DE19943586A1 - Verdickungsmittel - Google Patents

Verdickungsmittel

Info

Publication number
DE19943586A1
DE19943586A1 DE1999143586 DE19943586A DE19943586A1 DE 19943586 A1 DE19943586 A1 DE 19943586A1 DE 1999143586 DE1999143586 DE 1999143586 DE 19943586 A DE19943586 A DE 19943586A DE 19943586 A1 DE19943586 A1 DE 19943586A1
Authority
DE
Germany
Prior art keywords
acid
carbon atoms
oil
acids
esters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE1999143586
Other languages
English (en)
Inventor
Claus Nieendick
Anke Eggers
Alfred Westfechtel
Mirella Nalborczyk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE1999143586 priority Critical patent/DE19943586A1/de
Priority to EP00119067A priority patent/EP1083217A3/de
Publication of DE19943586A1 publication Critical patent/DE19943586A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/667Neutral esters, e.g. sorbitan esters
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates

Abstract

Es wird die Verwendung von Polyolcarbonsäureestern, die man durch Umsetzung von (I) Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 6 OH-Gruppen mit (II) linearen und/oder verzweigten, gesättigten und/oder ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und (III) polyfunktionellen Carbonsäuren mit 2 bis 8 Kohlenstoffatomen und Hydroxycarbonsäuren mit 2 bis 4 Kohlenstoffatomen erhält, als Verdickungsmittel in oberflächenaktiven Zubereitungen vorgeschlagen.

