WO2002043672A1 - Feinteilige emulsionen - Google Patents

Feinteilige emulsionen Download PDF

Info

Publication number
WO2002043672A1
WO2002043672A1 PCT/EP2001/013482 EP0113482W WO0243672A1 WO 2002043672 A1 WO2002043672 A1 WO 2002043672A1 EP 0113482 W EP0113482 W EP 0113482W WO 0243672 A1 WO0243672 A1 WO 0243672A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohols
fatty
acid
esters
branched
Prior art date
Application number
PCT/EP2001/013482
Other languages
English (en)
French (fr)
Inventor
Rolf Kawa
Rainer Eskuchen
Achim Ansmann
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Priority to US10/433,114 priority Critical patent/US20040029977A1/en
Priority to JP2002545650A priority patent/JP2005506274A/ja
Priority to EP01994685A priority patent/EP1337225A1/de
Priority to AU2002224862A priority patent/AU2002224862A1/en
Publication of WO2002043672A1 publication Critical patent/WO2002043672A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/39Derivatives containing from 2 to 10 oxyalkylene groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/602Glycosides, e.g. rutin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • A61K8/922Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof of vegetable origin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/017Mixtures of compounds
    • C09K23/018Mixtures of two or more different organic oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/14Derivatives of phosphoric acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/54Silicon compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers

Definitions

  • Fine-particle emulsions Fine-particle emulsions
  • the invention relates to a process for the production of emulsions of a certain particle size by high pressure homogenization and the use of these emulsions in cosmetic and / or pharmaceutical preparations.
  • Emulsions with small particle sizes are becoming increasingly important in their use in cosmetic and pharmaceutical preparations due to their excellent application properties, since phase-stable systems are also available at the lowest viscosities of ⁇ 10 mPas.
  • emulsifier is decisive for the emulsions known from the prior art with small particle or droplet sizes. Finely divided, stable emulsions can currently only be obtained using the phase inversion method, only emulsifier structures containing ethylene oxide being used.
  • the object of the present invention was therefore to provide finely divided emulsions which can be prepared regardless of the choice of emulsifier and, moreover, are particularly phase-stable and low-viscosity and do not have to be prepared by the phase inversion method.
  • the present invention relates to a process for the preparation of emulsions with a particle size of 0.1 to 5 ⁇ m, in which oil bodies with a polarity of at most 5 Debye are mixed with emulsifiers and water and then homogenized under pressure.
  • the invention further relates to the use of emulsions with a particle size of 0.1 to 5 ⁇ m, in which organic bodies with a polarity of at most 5 Debye are mixed with emulsifiers and water and then homogenized under pressure, in cosmetic and / or pharmaceutical preparations.
  • low-viscosity emulsions can be produced which are phase-stable and particularly fine when oil bodies of a certain polarity are subjected to high-pressure homogenization with emulsifiers and water.
  • the invention includes the finding that such finely divided emulsions can be obtained regardless of the emulsifier structure used. It is particularly advantageous that, in contrast to phase inversion technology, no emulsifiers containing ethylene oxide are absolutely necessary in order to obtain particularly finely divided emulsions.
  • the oil bodies to be emulsified are characterized in the present invention in that they have a polarity below 5 debye, preferably 1, 3 to 4.5 debye and in particular 2.5 to 4 debye.
  • the dipole moment of the substances in question can, for example, be based on the formula by Onsager [cf. Seifen- ⁇ le-Fette-Wachsen, 115, 459-61 (1989)] can be calculated, whereby the required material criteria, such as refraction and molecular weight, are known from the literature or can be determined with the usual physical / chemical measuring methods.
  • Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C6-C22 fatty acids with linear or branched C6-C22 fatty alcohols or esters of branched C6-Ci3-carboxylic acids are examples of oil bodies according to the invention with linear or branched C6-C22 fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, myristyl isostearate, myristyl oleate, myristyl behenate, myristyl erucate, cetyl myristate, cetyl palmitate, cetyl stearate, cetyl stylate stearate, cetyl stylate stearate, cetyl stearate, cetyl stearate stearyl stearate, Stearylisostearat, stearyl oleate, stearyl
  • esters of linear C6-C 2 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of C18-C38 alkylhydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols in particular diocyl malates
  • esters of linear and / or branched fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • triglycerides based on C6-C10 fatty acids liquid mono- / di- / triglyceride mixtures based on C6-Ci8 fatty acids
  • esters of C6-C22- Fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids especially benzoic acid, esters of C2-Ci2-dicarboxylic acids with linear or branched alcohols with 1 to 22 carbon atoms or polyols with 2 to 10 carbon atom
  • the oil bodies according to the invention can be present in the process described in amounts of 1 to 70, preferably 10 to 50 and in particular 15 to 30% by weight, based on the final composition.
  • Suitable emulsifiers or dispersants for the purposes of the invention are those which, in combination with the oils of defined polarity previously characterized, occupy the phase interfaces particularly quickly:
  • Partial esters of polyglycerol (average degree of self-condensation 2 to 8), polyethylene glycol (molecular weight 400 to 5000), trimethylolpropane, pentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) as well as polyglucosides saturated (e.g. cellulose) unsaturated, linear or branched fatty acids with 12 to 22 carbon atoms and / or hydroxycarboxylic acids with 3 to 18 carbon atoms and their adducts with 1 to 30 moles of ethylene oxide;
  • Protein fatty acid condensates preferably based on wheat protein
  • Block copolymers e.g. Polyethylene glycol 30 dipolyhydroxystearate;
  • Polymer emulsifiers e.g. Pemulen types (TR-1, TR-2) from Goodrich;
  • Particularly preferred emulsifiers are e.g. B. Cetyl Dimethicone Copolyol (e.g. Abil EM-90), Polyglyceryl-2 Dipolyhydroxystearate (e.g. Dehymuls PGPH), Polyglycerin-3-Diisostearate (e.g. Lameform TGI), Polyglyceryl-4 Isostearate (e.g. Isolan Gl 34), Polyglyceryl-3 Oleates, diisostearoyl polyglyceryl-3 diisostearates (e.g. Isolan PDI), polyglyceryl-3 methylglucose distearate (e.g.
  • B. Cetyl Dimethicone Copolyol e.g. Abil EM-90
  • Polyglyceryl-2 Dipolyhydroxystearate e.g. Dehymuls PGPH
  • Polyglycerin-3-Diisostearate e.g. Lam
  • polyglyceryl-3 beeswax e.g. Gera Bellina
  • polyglyceryl-4 caprates e.g. polyglycerol caprates T2010 / 90
  • Polyglyceryl-3 Cetyl Ether e.g. Chimexane NL
  • Polyglyceryl-3 Distearate e.g. Cremophor GS 32
  • Polyglyceryl Polyricinoleate e.g. Admul WOL 1403
  • Glyceryl Oleate e.g. Monomuls 90-O 18
  • alkyl Glucoside e.g.
  • a particularly effective mixture consists of polyglyceryl-2 dipolyhydroxystearate and lauryl glucoside and glycerin (e.g. Eumulgin VL 75).
  • the emulsifiers according to the invention can be present in the process described in amounts of 0.1 to 20, preferably 1 to 10 and in particular 3 to 7% by weight, based on the preparations. Hochlichhomogenisierunq
  • Homogenization in emulsification technology means the very fine grinding of the disperse phase of a raw emulsion.
  • the droplet size spectrum of the raw emulsion shifts significantly towards smaller drops.
  • the droplet size reduction creates new phase boundaries, which must be quickly occupied by the emulsifier molecules, since the newly formed drop is better stabilized and can be comminuted more easily due to the low interfacial tension.
  • a special form of homogenization is high pressure homogenization. Here the droplets are crushed by the input of mechanical energy in the form of a differential pressure and new phase interfaces are created quickly and in large numbers.
  • the pressure ranges necessary or preferred for high-pressure homogenization depend on the type of homogenizing valve used or the homogenizing nozzle.
  • the emulsions according to the invention are preferably homogenized by means of radial diffusers or counter-jet dispersers as homogenizing nozzles or micromixers.
  • radial diffusers As a homogenizing valve (such as flat, serrated or knife edge nozzles), pressures from 100 to 1500 bar, preferably 200 to 800 bar and in particular 400 to 600 bar.
  • Usual pressures when using counter-jet dispersers (jet dispersers, microfluidizers) as homogenizing nozzles are between 10 and 100 bar. In this case, the pressure range is preferably between 20 and 60 bar.
  • micromixer When producing emulsions using micromixers, a pressure range from 2 to 30, preferably from 5 to 20, bar is customary.
  • the micromixer used (manufacturer Institute for Microsystems Technology Mainz, IMM) is a "static mixer" with a channel width of 25 ⁇ . Due to the narrow channels, two liquid phases are mixed by diffusion. Micromixers have the advantage of producing particularly fine and narrow particle size distributions at low pressures.
  • a pre-emulsion can be produced in a stirred tank, which is then homogenized by dispersion in a so-called one-time passage using a rotor / stator homogenizer and then a high-pressure homogenizer.
  • One-time passage is to be understood here as a procedure in which the entire contents of a container are passed through the homogenizer once another container is being driven. In contrast to the so-called cycle mode, this ensures that each liquid element has passed the homogenizer once. There are no coarse emulsion droplets left which can form the starting point for the breakdown of the emulsion.
  • Rotor-stator systems can be devices such as toothed colloid mills or machines which consist of one or more rotors and stators with through openings in the form of slots or cylindrical or rectangular holes, such as e.g. Cavitron, Supraton, Siefer, Bran + Lübbe, IKA, Ltda, Silverson etc.
  • the advantage of high-pressure homogenization is that small droplets with a very narrow distribution are very easily formed, which is advantageous if low-viscosity emulsions are to be produced in a phase-stable manner. Due to the application-related advantages of emulsions produced by high-pressure homogenization, attempts are increasingly being made to use such homogenizing techniques in the cosmetic industry. Due to the fact that a new interface is formed particularly quickly, high demands must be placed on the emulsifier and carrier phase, since the emulsifiers have to occupy the interface spontaneously and very quickly in order to ensure optimum phase stability.
  • a preferred emulsion has the following composition:
  • the method according to the invention and particle sizes of 0.1 to 5, preferably 1, 4 to 4 and in particular 1.8 to 3 microns are obtained.
  • a diffraction pattern is determined by means of laser diffraction.
  • the particle size distribution is then calculated from the light intensities of these diffraction patterns using the Frauhofer theory using EDP.
  • emulsions can also be used as further auxiliaries and additives, UV light protection filters, mild surfactants, pearlescent waxes, consistency enhancers, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, antioxidants, deodorants, antiperspirants, Antidandruff agents, swelling agents, insect repellents, self-tanners, tyrosine inhibitors (depigmentation agents), hydrotropes, solubilizers, preservatives, perfume oils, dyes and the like.
