WO2002046096A1 - Procede de fabrication d'hydrazine en solution aqueuse - Google Patents

Procede de fabrication d'hydrazine en solution aqueuse Download PDF

Info

Publication number
WO2002046096A1
WO2002046096A1 PCT/EP2001/014086 EP0114086W WO0246096A1 WO 2002046096 A1 WO2002046096 A1 WO 2002046096A1 EP 0114086 W EP0114086 W EP 0114086W WO 0246096 A1 WO0246096 A1 WO 0246096A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetramethyl
pentanone
azine
pivalone
hydrazine
Prior art date
Application number
PCT/EP2001/014086
Other languages
English (en)
Inventor
Jean-Pierre Schirmann
Original Assignee
Fluorotech, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fluorotech, Llc filed Critical Fluorotech, Llc
Priority to AU2002229593A priority Critical patent/AU2002229593A1/en
Publication of WO2002046096A1 publication Critical patent/WO2002046096A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/16Hydrazine; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/88Hydrazones having also the other nitrogen atom doubly-bound to a carbon atom, e.g. azines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a process for the manufacture of hydrazine in aqueous solution.
  • Hydrazine hydrate is manufactured industrially, at present, by processes involving the oxidation processes of ammonia either by sodium hypochlorite or by hydrogen peroxide.
  • the industrial processes using hydrogen peroxide do not have any of the disadvantages associated with the use of sodium hypochlorite. They are characterized by the use of methyl ethyl ketone to also form an intermediate azine, the hydrolysis of which leads to the desired hydrazine hydrate.
  • the yields are high and the energy costs reduced compared to those of the hypochlorite process but hydrogen peroxide is an oxidant, certainly clean, but expensive and the use of methyl ethyl ketone in an ammoniacal medium also leads to the formation of miscellaneous and troublesome by-products in the conduct of the process as shown by the patents FR 2778659 and 2778 660 or even the patent EP 758642.
  • Hayashi also described, for example in Catal. Rev. Sci. Eng. 32 (3) pages 229 to 277 (1990), a process implementing the oxidation of ammonia by oxygen in the presence of benzophenone and cuprous chloride serving as catalyst, at high temperature and under pressure.
  • This reaction can be carried out either directly on the benzophenone and ammonia mixture or after having previously synthesized the benzophenone imine, as described previously in French patent 1162413, which claims to obtain azines by oxidative coupling of imines of aromatic ketones.
  • This method is characterized by the following steps: a) in a reaction medium, is prepared 2 5 HOLDINGS 2,4,4-tetramethyl-3-pentanone azine by oxidative coupling of 2,2,4,4-tetramethyl-3 -pentanone imine in the presence of a catalytic system and of oxygen as oxidant, d) hydrolysis of 2,2,4,4-tetramethyl-3-pentanone azine to obtain hydrazine in aqueous solution and 2, 2,4,4— tetramethyl-3-pentanone in the form of an organic phase;
  • the catalytic system comprises a metal salt chosen from a copper salt or a mixture of copper salt and zinc salt.
  • the copper salt and the zinc salt are chlorides.
  • 2,2,4,4-tetramethyl-3-pentanone imine is prepared in situ in the reaction medium in step a) by reaction of ammonia with 2,2,4,4-tetramethyl -3-pentanone.
  • This ketone is also called pivalone or hexamethyl acetone or hexamethyl propanone.
  • step a) in a step b) preceding step d), the 2,2,4,4-tetramethyl is separated.
  • step b) in a step b) preceding step d), the 2,2,4,4-tetramethyl is separated.
  • -3-pentanone azine from the catalytic system and unreacted 2,2,4,4-tetramethyl-3-pentanone.
  • step b) in a step c) preceding step d), the catalytic system is recycled by returning it to step a).
  • step e) in a step e), the 2,2,4,4-tetramethyl-3-pentanone is recycled by returning it to step a).
  • the oxygen is introduced in step a) in the form of air.
  • step d) is carried out with water in a reactive distillation column so that the 2,2,4,4-tetramethyl-3-pentanone is collected at the top of the column and hydrazine, in the form of hydrazine hydrate, at the bottom of the column.
  • the reactive column is operated under a pressure of 6 to 8 bars absolute and at an internal temperature of 180 to 190 ° C at the bottom and 160 to 170 ° C at the top.
  • the hydrolysis is as follows:
  • the ketone released by the hydrolysis reaction can be recycled to the oxidation reaction as indicated above.
  • the process according to the invention does not reject water any more than there are organic discharges. Indeed, the formation of by-products linked to ketone aldolization reactions or azine isomerization reactions is not possible given the structure of the pivalone molecule used. There is also no parasitic reaction of oxime formation as in the hydrogen peroxide processes. It is therefore a particularly clean process.
  • the present invention also describes a new method of synthesis of 2,2,4,4-tetramethyl-3-pentanone azine which is known and can be obtained by other methods such as those described in J. Chem. Soc. (Perkin) 2079 (1976) or also in J. Org. Chem. 45, 2980 (1980).
  • This azine is particularly interesting because its structure comprising 4 tert-butyl groups protects the azine motif against oxidation under the operating conditions of the process while nevertheless allowing subsequent hydrolysis with water alone without secondary reaction.
  • the process of the invention can be carried out as follows:
  • FIG. 1 single schematically shows an installation for carrying out an embodiment of the method according to the invention.
  • A represents a reactor or a set of reactors in which the step of oxidation of ammonia by oxygen is carried out.
  • Ammonia, oxygen, pivalone and the catalytic system are introduced respectively by feeds 1, 2, 3 and 4.
  • B represents a heat exchanger making it possible to cool the reaction mixture originating from A and to bring it back to atmospheric pressure.
  • ⁇ _ represents a decanter making it possible to separate an organic phase containing the azine from the pivalone and an aqueous phase containing the catalytic system to be recycled.
  • D represents a distillation column making it possible to concentrate the aqueous phase coming from C and to eliminate at the top the water formed during the reaction in reactor A and which can be sent to F. the bottom of this column is recycled to A via 4.
  • E represents a distillation column making it possible to treat the organic phase coming from C and to separate at the head the unreacted pivalone and which is recycled to A via 3 and at the bottom the azine of the pivalone.
  • F represents a reactive distillation column known as a hydrolysis column into which the azival of pivalone is introduced via the feed 5 from E as well as water, part of which comes from D.
  • the pivalone Under form of a heterozeotropic water-pivalone.
  • the pivalone is recycled to A while the water is reintroduced into the hydrolysis column.
  • an aqueous solution containing the hydrazine hydrate is collected.
  • G represents a distillation installation making it possible to obtain the commercial hydrazine hydrate by concentration, the water leaving at the head being recycled to F.
  • the first stage of the process according to the invention can advantageously be carried out according to two variants:
  • a first variant (I) preferred by the applicant, the ammonia, oxygen and pivalone are reacted in the liquid phase in the presence of a catalytic system, at a temperature between 150 and 250 ° C and preferably between 180 and 220 ° C under a pressure of up to 50 bar absolute, but preferably between 5 and 10 bars absolute.
  • the reaction can be carried out in the presence of water, but it is preferable to limit the use thereof to the minimum amount necessary for the dissolution of the catalytic system.
  • the reagents can be used in stoichiometric quantities, but an excess or a molar defect of one or more of them can also be used.
  • 0.1 to 10 moles and preferably 0.2 to 0.5 mole of pivalone can be used per mole of ammonia and per mole of oxygen.
  • the ammonia / oxygen molar ratio is between 1 and 5.