Description

Gebiet der Erfindung
Die Erfindung betrifft die Verwendung von Polyolcarbonsäureester als Verdickungsmittel in oberflä­ chenaktiven Zubereitungen.
Stand der Technik
Oberflächenaktive Zubereitungen, insbesondere solche, die im Bereich der Wasch- und Reinigungs­ mittel sowie in der Körperpflege zum Einsatz kommen, enthalten zumeist Aniontenside, wie zum Bei­ spiel Alkylethersulfate. Um diese klaren oder dispersen Systeme zu stabilisieren und ihre Handhabbar­ keit für den Anwender zu verbessern, werden diesen Tensidlösungen üblicherweise Verdickungsmittel zugesetzt [Seifen-Öle-Fette-Wachse, 116, 60 (1990)].
Dem Fachmann sind bereits eine Vielzahl von anorganischen und organischen Verbindungen bekannt, die zur Erhöhung der Viskosität oberflächenaktiver Zubereitungen, wie beispielsweise aniontensidhalti­ ger Lösungen, eingesetzt werden. Als anorganische Verdickungsmittel [Seifen-Öle-Fette-Wachse, 113, 135 (1987)] werden in der Regel wasserlösliche Elektrolytsalze, üblicherweise Kochsalz, einge­ setzt. Beispiele für organische Verdickungsmittel sind Fettsäurealkanolamide, Polyethylenglykoldifett­ säureester sowie eine Reihe wasserlöslicher Polymere. In den meisten Fällen ist es höchstens unter Einsatz großer Mengen möglich, alleine durch Verwendung anorganischer Elektrolytsalze die ge­ wünschte Viskosität der Tensidlösung einzustellen. Man geht daher in der Regel den Weg, zusätzlich zu den anorganischen Salzen organische Verdickungsmittel einzusetzen, die aber teilweise mit einer Reihe von Nachteilen behaftet sind. So weisen die mit Polyethylenglykolfettsäurediestern [DE 35 41 813 A1, DE 35 51 535 A1. DE 36 00 263 A1] verdickte Tensidlösungen oft eine unzureichende Viskositäts­ stabilität bei Lagerung auf, während wasserlösliche Polymere ein unerwünschtes schleimiges Fließverhalten mit Neigung zum Fädenziehen in den verdickten Tensidlösungen zeigen. In den deut­ schen Patentanmeldungen DE 37 30 179 A1, EP 0343463 A2 und DE 38 17 415 A1 wird daher vorge­ schlagen, zur Verdickung von Tensidlösungen Anlagerungsprodukte von Ethylenoxid und/oder Propy­ lenoxid an Fettalkohole zu verwenden. Weiterhin sind Glycerintrifettsäureester [Cosm. Toil., 103, 99 (1988)] sowie Fettsäurealkanolamide als organische Verdickungsmittel bekannt.
Die Aufgabe der vorliegenden Erfindung hat darin bestanden, weitere organische Verdicker mit erhöh­ ter verdickender Wirkung zur Verfügung zu stellen, die bereits bei geringeren Konzentrationen in ober­ flächenaktiven Zubereitungen Wirksamkeit zeigen und stabile Viskositäten liefern. Darüber hinaus sol­ len sie neben einem rückfettenden Effekt frei von Ethylenoxid sein.
Beschreibung der Erfindung
Gegenstand der Erfindung ist die Verwendung von Polyolcarbonsäureestern, die man durch Umset­ zung von (I) Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 6 OH-Gruppen mit (II) linearen und/oder verzweigten, gesättigten und/oder ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und (III) polyfunktionellen Carbonsäuren mit 2 bis 8 Kohlenstoffatomen und Hydroxycarbonsäuren mit 2 bis 4 Kohlenstoffatomen erhält, als Verdickungsmittel in oberflächenaktiven Zubereitungen.
Überraschenderweise wurde gefunden, daß die genannten langkettigen Polyolcarbonsäureester ver­ dickende Eigenschaften besitzen. Ihre Anwendung als Verdickungsmittel in oberflächenaktiven Zube­ reitungen führt bereits bei geringen Konzentrationen zu stabilen Mischungen mit konstanten Viskositä­ ten bei Lagerung. Darüber hinaus wird eine synergistische Wirkung in Kombination mit niedrig ethoxy­ lierten Fettalkoholen sowie mit anderen Verdickungsmitteln gefunden. Ein weiterer Vorteil ist, daß die erfindungsgemäßen Polyolcarbonsäureester ethylenoxidfrei sind und darüber hinaus rückfettende Eigenschaften aufweisen.
Polyolcarbonsäureester
Es werden Polyolcarbonsäureester eingesetzt, die durch Umsetzung von (I) Polyolen mit 2 bis 15 Koh­ lenstoffatomen und 2 bis 6 OH-Gruppen mit (II) linearen und/oder verzweigten, gesättigten und/oder ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und (III) polyfunktionellen Carbonsäuren mit 2 bis 8 Kohlenstoffatomen und Hydroxycarbonsäuren mit 2 bis 4 Kohlenstoffatomen erhältlich sind.
Polyole, die im Sinne der Erfindung als Komponente (I) in Betracht kommen, können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Vor­ zugsweise werden folgende Polyole eingesetzt:
  • - Glycerin;
  • - Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1000 Dalton;
  • - technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa tech­ nische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
  • - Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
  • - Niedrigalkylglucoside, insbesondere solche, mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispiels­ weise Methyl- und Butylglucosid;
  • - Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
  • - Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose,
  • - Aminozucker, wie beispielsweise Glucamin und
  • - Dialkoholamine, wie Diethanolamin oder 2-Amino-1,3-propandiol.
Insbesondere werden Ethylenglycol, Propylenglycol, Trimethylolpropan, Pentaerythrit, Propylenglykol, Sorbitol und/oder Glycerin als Polyole eingesetzt.
Typische Beispiele für Fettsäuren, die im Sinne der Erfindung als Komponente (II) in Betracht kommen, sind Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myri­ stinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petro­ selinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z. B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Reduktion von Aldehyden aus der Roelen'schen Oxosynthese oder der Dime­ risierung von ungesättigten Fettsäuren anfallen. Bevorzugt sind technische Fettsäuren mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettsäure.
Als polyfunktionelle Carbonsäuren (III) können auch entsprechende C2-8-Dicarbonsäuren eingesetzt werden, so daß ebenfalls Bernsteinsäure, Maleinsäure, Fumarsäure, Glutarsäure, Adipinsäure und Dodecandisäure in Frage kommen. Als Hydroxycarbonsäuren, die im Sinne der Erfindung als Kompo­ nente (III) in Betracht kommen, werden vorzugsweise Citronensäure, Apfelsäure, Weinsäure, Glykol­ säure und/oder Milchsäure eingesetzt.
Die Polyolcarbonsäureester werden erhalten, indem man zunächst die entsprechenden Polyole in an sich bekannter Weise in Gegenwart saurer Katalysatoren mit den Fettsäuren zu entsprechenden Par­ tialestern umsetzt und diese dann in einem weiteren Schritt mit den polyfunktionellen Carbonsäuren bzw. Hydroxycarbonsäuren zu den gewünschten Polyolcarbonsäure- und/oder Polyolhydroxycarbon­ säureestern umsetzt.
Fettalkoholethoxylate
Die Polyolcarbonsäureester können vorzugsweise in Kombination mit Fettalkoholethoxylaten der For­ mel (I),
R1O(CH2CH2O)mH (I)
in der R1 für einen linearen oder verzweigten, gesättigten oder ungesättigten Kohlenwasserstoffrest mit 10 bis 18, vorzugsweise 12 bis 14 Kohlenstoffatomen und m für Zahlen von durchschnittlich 2 bis 6; vorzugsweise 2 bis 3 steht, eingesetzt werden.
Typische Beispiele sind Anlagerungsprodukte 2 bis 6 Ethylenoxid-Einheiten an Capronalkohol, Ca­ prylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petrose­ linylalkohol, Linolylalkohol, Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Be­ henylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z. B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Bevorzugt sind technische Fettalkohole mit 12 bis 18 Kohlenstoffatomen, wie beispielsweise Kokos-, Palm-, Palmkern- oder Talgfettalkohol.
Verdickungsmittel