  • UV light protection filters mild surfactants, pearlescent waxes, consistency enhancers, thickeners, superfatting agents, stabilizers, polymers, silicone compounds, fats, waxes, lecithins, phospholipids, biogenic active ingredients, antioxidants, deodorants, antiperspirants, Antidandruff agents, swelling agents, insect repellents, self-tanners, t
  • UV light protection filters
  • UV light protection factors are to be understood, for example, as organic or liquid substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and release the absorbed energy in the form of longer-wave radiation, for example heat.
  • UVB filters can be oil-soluble or water-soluble. Examples of oil-soluble substances are:
  • 4-aminobenzoic acid derivatives preferably 2-ethyl-hexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, 2-cyano-3,3-phenylcinnamate 2-ethylhexyl 4-methoxycinnamate (oc-tocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-iso-propylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably 4-methoxybenzmalonic acid di-2-ethylhexyl ester;
  • Triazine derivatives such as 2,4,6-trianilino- (p-carbo-2 , -ethyl-1'-hexyloxy) -1,3,5-triazine and octyl triazone, as described in EP 0818450 A1 or Dioctyl butamido triazone (Uvasorb® HEB);
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl
  • typical UV-A filters -4'-methoxydibenzoyl-methane Parsol® 1789
  • 1-phenyl-3- (4'-isopropylphenyl) propane-1,3-dione and enamine compounds as described in DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, e.g.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996) and Parf.Kosm. 3, 11 (1999). surfactants
  • Anionic, nonionic, cationic and / or amphoteric or amphoteric surfactants may be present as surface-active substances, the proportion of which in the compositions is usually about 1 to 70, preferably 5 to 50 and in particular 10 to 30% by weight.
  • anionic surfactants are soaps, alkyl benzene sulfonates, alkane sulfonates, olefin sulfonates, alkyl ether sulfonates, glycerol ether sulfonates, ⁇ -methyl ester sulfonates, sulfo fatty acids, alkyl sulfates, fatty alcohol ether sulfates, glycerin ether sulfates, fatty acid ether sulfates, ether ether sulfates (mon) sulfates, mono- and dialkylsulfosuccinates, mono- and dialkylsulfosuccinamates, sulfotriglycerides, amide soaps, ether carboxylic acids and their salts, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, N-acylamino acids, such as
  • anionic surfactants contain polyglycol ether chains, these can have a conventional, but preferably a narrow, homolog distribution.
  • Typical examples of nonionic surfactants are fatty alcohol polyglycol ethers, alkylphenol polyglycol ethers, fatty acid polyglycol esters, fatty acid amide polyglycol ethers, fatty amine polyglycol ethers, alkoxylated triglycerides, mixed ethers or mixed formals, optionally partially oxidized alk (en) yl oligoglycosidic acid, alkyl glucose amides, and glucoronic acid (glucoric acid) glucoronic acid or glucoronic acid (glucoric acid) glucoronic acid or glucuric acid fatty acid or glucoronic acid or glucoronic acid or glucoronic acid or glucoronic acid or glucoronic acid or glucoronic acid or glucoric acid acid or glucoronic acid or glucoric
  • nonionic surfactants contain polyglycol ether chains, they can have a conventional, but preferably a narrow, homolog distribution.
  • cationic surfactants are quaternary ammonium compounds, such as, for example, dimethyldistearylammonium chloride, and esterquats, in particular quaternized fatty acid trialkanolamine ester salts.
  • amphoteric or zwitterionic surfactants are alkyl betaines, alkyl amidobetaines, aminopropionates, aminoglycinates, imidazolinium betaines and sulfobetaines. The surfactants mentioned are exclusively known compounds.
  • Typical examples of particularly suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamate, -olefinsulfonate, fatty acid gluco fatty acid fatty acids, ether carboboacid fatty acids, ether carboboacetate acids, the latter preferably based on wheat proteins. waxes
  • the waxes include natural waxes, such as Candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walrate, lanolin (wool wax), pretzel fat, ceresin, ozocerite (earth wax), petrolatum, paraffin wax; chemically modified waxes (hard waxes), e.g. Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, e.g. Polyalkylene waxes and polyethylene glycol waxes in question.
  • natural waxes such as Candelilla wax, carnauba wax, japan wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax
  • lecithins In addition to fats, fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins as those glycerophospholipids which are formed from fatty acids, glycerol, phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the professional world as phosphatidylcholines (PC) and follow the general formula,
  • R typically represents linear aliphatic hydrocarbon radicals with 15 to 17 carbon atoms and up to 4 cis double bonds.
  • lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • sphingosines or sphingolipids are also suitable.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxysubstituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 Carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms and
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates (eg carbopols) ® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol-
  • Kelco Types of Kelco; Seppic Sepigel types; Salcare types from Allied Colloids
  • polyacrylamides polymers, polyvinyl alcohol and polyvinylpyrrolidone
  • surfactants such as ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with narrowed homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate can be used.
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as a quaternary ternated hydroxyethyl cellulose, which is available from Amerchol under the name Polymer JR 400®, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF), condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as, for example, amodimethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylene triamine / sand derarodinoleic acid / cart
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their crosslinked polyols and their esters, polyols and their polyols , Acrylamidopropyltrimethylammonium chloride / acrylate copolymers, octylacrylamide / methyl methacrylate / tert.butylaminoethyl methacrylate / 2-hydroxyproyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, vinylpyrrolidone / dimethylaminoethylroloyl methacrylate and
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976). antioxidants
  • Antioxidants can also be added which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples of this are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-camosine and their derivatives (e.g. Anserine), carotenoids, carotenes (e.g. carotene, ß-carotene, lycopene) and their derivatives, chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g.
  • thiols e.g. thioredoxin, glutathione, cysteine , Cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl,
  • Cholesteryl and glyceryl esters and their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and derivatives thereof (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) and sulfoximine compounds (for example Buthioninsulfoximine, homocysteine sulfoximine, Butioninsulfone, penta-, hexa-, Heptathioninsulfoximin) in very low tolerable doses (e.g. pmol to ⁇ mol / kg), furthermore (metal) chelators (e.g.
  • ⁇ -hydroxy fatty acids palmitic acid, phytic acid, lactoferin
  • ⁇ -hydroxy acids e.g. citric acid, lactic acid, malic acid
  • humic acid bile acid
  • Bile extracts bilirubin
  • biliverdin EDTA
  • EGTA EGTA and their derivatives
  • unsaturated fatty acids and their derivatives e.g. ⁇ -linolenic acid, linoleic acid, oleic acid
  • folic acid and their derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g.
  • ZnS ⁇ 4 selenium and its derivatives (eg selenium methionine), stilbenes and their derivatives (eg stilbene oxide, trans-stilbene oxide) and the derivatives suitable according to the invention (salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids) of these active substances ,
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes. swelling agent
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Dialcohol amines such as diethanolamine or 2-amino-1, 3-propanediol. preservative
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Regulation.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenylglycinate, allyl cyclohexyl stylyl propylalionate, propyl ationate,
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldeh
  • fragrance oils which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • the dyes which can be used are the substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • Both organic and inorganic fillers can be used.
  • Talc, mica (e.g. Sericite), barium sulfates, polyethylenes, polytetrafluoroethylenes, nylon powder, and polymethacrylate powder (PMMA) are preferably used.
  • the total proportion of auxiliaries and additives can be 1 to 80, preferably 5 to 50 and in particular 7 to 10% by weight, based on the composition.
  • the agents can be prepared by customary cold or hot emulsions.
  • Emulsifier 1.0 or 4.5% by weight
  • Oil body emulsifier:
  • Oils 1 to 3 are according to the invention, oil No. 4 serves as a comparison
  • Evaluation criteria To determine the particle size, a diffraction pattern is determined using laser diffraction. The particle size distribution is then calculated from the light intensities of these diffraction patterns using the Frauhofer theory (Sympatec Helos)
  • Homogenizing valve radial diffuser (flat nozzle)
  • Viscosity Höppler, Kugel 1, Cocoglycerides 1.4 ⁇ m 20 ° C: 4.5 mPas Castor Oil 2.9 ⁇ m Myreth-3 Myristate no emulsion formation (no storage tests)
  • Viscosity (Höppler, Kugel 1, Cocoglycerides 2.3 ⁇ m 20 ° C): 2 mPas Castor Oil 4.5 ⁇ m
  • the particle size could not be determined after storage at 40 ° C. since the emulsions were already separated after 24 hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Colloid Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur Herstellung von Emulsionen einer Teilchengrösse von 0,1 bis 5 νm, bei dem man Ölkörper einer Polarität von höchstens 5 Debye mit Emulgatoren und Wasser mischt und anschliessend unter Druck homogenisiert.