  • the catalytic system consists of the association of a cuprous salt, preferably chloride, in an amount of 0.1 to 0.5% by weight relative to the committed pivalone and a zinc salt, in general chloride, used according to a Zn / Cu molar ratio of between 0.5 and 1.
  • the reaction can be carried out batchwise, by successive charges, but it is preferred to operate continuously in a series of reactors in series.
  • pivalone and ammonia are first caused to react in the vapor phase on a catalyst based on thorium oxide according to a technique known to those skilled in the art and described for example in Nippon Kagaku Kaishi, 1973, 858 and 1392, for preparing unsubstituted i ines on nitrogen, at a temperature between 350 and 500 ° C and preferably between 350 and 400 ° C.
  • the ammonia / pivalone molar ratio is between 1 and 10 and preferably between 4 and 6.
  • the gases are cooled to 120-130 ° C and the heterogeneous liquid mixture obtained is submitted to a liquid phase reactor to oxidation by oxygen in the presence of cuprous salt, at a pressure of 5 to 10 bars absolute and preferably of the order of 8 to 10 bars.
  • the reaction liquid mixture is cooled and brought to atmospheric pressure. It consists of two immiscible phases which are separated by decantation.
  • the organic phase is essentially made up of pivalone azine and unreacted pivalone.
  • the decanting operation is carried out at a temperature between 20 and 80 ° C and preferably between 40 and 60 ° C. This type of separation constitutes a definite economic advantage.
  • the aqueous phase is stripped to remove the dissolved ammonia and then subjected to a distillation which makes it possible to collect at the top the water formed during the reaction. It will be used for the hydrolysis of azine while the base containing the catalytic system will be recycled in the oxidation stage.
  • the organic phase is subjected, in turn to a distillation which can be carried out at atmospheric pressure, but it is preferred to work under reduced pressure so as to separate under good conditions the unreacted pivalone, from the azine of the pivalone produced by the reaction.
  • the pivalone exiting at the head is recycled to the oxidation reaction for variant (I) or to the formation of imine for variant (I I).
  • the crude pivalone azine obtained at the bottom can be used as it is to feed the hydrolysis section, but it is also possible, if desired, to carry out an additional purification distillation.
  • the pivalone azine is then continuously hydrolyzed in a distillation column known as a reactive column, comprising bell trays having a barrier allowing high residence times and into which water is also injected to carry out the operation d 'hydrolysis.
  • a reactive column comprising bell trays having a barrier allowing high residence times and into which water is also injected to carry out the operation d 'hydrolysis.
  • This is carried out under a pressure of between 5 and 10 bars absolute and preferably between 6 and 8 bars so as to be able to work at temperatures between 160 and 170 ° C at the head and between 180 and 190 ° C for the foot.
  • the pivalone released during hydrolysis comes out at the top in the form of a hetero azeotropic with water. After condensation, the pivalone is separated from the water by decantation and then recycled to the oxidation section of the process. Water is returned to the hydrolysis column.
  • the water / azine molar ratio is between 2 and 100 but it is preferred to inject 25 to 30 moles of water per mole of azine.
  • Most of the column trays are occupied by heterogeneous mixtures consisting of water and pivalone, water and azine of pivalone, and water and hydrazone of pivalone which also forms intermediate. .
  • the last trays Towards the bottom of the column, the last trays have a homogeneous content consisting of hydrazine and water. At the bottom there is an aqueous solution of hydrazine hydrate titrating 8 to 10% by weight.
  • Example 1 In addition to the description which precedes, the following examples also illustrate, without limitation, the embodiments of the present invention:
  • Example 1
  • the organic phase contains 105 g of pivalone azine (0.375 mole) and 35.5 g of pivalone.
  • the chemical assay of the azine of pivalone is carried out in a similar manner to the assay of Example 1.
  • a sample of product is taken containing approximately 2 milliequivalents of this azine, which is weighed exactly. 10 ml of 30% by weight sulfuric acid are added, then 50 ml of decinormal iodine solution and finally 30 g of sodium acetate to bring the pH back to 5, which makes it possible to observe a release of nitrogen. resulting from the reduction of iodine by the released hydrazine.
  • the excess iodine is then dosed with a decinormal solution of sodium thiosulfate.
  • the structure of the pivalone azine is confirmed by mass spectrography which shows a parent peak at mass 280 as well as mass peaks 126 and 57.
  • the operation is repeated several times in the reactor in order to have a stock of 1.5 kg of organic phase which is subjected to batch distillation in order to top off the pivalone contained in the mixture.
  • the distillation is carried out under a reduced pressure of 53 ⁇ 10 2 Pa.
  • the head temperature is 80 ° C. while that at the bottom is 182 ° C.
  • the hydrolysis of the azine of pivalone is carried out in a column in 316L stainless steel tested at 100 bars, 3 m high, 70 mm in diameter and equipped with
  • each bell 40 perforated monocoque trays with a diameter of 30 mm, spaced from each other by 80 mm.
  • the holes of each bell are 2 mm high and 1mm wide and are
  • the useful volume of liquid retained on each tray is of the order of 40 ml. It can be adjusted by adjusting the height of the weir.
  • This column is fitted with temperature sockets on plates 2, 5, 10, 15,
  • the intake of calories is made at the foot and is provided by an electric heater.
  • the adadiism of the column barrel is achieved by a duct of superheated air in order to balance the temperatures inside and outside the column.
  • the reagents are supplied by metering pumps and the condenser at the head is supplied in its external circuit by a circulation of hot oil maintained at a temperature between 130 and 135 ° C.
  • the inert gases are continued to be purged from the column while maintaining the pressure at 8 bars.
  • the reflux is allowed to settle and the column is balanced in temperature and pressure.
  • the introduction of the reagents is started continuously as well as the withdrawals at the top and bottom, ensuring that the level in the reboiler remains stable.
  • the process is carried out at reflux 5.
  • the azine is introduced at the rate of 210 g / h and the water at the rate of 600 g / h.
  • the head temperature stabilizes at 170-172 ° C while the foot temperature is 185-188 ° C.
  • 470 g / h of aqueous solution of colorless hydrazine hydrate titrating 8% by weight are drawn off at the bottom.
  • the water-pivalone azeotrope is collected at a rate of 355 g / h grading 60% by weight of pivalone, ie 213 g / h of pivalone. Comparative Example 3
  • Example 2 is repeated, but replacing pivalone with benzophenone. It can be seen that the azazine of the benzophenone is obtained during the oxidation reaction, but that the latter introduced into the hydrolysis column does not undergo the hydrolysis reaction. There is no formation of hydrazine hydrate under the action of water alone.
  • Example 2 is repeated, but replacing pivalone with methyl ethyl ketone.
  • the oxidation reaction there is no form of methyl ethyl ketone azine but only various by-products resulting from multiple reactions of methyl ethyl ketone in an ammoniacal medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Procédé de fabrication d'hydrazine en solution aqueuse, caractérisé par les étapes suivantes: a) dans un milieu réactionnel, on prépare 2,2,4,4-tetramethyl-3-pentanone azine par couplage oxydant de la 2,2,4,4-tetramethyl-3-pentanone imine en présence d'un système catalytique et d'oxygène comme oxydant, b) on hydrolyse la 2,2,4,4-tetramethyl-3-pentanone azine pour obtenir de l'hydrazine en solution aqueuse et de la 2,2,4,4-tetramethyl-3-pentanone sous forme d'une phase organique.