Die Polyolcarbonsäureester können vorzugsweise in Kombination mit weiteren geeigneten Verdic­ kungsmitteln in oberflächenaktiven Zubereitungen eingesetzt werden. Als Verdickungsmittel kommen beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, fer­ ner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z. B. Carbo­ pole® von Goodrich oder Synthalene® von Sigma), Polyacrylamide, Polyvinylalkohol und Polyvinylpyr­ rolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid in Frage.
Die Einsatzmenge der Verdickungsmittel - bezogen auf die Summe der Verdickungsmittel in den ober­ flächenaktiven Zubereitungen - kann 0,1 bis 6, üblicherweise 0,5 bis 4 und vorzugsweise 2 bis 3 Gew.-% betragen.
Oberflächenaktive Zubereitungen
Die erfindungsgemäßen Polyolcarbonsäureester können zur Herstellung von oberflächenaktiven Zube­ reitungen, wie Wasch-, Spül-, Reinigungs- und Wäscheweichspülmittel und kosmetischen und/oder pharmazeutischen Zubereitungen zur Pflege und Reinigung von Haut, Haaren, Mund und Zähnen, wie beispielsweise Haarlotionen, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparaten oder Salben, vor­ zugsweise Haarshampoos, dienen. Diese Mittel können ferner als weitere Hilfs- und Zusatzstoffe Ten­ side, Ölkörper, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deodorantien, Antitranspirantien, Antischuppenmit­ tel, Filmbildner, Quellmittel, UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe und dergleichen enthalten.
Die oberflächenaktiven Zubereitungen, die in der Regel einen nicht wäßrigen Anteil im Bereich von 1 bis 99 und vorzugsweise 20 bis 50 Gew.-% aufweisen, können nichtionische, anionische, kationische und/oder amphotere Tenside enthalten. Typische Beispiele für anionische Tenside sind Seifen, Alkyl­ benzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Me­ thylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäu­ reethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N- Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Al­ kyloligoglucosidsulfate, Proteinfettsäurekondensate (insbesondere pflanzliche Produkte auf Weizenba­ sis) und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, kön­ nen diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolygly­ colether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine kon­ ventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldi­ stearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze. Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensi­ den handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J. Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54124 oder J. Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vor­ zugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen C6-C22-Fett­ alkoholen, Ester von verzweigten C6-C13-Carbonsäuren mit linearen C6-C22-Fettalkoholen, wie z. B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, My­ ristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetyl­ erucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearylo­ leat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenyl­ isostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycar­ bonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z. B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-C10-Fettsäuren, flüs­ sige Mono-/Di-/Triglyceridmischungen auf Basis von C6-C18-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2- C12-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z. B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Po­ lyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z. B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy­ lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäureal­ kanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi­ stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea­ rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe min­ destens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearin­ säure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett­ säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z. B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400 von Amerchol erhält­ lich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z. B. Luviquat® (BASF), Kondensationsprodukte von Poly­ glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxy­ propyl hydrolyzed collagen (Lamequat®/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z. B. Amidomethicone, Copolymere der Adipinsäure und Dimethyla­ minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl­ diallylammoniumchlorld (Merquat® 550/Chemviron), Polyaminopolyamide, wie z. B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie bei­ spielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z. B. Dibrombutan mit Bisdialkylaminen, wie z. B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z. B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z. B. Mirapol® A-15, Mirapol® AD-1, Mirapol® A2-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/­ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/­ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert. Butyl-aminoethylmethacrylat/2-Hydroxypro­ yl-methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al­ kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vor­ liegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethico­ nen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm. Toil. 91, 27 (1976).
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u. a. natürliche Wachse, wie z. B. Candelillawachs, Carnaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reis­ keimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikro­ wachse; chemisch modifizierte Wachse (Hartwachse), wie z. B. Montanesterwachse, Sasolwachse, hy­ drierte Jojobawachse sowie synthetische Wachse, wie z. B. Polyalkylenwachse und Polyethylengly­ colwachse in Frage.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z. B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu­ ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder be­ seitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodo­ rantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Ge­ ruchsüberdecker fungieren.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe ge­ eignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4-dichlor­ phenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'- Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4- Chlorphenoxy)-1,2-propandiol, 3-Iod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbonilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vor­ zugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und ins­ besondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipin­ säuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarb­ nonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäure­ diethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitge­ hend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfums unbeeinträchtigt bleiben müs­ sen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Sty­ rax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Par­ fümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthe­ tischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Bal­ samen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typi­ sche synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, p- tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclo­ hexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzyl­ ethylether, zu den Aldehyden z. B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citro­ nellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riech­ stoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringe­ rer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzyl­ aceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citro­ nenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β- Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