Description

Feinteiiige Emulsionen
Gebiet der Erfindung
Die Erfindung befindet ein Verfahren zur Herstellung von Emulsionen einer bestimmten Teilchengrösse durch Hochdruckhomogenisierung und die Verwendung dieser Emulsionen in kosmetischen und/oder pharmazeutischen Zubereitungen.
Stand der Technik
Emulsionen mit geringen Teilchengrössen gewinnen in ihrer Anwendung in kosmetischen und pharmazeutischen Zubereitungen aufgrund der hervorragenden anwendungstechnischen Eigenschaften zunehmend an Bedeutung, da auch bei niedrigsten Viskositäten von < 10 mPas phasenstabile Systeme vorliegen.
Für die aus dem Stand der Technik bekannten Emulsionen mit geringen Teilchen- bzw. Tröpfchen- grössen ist die Wahl des Emulgators entscheidend. Feinteiiige, stabile Emulsionen können derzeitig nur nach der Phaseninversionsmethode erhalten werden, wobei ausschließlich ethylenoxidhaltige Emulga- torstrukturen eingesetzt werden.
Die Aufgabe der vorliegenden Erfindung hat somit darin bestanden, feinteilig Emulsionen zur Verfügung zu stellen, die sich unabhängig von der Wahl des Emulgatorsherstellen lassen und darüber hinaus besonders phasenstabil und niedrigviskos sind und nicht nach der Phaseninversionsmethode hergestellt werden müssen.
Beschreibung der Erfindung
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung von Emulsionen einer Teilchengrösse von 0,1 bis 5 μm, bei dem man Ölkörper einer Polarität von höchstens 5 Debye mit Emulgatoren und Wasser mischt und anschliessend unter Druck homogenisiert. Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von Emulsionen einer Teilchengrösse von 0,1 bis 5 μm, bei dem man Öikörper einer Polarität von höchstens 5 Debye mit Emulgatoren und Wasser mischt und anschliessend unter Druck homogenisiert, in kosmetischen und/oder pharmazeutischen Zubereitungen. Überraschenderweise wurde gefunden, dass sich niedrigviskose Emulsionen herstellen lassen, die phasenstabil und besonders feinteilig sind, wenn man Olkörper einer bestimmten Polarität mit Emulgatoren und Wasser einer Hochdruckhomogenisierung unterwirft. Die Erfindung schliesst die Erkenntnis mit ein, dass so unabhängig von der eingesetzten Emulgatorstruktur derartig feinteiiige Emulsionen erhalten werden können. Besonders vorteilhaft ist, dass im Gegensatz zur Phaseninversionstechnologie keine ethylenoxidhaltigen Emulgatoren zwingend erforderlich sind, um besonders feinteiiige Emulsionen zu erhalten.
Olkörper
Die zu emulgierenden Olkörper sind in der vorliegenden Erfindung dadurch gekennzeichnet, dass sie eine Polarität unterhalb von 5 Debye, vorzugsweise 1 ,3 bis 4,5 Debye und insbesondere 2,5 bis 4 Debye aufweisen. Das Dipolmoment der in Frage kommenden Stoffe kann beispielsweise nach der Formel von Onsager [vgl. Seifen-Öle-Fette-Wachse, 115, 459-61 (1989)] berechnet werden, wobei die erforderlichen Stoffkriterien, wie Refraktion und Molmasse literaturbekannt sind oder mit den üblichen physikalisch / chemischen Meßmethoden bestimmt werden können. Als erfindungsgemässe Olkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoho- len bzw. Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoho- len, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristyl- behenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbe- henat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stea- rylbehenat, Stearylerucat, Isostearylmristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, sostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleyl- isostearat, Oleyloleat, Oleylbehenat, leylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Be- henylisostearat, Behenyloleat, Behnylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Eru- cylstearat, Erucylisostearat, Erucyloleat, Ercylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von C18-C38- Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioc- tylmalate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-C10- Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis C6-Ci8-Fettsäuren, Ester von C6-C22- Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, ver- zweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbo- nate, Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Diethyhexylnaphthalate (HallBrite TQ), Ester der Benzoesäure mit linearen und/oder verzweigten Cβ- C22-Alkoholen (z.B. Finsolv TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkyl- ether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethicontypen u.a.) und/oder aliphatische bzw. naphthenische Kohlen-wasserstoffe, wie z.B. Mineralöl, Vaseline, Squalan, Squalen oder Dial- kylcyclohexane in Betracht.
Die erfindungsgemässen Olkörper können im beschriebenen Verfahren in Mengen von 1 bis 70, vorzugsweise 10 bis 50 und insbesondere 15 bis 30 Gew.-% - bezogen auf die Endzusammensetzung - enthalten sein.
Emulgatoren
Als Emulgatoren bzw. Dispergatoren kommen im Sinne der Erfindung solche in Frage, die in Kombination mit den zuvor charakterisierten Ölen definierter Polarität besonders schnell die Phasengrenzflächen belegen:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethylenglycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Proteinfettsäurekondensate, vorzugsweise auf Basis von Weizenprotein
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-1 ,TR-2) von Goodrich;
> Polyalkylenglycole sowie
> Glycerincarbonat.
Besonders bevorzugte Emulgatoren sind z. B. Cetyl Dimethicone Copolyol (z.B. Abil EM-90), Polyglyce- ryl-2 Dipolyhydroxystearate (z.B. Dehymuls PGPH), Polyglycerin-3-Diisostearate (z.B. Lameform TGI), Polyglyceryl-4 Isostearate (z.B. Isolan Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Di- isostearate (z.B. Isolan PDI), Polyglyceryl-3 Methylglucose Distearate (z.B. Tego Care 450), Polyglyce- ryl-3 Beeswax (z.B. Gera Bellina), Polyglyceryl-4 Caprate (z.B. Polyglycerol Caprate T2010/90), Poly- glyceryl-3 Cetyl Ether (z.B. Chimexane NL), Polyglyceryl-3 Distearate (z. B. Cremophor GS 32) und Polyglyceryl Polyricinoleate (z.B. Admul WOL 1403), Glyceryl Oleate (z.B. Monomuls 90-O 18), Alkyl Glucoside (z.B. Plantacare 1200, Emulgade PL 68/50, Montanov 68, Tego Care CG 90, Tego Glucosid L 55), Methyl Glucose Isostearate (z.B. Tego Care IS), Methyl Glucose Sesquistearate (Tego Care PS), Sodium Cocoyl Hydrolyzed Wheat Protein (z.B. Gluadin WK), Potassium Cetyl Phosphate (z.B. Amphi- sol K, Crodafos CKP), Sodium Alkylsulfate (z.B. Lanette E), Sucrose Ester (z.B. Crodesta F-10, F-20, F- 50, F-70, F-110, F-160, SL-40), ethoxylierte und/oder propoxylierte Fettalkohole Fettsäuren, Rizinusöle bzw. hydrierte Rizinusöle (z.B. Eumulgin B2, B2, B3, L, HRE 40, HRE 60, RO 40, Cremophor HRE 40, HRE 60, L, WO 7, Dehymuls HRE 7, Arlacel 989), PEG-30 Dipolyhydroxystearate, Sorbitan Ester, Sor- bitan Ester ethoxyliert und/oder propoxyliert sowie deren Gemische. Ein besonders effektives Gemisch besteht aus Polyglyceryl-2 Dipolyhydroxystearate und Lauryl Glucoside und Glycerin (z.B. Eumulgin VL 75).
Die erfindungsgemässen Emulgatoren können im beschriebenen Verfahren in Mengen von 0,1 bis 20, vorzugsweise 1 bis 10 und insbesondere 3 bis 7 Gew.-% - bezogen auf die Zubereitungen - enthalten sein. Hochdruckhomogenisierunq
Unter Homogenisieren versteht man in der Emulgiertechnik das Feinstzerkleinern der dispersen Phase einer Rohemulsion. Dabei verschiebt sich das Tröpfchengrößenspektrum der Rohemulsion deutlich hin zu kleineren Tropfen. Durch die Tropfenzerkleinerung entstehen neue Phasengrenzen, die durch Emul- gatormoleküle schnell vollständig belegt werden müssen, da so der neu gebildete Tropfen besser stabilisiert wird und wegen der geringen Grenzflächenspannung leichter weiter zerkleinert werden kann. Eine besondere Form der Homogenisierung ist die Hochdruckhomogenisierung. Hier werden durch den Eintrag von mechanischer Energie in Form eines Differenzdruckes die Tropfen zerkleinert und so neue Phasengrenzflächen schnell und in großer Anzahl geschaffen.
Die beim Hochdruckhomogenisieren notwendigen bzw. bevorzugten Druckbereiche sind abhängig von der Art des verwendeten Homogenisierventils bzw. der Homogenisierdüse. Vorzugsweise werden die erfindungsgemässen Emulsionen mittels Radialdiffusoren oder Gegenstrahldispergatoren als Homogenisierdüsen oder Micromischern homogenisiert.
• Beim Einsatz von Radialdiffusoren als Homogenisierventil (wie z.B. Flach-, Zacken- oder Messerkantendüsen) werden Drucke von 100 bis 1500 bar, vorzugsweise 200 bis 800 bar und insbesondere 400 bis 600 bar.
• Übliche Drucke bei der Verwendung von Gegenstrahldispergatoren (Strahldispergatoren, Micro- fluidizer) als Homogenisierdüsen liegen zwischen 10 und 100 bar. Vorzugsweise liegt der Druckbereich in diesem Fall zwischen 20 und 60 bar.