Description

Procédé de fabrication d'hydrazine en solution aqueuse
La présente invention concerne un procédé de fabrication d'hydrazine en solution aqueuse.
L'hydrate d'hydrazine est fabriqué industriellement, à l'heure actuelle, par des procédés mettant en jeu des processus d'oxydation de l'ammoniac soit par l'hypochlorite de sodium soit par le peroxyde d'hydrogène.
Avec rhypochlorite de sodium, on opère soit en milieu dilué (Procédé Raschig) soit en présence d'acétone pour former une azine intermédiaire dont l'hydrolyse libère ultérieurement l'hydrate d'hydrazine (Procédé Bayer).
En dehors de difficultés technologiques dues à l'extrême sensibilité de l'hydrazine à l'oxydation par l'hypochlorite de sodium, à la nature très corrosive des milieux de réaction et à la coproduction de quantités importantes de chlorure de sodium, ces procédés nécessitent des dépenses considérables d'énergie pour récupérer l'hydrate d'hydrazine commercial. De plus, dans le cas du procédé Bayer, la présence d'acétone en milieu alcalin conduit à la formation de nombreux sous-produits qui rendent obligatoire la purification de l'hydrate d'hydrazine mais aussi celle du chlorure de sodium qui ne peut être rejeté sans un traitement approprié et coûteux.
Les procédés industriels mettant en oeuvre le peroxyde d'hydrogène ne présentent aucun des inconvénients liés à l'emploi de l'hypochlorite de sodium. Ils se caractérisent par la mise en œuvre de méthyléthylcétone pour former aussi une azine intermédiaire dont l'hydrolyse conduit à l'hydrate d'hydrazine recherché. Les rendements sont élevés et les dépenses d'énergie réduites par rapport à celles du procédé à l'hypochlorite mais le peroxyde d'hydrogène est un oxydant, certes propre, mais coûteux et l'emploi de méthyléthylcétone en milieu ammoniacal entraîne aussi la formation de sous-produits divers et gênants dans la conduite du procédé comme le montrent les brevets FR 2778659 et 2778 660 ou encore le brevet EP 758642.
On constate aussi que les azines de cétones légères, comme l'acétone ou la méthyléthylcétone, quelle que soit leur origine, s'isomérisent facilement dans les conditions des opérations de distillation et d'hydrolyse en pyrazolines, composés hétérocycliques, qui sont connus pour être facilement inflammables mais aussi pour poser de sérieux problèmes techniques de séparation tant pendant l'hydrolyse que pendant les opérations de purification de l'hydrate d'hydrazine commercial, comme décrit dans le brevet FR 2778 660 ou dans le brevet GB 1174050. On peut trouver des descriptions détaillées de ces procédés industriels dans des encyclopédies telles que Kirk-Othmer Encyclopedia, Ed. 1997, vol. 13, pages 575 à 582 ou encore Ullmann's Encyclopedia of Industrial Chemistry, éd. 1989, vol. 13, pages 179 à 183. H. Hayashi a décrit aussi, par exemple dans Catal. Rev. Sci. Eng. 32 (3) pages 229 à 277 (1990), un procédé mettant en œuvre l'oxydation de l'ammoniac par l'oxygène en présence de benzophénone et de chlorure cuivreux servant de catalyseur, à température élevée et sous pression. Cette réaction peut être réalisée soit directement sur le mélange benzophénone et ammoniac soit après avoir synthétisé préalablement la benzophénone imine, comme décrit auparavant dans le brevet français 1162413, qui revendique l'obtention d'azines par couplage oxydant d'imines de cétones aromatiques. Un tel procédé, qui est donc connu pour donner de bons rendements en azine dans le cas de la benzophénone, n'a jamais pu être mis en œuvre industriellement par le fait que l'hydrolyse de cette azine ne peut pas être réalisée par l'eau seule mais doit être conduite en milieu acide sulfurique, conduisant de ce fait au sulfate d'hydrazinium et non pas à l'hydrate d'hydrazine ( voir Kirk-Othmer Encyclopedia page 582).
L'hydrolyse des azines de l'acétone ou de la méthyléthylcétone par l'eau seule a fait l'objet de nombreuses études et est connue en soi. Par exemple E. G. Gilbert, dans un article paru dans le J. Am. Chem. Soc. 51, 3397 (1929), décrit les réactions de formation de l'azine de l'acétone et d'hydrolyse de celle-ci. L'hydrolyse doit être réalisée dans une colonne de distillation réactive, de telle sorte qu'en séparant de façon continue la cétone en tête de colonne et l'hydrate d'hydrazine en pied, on puisse parvenir à une hydrolyse totale aux bornes du système qui est au meilleur de son fonctionnement lorsqu'on travaille comme décrit dans le brevet FR 1315348 ou le brevet GB 1211547 ou encore le brevet US 4725421. Pour que ce système marche et compte tenu des points d'ébullition respectifs de l'eau et de l'hydrazine, il est logique de n'utiliser que des azines dérivées de cétones dont le point d'ébullition est inférieur à celui de l'eau. Pratiquement tous les exemples décrits dans les brevets portent sur l'hydrolyse de l'azine et plus rarement sur celle de l'hydrazone de l'acétone ou de la méthyl éthyl cétone. C'est aussi pour la même raison que les procédés industriels fonctionnent soit à l'acétone soit à la méthyl éthyl cétone. L'hydrolyse par l'eau seule des azines et hydrazones de cétones aliphatiques de condensation en carbone supérieure à C5 et donc de points d'ébullition supérieurs à 110°C n'a jamais été décrite. Pour les azines dérivées de cétones dont le point d'ébullition est supérieur à celui de l'eau, l'état de l'art enseigne seulement d'avoir recours à une hydrolyse en milieu acide fort (H2SO4 ou HCl ), tel que décrit par exemple dans le brevet
US 4 628 119 ou dans Catal. Rev. Sci. Eng. 32 ( 3 ) page 259, et le produit est alors un sel d'hydrazinium et non pas de l'hydrate d'hydrazine. Or, poursuivant ses recherches dans le domaine de l'hydrazine, le demandeur vient de découvrir un nouveau procédé sélectif et économique de fabrication d'hydrazine en solution aqueuse.
Ce procédé se caractérise par les étapes suivantes : a) dans un milieu réactionnel, on prépare de la 252,4,4-tetramethyl-3-pentanone azine par couplage oxydant de la 2,2,4,4-tetramethyl-3-pentanone imine en présence d'un système catalytique et d'oxygène comme oxydant, d) on hydrolyse la 2,2,4,4-tetramethyl-3-pentanone azine pour obtenir de l'hydrazine en solution aqueuse et de la 2,2,4,4— tetramethyl-3-pentanone sous forme d'une phase organique ; Avantageusement, le système catalytique comporte un sel métallique choisi parmi un sel de cuivre ou un mélange sel de cuivre et sel de zinc.