  • - adstringierende Wirkstoffe,
  • - Ölkomponenten,
  • - nichtionische Emulgatoren,
  • - Coemulgatoren,
  • - Konsistenzgeber,
  • - Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
  • - nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z. B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbin­ dungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium- Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlo­ rohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin.
Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z. B. sein:
  • - entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
  • - synthetische hautschützende Wirkstoffe und/oder
  • - öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z. B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z. B. Puffergemische, wasserlösliche Verdickungsmittel, z. B. wasserlösliche natürliche oder synthetische Polymere wie z. B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Als Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden. Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure­ reihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbin­ dungen.
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl­ modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R. Lochhead in Cosm. Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorlie­ gende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strah­ len zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z. B. Wärme wie­ der abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z. B. zu nennen:
  • - 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z. B. 3-(4-Methylbenzy­ liden)campher wie in der EP 0693471 B1 beschrieben;
  • - 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
  • - Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro­ pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octo­ crylene);
  • - Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben­ zylester, Salicylsäurehomomenthylester;
  • - Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me­ thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon;
  • - Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
  • - Triazinderivate, wie z. B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Tria­ zon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
  • - Propan-1,3-dione, wie z. B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1,3-dion;
  • - Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
  • - 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
  • - Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
  • - Sulfonsäurederivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzol­ sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispiels­ weise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl­ methan (Parsol 1789), 1-Phenyl-3-(4'-isopropylphenyl)-propan-1,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 197 12 033 A1 (BASF). Die UV-A- und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugs­ weise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pig­ mente können auch oberflächenbehandelt, d. h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z. B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trial­ koxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mi­ kro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P. Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Licht­ schutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z. B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z. B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Garnosin, L-Carnosin und deren Derivate (z. B. Anserin), Carotinoide, Carotine (z. B. α-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z. B. Dihydroliponsäure), Au­ rothioglucose, Propylthiouracil und andere Thiole (z. B. Thioredoxin, Glutathion, Cystein, Cystin, Cysta­ min und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodi­ propionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleo­ side und Salze) sowie Sulfoximinverbindungen (z. B. Buthioninsulfoximine, Homocysteinsulfoximin, Bu­ tioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z. B. pmol bis µmol/kg), ferner (Metall)-Chelatoren (z. B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z. B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und de­ ren Derivate (z. B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z. B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z. B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A- palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajak­ harzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Man­ nose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z. B. ZnO, ZnSO4) Selen und dessen Derivate (z. B. Selen-Methionin), Stilbene und deren Derivate (z. B. Stilbenoxid, trans-Stil­ benoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nu­ kleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro­ pylalkohol, oder Polyole eingesetzt werden.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para­ bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung auf­ geführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1,2- Pentandiol oder Ethyl Butylacetylaminopropionate in Frage, als Selbstbräuner eignet sich Dihydroxy­ aceton.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Frucht­ schalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Bal­ samen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Roh­ stoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindun­ gen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z. B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu­ tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa­ licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z. B. die linearen Alka­ nale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z. B. die Jonone, ∝-Isomethylionon und Me­ thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Pheny­ lethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Bal­ same. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aro­ makomponenten verwendet werden, eignen sich als Parfümöle, z. B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu­ möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Lina­ lool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evemyl, Iraldein gamma, Phenylessig­ säure, Geranylacetat, Benzylacetat, Rosenoxid, Romillat, Irotyl und Floramat allein oder in Mischun­ gen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen ver­ wendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoff­ kommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S. 81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfol­ gen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele
Die Tabellen 1 und 2 geben einen Übersicht über die möglichen obenflächenaktiven Zubereitungen, in denen Polyolcarbonsäureester eingesetzt werden können. Das in den nachfolgenden Detergens- (Tab. 1: Bsp. 1-15) oder kosmetischen Zubereitungen (Tab. 2: Bsp. 1-28) eingesetzte Glycerinmonostearat­ malat ist durch Umsetzung von Glycerin mit Stearinsäure und Maleinsäure erhältlich.
Tabelle 1
Detergenszubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
Tabelle 1
Detergenszubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung
Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%)
Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung
Tabelle 2
Kosmetische Zubereitungen (Wasser, Konservierungsmittel ad 100 Gew.-%) - Fortsetzung 2