• Bei Emulsionsherstellung mittels Micromischern ist ein Druckbereich von 2 bis 30, vorzugsweise von 5 bis 20 bar üblich. Bei dem verwendeten Mikromischer (Hersteller Institut für Mikrosystem- technik Mainz, IMM) handelt es sich um einen "statischen Mischer" mit einer Kanalweite von 25 μ. Aufgrund der engen Kanäle erfolgt die Vermischung zweier flüssiger Phasen durch Diffusion. Mikromischer haben den Vorteil bei geringen Drucken besonders schonend feinteiiige und enge Teilchengrößenverteilungen zu erzeugen.
Um feinteiiige Emulsionen mit einer monomodalen und engen Teilchengrößenverteilung zu erzielen, kann es vorteilhaft sein, verschiedene Emulgierverfahren miteinander zu kombinieren. In einem Rührbehälter kann z.B. eine Voremulsion hergestellt werden, die dann durch Dispergierung in einer sogenannten Einmalpassage mittels eines Rotor/Stator Homogenisator und anschließend durch einen Hochdruckhomogenisator homogenisiert werden. Unter Einmalpassage ist hier eine Verfahrensweise zu verstehen, in welcher der gesamte Inhalt eines Behälters einmal durch den Homogenisierapparat in einen anderen Behälter gefahren wird. Im Gegensatz zur sog. Kreislauffahrweise ist so gewährleistet, dass jedes Flüssigkeitselement einmal den Homogenisierapparat passiert hat. Es bleiben keine groben Emulsionströpfchen zurück, die den Ausgangspunkt für den Zerfall der Emulsion bilden können.
Rotor-Stator-Systeme können Apparate sein wie Zahnkolloidmühlen oder Maschinen die aus einen oder mehreren Rotoren und Statoren mit Durchtrittsöffnungen in Form von Schlitzen oder zylindrischen oder rechteckigen Löchern bestehen, wie z.B. vom Typ Cavitron, Supraton, Siefer, Bran+Lübbe, IKA, Komma, Silverson usw.
Der Vorteil der Hochdruckhomogenisierung liegt darin, dass sehr leicht kleine Tröpfchen mit einer sehr enger Verteilung gebildet werden, was vorteilhaft ist, wenn niedrigviskose Emulsionen phasenstabil hergestellt werden sollen. Aufgrund der anwendungstechnischen Vorteile einer durch Hochdruckhomogenisierung hergestellten Emulsionen wird zunehmend auch in der kosmetischen Industrie versucht derartige Homogenisiertechniken einzusetzen. Bedingt durch die Tatsache, dass eine neue Grenzfläche besonders schnell gebildet wird, sind hohe Anforderungen an Emulgator und Trägerphase zu stellen, da die Emulgatoren spontan und sehr schnell die Grenzfläche belegen müssen, um eine optimale Phasenstabilität sicher zu stellen. Es wurde gefunden, dass die Geschwindigkeit der Emulgatoren bei der Belegung der Grenzfläche deutlich gesteigert werden kann, wenn die zu emulgierenden Olkörper eine Polarität aufweisen, die unter 5 Debey liegt. Das Dipolmoment der in Frage kommenden Stoffe kann beispielsweise nach der Formel von Onsager [vgl. Seifen-Öle-Fette-Wachse, 115, 459-61 (1989)] berechnet werden.
Kosmetische Zubereitungen
Durch das erfindungsgemässe Verfahren werden besonders feinteiiige Emulsionen mit enger Teilchen- grössenverteilung erhalten. Eine bevorzugte Emulsion hat die folgende Zusammensetzung:
(a) 1 bis 70, vorzugsweise 10 bis 50 und insbesondere 15 bis 30 Gew.-% Olkörper einer Polarität von höchstens 5 Debye,
(b) 0,1 bis 20, vorzugsweise 1 bis 10 und insbesondere 3 bis 7 Gew.-% Emulgatoren und
(c) 10 bis 90, vorzugsweise 20 bis 70 und insbesondere 30 bis 50 Wasser.
Die dem erfindungsgemässen Verfahren und werden Partikelgrössen von 0,1 bis 5, vorzugsweise 1 ,4 bis 4 und insbesondere 1,8 bis 3 μm erhalten. Mittels Laserbeugung wird ein Beugungsmuster ermittelt. Aus den Lichtintensitäten dieser Beugungsmuster wird dann mittels der Frauhofer-Theorie unter Einsatz der EDV die Teilchengrößenverteilung errechnet. Diese Emulsionen können ferner als weitere Hilfs- und Zusatzstoffe UV-Lichtschutzfilter, milde Tenside, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholipide, biogene Wirkstoffe, Antioxidantien, Deo- dorantien, Antitranspirantien, Antischuppenmittel, Quellmittel, Insektenrepellentien, Selbstbräuner, Ty- rosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Par fümöle, Farbstoffe und dergleichen enthalten.
UV-Lichtschutzfilter
Unter. UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzy- liden)campher wie in der EP 0693471 B1 beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethyl-hexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoe-säureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxy-zimtsäurepro- pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Oc- tocrylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-iso-propylben- zylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me- thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
> Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexyl-ester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2,-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Tria- zon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
> Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzo-phenon-5- sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bornylidenme- thyl)benzolsulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl- methan (Parsol® 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z.B. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol® 1789) und 2-Cyano-3,3- phenylzimtsäure-2-ethyl-hexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimtsäurepropylester und/oder 4-Methoxy- zimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hy- drophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikro- nisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) sowie Parf.Kosm.3, 11 (1999) zu entnehmen. Tenside
Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt. Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glyce- rinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glyce- rinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäu- reamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotri- glyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenbasis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycolether- ketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Al- kylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycol- ether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolamin- estersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylami- dobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfac- tants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettal- koholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, -Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine, Amphoacetale und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen. Wachse
Als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozoke- rit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet und folgen der allgemeinen Formel,
Figure imgf000011_0001
wobei R typischerweise für lineare aliphatische Kohlenwasserstoffreste mit 15 bis 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen steht. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn-glycerin-3- phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Perlglanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hyd roxysu bstituie rte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensaure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzqeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett- säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fett- säure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-
Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäuregly- ceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettungsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäureal- kanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine qua- ternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinyl- pyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polygly- colen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxy- propyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl- diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quatemiertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinyl- acetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, un- vernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproyl- methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cos- metics & Toiletries Vol. 108, Mai 1993, Seite 95ff aufgeführt.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al- kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethico- nen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976). Antioxidantien
Es können auch Antioxidantien zugesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocanin- säure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Camosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. -Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogen- säure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-,
Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. -Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactofer- rin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbyl- acetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäu- re, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnSθ4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Biogene Wirkstoffe
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu- ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen. Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Selbstbräuner und Depiqmentierungsmittel
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.
Hvdrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethy leng lycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol. Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclo- hexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylfor- miat, Ethylmethylphenylglycinat, Ally I cyclohexy I propion at, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, -Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclo- vertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Ver- tofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt. Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Füllstoffe
Es kommen sowohl organische als auch anorganische Füllstoffe in Frage. Vorzusgweise werden Talk, Mica (z.B. Sericite), Barium Sulfate, Polyethylene, Polytetrafluoroethylene, Nylon Puder, und Polyme- thylmethacrilat Puder (PMMA) eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 80, vorzugsweise 5 bis 50 und insbesondere 7 bis 10 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißemulgierungen.
Beispiele
Prüfrezeotur:
Olkörper 16.0 Gew.-%
Emulgator 1.0 oder 4.5 Gew.-%
Wasser ad 100 Gew.-%
Olkörper: Emulgator:
1. Dicaprylyl Carbonate (1,5 Debey) Ceteareth - 20 *
2. Cocoglycerides (2.5 Debey) Eumulgin VL 75 (INCI s. Text)**
3. Castor Oil (4.2 Debey)
4. Myreth-3 Myristate (5.5 Debey) * 1.0 Gew.-% ** 4.5 Gew.-%
Die Öle 1 bis 3 sind erfindungsgemäß, das Öl Nr. 4 dient als Vergleich
Bewertungskriterien: Zur Bestimmung der Partikelgröße wird mittels Laserbeugung ein Beugungsmuster ermittelt. Aus den Lichtintensitäten dieser Beugungsmuster wird dann mittels der Frauhofer-Theorie die Teilchengrößenverteilung errechnet (Sym- patec Helos)
• direkt nach Herstellung
• nach 2 Wochen bei 40 °C
I. Verfahren (erfindungsgemäß):
• Herstellen einer Voremulsion in einem Rührbehälter
• Homogenisierung der Voremulsion im Rotor/Stator-Homogenisiersystem (Eimalpassage) Hochdruckhomogenisierung mittels eines LAB 60 (Fa. APV Gaulin)
• Homogenisierventil: Radialdiffusor (Flachdüse)
• Druck: 500 bar Ergebnisse:
A. Partikelgröße direkt nach Herstellung als x90-Wert, d.h. 90 % der Teilchen sind kleiner als
Ceteareth-20 1.0 Gew.-%
Dicaprylyl Carbonate 1.7 μm
Viskosität (Höppler, Kugel 1 , Cocoglycerides 1.4 μm 20 °C): 4,5 mPas Castor Oil 2.9 μm Myreth-3 Myristate keine Emulsionsbildung (keine Lagerversuche)
Eumulgin VL 75 4.5 Gew.-%
Dicaprylyl Carbonate 1.8 Cocoglycerides 2.1 Castor Oil 2.7
Figure imgf000019_0001
Myreth-3 Myristate keine Emulsionsbildung (keine Lagerversuche)
B. Partikelgröße direkt nach 2 Wochen bei 40 °C. als x90-Wert. d.h. 90 % der Teilchen sind kleiner als
Ceteareth-20 1.0 Gew.-%
Dicaprylyl Carbonate 1.5 μm Cocoglycerides 1.4 μm Castor Oil 3.2 μm
Figure imgf000019_0002
Eumulgin VL 75 4.5 Gew.-%
Dicaprylyl Carbonate 3.8 μm
Viskosität (Höppler, Kugel 1 , Cocoglycerides 2.3 μm 20°C): 2 mPas Castor Oil 4.5 μm
Im Falle der erfindungsgemäßen Öle konnte keine Phasentrennung beobachtet werden.
II. Verfahren nach dem Stand der Technik als Vergleich:
• Herstellen einer Voremulsion in einem Rührbehälter • Homogenisierung der Voremulsion im Rotor/Stator-Homogenisiersystem (Eimalpassage) Ergebnis:
A. Partikelgröße direkt nach Herstellung als x90-Wert d.h.90 % der Teilchen sind kleiner als
Cetearef/7-20 1.0 Gew.-%
Dicaprylyl Carbonate 9 μm Cocoglycerides 10 μm Viskosität (Höppler, Kugel 1, Castor Oil 15 μm 20°C): 6,8 mPas Myreth-3 Myristate keine Emulsionsbildung (keine Lagerversuche)
Eumulgin VL 75 4.5 Gew.-%
Dicaprylyl Carbonate 11 μm Cocoglycerides 8 μm Castor Oil 14 μm
Figure imgf000020_0001
Myreth-3 Myristate keine Emulsionsbildung (keine Lagerversuche)
Die Bestimmung der Partikelgröße nach Lagerung bei 40 °C konnte nicht durchgeführt werden, da nach 24 h die Emulsionen bereits getrennt waren.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Emulsionen einer Teilchengrösse von 0,1 bis 5 μm, bei dem man Olkörper einer Polarität von höchstens 5 Debye mit Emulgatoren und Wasser mischt und anschliessend unter Druck homogenisiert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man Olkörper einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Guerbetalkoholen auf Basis von Fettalkoholen mit 6 bis 18, Estern von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Estern von verzweigten C6-Ci3-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalko- holen, Estern von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, Estern von Ci8-C3β-Alkyl- hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, Estern von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen und/oder Guerbetalkoholen, Trigly- ceriden auf Basis C6-Cιo-Fettsäuren, flüssigen Mono-/Di-/Triglyceridmischungen auf Basis von C0- Ci8-Fettsäuren, Estern von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, Estern von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzlichen Ölen, verzweigten primären Alkoholen, substituierten Cyclohexanen, linearen und verzweigten C6-C22-Fet.alkoholcarbona.en, Guerbetcarbonaten auf Basis von Fettalkoholen mit 6 bis 18, Diethyhexylnaphthalaten, Estern der Benzoesäure mit linearen und/oder verzweigten Cβ- C22-Alkoholen, linearen oder verzweigten, symmetrischen oder unsymmetrischen Dialkylethern mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatischen bzw. naphthenischen Kohlenwasserstoffen.
3. Verfahren nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, dass man Emulgatoren einsetzt, die ausgewählt sind aus der Gruppe, die gebildet wird von Cetyl Dimethicone Copolyol, Polyglyceryl-2 Dipolyhydroxystearate, Polyglycerin-3-Diisostearate, Polyglyceryl-4 Isostearate, Po- lyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate, Polyglyceryl-3 Methylglucose Distearate, Polyglyceryl-3 Beeswax, Polyglyceryl-4 Caprate, Polyglyceryl-3 Cetyl Ether, Polyglyceryl- 3 Distearate und Polyglyceryl Polyricinoleate, Glyceryl Oleate, Alkyl, Methyl Glucose Isostearate, Methyl Glucose Sesquistearate, Sodium Cocoyl Hydrolyzed Wheat Protein, Potassium Cetyl Phosphate, Sodium Alkylsulfate, Sucrose Ester, ethoxylierte und/oder propoxylierte Fettalkohole Fettsäuren, Rizinusöle bzw. hydrierte Rizinusöle, PEG-30 Dipolyhydroxystearate, Sorbitan Ester, Sor- bitan Ester ethoxyliert und/oder propoxyliert sowie deren Gemische.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man bei Drücken von 2 bis 1500 bar homogenisiert.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man mittels Radialdiffusoren oder Gegenstrahldispergatoren als Homogenisierdüsen oder Micromischern homogenisiert wird.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man mittels Radialdiffusoren als Homogenisierdüsen bei Drücken von 100 bis 1500 bar homogenisiert wird.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man mittels Gegenstrahldispergatoren als Homogenisierdüsen bei Drücken von 10 bis 100 bar homogenisiert wird.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man mittels Micromischern bei Drücken von 2 bis 30 bar homogenisiert wird.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man vor der Hochdruckhomogenisierung eine Dispergierung mittels eines Rotor/Stator Homogenisators durchgeführt wird.
10. Verwendung von Emulsionen einer Teilchengrösse von 0,1 bis 5 μm, bei dem man Olkörper einer Polarität von höchstens 5 Debye mit Emulgatoren und Wasser mischt und anschliessend unter Druck homogenisiert, in kosmetischen und/oder pharmazeutischen Zubereitungen.
PCT/EP2001/013482 2000-11-30 2001-11-21 Feinteilige emulsionen WO2002043672A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/433,114 US20040029977A1 (en) 2000-11-30 2001-11-21 Fine-grained emulsions
JP2002545650A JP2005506274A (ja) 2000-11-30 2001-11-21 微粒状エマルション
EP01994685A EP1337225A1 (de) 2000-11-30 2001-11-21 Feinteilige emulsionen
AU2002224862A AU2002224862A1 (en) 2000-11-30 2001-11-21 Fine-grained emulsions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10059430.1 2000-11-30
DE10059430A DE10059430A1 (de) 2000-11-30 2000-11-30 Feinteilige Emulsionen

