular complications in type 2 diabetes patients.
  • the use of this therapy in these patients could exacerbate macrovascular complications, which are the main cause of mortality in this disease.
  • Hyperinsulinemia and insulin resistance are associated with an increased risk of hypertension, coronary heart disease and myocardial infarction, which suggests the possibility of insulin alone have atherogenic actions.
  • this type of treatment cannot be performed in all type 1 diabetes patients, especially in the very young and the elderly.
  • patients under intensive insulin therapy have a very high risk of developing hypoglycemia.
  • most patients are treated with subcutaneous injections of recombinant human insulin preparations that attempt to mimic the physiological profiles of the hormone (low baseline levels to which postpandial peaks of insulin secretion overlap).
  • the insulin administered in solution is rapidly absorbed, and is fast acting, while suspensions of insulin particles of different sizes provide long and intermediate action.
  • the approach of the present invention is based on genetically manipulating muscle cells so that they simultaneously produce a type of proinsulin that can be completely processed by the endoproteases present in the pathway of constitutive secretion present in the muscle, in order to obtain biologically human insulin.
  • active, and glucose phosphorylating enzyme glucokinase that allows an increase in glucose uptake by skeletal muscle, which leads to a decrease in diabetic hyperglycemia.
  • the present invention relates to a non-human transgenic animal that simultaneously expresses the gene or cDNA of insulin or derivatives and the glucokinase gene or cDNA directed by a promoter or fusion of promoters that allows the expression of these genes in cells. muscle during the diabetic process.
  • the present invention also relates to an expression vector or vectors that allows to express together the chimeric genes described above in muscle cells.
  • Such vectors may be a plasmid, a viral vector or a non-viral vector.
  • a viral vector When it is a viral vector, it can be a retroviric vector, an adenoviric vector, an adeno-associated viral vector, a Sindbis viral vector, lentiviral vector, or a vector derived from herpes virus.
  • the animals of the present invention express the chimeric gene that contains the mutated human insulin cDNA (Ins *) under the control of the myosin light chain promoter (MLC) and the rat glucokinase cDNA under the control of the same promoter MLC
  • MLC myosin light chain promoter
  • the MLC promoter confers constitutive expression in skeletal muscle and in myotubes in culture [Donoghue et al. (1988) Genes Dev. 2, 1779-1790; Rosenthal et al. (1989) Proc. Na you. ⁇ cad. Sci. USA 86, 7780-7784].
  • the human insulin cDNA was obtained by digestion of plasmid pP2.4Insm [Gros et al. (1997) Hum. Gene Ther.
  • a muscle cell that expresses at the same time the chimeric genes described in the invention. Said chimeric genes have been introduced into said cell by the described vector, for use in the development of therapeutic approaches for diabetes mellitus.
  • Another objective of the present invention is a device containing the muscle cells described above, which are packaged.
  • the object of the present invention is the joint use of the chimeric genes described above for the development of therapeutic approaches for diabetes mellitus, as well as the use of the expression vector or vectors of the invention for use in the development of therapeutic approaches for the Mellitus diabetes.
  • transgenic double animals of the present invention were obtained by crossing transgenic animals expressing a chimeric gene comprising the human insulin gene or cDNA (complementary DNA) directed by a promoter or fusion of promoters and transgenic animals expressing the gene. or cDNA (complementary DNA) of rat glucokinase directed by a promoter or fusion of promoters.
  • said transgenic animal is a mouse.
  • transgenic double mice were obtained that simultaneously expressed the chimeric gene MLC / Ins *, which contained the mutated human insulin cDNA (Ins * ) under the control of the myosin light chain (MLC) promoter, and the MLC / GK chimeric gene, which contained the rat glucokinase (GK) cDNA under the control of the same MLC promoter.
  • MLC myosin light chain
  • the expression of the chimeric genes was analyzed.
  • the presence of insulin and glucokinase mRNA in skeletal muscle of double transgenic mice The results indicated that the double transgenic mice presented the two bands corresponding to the insulin and glucokinase mRNA and that the expression of both chimeric genes constitutively by the skeletal muscle was compatible with the normal survival of the animal.
  • the double transgenic mice had blood glucose levels similar to those of the control mice.
  • a glucose tolerance test was performed to study whether simultaneous expression of insulin and glucokinase in skeletal muscle could affect glucose metabolism in vivo.
  • the double transgenic mice had lower glucose levels than the controls throughout the test, indicating that the joint expression of insulin and glucokinase increased glucose uptake.