Claims (7)

1. Verwendung von Polyolcarbonsäureestern, erhältlich durch Umsetzung von (I) Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 6 OH-Gruppen mit (II) linearen und/oder verzweigten, gesättigten und/oder ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und (III) polyfunktionellen Car­ bonsäuren mit 2 bis 8 Kohlenstoffatomen und Hydroxycarbonsäuren mit 2 bis 4 Kohlenstoffatomen, als Verdickungsmittel in oberflächenaktiven Zubereitungen.
2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß man Polyolcarbonsäureester ein­ setzt, die durch Umsetzung von Polyolen (I) erhältlich sind, die ausgewählt sind aus der Gruppe, die gebildet wird von Trimethylolpropan, Pentaerythrit, Propylenglykol, Sorbitol und/oder Glycerin.
3. Verwendung nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß man Polyolcar­ bonsäureester einsetzt, die durch Umsetzung von linearen und/oder verzweigten, gesättigten und/oder ungesättigten Fettsäuren mit 12 bis 18 Kohlenstoffatomen (III) erhältlich sind.
4. Verwendung nach mindestens einem der Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man Polyolcarbonsäureester einsetzt, die durch Umsetzung von Hydroxycarbonsäuren (III) erhalten werden, die ausgewählt sind aus der Gruppe, die gebildet wird von Citronensäure, Apfelsäure, Weinsäure, Glykolsäure und/oder Milchsäure.
5. Verwendung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man die Polyolcarbonsäureester in Mengen von 0,1 bis 6 Gew.-% - bezogen auf die Endkonzentration der oberflächenaktiven Zubereitungen - einsetzt.
6. Verwendung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man die Polyolcarbonsäureester in Kombination mit Fettalkoholethoxylaten der Formel (I) einsetzt,
R1O(CH2CH2O)mH (I)
in der R1 für einen linearen oder verzweigten, gesättigten oder ungesättigten Kohlenwasser­ stoffrest mit 10 bis 18 Kohlenstoffatomen und m für Zahlen von durchschnittlich 2 bis 6 steht.
7. Verwendung nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Polyolcarbonsäureester in Kombination mit weiteren Verdickungsmitteln einsetzt.
DE1999143586 1999-09-11 1999-09-11 Verdickungsmittel Withdrawn DE19943586A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE1999143586 DE19943586A1 (de) 1999-09-11 1999-09-11 Verdickungsmittel
EP00119067A EP1083217A3 (de) 1999-09-11 2000-09-02 Verdickungsmittel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE1999143586 DE19943586A1 (de) 1999-09-11 1999-09-11 Verdickungsmittel

Publications (1)

Publication Number Publication Date
DE19943586A1 true DE19943586A1 (de) 2001-03-15

Family

ID=7921688

Family Applications (1)