De préférence, le sel de cuivre et le sel de zinc sont des chlorures. De préférence, la 2,2,4,4-tetramethyl-3-pentanone imine est préparée in situ dans le milieu réactionnel à l'étape a) par réaction de l' ammoniac avec de la 2,2,4,4- tetramethyl-3-pentanone. Cette cétone est encore appelée pivalone ou hexaméthyl acétone ou hexaméthyl propanone.
Le schéma réactionnel impliqué est le suivant :
((CH3)3C)2C=O + NH3 *- ((CH3)3C)2C=NH + H2O avec :
2 [((CH3)3C)2C≈NH] + V2 O2 >-
((CH3)3C)2C=N-N=C(C(CH3)3)2 + H2O
Dans ces conditions l' imine ci-dessus n'est pas isolée et la réaction d'oxydation est la suivante :
Oxydation : 2 ( (CH3)3C)2C=O + 2 NH3 + fc O2 -
( (CH3)3C)2C=N-N=C(C(CH3)3)2 + 3H2O
Les modalités suivantes permettent d'obtenir un procédé industriel avec recyclage des produits de réaction : Avantageusement, après l'étape a), dans une étape b) précédant l'étape d), on sépare la 2,2,4,4—tetramethyl-3-pentanone azine du système catalytique et de la 2,2,4,4- tetramethyl-3-pentanone n'ayant pas réagi.
Avantageusement, après l'étape b), dans une étape c) précédant l'étape d), on recycle le système catalytique en le renvoyant à l'étape a). Avantageusement, après l'étape d), dans une étape e), on recycle la 2,2,4,4- tetramethyl-3-pentanone en la renvoyant à l'étape a).
De préférence, l'oxygène est introduit à l'étape a) sous la forme d'air.
En effet, l'azote et les traces de gaz rares contenus dans l'air n'interviennent pas dans la réaction d'oxydation ci-dessus et seul l'oxygène dilué de l'air entre en réaction. De préférence, l'hydrolyse de l'étape d) est effectuée par de l'eau dans une colonne à distiller réactive de telle sorte que la 2,2,4,4-tetramethyl-3-pentanone soit recueillie en tête de la colonne et l'hydrazine, sous forme d'hydrate d'hydrazine, en pied de la colonne.
En général, on opère la colonne réactive sous une pression de 6 à 8 bars absolus et à une température interne de 180 à 190 °C en pied et 160 à 170 °C en tête.
L'hydrolyse est la suivante :
Hydrolyse :
( (CH3)3C)2C=N-N=C( C(CH3)3)2 + 3 H2O *- N2H4,H2O + 2 ( (CH3)3C)2C=O
La cétone libérée par la réaction d'hydrolyse peut être recyclée à la réaction d'oxydation comme indiqué ci-dessus.
L'ensemble du procédé permet donc de réaliser l'oxydation de l'ammoniac en hydrazine par l'oxygène notamment par l'oxygène de l'air: 2 NH3 + 1/2 O2 *» N2H4, H2O
On constate aussi que le procédé selon l'invention ne rejette pas d'eau pas plus qu'il n'y a de rejets organiques. En effet la formation de sous-produits liés aux réactions d'aldolisation de cétone ou d'isomérisation d'azine n'est pas possible compte tenu de la structure de la molécule de pivalone mise en œuvre. Il n'y a pas non plus de réaction parasite de formation d'oxime comme dans les procédés au peroxyde d'hydrogène. C'est donc un procédé particulièrement propre.
La présente invention décrit aussi une nouvelle méthode de synthèse de la 2,2,4,4- tétramethyl-3-pentanone azine qui est connue et peut être obtenue par d'autres méthodes telles que celles décrites dans J.Chem.Soc. ( Perkin ) 2079 ( 1976 ) ou encore dans J.Org.Chem. 45, 2980 (1980 ). Cette azine est particulièrement intéressante car sa structure comportant 4 groupes tertiobutyle protège le motif azine contre l'oxydation dans les conditions opératoires du procédé tout en permettant néanmoins l'hydrolyse ultérieure par l'eau seule sans réaction secondaire. On peut réaliser le procédé de l'invention de la manière suivante :
1- Préparation d'azine de la pivalone à partir d'ammoniac, de pivalone et d'oxygène en présence d'un catalyseur, sous pression et à température élevée,
2- Refroidissement et décompression du mélange réactionnel,
3- Séparation par décantation d'une phase organique contenant l'azine de la pivalone formée au stade 1 ainsi qu'un excès éventuel de pivalone et d'une phase aqueuse contenant le catalyseur,
4- Concentration de la phase aqueuse avant recyclage du catalyseur au stade 1 ,
5- Distillation de la phase organique pour séparer l'excès éventuel de pivalone à recycler au stade 1 et l'azine de la pivalone, 6- Hydrolyse de l'azine de la pivalone par l'eau et séparation d'une solution aqueuse d'hydrate d'hydrazine et de la pivalone libérée et recyciable au stade
1, 7- Concentration de la solution aqueuse d'hydrate d'hydrazine pour obtenir l'hydrate d'hydrazine commercial. La présente invention sera mieux comprise à l'aide de la description qui va suivre en référence au dessin dans lequel :
La figure 1 unique montre schématiquement une installation pour réaliser un mode de réalisation du procédé suivant l'invention. A représente un réacteur ou un ensemble de réacteurs dans lequel on procède à l'étape d'oxydation de l'ammoniac par l'oxygène. L'ammoniac, l'oxygène, la pivalone et le système catalytique sont introduits respectivement par les alimentations 1, 2, 3 et 4.
B représente un échangeur thermique permettant de refroidir le mélange réactionnel issu de A et de le ramener à pression atmosphérique.
Ç_ représente un décanteur permettant de séparer une phase organique contenant l'azine de la pivalone et une phase aqueuse contenant le système catalytique à recycler.
D représente une colonne à distiller permettant de concentrer la phase aqueuse venant de C et d'éliminer en tête l'eau formée au cours de la réaction dans le réacteur A et qui peut être envoyée vers F. le pied de cette colonne est recyclé vers A via 4.
E représente une colonne à distiller permettant de traiter la phase organique provenant de C et de séparer en tête la pivalone n'ayant pas réagi et qui est recyclée vers A via 3 et en pied l'azine de la pivalone.
F représente une colonne à distiller réactive dite colonne d'hydrolyse dans laquelle est introduite l'azine de la pivalone via l'alimentation 5 en provenance de E ainsi que de l'eau dont une partie provient de D. En tête sort la pivalone sous forme d'un hétéro azéotrope eau-pivalone. Après décantation la pivalone est recyclée vers A alors que l'eau est réintroduite dans la colonne d'hydrolyse. En pied on recueille une solution aqueuse contenant l'hydrate d'hydrazine. G représente une installation de distillation permettant d'obtenir l'hydrate d'hydrazine commercial par concentration, l'eau sortant en tête étant recyclée vers F.