Publications (1)

Publication Number Publication Date
WO2002043672A1 true WO2002043672A1 (de) 2002-06-06

Family

ID=7665226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013482 WO2002043672A1 (de) 2000-11-30 2001-11-21 Feinteilige emulsionen

Country Status (6)

Country Link
US (1) US20040029977A1 (de)
EP (1) EP1337225A1 (de)
JP (1) JP2005506274A (de)
AU (1) AU2002224862A1 (de)
DE (1) DE10059430A1 (de)
WO (1) WO2002043672A1 (de)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005046841A (ja) * 2003-07-28 2005-02-24 Cognis Deutschland Gmbh & Co Kg 乳化剤組合せ、乳化剤組合せを含有するエマルジョンおよびその製造法
WO2006000360A1 (de) * 2004-06-29 2006-01-05 Cognis Ip Management Gmbh Hochkonzentrierte selbstemulgierende emulsiongrundlagen zur herstellung von öl in wasser emulsionen
JP2006516029A (ja) * 2003-01-08 2006-06-15 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ワックス分散液
JP2006517205A (ja) * 2003-01-08 2006-07-20 ジョンソン・アンド・ジョンソン・ゲーエムベーハー シート材およびワックス分散物を含む製品
JP2006521410A (ja) * 2003-01-08 2006-09-21 ジョンソン・アンド・ジョンソン・ゲーエムベーハー アプリケータおよびワックス分散物を含む製品
DE102005026035A1 (de) * 2005-06-03 2006-12-07 Beiersdorf Ag Kosmetische Zubereitungen mit einem Gehalt an einem besonderen Anisfruchtextrakt und Füllstoffen
WO2009079995A1 (de) * 2007-12-24 2009-07-02 Sasol Germany Gmbh Verfahren zur herstellung von wachs in wasser dispersionen aus selbstemulgierenden gelkonzentraten
US20110033413A1 (en) * 2007-12-24 2011-02-10 Klaus Kwetkat Method for producing oil-in-water emulsions from self-emulsifying gel concentrates
EP2698195A1 (de) * 2012-08-15 2014-02-19 The Procter & Gamble Company Verfahren zur Herstellung eines kristallinen Strukturbildners Gebiet der Erfindung
US8678184B2 (en) 2009-12-03 2014-03-25 Novartis Ag Methods for producing vaccine adjuvants
US8778275B2 (en) 2009-12-03 2014-07-15 Novartis Ag Methods for producing vaccine adjuvants
US8871816B2 (en) 2009-12-03 2014-10-28 Novartis Ag Methods for producing vaccine adjuvants
US8895629B2 (en) 2009-12-03 2014-11-25 Novartis Ag Circulation of components during homogenization of emulsions
USRE46906E1 (en) 2009-12-03 2018-06-26 Novartis Ag Methods for producing vaccine adjuvants
US10213383B2 (en) 2009-12-03 2019-02-26 Novartis Ag Hydrophilic filtration during manufacture of vaccine adjuvants
WO2019149565A1 (de) * 2018-02-02 2019-08-08 Beiersdorf Ag O/w-emulsion mit photochemisch stabilem 4-(tert.butyl)-4'-methoxydibenzoylmethan in öltröpfchen kleiner 8 mikrometer

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216947B4 (de) * 2002-04-17 2007-10-04 Ehrfeld Mikrotechnik Bts Gmbh Verfahren zum Homogenisieren von Emulsionen
US7307104B2 (en) * 2003-05-16 2007-12-11 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
WO2006039568A1 (en) * 2004-10-01 2006-04-13 Velocys Inc. Multiphase mixing process using microchannel process technology
EP1830952A2 (de) * 2004-11-17 2007-09-12 Velocys Inc. Verfarhen zur herstellung oder behandlung einer emulsion unter verwendung von mikrokanaltechnologie
EP1930500A1 (de) * 2006-12-08 2008-06-11 Cognis IP Management GmbH Emulsionen zur Avivage von Textilien und Papier
DE102007039007A1 (de) * 2007-08-14 2009-02-19 Beiersdorf Ag Verfahren zur Herstellung von transparenten oder transluzenten, silikonölhaltigen Emulsionen
JP5624982B2 (ja) 2008-07-16 2014-11-12 トリュープ エムルジオンスヒェミー アーゲー 熱可塑性分散体の無溶剤製造法
CA2756685C (en) * 2009-04-15 2019-12-24 Oxygen Biotherapeutics, Inc. Emulsions of perfluorocarbons
US9720899B1 (en) 2011-01-07 2017-08-01 Narrative Science, Inc. Automatic generation of narratives from data using communication goals and narrative analytics
WO2012139818A1 (en) 2011-04-12 2012-10-18 Unilever Plc Structured aqueous surfactant systems
US20140031437A1 (en) * 2011-04-12 2014-01-30 Christopher Smith Oil-in-water emulsions
FR3017295B1 (fr) * 2014-02-07 2018-01-12 Guerbet Composition destinee a vectoriser un agent anticancereux
US11238090B1 (en) 2015-11-02 2022-02-01 Narrative Science Inc. Applied artificial intelligence technology for using narrative analytics to automatically generate narratives from visualization data
US11922344B2 (en) 2014-10-22 2024-03-05 Narrative Science Llc Automatic generation of narratives from data using communication goals and narrative analytics
US11341338B1 (en) 2016-08-31 2022-05-24 Narrative Science Inc. Applied artificial intelligence technology for interactively using narrative analytics to focus and control visualizations of data
US11288328B2 (en) 2014-10-22 2022-03-29 Narrative Science Inc. Interactive and conversational data exploration
FR3039767B1 (fr) 2015-08-04 2017-09-08 Guerbet Sa Composition destinee a vectoriser un agent anticancereux
US11222184B1 (en) 2015-11-02 2022-01-11 Narrative Science Inc. Applied artificial intelligence technology for using narrative analytics to automatically generate narratives from bar charts
US11232268B1 (en) 2015-11-02 2022-01-25 Narrative Science Inc. Applied artificial intelligence technology for using narrative analytics to automatically generate narratives from line charts
US11170038B1 (en) 2015-11-02 2021-11-09 Narrative Science Inc. Applied artificial intelligence technology for using narrative analytics to automatically generate narratives from multiple visualizations
DE102018205493A1 (de) * 2018-04-11 2019-10-17 B. Braun Melsungen Ag Verfahren zur Herstellung einer O/W-Emulsion, O/W-Emulsion und Anlage zur Herstellung einer O/W-Emulsion
US10706236B1 (en) 2018-06-28 2020-07-07 Narrative Science Inc. Applied artificial intelligence technology for using natural language processing and concept expression templates to train a natural language generation system
CN110585990B (zh) * 2019-08-20 2021-10-15 浙江工业大学 一种绿色复合物乳化剂及其制备方法
CN113322108A (zh) * 2021-05-25 2021-08-31 大容新能源科技(深圳)有限公司 一种微乳化柴油

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753340A2 (de) * 1995-07-10 1997-01-15 M Technique Co., Ltd. Verfahren zur Herstellung von Mikrokapseln unter Verwendung von Phospholipiden
EP0768114A2 (de) * 1995-10-13 1997-04-16 Boehringer Ingelheim Pharmaceuticals Inc. Verfahren und Vorrichtung zum Homogenisieren von Aerosolformulierungen
US5994414A (en) * 1997-04-28 1999-11-30 Avon Products, Inc. Water-thin emulsion formed by high pressure homogenization process
DE29916051U1 (de) * 1999-09-06 2000-03-09 Kunina Ella Dispersionsmischer
DE19843876A1 (de) * 1998-09-25 2000-04-13 Cognis Deutschland Gmbh Selbstemulgierende W/O-Emulsionsgrundlagen
DE19904329A1 (de) * 1999-01-28 2000-08-03 Cognis Deutschland Gmbh Kosmetische und/oder pharmazeutische Zubereitungen
WO2000061275A2 (de) * 1999-04-08 2000-10-19 Bernd Penth Verfahren und vorrichtung zur durchführung chemischer und physikalischer prozesse