  • an insulin tolerance test and a glucose tolerance test were carried out in diabetic animals.
  • the double transgenic mice showed a faster and more significant response with respect to the controls treated with Stz and similar to that of the untreated control mice, while in the second the transgenic double mice treated with Stz showed, throughout the test, glucose levels lower than those of controls treated with Stz, indicating that said double transgenic animals had a greater capacity for glucose uptake.
  • the intramuscular concentration of glucose-6-phosphate, glycogen and lactate was also determined.
  • the production of insulin and glucokinase by skeletal muscle after treatment with Stz in double transgenic mice favored greater use and greater storage of intramuscular glucose compared to diabetic control mice.
  • mice showed a marked decrease in the concentration of glucose-6-phosphate and glycogen. In contrast, double transgenic mice showed normalization of these parameters.
  • Example I Transgenic mouse expressing the mutated human insulin cDNA (Ins *) and the rat glucokinase cDNA in skeletal muscle.
  • the transgenic mouse was obtained from the crossbreeding of transgenic mice expressing the chimeric gene containing the mutated human insulin cDNA (Ins *) under the control of the myosin light chain promoter (MLC) and of transgenic mice expressing the rat glucokinase cDNA under control of the same MLC promoter.
  • MLC myosin light chain promoter
  • transgenic double animals are those that present the two characteristic fragments.
  • RNA samples (30 ⁇ g) were separated on a 1% agarose electrophoresis gel containing 2.2 M formaldehyde and transferred ⁇ Northern blot) to a membrane for hybridization, using as probes the mutated human insulin cDNA and the rat glucokinase cDNA, both obtained by EcoRI digestion.
  • said probes were labeled with [ ⁇ -32p] dCTP by the oligopriming method according to the manufacturer's instructions.
  • the activity of the probes was approximately 10 ° cpm / ⁇ g DNA.
  • the transfer membranes were contacted with Kodak XAR-5 films. The presence of hybridization corresponding to insulin RNA and glucokinase RNA in RNA samples obtained from the skeletal muscles of transgenic double mice indicates the expression of the two chimeric genes in said tissue, not observing any of the two bands in the samples from the muscles of the control mice.
  • the glucose tolerance test is one of the clinical tests used to diagnose insulin resistance. In order to determine if the constitutive expression of insulin and glucokinase at the muscular level could alter glucose metabolism in vivo, a glucose tolerance test was performed under fasting conditions in control and double transgenic mice 3 to 4 months of age. No differences were observed in the baseline blood glucose level of both groups. Throughout the test it was observed that the blood glucose levels of the double transgenic mice were lower than those of the control mouse group, indicating that the production of insulin and glucokinase by the skeletal muscle increased glucose uptake, improving This way the response against changes in glucose concentration. 1.4. Obtaining diabetic mice
  • Glucose concentration was determined by Bayer's Glucometer Elite TM system.
  • the hypoglycemic response to the administration of the hormone observed in the double transgenic mice was faster and more significant compared to that of the treated control mice and similar to that observed in the control mice not treated with Stz.
  • the baseline glycemia of the double transgenic mice had already been reduced by 20%, while in the diabetic control mice no significant reduction in blood glucose values was observed until 30 minutes after the administration of the hormone, observing only a decrease of approximately 10% with respect to its baseline level.
  • This effect was greater at 60 minutes, since the double transgenic mice presented a near 50% decrease (from 232 ⁇ 43 mg / dl to 99 ⁇ 21mg / dl) reaching normoglycemic values, while the control mice remained markedly hyperglycemic. , with a reduction of 20% (from 593 ⁇ 7 mg / dl to 521 + 28 mg / dl).
  • a glucose tolerance test was performed under fasting conditions in control and double transgenic mice three months after the administration of Stz. 1 mg of glucose was injected per g of live weight.
  • Insulin was determined by radioimmunoassay (RIA) with the commercial INSULIN-CT kit from CIS Biointernational, France.
  • Insulin Glucose Triglyceride ( ⁇ U / ml) (mg / dl) s (mg / dl)
  • lactate levels were determined by the lactate dehydrogenase method (Boehringer Mannheim). As can be seen in Table 2, the double transgenic mice treated with Stz had different metabolite values equal to or greater than those observed in the untreated control mice, while in the control mice treated with Stz the metabolite levels were altered, which indicates that the expression of insulin and glucokinase by skeletal muscle favor the restoration of metabolic pathways involved in the use and accumulation of glucose. Table 2. Determination of metabolites in skeletal muscle.
  • Glucose-6- Lactate Glycogen phosphate (mg / g (mg / g tissue)
  • Glucose-6- Glycogen phosphate (mg / g tissue) (nmol / g tissue)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