Application Number Title Priority Date Filing Date
DE1999143586 Withdrawn DE19943586A1 (de) 1999-09-11 1999-09-11 Verdickungsmittel

Country Status (2)

Country Link
EP (1) EP1083217A3 (de)
DE (1) DE19943586A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10055517A1 (de) * 2000-11-09 2002-05-23 Cognis Deutschland Gmbh Verwendung von Gemischen
DE10140150A1 (de) * 2001-08-16 2003-02-27 Cognis Deutschland Gmbh Fettsäurehaltige Reinigungsmittel
CN112794953A (zh) * 2020-12-31 2021-05-14 中国石油大学(华东) 一种支化聚合物型酸液稠化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802206A1 (de) * 1998-01-22 1999-07-29 Beiersdorf Ag Lipidreduzierte, fließfähige Zubereitungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3541813C2 (de) * 1985-11-27 1999-01-14 Akzo Gmbh Verdickungsmittel für tensidhaltige Zubereitungen auf Basis Polyätherderivate
DE4137317A1 (de) * 1991-11-13 1993-05-19 Henkel Kgaa Ester von fettsaeuren mit ethoxylierten polyolen
DE4223407A1 (de) * 1992-07-16 1994-02-10 Solvay Fluor & Derivate Verfahren zur Herstellung von Polyglycerinfettsäureestergemischen und die Verwendung in kosmetischen, pharmazeutischen und chemisch-technischen Zubereitungen
DE4236109A1 (de) * 1992-10-26 1994-04-28 Henkel Kgaa Flüssiges Waschmittel
DE19512411A1 (de) * 1995-04-03 1996-10-10 Henkel Kgaa Verfahren zur Herstellung viskoser Zuckertenside

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19802206A1 (de) * 1998-01-22 1999-07-29 Beiersdorf Ag Lipidreduzierte, fließfähige Zubereitungen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.Behler u.a. "Neue Verdickungsmittel fü Tensid- formulierungen", Seifen-Öle-Fette-Wachse, 116 (1990) S.60-68 *
Pat. Abstr. of Jap. C-1052 April 26, 1993 Vol.17/ No.211 zu JP 4-353600 A *

Also Published As

Publication number Publication date
EP1083217A3 (de) 2001-04-04
EP1083217A2 (de) 2001-03-14

Similar Documents

Publication Publication Date Title
DE19921186C2 (de) Hochkonzentriert fließfähige Perlglanzkonzentrate und Verfahren zu ihrer Herstellung
EP1066024B1 (de) Verfahren zur herstellung von kosmetischen reinigungsmitteln mit erhöhter viskosität
DE19929511C2 (de) Hochkonzentriert fließfähige Aniontensidmischungen
WO2002034216A1 (de) Verwendung von fettalkoholen als solubilisierungsmittel
DE10007322A1 (de) Perlglanzmittel
DE19919630A1 (de) Sonnenschutzmittel
DE19916211C2 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19927172C1 (de) Wäßrige Perlglanzkonzentrate
WO2001010403A1 (de) Wässrige perlglanzdispersionen alkoylierte canbonsäureester enthaltend
DE19928112A1 (de) Guerbetalkohole
WO2001010390A2 (de) Sonnenschutzmittel alkoxylierte carbonsäureester enthaltend
DE19937293A1 (de) Verwendung von alkoxylierten Carbonsäureestern als Schaumboostern
DE19944545C1 (de) Wäßrige Perlglanzkonzentrate
DE19931998C2 (de) Wäßrige Perlglanzkonzentrate
DE19916208A1 (de) Sonnenschutzmittel
DE10021167A1 (de) Kosmetische Zubereitungen
DE19943586A1 (de) Verdickungsmittel
DE19961358A1 (de) Verfahren zur kosmetischen Behandlung der menschlichen Haut
EP3229750B1 (de) Zusammensetzung enthaltend kohlehydratpartialester
DE19927653C2 (de) Wäßrige Perlglanzkonzentrate
DE19927173C1 (de) Wäßrige Perlglanzkonzentrate
DE19922230A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19950497A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19922229A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19916209C2 (de) Kosmetische Zubereitungen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8127 New person/name/address of the applicant

Owner name: COGNIS DEUTSCHLAND GMBH & CO. KG, 40589 DUESSELDOR

8139 Disposal/non-payment of the annual fee