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE9303281D0 (sv) * 1993-10-07 1993-10-07 Astra Ab New formulation
FR2743004B1 (fr) * 1996-01-03 1999-10-01 Oreal Procede de dispersion par homogeneisation haute pression de charges pulverulentes dans un support constitue d'au moins une phase organique et/ou d'une phase aqueuse, compositions obtenues et utilisations
EP1021241B1 (de) * 1997-10-06 2001-08-29 Adalbert-Raps-Stiftung Verfahren zur herstellung eines pulverförmigen produktes aus einem flüssigen stoff oder stoffgemisch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753340A2 (de) * 1995-07-10 1997-01-15 M Technique Co., Ltd. Verfahren zur Herstellung von Mikrokapseln unter Verwendung von Phospholipiden
EP0768114A2 (de) * 1995-10-13 1997-04-16 Boehringer Ingelheim Pharmaceuticals Inc. Verfahren und Vorrichtung zum Homogenisieren von Aerosolformulierungen
US5994414A (en) * 1997-04-28 1999-11-30 Avon Products, Inc. Water-thin emulsion formed by high pressure homogenization process
DE19843876A1 (de) * 1998-09-25 2000-04-13 Cognis Deutschland Gmbh Selbstemulgierende W/O-Emulsionsgrundlagen
DE19904329A1 (de) * 1999-01-28 2000-08-03 Cognis Deutschland Gmbh Kosmetische und/oder pharmazeutische Zubereitungen
WO2000061275A2 (de) * 1999-04-08 2000-10-19 Bernd Penth Verfahren und vorrichtung zur durchführung chemischer und physikalischer prozesse
DE29916051U1 (de) * 1999-09-06 2000-03-09 Kunina Ella Dispersionsmischer

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8658812B2 (en) 2003-01-08 2014-02-25 Cognis Ip Management Gmbh Wax dispersions
JP2006516029A (ja) * 2003-01-08 2006-06-15 コグニス・アイピー・マネージメント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング ワックス分散液
JP2006517205A (ja) * 2003-01-08 2006-07-20 ジョンソン・アンド・ジョンソン・ゲーエムベーハー シート材およびワックス分散物を含む製品
JP2006521410A (ja) * 2003-01-08 2006-09-21 ジョンソン・アンド・ジョンソン・ゲーエムベーハー アプリケータおよびワックス分散物を含む製品
JP2005046841A (ja) * 2003-07-28 2005-02-24 Cognis Deutschland Gmbh & Co Kg 乳化剤組合せ、乳化剤組合せを含有するエマルジョンおよびその製造法
WO2006000360A1 (de) * 2004-06-29 2006-01-05 Cognis Ip Management Gmbh Hochkonzentrierte selbstemulgierende emulsiongrundlagen zur herstellung von öl in wasser emulsionen
US7358279B2 (en) 2004-06-29 2008-04-15 Cognis Ip Management Gmbh Emulsions of oil-in-water for cosmetic and pharmaceutical compositions
DE102005026035A1 (de) * 2005-06-03 2006-12-07 Beiersdorf Ag Kosmetische Zubereitungen mit einem Gehalt an einem besonderen Anisfruchtextrakt und Füllstoffen
WO2009079995A1 (de) * 2007-12-24 2009-07-02 Sasol Germany Gmbh Verfahren zur herstellung von wachs in wasser dispersionen aus selbstemulgierenden gelkonzentraten
US20110033413A1 (en) * 2007-12-24 2011-02-10 Klaus Kwetkat Method for producing oil-in-water emulsions from self-emulsifying gel concentrates
US9757701B2 (en) * 2007-12-24 2017-09-12 Sasol Germany Gmbh Method for producing oil-in-water emulsions from self-emulsifying gel concentrates
US8678184B2 (en) 2009-12-03 2014-03-25 Novartis Ag Methods for producing vaccine adjuvants
US9700616B2 (en) 2009-12-03 2017-07-11 Novartis Ag Arranging interaction and back pressure chambers for microfluidization
US8778275B2 (en) 2009-12-03 2014-07-15 Novartis Ag Methods for producing vaccine adjuvants
US8871816B2 (en) 2009-12-03 2014-10-28 Novartis Ag Methods for producing vaccine adjuvants
US8895629B2 (en) 2009-12-03 2014-11-25 Novartis Ag Circulation of components during homogenization of emulsions
US9463240B2 (en) 2009-12-03 2016-10-11 Novartis Ag Arranging interaction and back pressure chambers for microfluidization
USRE46441E1 (en) 2009-12-03 2017-06-20 Novartis Ag Circulation of components during homogenization of emulsions
US11141376B2 (en) 2009-12-03 2021-10-12 Novartis Ag Circulation of components during microfluidization and/or homogenization of emulsions
US9750690B2 (en) 2009-12-03 2017-09-05 Novartis Ag Circulation of components during microfluidization and/or homogenization of emulsions
US10799454B2 (en) 2009-12-03 2020-10-13 Novartis Ag Hydrophilic filtration during manufacture of vaccine adjuvants
USRE46906E1 (en) 2009-12-03 2018-06-26 Novartis Ag Methods for producing vaccine adjuvants
US10213383B2 (en) 2009-12-03 2019-02-26 Novartis Ag Hydrophilic filtration during manufacture of vaccine adjuvants
US10463615B2 (en) 2009-12-03 2019-11-05 Novartis Ag Circulation of components during microfluidization and/or homogenization of emulsions
EP2698195A1 (de) * 2012-08-15 2014-02-19 The Procter & Gamble Company Verfahren zur Herstellung eines kristallinen Strukturbildners Gebiet der Erfindung
WO2014028559A1 (en) * 2012-08-15 2014-02-20 The Procter & Gamble Company Process for making a crystalline structurant
WO2019149565A1 (de) * 2018-02-02 2019-08-08 Beiersdorf Ag O/w-emulsion mit photochemisch stabilem 4-(tert.butyl)-4'-methoxydibenzoylmethan in öltröpfchen kleiner 8 mikrometer

Also Published As

Publication number Publication date
JP2005506274A (ja) 2005-03-03
AU2002224862A1 (en) 2002-06-11
EP1337225A1 (de) 2003-08-27
US20040029977A1 (en) 2004-02-12
DE10059430A1 (de) 2002-06-06

Similar Documents

Publication Publication Date Title
WO2002043672A1 (de) Feinteilige emulsionen
EP1066024B1 (de) Verfahren zur herstellung von kosmetischen reinigungsmitteln mit erhöhter viskosität
EP1286758B1 (de) Emulgatoren
DE10212528A1 (de) Ölphasen für kosmetische Mittel
WO2002034216A1 (de) Verwendung von fettalkoholen als solubilisierungsmittel
EP1414881A2 (de) Verdickungsmittel
EP1138310A1 (de) Pro-liposomen
EP1472211A1 (de) Weichmacher und kosmetische zusammensetzungen
EP1247519A1 (de) Sprühbare Emulsionen
EP1301160A1 (de) Dekorative kosmetische zubereitungen dialkylcarbonate und metalloxide enthaltend
EP2262822A1 (de) Alkyl- und/oder alkenylether von alkyl- und/oder alkenyl(poly)glycosiden und ihre verwendung
EP1446220A1 (de) Emulgator-gemisch
DE10021167A1 (de) Kosmetische Zubereitungen
WO2002100522A1 (de) Verwendung von alkyl(ether)phosphaten (i)
DE19922230A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
WO2002032380A2 (de) Kosmetische emulsionen
EP1051966A2 (de) Kosmetische und/oder pharmazeutische Zubereitungen mit einem Gehalt an Alkyl- und/oder Alkenyloligoglykosiden, Fettsäurepartialglyceriden, Esterquats und hydroxyalkylertem Guar als Verdickungsmittel
EP1264632A1 (de) Verwendung von Alkyl(ether)phosphaten(III)
WO2004000258A1 (de) Hochviskose ölhaltige zubereitungen
WO2002088150A1 (de) Phosphorsäureester
WO2002043674A1 (de) Kosmetische mikroemulsionen
DE19943586A1 (de) Verdickungsmittel
WO2001074304A1 (de) Pro-liposomal verkapselte zubereitungen
EP1264634A1 (de) Verwendung von Alkyl(ether)phosphaten(II)
DE10051544A1 (de) Glyceridgemische

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001994685

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002224862

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018197647

Country of ref document: CN

Ref document number: 10433114

Country of ref document: US

Ref document number: 2002545650

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001994685

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001994685

Country of ref document: EP