L'intérêt économique et environnemental d'un tel procédé est évident : réduction des dépenses de matières premières et d'énergie, pas d'utilisation de chlore, pas de rejets aqueux, pas de rejets organiques. Le seul rejet gazeux provient d'une légère décomposition de la molécule d'hydrazine sous l'effet de la chaleur pendant les opérations d'hydrolyse et de concentration finale et qui conduit à une libération d'azote, constituant de l'air. Ce phénomène est déjà observé dans les procédés industriels actuels.
Le premier stade du procédé selon l'invention peut être réalisé avantageusement selon deux variantes : Dans une première variante ( I ), préférée par le demandeur, on fait réagir l'ammoniac, l'oxygène et la pivalone en phase liquide en présence d'un système catalytique, à une température comprise entre 150 et 250°C et préférentiellement entre 180 et 220°C sous une pression pouvant aller jusqu'à 50 bars absolus, mais préférentiellement comprise entre 5 et 10 bars absolus. La réaction peut être réalisée en présence d'eau mais on préfère limiter l'usage de celle-ci à la quantité minimale nécessaire à la dissolution du système catalytique. Les réactifs peuvent être engagés en quantités stœchiométriques, mais on peut utiliser aussi un excès ou un défaut molaire de l'un ou de plusieurs d'entre eux. A titre indicatif on peut engager 0,1 à 10 moles et préférentiellement 0,2 à 0,5 mole de pivalone par mole d'ammoniac et par mole d'oxygène. Le rapport molaire ammoniac/oxygène est compris entre 1 et 5. Le système catalytique est constitué par l'association d'un sel cuivreux, de préférence le chlorure, à raison de 0,1 à 0,5% en poids par rapport à la pivalone engagée et d'un sel de zinc, en général le chlorure, utilisé selon un ratio molaire Zn/Cu compris entre 0,5 et 1. La réaction peut être effectuée en discontinu, par charges successives, mais on préfère opérer en continu dans une cascade de réacteurs en série.
Dans une seconde variante ( 11 ), la pivalone et l'ammoniac sont d'abord amenés à réagir en phase vapeur sur un catalyseur à base d'oxyde de thorium selon une technique connue de l'homme de l'art et décrite par exemple dans Nippon Kagaku Kaishi, 1973, 858 et 1392, pour préparer les i ines non substituées sur l'azote, à une température comprise entre 350 et 500°C et préférentiellement entre 350 et 400°C.
( (CH3)3C)2C=O + NH3 *- ( (CH3)3C)2C=NH + H2O
Le rapport molaire ammoniac/pivalone est compris entre 1 et 10 et préférentiellement entre 4 et 6. A la sortie du réacteur de catalyse, les gaz sont refroidis vers 120-130°C et le mélange liquide hétérogène obtenu est soumis dans un réacteur phase liquide à une oxydation par l'oxygène en présence de sel cuivreux, sous une pression de 5 à 10 bars absolus et de préférence de l'ordre de 8 à 10 bars.
2 ( (CH3)3C)2C=NH + V2 O2 *-
( (CH3)3C)2C=N-N=C(C(CH3)3)2 + H2O
Après l'étape d'oxydation, le mélange liquide réactionnel est refroidi et ramené à pression atmosphérique. Il est constitué de deux phases non miscibles qui sont séparées par décantation. La phase organique est essentiellement constituée d'azine de la pivalone et de pivalone n'ayant pas réagi. L'opération de décantation est réalisée à une température comprise entre 20 et 80°C et préférentiellement entre 40 et 60°C. Ce type de séparation constitue un avantage économique certain. La phase aqueuse est strippée pour éliminer l'ammoniac dissous puis soumise à une distillation qui permet de recueillir en tête l'eau formée au cours de la réaction. Elle sera utilisée pour l'hydrolyse de l'azine alors que le pied contenant le système catalytique sera recyclé à l'étape d'oxydation.
La phase organique est soumise, à son tour à une distillation qui peut être réalisée à pression atmosphérique, mais on préfère travailler sous pression réduite de façon à séparer dans de bonnes conditions la pivalone n'ayant pas réagi, de l'azine de la pivalone produite par la réaction. On opère en travaillant à une pression de 26 l0 2 à l013 x l02
Pa, mais de préférence entre 133 x 10 2 et 266 x 102 Pa. On peut utiliser une colonne à garnissage ou une colonne à plateaux. La pivalone sortant en tête est recyclée à la réaction d'oxydation pour la variante ( I ) ou à la formation d'imine pour la variante ( I I ). L'azine de la pivalone brute obtenue en pied peut être utilisée telle quelle pour alimenter la section d'hydrolyse mais on peut aussi, si on le désire, procéder à une distillation supplémentaire de purification.
L'azine de la pivalone est ensuite hydrolysée en continu dans une colonne à distiller dite colonne réactive, comportant des plateaux à cloches ayant un barrage permettant de forts temps de séjour et dans laquelle on injecte aussi de l'eau pour réaliser l'opération d'hydrolyse. Celle-ci est conduite sous une pression comprise entre 5 et 10 bars absolus et préférentiellement entre 6 et 8 bars de façon à pouvoir travailler à des températures comprises entre 160 et 170°C en tête et entre 180 et 190°C pour le pied. La pivalone libérée au cours de l'hydrolyse sort en tête sous forme d'un hétéro azéotrope avec l'eau. Après condensation, la pivalone est séparée de l'eau par décantation puis recyclée vers la section oxydation du procédé. L'eau est renvoyée dans la colonne d'hydrolyse. Le ratio molaire eau/azine est compris entre 2 et 100 mais on préfère injecter 25 à 30 moles d'eau par mole d'azine. La plupart des plateaux de la colonne sont occupés par des mélanges hétérogènes constitués par l'eau et la pivalone, l'eau et l'azine de la pivalone, et l'eau et l'hydrazone de la pivalone qui se forme aussi intermédiaire ment. Vers le bas de la colonne, les derniers plateaux ont un contenu homogène constitué par de l'hydrazine et de l'eau. En pied sort une solution aqueuse d'hydrate d'hydrazine titrant 8 à 10% en poids.
En plus de la description qui précède les exemples suivants illustrent aussi de façon non limitative des réalisations de la présente invention : Exemple 1 :