La presente invención se refiere a un animal doble transgénico que expresa simultáneamente el gen o el cDNA (ADN complementario) de la insulina y el gen o el cDNA (ADN complementario) de la glucoquinasa dirigidos por un promotor o fusión de promotores que permiten expresar insulina y glucoquinasa en músculo y su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus. La presente invención también se refiere a un vector o vectores de expresión que permite expresar conjuntamente dichos genes quiméricos en células musculares. Dichos vectores pueden ser un plásmido, un vector viral o un vector no viral.

Description

UTILIZACIÓN CONJUNTA DEL GEN DE LA INSULINA Y DEL GEN DE LA GLUCOQUINASA EN EL DESARROLLO DE APROXIMACIONES TERAPÉUTICAS PARA LA DIABETES MELLITUS
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un animal doble transgénico que expresa simultáneamente el gen o el cDNA (ADN complementario) de la insulina y el gen o el cDNA (ADN complementario) de la glucoquinasa dirigidos por un promotor o fusión de promotores que permiten expresar insulina y glucoquinasa en músculo y su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus .
ANTECEDENTES DE LA INVENCIÓN
La diabetes mellitus es la enfermedad metabólica más común. Comprende una gran variedad de síndromes con distintas etiologías que afectan colectivamente de un 2 a un 7% de la población mundial. De un 5 a un 10% de los pacientes se les puede agrupar en la categoría de diabetes mellitus dependiente de insulina o diabetes tipo 1, la cual se manifiesta generalmente antes de los 40 años, frecuentemente durante la adolescencia, y es el resultado de la destrucción autoinmune de las células β de los islotes de Langerhans en el páncreas. Mucho más común es la diabetes tipo 2 o diabetes mellitus no dependiente de insulina, que se manifiesta en individuos adultos, y que, al menos en los estadios iniciales, no se caracteriza por una deficiencia de insulina sino por la incapacidad de la hormona de actuar eficientemente en tejidos diana como músculo, higado o tejido adiposo [The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997). Diabetes Care 20, 1183-1197; McGarry, J.D. (1992). Science 258, 766-770; De Fronzo, R.A. (1997). Diab . Rev. 5, 177-269] . La incidencia de la diabetes tipo 2 en nuestro pais es de alrededor de un 10% de la población mayor de 30 años, aunque muchos pacientes no son detectados hasta estadios muy avanzados de la enfermedad. Aproximadamente un 45% de los varones y un 70% de las mujeres con diabetes tipo 2 son obesos.
Tal y como se ha mencionado anteriormente, la diabetes mellitus dependiente de insulina (o de tipo 1) es el resultado de la destrucción autoinmune de las células β pancreáticas, que lleva a una deficiencia de insulina, hiperglucemia y al desarrollo de complicaciones microvasculares, macrovasculares y neurológicas . El riesgo de sufrir estas complicaciones se incrementa en función del grado de hiperglucemia . Los pacientes de diabetes tipo 1 dependen dramáticamente de la administración de la hormona. La interrupción o la falta del tratamiento con insulina conduce, en primer lugar, a hiperglucemia, posteriormente a coma y finalmente a muerte del enfermo si la hormona no es inyectada. Si bien la terapia con insulina permite a la mayoría de pacientes llevar una vida activa, esta sustitución es imperfecta y afecta en gran manera a su estilo de vida. La terapia intensiva con insulina puede retrasar y enlentecer la aparición y progresión de las complicaciones microvasculares. Sin embargo, esta clase de tratamiento no se puede llevar a cabo en todos los pacientes diabéticos, siendo desaconsejable tanto en niños como en personas mayores. Además, pacientes bajo este tratamiento intensivo con insulina presentan un elevado riesgo de hipoglucemia .
Todas las formas de diabetes se caracterizan por la presencia de hiperglucemia, la cual se ha postulado que es el principal factor responsable del desarrollo de patología microvascular en la retina y en el riñon y de las complicaciones neurológicas . Como consecuencia de esta patología microvascular, la diabetes mellitus es actualmente la causa principal de ceguera en adultos y la responsable de un tercio de los casos de fallo renal crónico. Los pacientes de diabetes tipo 2 presentan también un incremento del riesgo de desarrollo de aterosclerosis prematura y un aumento de mortalidad por infarto de miocardio, enfermedad cerebrovascular y vascular periférica [Pickup J.C. and Williams, G. (1994). Chronic Complica tions of Diabetes, Blackwell Scientific Publications, Oxford, UK] . El ensayo realizado por el Diabetes Control and Complica tions Trial (DCCT) ha mostrado que la terapia intensiva con insulina (tres o más inyecciones diarias) puede retrasar el inicio y la progresión de la retinopatia, nefropatia y neuropatía en pacientes de diabetes tipo 1 [The Diabetes Control and Complications Trial Research Group (1993). N. Engl . J. Med . 329, 977-986; American Diabetes Association (1993) . Diabetes 42, 1555-1558]. Una mejora en el control de la glucemia podría reducir también las complicaciones microvasculares en pacientes de diabetes tipo 2. Νo obstante, la utilización de esta terapia en estos pacientes podria exacerbar las complicaciones macrovasculares, que son la principal causa de mortalidad en esta enfermedad. La hiperinsulinemia y la resistencia a la insulina, muy comunes en pacientes de diabetes tipo 2, están asociadas a un incremento del riesgo de padecer hipertensión, enfermedad coronaria e infarto de miocardio, lo cual hace pensar en la posibilidad de que la insulina por si sola tenga acciones aterogénicas . Además, este tipo de tratamiento no puede realizarse en todos los pacientes de diabetes tipo 1, especialmente en los muy jóvenes y en los viejos. Por otra parte, los pacientes bajo tratamiento con terapia intensiva con insulina presentan un riesgo muy elevado de desarrollar hipoglucemia . Actualmente, la mayoría de pacientes son tratados con inyecciones subcutáneas de preparaciones de insulina humana recombinante que intentan mimetizar los perfiles fisiológicos de la hormona (niveles básales bajos a los que se superponen picos postpandriales de secreción de insulina) . La insulina administrada en solución es rápidamente absorbida, y es de acción rápida, mientras que suspensiones de partículas de insulina de diferentes tamaños proporcionan acción intermedia y larga. Sin embargo, la mezcla de insulina soluble con lenta reduce la disponibilidad de los componentes de acción rápida [Heine et al. (1985) Bio . Med. J. 290, 204-205]. Una de las principales deficiencias de las insulinas de acción retardada es la absorción variable a partir del tejido subcutáneo [Binder et al. (1984) . Diabetes Care 7, 188- 199]. Además, las preparaciones de acción retardada no son generalmente capaces de producir niveles básales de insulina adecuados, resultando en muchos casos en la aparición tanto de hiperglucemia como de hipoglucemia . Debido a que la terapia sustitutoria con insulina no es perfecta, se han intentado llevar a cabo trasplantes de páncreas y también trasplantes de islotes [Remuzzi et al. (1994). Lancet 343, 27-31]. Estas aproximaciones pretenden eliminar las inyecciones diarias de insulina, pero requieren inmunosupresión crónica y los resultados no han sido muy exitosos. Además, los donantes son muy limitados y, por lo tanto, el tratamiento de un gran número de pacientes no parece muy realista.