Dans un réacteur de 100 ml, on place successivement 20 ml de pyridine, 1 g de chlorure cuivreux et 1 g de 2,2,4,4-tetraméthyl-3-pentanone imine (pivalone imine) 95% commerciale (Sigma-Aldrich chimie). Sous légère agitation on fait passer à travers cette solution un courant d'air à température ordinaire. Après 24 heures de réaction, on recherche et dose l'azine de la pivalone par iodométrie. On prélève de cette solution un échantillon d'environ 2 g que l'on pèse exactement et on ajoute 20 ml d'acide sulfurique à 30% en poids, puis 50 ml d'une solution aqueuse décinormale d'iode et enfin 30 g d'acétate de sodium cristallisé afin de ramener le pH vers 5. On agite et laisse réagir quelques minutes. L'hydrazine libérée par l'hydrolyse de l'azine de la pivalone par l'acide sulfurique réduit l'iode selon la réaction suivante :
N2H4 + 2 I2 *~ N + 4 HI
On dose ensuite l'excès d'iode restant par une solution décinormale de thiosulfate de sodium et par différence on détermine la quantité d'azine formée.
On mesure de cette façon que 0,7 g d'azine de la pivalone a été formée. Exemple 2
Dans un réacteur en acier inoxydable 316L de 1 litre de volume utile, muni d'un agitateur et susceptible de supporter une pression de 100 bars, on place 142 g ( 1 mole ) de pivalone ainsi que 3 g de chlorure de zinc et 5 g de chlorure cuivreux. Le réacteur est fermé et le contenu est placé sous une pression de 5 bars d'ammoniac. Puis la température du réacteur est portée progressivement à 200°C et l'on régule la pression de telle sorte qu'elle ne dépasse pas 10 bars. Lorsque cette température est atteinte, on introduit simultanément dans le réacteur de rammoniac et de l'oxygène ( ratio 4/1 ) en maintenant la pression à 10 bars absolus. Après trois heures de réaction, on refroidit le mélange réactionnel jusqu'à température ordinaire, ramène la pression au niveau de la pression atmosphérique et ouvre le réacteur. Le mélange liquide est recueilli par vidange et soumis à décantation. On sépare ainsi une phase aqueuse de 41 g et une phase organique de 141 g-
La phase organique contient 105 g d'azine de la pivalone (0,375 mole) et 35,5 g de pivalone. Le dosage chimique de l'azine de la pivalone est réalisé de manière analogue au dosage de l'exemple 1. On prélève un échantillon de produit contenant environ 2 milliéquivalent de cette azine, que l'on pèse exactement. On ajoute 10 ml d'acide sulfurique à 30% en poids, puis 50 ml de solution décinormale d'iode et enfin 30 g d'acétate de sodium pour ramener le pH vers 5, ce qui permet d'observer un dégagement d'azote résultant de la réduction de l'iode par l'hydrazine libérée. On dose ensuite l'excès d'iode par une solution décinormale de thiosulfate de sodium.
La structure de l'azine de la pivalone est confirmée par la spectrographie de masse qui montre un pic parent à la masse 280 ainsi que des pics de masse 126 et 57.
On répète plusieurs fois l'opération dans le réacteur afin de disposer d'un stock de 1,5kg de phase organique que l'on soumet à une distillation en discontinu pour étêter la pivalone contenue dans le mélange. On constitue ainsi un stock de 1kg d'azine de la pivalone pour alimenter l'hydrolyse. La distillation est conduite sous une pression réduite de 53 x 10 2 Pa. La température de tête est de 80 °C alors que celle de pied est de 182°C.
L'hydrolyse de l'azine de la pivalone est conduite dans une colonne en acier inoxydable 316L éprouvée à 100 bars, de hauteur 3 m, de diamètre 70 mm et équipée de
40 plateaux à monocloche perforée de diamètre 30 mm, espacés les uns des autres de 80 mm. Les trous de chaque cloche font 2 mm de haut et 1mm de large et sont au nombre de
10. Le volume utile de liquide retenu sur chaque plateau est de l'ordre de 40 ml. Il peut être ajusté en jouant sur la hauteur du déversoir. Cette colonne est équipée de prises de température sur les plateaux 2, 5, 10, 15,
20, 25, 30 et 35 ainsi qu'en tête et dans le rebouilleur.
L'introduction des réactifs est réalisée au plateau 26 ( azine ) et au plateau 16
( eau ). Le débit de reflux est mesuré à l'aide d'un rotamètre préalablement étalonné.
L'apport des calories est fait en pied et est assuré par un chauffage électrique. L'adiabatisme du fût de la colonne est réalisé par une gaine d'air surchauffé afin d'équilibrer les températures à l'intérieur et à l'extérieur de la colonne. L'alimentation des réactifs est assurée au moyen de pompes doseuses et le condenseur en tête est alimenté dans son circuit extérieur par une circulation d'huile chaude maintenue à une température comprise entre 130 et 135°C.
On place dans le rebouilleur de volume utile 1 litre, 800ml d'eau bi permutée. L'installation étant fermée, on démarre le chauffage et on laisse monter la pression dans la colonne jusqu'à 8 bars absolus. Puis au fur et à mesure que l'eau monte dans la colonne, on purge l'azote d'inertage tout en maintenant la pression à 8 bars. Lorsque le niveau d'eau dans le rebouilleur correspond à un volume de 200 ml environ, on démarre une injection d'eau au plateau 16 pour terminer la constitution du ballast d'eau de la colonne, à raison de 250 ml/h pendant 2 heures. Lorsque la température atteint 160°C au plateau 25, on commence l'injection d'azine de la pivalone à raison de 140 g/h pendant 2 heures. On continue à purger les gaz inertes de la colonne tout en maintenant la pression à 8 bars. On laisse s'installer le reflux et la colonne s'équilibrer en températures et pression. Puis on démarre l'introduction des réactifs en continu ainsi que les soutirages en tête et en pied en veillant à ce que le niveau dans le rebouilleur reste stable. On travaille à reflux 5. L'azine est introduite à raison de 210 g/h et l'eau à raison de 600 g/h.
La température de tête se stabilise à 170-172°C alors que celle de pied est de 185- 188°C. En régime continu stationnaire, on soutire en pied 470 g/h de solution aqueuse d'hydrate d'hydrazine incolore titrant 8% en poids. En tête on recueille l'azéotrope eau- pivalone à raison de 355g/h titrant 60% en poids de pivalone, soit 213 g/h de pivalone. Exemple 3 comparatif
On répète l'exemple 2 mais en remplaçant la pivalone par la benzophénone. On constate que l'on obtient bien l'azine de la benzophénone au cours de la réaction d'oxydation mais que celle-ci introduite dans la colonne d'hydrolyse ne subit pas la réaction d'hydrolyse. On ne constate pas de formation d'hydrate d'hydrazine sous l'action de l'eau seule.
Exemple 4 comparatif
On répète l'exemple 2 mais en remplaçant la pivalone par la méthyl éthyl cétone. Au cours de la réaction d'oxydation il ne se forme pas d'azine de la méthyl éthyl cétone mais seulement des sous-produits divers résultant de réactions multiples de la méthyl éthyl cétone en milieu ammoniacal.

Claims

12 Revendications
1. Procédé de fabrication d'hydrazine en solution aqueuse, caractérisé par les étapes suivantes : a) dans un milieu réactionnel, on prépare de la 2,2,4,4-tetramethyl-3-pentanone azine par couplage oxydant de la 2,2,4,4-tetramethyl-3-pentanone imine en présence d'un système catalytique et d'oxygène comme oxydant, d) on hydrolyse la 2,2,4,4-tetramethyl-3-pentanone azine pour obtenir de l'hydrazine en solution aqueuse et de la 2,
2,4,4-tetramethyl-3-pentanone sous forme d'une phase organique ; 2. Procédé suivant la revendication 1, caractérisé en ce que le système catalytique comporte un sel métallique choisi parmi un sel de cuivre ou un mélange sel de cuivre et sel de zinc.
3. Procédé suivant la revendication 1, caractérisé en ce que la 2,2,4,4-tetramethyl- 3-pentanone imine est préparée in situ dans le milieu réactionnel à l'étape a) par réaction de l' ammoniac avec de la 2,2,4,4— tetramethyl-3-pentanone.
4. Procédé suivant la revendication 3, caractérisé en ce que, après l'étape a), dans une étape b) précédant l'étape d), on sépare la 2,2,4,4-tetramethyl-3-pentanone azine du système catalytique et de la 2,2,4,4-tetramethyl-3-pentanone n'ayant pas réagi.
5. Procédé suivant la revendication 4, caractérisé en ce qu'après l'étape b), dans une étape c) précédant l'étape d), on recycle le système catalytique en le renvoyant à l'étape a).
6. Procédé suivant la revendication 4 ou 5, caractérisé en ce qu'après l'étape d), dans une étape e), on recycle la 2,2,4,4-tetramethyl-3-pentanone en la renvoyant à l'étape a).
7. Procédé suivant l'une des revendications 1 à 6, caractérisé en ce que l'oxygène est introduit à l'étape a) sous la forme d'air.
8. Procédé suivant l'une des revendications 1 à 7, caractérisé en ce que l'hydrolyse de l'étape d) est effectuée par de l'eau dans une colonne à distiller réactive de telle sorte que la 2,2,4,4— tetramethyl-3-pentanone soit recueillie en tête de la colonne et l'hydrazine, sous forme d'hydrate d'hydrazine, en pied de la colonne.
9. Procédé suivant la revendication 8, caractérisé en ce qu'on opère la colonne réactive sous une pression de 6 à 8 bars absolus et à une température interne de 180 à 190 °C en pied et 160 à 170 °C en tête.
PCT/EP2001/014086 2000-12-07 2001-12-03 Procede de fabrication d'hydrazine en solution aqueuse WO2002046096A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002229593A AU2002229593A1 (en) 2000-12-07 2001-12-03 Method for making hydrazine in aqueous solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0015864A FR2817863A1 (fr) 2000-12-07 2000-12-07 Procede de fabrication d'hydrazine en solution aqueuse et produit intermediaire de synthese dans cette fabrication
FR00/15864 2000-12-07

Publications (1)