La aproximación de la presente invención se basa en manipular genéticamente células musculares para que produzcan, simultáneamente, un tipo de proinsulina que pueda ser procesada completamente por las endoproteasas presentes en la via de secreción constitutiva presente en el músculo, a fin de obtener insulina humana biológicamente activa, y el enzima fosforilador de glucosa glucoquinasa que permite un incremento en la captación de glucosa por parte del músculo esquelético, lo que lleva a una disminución de la hiperglucemia diabética.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un animal transgénico no humano que expresa simultáneamente el gen o el cDNA de la insulina o derivados y el gen o el cDNA de la glucoquinasa dirigidos por un promotor o fusión de promotores que permite la expresión de estos genes en células musculares durante el proceso diabético.
La presente invención también se refiere a un vector o vectores de expresión que permite expresar conjuntamente los genes quiméricos descritos más arriba en células musculares . Dichos vectores pueden ser un plásmido, un vector viral o un vector no viral.
Cuando se trata de un vector viral éste puede ser un vector retrovirico, un vector adenovirico, un vector vírico adenoasociado, un vector vírico Sindbis, vector lentivirico, o un vector derivado del herpes virus.
Los animales de la presente invención expresan el gen quimérico que contiene el cDNA de la insulina humana mutada (Ins*) bajo control del promotor de la cadena ligera de la miosina (MLC) y el cDNA de la glucoquinasa de rata bajo control del mismo promotor MLC. El promotor MLC confiere expresión constitutiva en músculo esquelético y en miotubos en cultivo [Donoghue et al. (1988) Genes Dev . 2, 1779-1790; Rosenthal et al. (1989) Proc . Na ti . ñcad. Sci . USA 86, 7780-7784]. El cDNA de la insulina humana se obtuvo por digestión del plásmido pP2.4Insm [Gros et al. (1997) Hum . Gene Ther . 8, 2249-2259] y, a continuación, se insertó en un plásmido que contenia el promotor y secuencia reguladora del gen de la MLC. También se considera objeto de la presente invención una célula muscular que exprese al mismo tiempo los genes quiméricos descritos en la invención. En dicha célula se ha introducido dichos genes quiméricos mediante el vector descrito, para su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus.
Otro objetivo de la presente invención es un dispositivo que contenga las células musculares descritas más arriba, las cuales se encuentran empaquetadas.
Es objeto de la presente invención la utilización conjunta de los genes quiméricos descritos anteriormente para el desarrollo de aproximaciones terapéuticas para la diabetes mellitus, asi como la utilización del vector o vectores de expresión de la invención para su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus.
Los animales dobles transgénicos de la presente invención se obtuvieron por cruzamiento de animales transgénicos que expresan un gen quimérico que comprende el gen o cDNA (ADN complementario) de la insulina humana dirigido por un promotor o fusión de promotores y de animales transgénicos que expresan el gen o cDNA (ADN complementario) de la glucoquinasa de rata dirigido por un promotor o fusión de promotores. En particular, dicho animal transgénico es un ratón. Con el fin de estudiar los efectos de la producción conjunta de insulina y de glucoquinasa por parte del músculo esquelético, se obtuvieron ratones dobles transgénicos que expresaban simultáneamente el gen quimérico MLC/Ins*, que contenia el cDNA de la insulina humana mutada (Ins*) bajo el control del promotor de la cadena ligera de la miosina (MLC) , y el gen quimérico MLC/GK, que contenia el cDNA de la glucoquinasa de rata (GK) bajo el control del mismo promotor MLC.
Después del sacrificio de los animales, se analizó la expresión de los genes quiméricos. Asi, se determinó la presencia de mRNA de insulina y de glucoquinasa en el músculo esquelético de los ratones dobles transgénicos. Los resultados indicaban que los ratones dobles transgénicos presentaban las dos bandas correspondientes al mRNA de insulina y de glucoquinasa y que la expresión de ambos genes quiméricos de forma constitutiva por parte del músculo esquelético era compatible con la supervivencia normal del animal. A los 3 meses de edad, los ratones dobles transgénicos presentaban unos niveles de glucemia similares a los de los ratones control.
Se realizó un test de tolerancia a la glucosa para estudiar si la expresión simultánea de insulina y glucoquinasa en el músculo esquelético podia afectar el metabolismo de la glucosa in vivo . Los ratones dobles transgénicos presentaban unos niveles de glucosa más bajos que los controles a lo largo de todo el test, lo que indicaba que la expresión conjunta de insulina y glucoquinasa incrementaba la captación de glucosa.
Posteriormente, se analizó el comportamiento de dichos ratones dobles transgénicos en condiciones de hiperglucemia . Para ello, se indujo, tanto en ratones control como en ratones dobles transgénicos, diabetes experimental mediante la inyección durante cinco días consecutivos del tóxico estreptozotocina (Stz) por vía intraperitoneal . A continuación se analizó la expresión de los genes quiméricos en el músculo esquelético de los animales dobles transgénicos diabéticos, pudiéndose comprobar que dichos animales mantenían la expresión de insulina y glucoquinasa en estas condiciones. A las 3 semanas de haber iniciado el tratamiento con Stz, los ratones control mostraban una gran elevación de la concentración de glucosa, mientras que los ratones dobles transgénicos sólo presentaban un ligero incremento en la concentración de glucosa circulante. Por tanto, la expresión simultánea de insulina y glucoquinasa en el músculo esquelético era capaz de contrarestar la hiperglucemia diabética.
Por otra parte, se llevaron a cabo un test de tolerancia a la insulina y un test de tolerancia a la glucosa en los animales diabéticos. En el primero de ellos, los ratones dobles transgénicos mostraron una respuesta más rápida y más significativa respecto a los controles tratados con Stz y similar a la de los ratones control no tratados, mientras que en el segundo los ratones dobles transgénicos tratados con Stz mostraron, a lo largo del test, unos niveles de glucosa inferiores a los de los controles tratados con Stz, indicando que dichos animales dobles transgénicos tenían una mayor capacidad de captación de glucosa. También se determinó la concentración intramuscular de glucosa-6-fosfato, glucógeno y lactato. La producción de insulina y glucoquinasa por parte del músculo esquelético después del tratamiento con Stz en los ratones dobles transgénicos favorecía una mayor utilización y un mayor almacenamiento de la glucosa intramuscular respecto a los ratones control diabéticos .
Paralelamente, se determinaron los niveles de diferentes metabolitos relacionados con el metabolismo hepático de la glucosa en los ratones tratados con Stz. Los ratones control mostraron una marcada disminución en la concentración de glucosa-6-fosfato y de glucógeno. Por el contrario, los ratones dobles transgénicos mostraron una normalización de dichos parámetros.
EJEMPLOS
Los ejemplos que siguen son ilustrativos y no limitantes de la invención. Ejemplo I . Ratón transgénico que expresa el cDNA de la insulina humana mutada (Ins*) y el cDNA de la glucoquinasa de rata en músculo esquelético .
1.1. Obtención del ratón transgénico
El ratón transgénico se obtuvo a partir del cruzamiento de ratones transgénicos que expresan el gen quimérico que contiene el cDNA de la insulina humana mutada (Ins*) bajo control del promotor de la cadena ligera de la miosina (MLC) y de ratones transgénicos que expresan el cDNA de la glucoquinasa de rata bajo control del mismo promotor MLC.
A las 3 semanas después del nacimiento se analizó la presencia de los dos transgenes en la descendencia mediante análisis de transferencia e hibridación Southern { Southern blot ) de 10 μg de DNA procedente de la cola de cada uno de los animales. Las muestras de DNA fueron digeridas con los enzimas de restricción Hind III y Eco RI . Dichas digestiones dan como resultado una banda de 1.9 Kb . , correspondiente al gen quimérico promotor MLC- insulina mutada y una banda de 2.3 Kb . que corresponde al gen quimérico promotor MLC-glucoquinasa . Así pues, los animales dobles transgénicos son aquellos que presentan los dos fragmentos característicos.
1.2. Análisis de la expresión del transgén
Se pudo comprobar la expresión de los genes quiméricos en el músculo de los ratones transgénicos mediante el análisis del RNA total extraído del músculo esquelético de los animales control y dobles transgénicos. El RNA total se obtuvo empleando el método del isotiocianato [Chir in et al. (1979) Biochemistry 18, 5294-5299] y, a continuación, se separaron muestras de RNA (30 μg) en un gel de electroforesis de agarosa al 1% que contenía formaldehído 2,2 M y se transfirió { Northern blot ) a una membrana para su hibridación, empleándose como sondas el cDNA de la insulina humana mutada y el cDNA de la glucoquinasa de rata, obtenidas ambas mediante digestión con EcoRI . Para ello, se marcaron dichas sondas con [α-32p]dCTP mediante el método de oligopriming de acuerdo con las intrucciones del fabricante. La actividad de las sondas fue de aproximadamente 10° cpm/μg DNA. Las membranas de transferencia se pusieron en contacto con películas Kodak XAR-5. La presencia de hibridación correspondiente al RNA de la insulina y al RNA de la glucoquinasa en las muestras de RNA obtenidas a partir de los músculos esqueléticos de los ratones dobles transgénicos indica la expresión de los dos genes quiméricos en dicho tejido, no observándose ninguna de las dos bandas en las muestras procedentes de los músculos de los ratones control.
1.3. Test de tolerancia a la glucosa
El test de tolerancia a la glucosa es una de las pruebas utilizadas en clínica para el diagnóstico de resistencia a la insulina. Con el fin de determinar si la expresión constitutiva de insulina y de glucoquinasa a nivel muscular podría alterar el metabolismo de la glucosa in vivo, se realizó un test de tolerancia a la glucosa en condiciones de ayuno en ratones controles y dobles transgénicos de 3 a 4 meses de edad. No se observaron diferencias en el nivel basal de glucemia de ambos grupos. A lo largo del test se observó que los niveles de glucemia de los ratones dobles transgénicos eran más bajos que los del grupo de ratones control, indicando que la producción de insulina y de glucoquinasa por parte del músculo esquelético incrementaba la captación de glucosa, mejorando de esta manera la respuesta frente a cambios en la concentración de glucosa. 1.4. Obtención de ratones diabéticos
Con el fin de analizar si la expresión simultánea de insulina y glucoquinasa en el músculo de los ratones dobles transgénicos era capaz de contrarestar la hiperglucemia del proceso diabético, se indujo diabetes experimental a los ratones control y dobles transgénicos mediante inyección intraperitoneal de estreptozotocina
(Stz) disuelta en una solución de tampón citrato sódico 10 mM con 0.9% NaCl pH 4,5 durante cinco dias consecutivos, a una dosis de 45 mg Stz/Kg de peso vivo. Se confirmó la diabetes mediante la medida de los niveles sanguíneos de glucosa .
1.5. Análisis de los niveles de glucosa La concentración de glucosa se determinó mediante el sistema Glucometer Élite™ de Bayer.
Se analizaron los niveles de glucosa en sangre de los ratones control y dobles transgénicos tratados con Stz y de los ratones control no tratados. A las 3 semanas de iniciar el tratamiento con Stz, los ratones control habían incrementado 4 veces sus niveles de glucosa en sangre, presentando una marcada hiperglucemia (578±15 mg/dl), mientras que los ratones dobles transgénicos presentaban unos niveles de glucosa circulante próximos a la normoglucemia, observándose únicamente un aumento de 1.5 veces respecto a los ratones control sin tratar (231±35 mg/dl frente a 150+5 mg/dl) . A lo largo de los tres meses de duración del experimento, se observó que en los ratones dobles transgénicos los niveles de glucosa en sangre se mantenían constantes, sin tendencia a incrementar, mientras que en los ratones control, los niveles de glucosa en sangre continuaban aumentando, presentando a las 6 semanas de haber iniciado el tratamiento con Stz unos niveles de glucosa superiores al límite de detección del analizador utilizado (>600 mg/dl) . Esto indicaba que la expresión simultánea de insulina y de glucoquinasa en los ratones dobles transgénicos llevaba a un aumento en la captación de glucosa por parte del músculo esquelético, evitando así el desarrollo de hiperglucemia .
1.6. Test de tolerancia a la insulina en ratones tratados con Stz .
Con el fin de analizar si los animales dobles transgénicos tratados con Stz podrían ser más sensibles a la insulina que los animales control tratados con Stz, se realizó un test de tolerancia a la insulina 21 días después de la administración de la droga. Se inyectaron 0.75 U de insulina soluble por Kg de peso a ratones control sanos y a ratones control y dobles transgénicos tratados con Stz y se determinó la glucemia a intervalos regulares de tiempo.
La respuesta hipoglucémica a la administración de la hormona observada en los ratones dobles transgénicos fue más rápida y más significativa respecto a la de los ratones control tratados y similar a la observada en los ratones control no tratados con Stz. A los 15 minutos de la administración de insulina, la glucemia basal de los ratones dobles transgénicos ya se había reducido un 20%, mientras que en los ratones control diabéticos no se observó una reducción significativa en los valores de glucemia hasta 30 minutos después de la administración de la hormona, observándose sólo una disminución de aproximadamente un 10% respecto a su nivel basal. Este efecto fue mayor a los 60 minutos, ya que los ratones dobles transgénicos presentaban una disminución cercana al 50% (de 232±43 mg/dl a 99±21mg/dl) alcanzando valores normoglucémicos, mientras que los ratones control continuaban siendo marcadamente hiperglucémicos, con una reducción de un 20% (de 593±7 mg/dl a 521+28 mg/dl) . 1.7. Test de tolerancia a la glucosa en ratones tratados con Stz.
Se llevó a cabo un test de tolerancia a la glucosa en condiciones de ayuno en ratones control y dobles transgénicos tres meses después de la administración de Stz. Se inyectó 1 mg de glucosa por g de peso vivo.
Se observaban diferencias significativas ya en los niveles básales de glucemia. Los ratones control tratados con Stz presentaban unos niveles de glucemia en ayuno característicos de un estado diabético (326±14 mg/dl), mientras que en los ratones dobles transgénicos tratados con Stz los niveles de glucosa en sangre no diferían de los observados en los ratones control sin tratar (115±4 mg/dl vs 102±12 mg/dl) . A los 15 minutos de la administración de glucosa se observó un incremento en la glucemia de todos los grupos. No obstante, los incrementos observados en los niveles de glucosa de los ratones control y dobles transgénicos tratados con Stz fueron superiores a los alcanzados en los ratones control sin tratar. Por otra parte, durante el desarrollo del test se observó que tanto los ratones control sin tratar como los ratones dobles transgénicos tratados con Stz recuperaban al cabo de 3 horas los niveles básales de glucemia. Por contra, los ratones control tratados con Stz no recuperaron los niveles básales.
1.8. Parámetros séricos en ratones tratados con Stz .
La insulina se determinó mediante radioinmunoensayo (RÍA) con el kit comercial de INSULIN-CT de CIS Biointernational, Francia.
Tres meses después de la administración de Stz se analizaron los niveles séricos de insulina, glucosa, triglicéridos y proteína en los ratones control sin tratar y en los ratones control y dobles transgénicos tratados con Stz. En los ratones control tratados con Stz se observó una disminución en la insulinemia de aproximadamente un 50% respecto a los niveles observados en los ratones control sin tratar, mientras que en los ratones dobles transgénicos tratados con Stz la insulinemia se mantenía normal. Debido a la disminución de los niveles de insulina en sangre los ratones control tratados con Stz presentaban una marcada hiperglucemia, así como unos niveles de triglicéridos y de proteína alterados (Tabla 1) . En los ratones dobles transgénicos, a pesar de presentar una insulinemia normal, se observó que los niveles de glucosa en sangre estaban ligeramente incrementados (Tabla 1), posiblemente debido a que parte de la insulina secretada por parte del músculo esquelético no era insulina madura, sino proinsulina. No obstante, los niveles de triglicéridos y proteínas observados en los ratones dobles transgénicos estaban normalizados (Tabla 1)
Tabla 1: Determinación de parámetros séricos.
Insulina Glucosa Triglicérido (μU/ml) (mg/dl) s (mg/dl)
Control 35+3 138+9 98±9
Control Stz 19±1 >600 179±22
Transg. Stz 34±1 244±41 119±17
1.9. Expresión de los genes quiméricos durante el estado diabético .
Para analizar la expresión de los genes quiméricos
MLC/Insulina y MLC/Glucoquinasa en músculo esquelético de animales tratados con Stz, se utilizaron 15 μg de RNA total de músculo de ratones control sin tratar y ratones control y dobles transgénicos a los 3 meses del tratamiento con Stz. Al realizar un análisis por Northern Blot, se pudo observar que el músculo esquelético de los ratones dobles transgénicos seguía manteniendo la expresión de los genes quiméricos después de la administración de Stz.
I.10. Análisis de parámetros musculares
Se obtuvieron muestras de músculo esquelético de ratones control y dobles transgénicos tanto tratados como no tratados con Stz. Se determinaron los niveles intracelulares de glucosa-6-fosfato mediante un método espectrofotométrico [Michal, G. (1981) Methods of Enzyma tic Analysis , vol . VI, 185-190], utilizando el autoanalizador Cobas Bio (Roche) . Asimismo, se determinaron los niveles intracelulares de glucógeno mediante el método de la α-amiloglucosidasa [Keppler, D. and Decker, K. (1981) Methods of Enzyma tic Analysis, vol. VI, 11-18] . La glucosa liberada por el enzima se determinó espectrofotométricamente con el autoanalizador Cobas Bio, utilizando el equipo comercial Gluco-Quant de Boehringer Mannheim. Por otra parte, los niveles de lactato fueron determinados mediante el método de la lactato deshidrogenasa (Boehringer Mannheim) . Como se puede observar en la Tabla 2, los ratones dobles transgénicos tratados con Stz presentaban unos valores de los distintos metabolitos iguales o superiores a los observados en los ratones control sin tratar, mientras que en los ratones control tratados con Stz los niveles de metabolitos estaban alterados, lo que indica que la expresión de insulina y glucoquinasa por parte del músculo esquelético favorecerla el restablecimiento de las vías metabólicas implicadas en la utilización y acumulación de glucosa. Tabla 2. Determinación de metabolitos en músculo esquelético .
Glucosa-6- Lactato Glucógeno fosfato (mg/g (mg/g tejido)
[nmol/g tejido) tejido)
Control 601 ± 49 18.9 ± 0 2.3 ± 0.2
Control 409 ± 47 17.1 + 1.67 1.4 ± 0.3 Stz
Transg . 665 ± 16 19.9 ± 1.1 2.1 + 0.2 Stz
I.11. Análisis de los parámetros hepáticos
Para determinar si la expresión de insulina por parte del músculo esquelético podía tener efecto sobre otros tejidos del organismo, se analizó la utilización y acumulación de glucosa en el hígado de los ratones tratados con Stz. Se obtuvieron muestras de tejido hepático de ratones control tanto tratados como no tratados con Stz y dobles transgénicos tratados con Stz. Las concentraciones de glucosa-6-fosfato y de glucógeno se determinaron siguiendo los mismos métodos descritos anteriormente.
Como se observa en la Tabla 3, los ratones dobles transgénicos tratados con Stz mostraban unos niveles de metabolitos relacionados con la captación y utilización de glucosa normalizados, mientras que en los ratones control tratados con Stz dichos metabolitos estaban alterados. Esto indicaba que la expresión de insulina por parte del músculo esquelético favorecía el restablecimiento de las vias metabólicas implicadas en la utilización y acumulación de glucosa a nivel hepático. Tabla 3 Determinación de metabolitos hepáticos.
Glucosa-6- Glucógeno fosfato (mg/g tejido) (nmol/g tejido)
Control 1300 ± 238 74 ± 3
Control Stz 870 + 115 51 ± 7
Transg. Stz 1200 ± 87 70 ± 6

Claims

R E I V I N D I C A C I O N E S
1. Animal transgénico no humano que expresa simultáneamente el gen o el cDNA de la insulina o derivados dirigido por un promotor o fusión de promotores que permite la expresión de insulina o derivados de la insulina en células musculares y el gen o el cDNA de la glucoquinasa dirigido por un promotor o fusión de promotores que permite la expresión de glucoquinasa en células musculares.
2. Vector o vectores de expresión que permiten expresar conjuntamente los genes quiméricos según la reivindicación 1 en células musculares.
3. Vector o vectores de expresión según la reivindicación 2, siendo estos vectores un plásmido.
4. Vector o vectores de expresión según la reivindicación 2, siendo estos vectores un vector viral.
5. Vector o vectores de expresión según la reivindicación 2, siendo estos vectores un vector no viral.
6. Vector viral según la reivindicación 4, siendo este vector un vector retrovírico, un vector adenovírico, un vector vírico adenoasociado, un vector vírico Sindbis, un vector lentivírico, o un vector derivado del herpes virus .
7. Célula muscular que expresa conjuntamente los genes quiméricos según la reivindicación 1.
8. Célula muscular según la reivindicación 7, en la que se han introducido los genes quiméricos mediante un vector según cualquiera de las reivindicaciones 2 a 6, para su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus.
9. Dispositivo que contiene células musculares según cualquiera de las reivindicaciones 7 a 8 empaquetadas .
10. Utilización de los genes quiméricos según la reivindicación 1 para su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus.
11. Utilización de un vector de expresión según cualquiera de las reivindicaciones 2 a 6 para su utilización en el desarrollo de aproximaciones terapéuticas para la diabetes mellitus.
12. Utilización de un dispositivo según la reivindicación 9 para el desarrollo de aproximaciones terapéuticas para la diabetes mellitus.
PCT/ES2001/000493 2000-12-20 2001-12-19 Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus WO2002049423A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002432506A CA2432506A1 (en) 2000-12-20 2001-12-19 Joint utilization of the insulin gene and the glucokinase gene in the development of therapeutic approaches for diabetes mellitus
US10/451,091 US20040055023A1 (en) 2000-12-20 2001-12-19 Joint utilization of the insulin gene and the glucokinase gene in the development of therapeutic approaches for diabetes mellitus
AU2002216125A AU2002216125A1 (en) 2000-12-20 2001-12-19 Joint utilization of the insulin gene and the glucokinase gene in the development of therapeutic approaches for diabetes mellitus
EP01271144A EP1360898A1 (en) 2000-12-20 2001-12-19 Joint utilization of the insulin gene and the glucokinase gene in the development of therapeutic approaches for diabetes mellitus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200003056A ES2170720B1 (es) 2000-12-20 2000-12-20 Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus.
ESP200003056 2000-12-20

Publications (1)

Publication Number Publication Date
WO2002049423A1 true WO2002049423A1 (es) 2002-06-27

Family

ID=8496075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000493 WO2002049423A1 (es) 2000-12-20 2001-12-19 Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus

Country Status (6)

Country Link
US (1) US20040055023A1 (es)
EP (1) EP1360898A1 (es)
AU (1) AU2002216125A1 (es)
CA (1) CA2432506A1 (es)
ES (1) ES2170720B1 (es)
WO (1) WO2002049423A1 (es)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010078842A1 (zh) * 2009-01-07 2010-07-15 Huang Haidong 人葡萄糖激酶突变体编码基因、其编码的酶、重组载体及宿主、其药物组合物、应用以及预防和治疗疾病的方法
US8008332B2 (en) 2006-05-31 2011-08-30 Takeda San Diego, Inc. Substituted indazoles as glucokinase activators
US8034822B2 (en) 2006-03-08 2011-10-11 Takeda San Diego, Inc. Glucokinase activators
US8124617B2 (en) 2005-09-01 2012-02-28 Takeda San Diego, Inc. Imidazopyridine compounds
US8163779B2 (en) 2006-12-20 2012-04-24 Takeda San Diego, Inc. Glucokinase activators
US8173645B2 (en) 2007-03-21 2012-05-08 Takeda San Diego, Inc. Glucokinase activators
US9309534B2 (en) 2010-07-12 2016-04-12 Universidad Autonoma De Barcelona Gene therapy composition for use in diabetes treatment
US10973931B2 (en) 2014-09-16 2021-04-13 Universitat Autònoma De Barcelona Adeno-associated viral vectors for the gene therapy of metabolic diseases
US11033638B2 (en) 2015-01-07 2021-06-15 Universität Autonoma De Barcelona Single-vector gene construct comprising insulin and glucokinase genes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013117776A1 (es) * 2012-02-08 2013-08-15 Fundación Pública Andaluza Progreso Y Salud Enzimas glucocinasas con actividad aumentada y su uso en el tratamiento y/o prevención de la diabetes mellitus
EP2692868A1 (en) 2012-08-02 2014-02-05 Universitat Autònoma De Barcelona Adeno-associated viral (AAV) vectors useful for transducing adipose tissue

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000644A1 (en) * 1993-06-28 1995-01-05 Board Of Regents, The University Of Texas System Vectors for genetically engineered cells that produce insulin in response to glucose
WO1995025169A1 (es) * 1994-03-14 1995-09-21 Universitat Autonoma De Barcelona Gen quimerico que utiliza el gen o cdna de la insulina, en especial para terapia genica de la diabetes
WO1997017994A1 (es) * 1995-11-16 1997-05-22 Universidad Autonoma De Barcelona Tratamiento de la diabetes con un gen de glucoquinasa
WO2000031267A1 (en) * 1998-11-20 2000-06-02 The Autonomous University Of Barcelona Insulin production by engineered muscle cells

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995000644A1 (en) * 1993-06-28 1995-01-05 Board Of Regents, The University Of Texas System Vectors for genetically engineered cells that produce insulin in response to glucose
WO1995025169A1 (es) * 1994-03-14 1995-09-21 Universitat Autonoma De Barcelona Gen quimerico que utiliza el gen o cdna de la insulina, en especial para terapia genica de la diabetes
WO1997017994A1 (es) * 1995-11-16 1997-05-22 Universidad Autonoma De Barcelona Tratamiento de la diabetes con un gen de glucoquinasa
WO2000031267A1 (en) * 1998-11-20 2000-06-02 The Autonomous University Of Barcelona Insulin production by engineered muscle cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, ET AL.: "Myosin Light Chain-2 Luciferase Transgenic Mice Reveal Distinct Regulatory Programs for Cardiac and Skeletal Muscle-specific Expression of a Single Contractile Protein Gene", J. BIOL. CHEM, vol. 267, 1992, pages 15875 - 15885, XP002192611 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8124617B2 (en) 2005-09-01 2012-02-28 Takeda San Diego, Inc. Imidazopyridine compounds
US8034822B2 (en) 2006-03-08 2011-10-11 Takeda San Diego, Inc. Glucokinase activators
US8394843B2 (en) 2006-05-31 2013-03-12 Takeda California, Inc. Substituted isoindoles as glucokinase activators
US8008332B2 (en) 2006-05-31 2011-08-30 Takeda San Diego, Inc. Substituted indazoles as glucokinase activators
US8163779B2 (en) 2006-12-20 2012-04-24 Takeda San Diego, Inc. Glucokinase activators
US8173645B2 (en) 2007-03-21 2012-05-08 Takeda San Diego, Inc. Glucokinase activators
CN102272296B (zh) * 2009-01-07 2012-10-24 黄海东 人葡萄糖激酶突变体编码基因、其编码的酶、重组载体及宿主、其药物组合物、应用以及预防和治疗疾病的方法
WO2010078842A1 (zh) * 2009-01-07 2010-07-15 Huang Haidong 人葡萄糖激酶突变体编码基因、其编码的酶、重组载体及宿主、其药物组合物、应用以及预防和治疗疾病的方法
US9029142B2 (en) 2009-01-07 2015-05-12 Haidong Huang Recombinant vectors and hosts comprising human glucokinase encoding gene
AP3277A (en) * 2009-01-07 2015-05-31 Haidong Huang Gene encoding human glucokinase mutant, enzyme encoded by the same, recombinant vectors and hosts, pharmaceutical compositions and uses thereof, methods for treating and preventing diseases
EA024878B1 (ru) * 2009-01-07 2016-10-31 Хайдун Хуан Ген, кодирующий мутантную глюкокиназу человека, отличающуюся увеличенной стабильностью, и его применение для контроля глюкозы в крови или предупреждения и лечения нарушений углеводного обмена
US9309534B2 (en) 2010-07-12 2016-04-12 Universidad Autonoma De Barcelona Gene therapy composition for use in diabetes treatment
US11001857B2 (en) 2010-07-12 2021-05-11 Universitat Autonoma De Barcelona Gene therapy composition for use in diabetes treatment
US10973931B2 (en) 2014-09-16 2021-04-13 Universitat Autònoma De Barcelona Adeno-associated viral vectors for the gene therapy of metabolic diseases
US11033638B2 (en) 2015-01-07 2021-06-15 Universität Autonoma De Barcelona Single-vector gene construct comprising insulin and glucokinase genes

Also Published As

Publication number Publication date
CA2432506A1 (en) 2002-06-27
ES2170720A1 (es) 2002-08-01
EP1360898A1 (en) 2003-11-12
US20040055023A1 (en) 2004-03-18
AU2002216125A1 (en) 2002-07-01
ES2170720B1 (es) 2003-12-16

Similar Documents

Publication Publication Date Title
Murillo et al. Liver expression of a MiniATP7B gene results in long‐term restoration of copper homeostasis in a Wilson disease model in mice
CN1496271B (zh) 伴随有aop-1基因或aop-1的表达减少的疾病的治疗方法以及该疾病的治疗药
US6608038B2 (en) Methods and compositions for treatment of diabetes and related conditions via gene therapy
ES2658487T3 (es) Terapia génica con insulina basada en hepatocitos para la diabetes
He et al. Insulin expression in livers of diabetic mice mediated by hydrodynamics-based administration
KR20210009317A (ko) 미토콘드리아 dna 고갈 증후군을 포함하는 불균형 뉴클레오타이드 풀에 의해 초래된 질환에 대한 유전자 요법
CN1308544A (zh) 糖尿病的治疗
WO2002049423A1 (es) Utilizacion conjunta del gen de la insulina y del gen de la glucoquinasa en el desarrollo de aproximaciones terapeuticas para la diabetes mellitus
Leng et al. Long-term correction of copper metabolism in Wilson's disease mice with AAV8 vector delivering truncated ATP7B
JP2020535834A (ja) 遺伝子修飾されたベータ細胞による糖尿病の治療
JP2002320490A (ja) 糖尿病治療用単鎖インスリン類似体およびその遺伝子を含むベクター
Burkhardt et al. Glucose transporter-2 (GLUT2) promoter mediated transgenic insulin production reduces hyperglycemia in diabetic mice
Vijayasarathy et al. Targeted expression of retinoschisin by retinal bipolar cells in XLRS promotes resolution of retinoschisis cysts sans RS1 from photoreceptors
JP4727748B2 (ja) 神経保護医薬組成物の製造のためのプロインスリンの使用、それを含む治療組成物、およびそれらの応用
Otaegui et al. Glucose-regulated glucose uptake by transplanted muscle cells expressing glucokinase counteracts diabetic hyperglycemia
WO2001038535A1 (es) GEN QUIMÉRICO QUE PERMITE EXPRESAR EL GEN O EL cDNA DEL FACTOR DE CRECIMIENTO SIMILAR A LA INSULINA DE TIPO I (IGF-I) EN PÁNCREAS Y SU UTILIZACIÓN PARA LA TERAPIA GÉNICA DE LA DIABETES MELLITUS
CN114146180B (zh) 抑制chchd2活性的物质在制备治疗nash和肝损伤所致肝纤维化的产品中的应用
WO1997017994A1 (es) Tratamiento de la diabetes con un gen de glucoquinasa
WO2024125494A1 (zh) 一种基因调节的方法及其应用
KR100430199B1 (ko) 칼슘 이온 통로 알파1d 유전자 변이 생쥐 및 그의 제조방법
US20240197913A1 (en) Compositions and methods for treating retinal degenerative disorders
KR101174493B1 (ko) 생쥐 피이에이15 유전자가 과발현된 전임상 당뇨질환 모델 형질전환 돼지 및 그의 생산방법
Tabata et al. Spontaneous age-related peripheral neuropathy in B6C3F1 mice
Harada et al. Transgenic mouse and gene therapy
Koster et al. an den, Lewallen, CF, Talib, M

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001271144

Country of ref document: EP

Ref document number: 2432506

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002216125

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10451091

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001271144

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001271144

Country of ref document: EP