Publication Number Publication Date
WO2002046096A1 true WO2002046096A1 (fr) 2002-06-13

Family

ID=8857336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/014086 WO2002046096A1 (fr) 2000-12-07 2001-12-03 Procede de fabrication d'hydrazine en solution aqueuse

Country Status (3)

Country Link
AU (1) AU2002229593A1 (fr)
FR (1) FR2817863A1 (fr)
WO (1) WO2002046096A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041861A (zh) * 2013-01-24 2013-04-17 凤台县精华助剂有限公司 用于在水合肼合成反应中的复配催化剂
CN107922191B (zh) * 2015-08-03 2020-10-16 三菱瓦斯化学株式会社 吖嗪键、腙键的切断方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137087A1 (fr) * 2022-06-24 2023-12-29 Arkema France Procede de preparation d'hydrate d'hydrazine utilisant une colonne d’absorption
FR3137086A1 (fr) * 2022-06-24 2023-12-29 Arkema France Procede de preparation d'hydrate d'hydrazine utilisant des reacteurs en cascade

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1174050A (en) * 1965-12-29 1969-12-10 Farbenfabriken Ag Production of Hydrazine Hydrate from Aqueous Ketazines and/or Hydrazones
US4079080A (en) * 1976-04-15 1978-03-14 Sumitomo Chemical Company, Limited Preparation of ketazine and catalyst therefor
JPS53147047A (en) * 1977-05-27 1978-12-21 Sumitomo Chem Co Ltd Preparation of ketazine
JPS54125629A (en) * 1978-03-22 1979-09-29 Otsuka Chem Co Ltd Preparation of azine
JPS55145184A (en) * 1979-05-02 1980-11-12 Toyo Soda Mfg Co Ltd Manufacture of ketazines
US20020013495A1 (en) * 2000-07-19 2002-01-31 Manfred Jautelat Process for preparing hydrazodicarbonamide via ketimines

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1133762A (en) * 1965-04-20 1968-11-20 Fisons Ind Chemicals Ltd Process for the preparation of azines and/or isohydrazones and their use in the production of hydrazine
DE2344604A1 (de) * 1973-09-05 1975-03-27 Bayer Ag Verfahren zur herstellung von azinen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1174050A (en) * 1965-12-29 1969-12-10 Farbenfabriken Ag Production of Hydrazine Hydrate from Aqueous Ketazines and/or Hydrazones
US4079080A (en) * 1976-04-15 1978-03-14 Sumitomo Chemical Company, Limited Preparation of ketazine and catalyst therefor
JPS53147047A (en) * 1977-05-27 1978-12-21 Sumitomo Chem Co Ltd Preparation of ketazine
JPS54125629A (en) * 1978-03-22 1979-09-29 Otsuka Chem Co Ltd Preparation of azine
JPS55145184A (en) * 1979-05-02 1980-11-12 Toyo Soda Mfg Co Ltd Manufacture of ketazines
US20020013495A1 (en) * 2000-07-19 2002-01-31 Manfred Jautelat Process for preparing hydrazodicarbonamide via ketimines

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197906, Derwent World Patents Index; Class A14, AN 1979-10590B, XP002177131 *
DATABASE WPI Section Ch Week 197945, Derwent World Patents Index; Class E19, AN 1979-81505B, XP002177132 *
DATABASE WPI Section Ch Week 198103, Derwent World Patents Index; Class E19, AN 1981-02954D, XP002177133 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103041861A (zh) * 2013-01-24 2013-04-17 凤台县精华助剂有限公司 用于在水合肼合成反应中的复配催化剂
CN107922191B (zh) * 2015-08-03 2020-10-16 三菱瓦斯化学株式会社 吖嗪键、腙键的切断方法

Also Published As

Publication number Publication date
AU2002229593A1 (en) 2002-06-18
FR2817863A1 (fr) 2002-06-14

Similar Documents

Publication Publication Date Title
FR2722783A1 (fr) Procede de preparation d'acide adipique par oxydattion directe du cyclohexane et recyclage du catalyseur
FR2501673A1 (fr) Procede continu de production d'acide terephtalique
CA3139339C (fr) Procede ameliore de preparation d'hydrate d'hydrazine avec recyclage oxime
FR2862644A1 (fr) Utilisation de ressources renouvelables
EP0061393A1 (fr) Procédé continu de préparation de l'oxyde de propylène
WO2008006977A1 (fr) Procédé de préparation du 2-hydroxy-4-(méthylthio)butyronitrile et de la méthionine
EP0487160B1 (fr) Procédé de synthèse d'azines
WO2002046096A1 (fr) Procede de fabrication d'hydrazine en solution aqueuse
EP1113984B1 (fr) Procede de preparation d'hydrate d'hydrazine
EP0478428B1 (fr) Procédé de préparation d'oxyde borique par hydrolyse du borate de méthyle et sa mise en oeuvre dans l'oxydation d'hydrocarbures saturées en alcools
WO2007034066A1 (fr) Synthese de la methionine a partir de 2-hydroxy-4- (methylthio)butyronitrile, co2, nh3 et h2o en continu et sans isoler de produits intermediaires
EP1086045B1 (fr) Procede de preparation d'hydrate d'hydrazine
EP1086044B1 (fr) Procede de preparation d'hydrate d'hydrazine
CA3139340C (fr) Procede ameliore de preparation d'hydrate d'hydrazine avec recyclage pyrazoline
FR2856400A1 (fr) Procede de fabrication de l'oxime de la methyl ethyl cetone et de l'hydroxylamine base
WO2007034065A1 (fr) Hydrolyse ammoniacale de l'hydantoine de methionine sans catalyseur
WO2003040033A1 (fr) Procede ameliore de fabrication d'hydrate d'hydrazine
FR2505821A1 (fr) Procede de perbromation du phenol et de l'ether diphenylique a temperature elevee, en utilisant du brome comme milieu reactionnel
FR2796377A1 (fr) Procede de fabrication d'acide carboxylique cristallise
BE887021A (fr) Procede de production en continu d'alkylbenzaldehydes
CH429701A (fr) Procédé de production d'isocyanates organiques
WO2002083553A1 (fr) Procede de fabrication de peroxyde d'hydrogene
CH637362A5 (fr) Procede de separation du dinitro-2,4 t-butyl-6 methyl-3 anisole des melanges bruts de synthese le contenant.
BE634676A (fr)
CH400115A (fr) Procédé pour la nitrosation de composés organiques en vue de l'obtention d'isonitrosodérivés

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP