WO2002042474A1 - Zygomycetes-origin endoglucanase lacking cellulose-binding domain - Google Patents

Zygomycetes-origin endoglucanase lacking cellulose-binding domain Download PDF

Info

Publication number
WO2002042474A1
WO2002042474A1 PCT/JP2001/010188 JP0110188W WO0242474A1 WO 2002042474 A1 WO2002042474 A1 WO 2002042474A1 JP 0110188 W JP0110188 W JP 0110188W WO 0242474 A1 WO0242474 A1 WO 0242474A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
cellulose
seq
homologue
rce
Prior art date
Application number
PCT/JP2001/010188
Other languages
English (en)
French (fr)
Inventor
Akitaka Nakane
Yuko Baba
Jinichiro Koga
Hidetoshi Kubota
Original Assignee
Meiji Seika Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha, Ltd. filed Critical Meiji Seika Kaisha, Ltd.
Priority to EP01997189.4A priority Critical patent/EP1344820B1/en
Priority to JP2002545179A priority patent/JP3970770B2/ja
Priority to DK01997189.4T priority patent/DK1344820T3/en
Priority to US10/432,290 priority patent/US7445922B2/en
Priority to ES01997189.4T priority patent/ES2542135T3/es
Priority to AU2002224068A priority patent/AU2002224068A1/en
Publication of WO2002042474A1 publication Critical patent/WO2002042474A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38636Preparations containing enzymes, e.g. protease or amylase containing enzymes other than protease, amylase, lipase, cellulase, oxidase or reductase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38645Preparations containing enzymes, e.g. protease or amylase containing cellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • D06M16/003Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic with enzymes or microorganisms
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/13Fugitive dyeing or stripping dyes
    • D06P5/137Fugitive dyeing or stripping dyes with other compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/15Locally discharging the dyes
    • D06P5/158Locally discharging the dyes with other compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C5/00Other processes for obtaining cellulose, e.g. cooking cotton linters ; Processes characterised by the choice of cellulose-containing starting materials
    • D21C5/005Treatment of cellulose-containing material with microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/12Soft surfaces, e.g. textile

Definitions

  • Endalcanase enzyme from zygomycetes lacking the cellulose binding domain.
  • the present invention relates to an endoglucanase enzyme having an increased effect in the processing of cellulose-containing fibers, detergents, and paper pulp by deleting the cellulose-binding region.
  • the present invention relates to a production method thereof, and a cellulase preparation having an increased effect.
  • cellulase derived from wood rot fungi, Tricoderma and Humicola.
  • cellulase preparations have been used in which only the endalcanase having high activity in fiber treatment is isolated from these cellulase components and its effect is enhanced by genetic engineering in order to improve economic efficiency.
  • these highly active endalcanases include EGV (Humicola insolens) derived from Humicola insolens, which strongly acts on cotton fabrics.
  • EGV Haicola insolens
  • NCE4 International Publication No.
  • RCE I RCE II
  • RCEI IL derived from Rhizopus oryzae that strongly act on lyocell dough.
  • MCE L MCE II derived from Rcinel loides
  • PCE I derived from Phycomyces nitens (International Publication No. TO00Z24879).
  • EGV EGV
  • NCE4 WO No. W098 03640
  • RCE I RCE II
  • RCEI IL MCE I MCE II
  • PCE I International Publication No. WO00 / 24879
  • these endalcanases have a cellulose binding domain (Cellulose Binding Domain, hereinafter referred to as cBDj) that has a function to bind to its substrate, cellulose, and a catalytic domain (Catalyt ic Active Domain (hereinafter referred to as “CAD”), and a linker region that has a high content of hydrophilic amino acid residues and connects these two regions.
  • cBDj Cellulose Binding Domain
  • CAD Catalyt ic Active Domain
  • EGV an endoglucanase belonging to Famili-45
  • CBD cellulose binding domain
  • An object of the present invention is to provide an endalcanase having improved activity, a cellulase preparation containing the same, and various methods for treating cellulose-containing fibers using the same.
  • the present inventors diligently studied the role of the cellulose-binding region in the action on the cellulose-containing fiber in the zygote-derived endalcanase, and found that the endoglucanase in which the cell-mouth-binding region is deleted. However, they have found that the activity of removing fluff on cotton, lyocell, and the like is much higher than that of endalcanase having a cellulose-binding region, and have led to the present invention.
  • the present invention provides an endoglucanase derived from a zygote having an improved fuzz removal effect on a cellulose-containing fiber by deleting the cellulose-binding region (for example, by deleting the cellulose-binding region, the cellulose-containing An enzyme having an endoglucanase activity comprising the amino acid sequence of RCE I, RCE II, RCE III, MCE I, MCEI L and PCE I, which has an improved fuzz removal effect on fibers, and a modification thereof showing endoglucanase activity Proteins, or homologs thereof), and cellulase preparations containing endoglucanases thereof.
  • the present invention relates to an endalcanase produced in a host cell transformed with a gene encoding an endalcanase such as those described above.
  • the present invention relates to a method for treating a cellulose-containing fiber with the endoglucanase or the cellulase preparation. That is, the present invention includes the following inventions.
  • the zygote is a microorganism selected from the group consisting of a microorganism belonging to the genus Rhizopus, a microorganism belonging to the genus Mucor, and a microorganism belonging to the genus Phycomyces; (1) or The protein according to (2).
  • SEQ ID NO: 1 In the amino acid sequence represented by SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, or SEQ ID NO: 11, including an amino acid sequence in which the cellulose binding region has been deleted, and an endoglucanase A protein that shows activity.
  • a method for producing a protein comprising a step of collecting the protein, modified protein or homologue thereof according to the above.
  • a cellulase preparation comprising the protein, modified protein or homologue thereof according to any one of (1) to (6) and (13).
  • a method for reducing the rate at which the cellulose-containing fiber starts fluffing or reducing the fluffing of the cellulose-containing fiber comprising:
  • the method comprising the step of contacting the cellulase preparation according to (14).
  • a method comprising treating with the protein, the modified protein or a homolog thereof, or the cellulase preparation according to (14).
  • (22) The protein, the modified protein or the homologue thereof according to any one of (1) to (6) and (13) or the cellulase preparation according to (14), Detergent additive contained in the form or in a stabilized liquid form.
  • (23) A detergent composition comprising the protein, the modified protein or the homologue thereof according to any one of (1) to (6) and (13) or the cellulase preparation according to (14). .
  • the protein, the modified protein or the homologue thereof or the homologue thereof described in any one of (1) to (6) and (13) may be used.
  • a method for deinking waste paper which comprises using the cellulase preparation described in (1).
  • a method for improving the drainage of paper pulp wherein the paper pulp comprises the protein, modified protein or homologue thereof according to any one of (1) to (6) and (13), or 14) comprising a step of treating with the cellulase preparation according to Said method.
  • a method for improving digestibility of an animal feed which comprises using the protein, the modified protein or a homolog thereof according to any one of (1) to (6) and (13). Or a method comprising treating with the cellulase preparation according to (14).
  • the present invention relates to a protein which is deficient in a cellulose-binding region in an endodalcanase derived from a zygote, and which exhibits an endalcanase activity.
  • zygomycetes refers to microorganisms belonging to the zygomycota (Zygomycota), that is, fungi that produce zygote spores by gametocysts joining by sexual reproduction. Includes the power of zygomycetes (Zygomyce tes) and Trichomycetes (Trichomyce tes).
  • the zygomycetes in the present invention are not particularly limited, but are preferably those belonging to the zygomycetes, more preferably those belonging to the order Mucorales, and even more preferably those belonging to the genus Rhizopus and Mucor. Alternatively, those belonging to the genus Phycomyces, most preferably those belonging to the genus Rhizopus, are used.
  • Endoglucanase activity means CMCase activity.
  • CMCase activity refers to the activity of hydrolyzing carboxymethylcellulose (CMC, manufactured by Tokyo Chemical Industry Co., Ltd.), and the reducing sugar released after incubating the test protein and CMC solution for a certain period of time. The amount is measured, and the amount of the enzyme that produces 1 / zmol glucose-equivalent reducing sugar per minute is defined as one unit. The endokalkanase activity can be measured, for example, by the following procedure.
  • 0.5 ml of the solution containing the test protein is added to 0.5 ml of 50 mM acetic acid-sodium acetate buffer (pH 6.0) containing 2% CMC, and incubated at 50 ° C for 30 minutes. Bastion.
  • concentration of the produced reducing sugar in the obtained reaction solution was measured using 3,5-dinitrosa. Quantify by the lylic acid method (DNS method). That is, 3.Oml of the DNS reagent is added to 1.0 ml of the reaction solution 30 minutes after the reaction, incubated for 5 minutes in a boiling water bath, diluted with 8.Oml of distilled water, and the absorbance at 540 nm is measured.
  • DNS method Quantify by the lylic acid method
  • a calibration curve is prepared using a stepwise diluted glucose solution, and the amount of reducing sugars produced in the enzyme reaction solution is determined in terms of Darcos. The activity is calculated based on the amount of enzyme that produces 1 mol of glucose-equivalent reducing sugar per minute as one unit.
  • the DNS reagent can be prepared according to the description in the literature (for example, "Biochemical Experimental Method 1: Quantitative Determination of Reducing Sugar", pp. 19-20, Sakuzo Fukui, Gakkai Shuppan Center). It can be prepared by the following procedure.
  • endalkanase refers to an enzyme exhibiting endokalkanase activity, that is, endo-1,4-1 / 3-dulcanase (EC 3.2.1.4). ) Hydrolyzes the) 3-1,4-Darcovyranosyl bond of 3-1,4-glucan.
  • Endalcanases are classified into multiple families based on information such as amino acid sequences.
  • the endodalcanase in the present invention may belong to any one of the families, but preferably belongs to the family 45.
  • the “endocalcanase” belonging to “family 45” is defined as (Ser, Thr or Ala) -Thr-Arg-Tyr- (Trp, Tyr or Phe) -Asp-Xaa-Xaa in the catalytic region (CAD).
  • -Xaa-Xaa-Xaa-Xaa- (Cys or Ala) having a consensus sequence, such as EGV derived from Humicola insolens (Tokuheihei 5-509223) or NCE4 (WO98 / 03640) Etc. also belong to Family 1 45.
  • Endalcanase proteins belonging to Family 45 are divided into catalytic domains (CAD), cellulose-binding domains (CBD), and linker domains that link them in terms of function.
  • CAD catalytic domains
  • CBD cellulose-binding domains
  • linker domains that link them in terms of function.
  • the cellulose-binding region (CBD) is known to exist as a region that binds to cellulose, and as a feature of the sequence, it has been confirmed that the following common sequence is conserved. (Hoifren, A. -M. Et al., Prote in Engineering 8: 443-450, 1995).
  • CBD common sequence
  • Xaa Xaa Xaa Asn Xaa Xaa Tyr Xaa Gin Cys Xaa (SEQ ID NO: 17) where, Xaa is a force indicating any amino acid that is not limited.20, 21, 22, 23, 24, 30, 40 Xaa at position 1 may not be present. The other Xaa is always present and represents any amino acid that is not limited. Amino acids other than Xaa followed the three-letter notation.
  • This CBD region is linked to either the N-terminal side or the C-terminal side of CAD via a linker, but NCE 5 derived from Humicola insolens (amino acid sequence: SEQ ID NO: 38) , CDNA sequence: SEQ ID NO: 39), a family 45 endoglucanase that does not originally have a CBD has also been reported.
  • linker region Although there is no clear recognition sequence for the linker region, it is a sequence rich in hydrophilic amino acid residues such as Ser and Thr, and its length varies depending on the type of endalcanase.
  • Examples of the zygomycete-derived endalcanase in the present invention include, for example, Rhizobus (Rhizopus), Phycomyces (Phycomyces) or Mucor (Mucor) derived from the genus WO00Z24879, which has an enzyme exhibiting an endalcanase activity, that is, RCE I (SEQ ID NO: 1), RCE II (SEQ ID NO: 3), RCE III (SEQ ID NO: 5), MCE I
  • N-terminal amino acid sequences of RCE I, MCE I and PCE I have been identified as shown in SEQ ID NO: 14, SEQ ID NO: 15 and SEQ ID NO: 16, respectively (International Published No. W000 / 24879).
  • the protein of the present invention may be any protein as long as it does not contain a cellulose-binding region in the above-mentioned endalcanase, and there is no particular structural limitation for other regions as long as it has an endalcanase activity. . Therefore, the protein of the present invention may or may not include the linker region, and may include a part of the linker region. Preferably, a fragment of the linker region of about 10 amino acids remains. Good to be.
  • the invention provides a method of SEQ ID NO: 1 (RCEI), SEQ ID NO: 3 (RCEII), SEQ ID NO: 5 (RCEIII), SEQ ID NO: 7 (MCEI), SEQ ID NO: 9 (MCEII) or
  • the present invention relates to a protein comprising an amino acid sequence represented by the amino acid sequence represented by No. 11 (PCE I) in which a cellulose-binding region has been deleted, and which has an endalcanase activity.
  • the present invention relates to modified proteins and homologues of such proteins, which exhibit endglucanase activity.
  • modified protein refers to one or more amino acids in the amino acid sequence of RCE I, RCE II, RCE I II, MCE I, MCE II or PCE I in which the cellulose binding region has been deleted.
  • a protein comprising an amino acid sequence in which an alteration such as addition, insertion, reduction, deletion, or substitution has occurred.
  • the number of amino acids according to the modification is not particularly limited as long as the modified protein has an endalcanase activity, but is preferably 1 to about 50, more preferably 1 to about 30, and still more preferably. :! ⁇ 9.
  • the term "homolog” refers to a gene encoding the amino acid sequence of RCE I, RCE II, RCE III, MCE I, MCE II, and PCE I in which the cellulose binding region has been deleted, for example, SEQ ID NO: 2 Or SEQ ID NO: 13 (RCE I), SEQ ID NO: 4 (RCE II), SEQ ID NO: 6 (RCE II I), SEQ ID NO: 8 (MCE I), SEQ ID NO: 10 (MCE II), SEQ ID NO: 12 (PCE A DNA having a nucleotide sequence excluding a portion encoding a cellulose binding region in the nucleotide sequence represented by I) or the like, and an amino acid sequence encoded by a gene (base sequence) that hybridizes under stringent conditions.
  • polypeptide having endalcanase activity refers to the amino acid sequence of RCE I, RCE II, RCEIIL MCE I, MCE II, and PCEI in which the cellulose binding region has been deleted, or a part or the amino acid sequence of its modified protein. While the probe comprising the entire nucleotide sequence hybridizes with the gene encoding the homologue, the probe binds to the endorcanase NCE4 gene (SEQ ID NO: 1) described in WO098 / 03640. 8) and International Patent No.
  • W098Z54332 and the endalcanase SCE3 gene (SEQ ID NO: 19) described under conditions controlled so as not to hybridize here, the amount of DNA is NCE4 Gene, the SCE3 gene, and the gene encoding the homolog are also used in the same amount.
  • an ECL direct DNAZRNA labeling detection system manufactured by Amersham is used as a probe, which has a full-length DNA sequence encoding an amino acid sequence such as RCE I in which a cellulose binding region is deleted.
  • the probe was added after 1 hour of prehybridization (42 ° C) according to the method described above, and after 15 hours of hybridization (42 ° C), 0.4% SDS and 6M Washing was repeated twice with urea-added 0.5x SSC (1XSSC; 15 mM trisodium citrate, 150 mM sodium chloride) at 42 for 20 minutes, and then with 5x SSC at room temperature (about 25 The conditions are such that washing is performed twice for 10 minutes.
  • urea-added 0.5x SSC (1XSSC; 15 mM trisodium citrate, 150 mM sodium chloride
  • modified proteins or homologues may include the amino acid sequence of RCE I, RCE II, RCEIIL CE I, MCE II, or PCEI lacking the cellulose binding region, preferably 70% or more, more preferably 80% or more. % Or more, more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the numerical value of the homology shown here may be a numerical value calculated using a homology search program known to those skilled in the art, but is preferably FASTA3 [Science, 227, 1435-1441 (1985); Proc Natl. Acad. Sci. USA, 85, 2444-2448 (1988); http: ⁇ www, ddbj. Nig, ac. J / E-mail / homology-j-html] It is a numerical value calculated using overnight.
  • the protein of the present invention does not contain a cellulose binding region. Therefore, the above modified proteins and homologues must not contain a cellulose binding region. This involves examining the amino acid sequence of the protein of interest and including the consensus sequence (Hrissan, A.-M. et al., Protein Engineering 8: 443-450, 1995; SEQ ID NO: 17). It can be confirmed by checking whether or not.
  • the protein of the present invention is a protein having an endalcanase activity. is there. Therefore, the above-mentioned modified proteins and homologs must also have endodalcanase activity. This can be confirmed by examining the endoglucanase activity of the target protein using the method described above.
  • the protein of the present invention can be prepared by a method known to those skilled in the art as a protein containing an amino acid sequence that does not include the cellulose-binding region based on the amino acid sequence of a known endoglucanase derived from a zygote.
  • Such methods include, for example, a method in which a part of a linker is degraded by a protease during culture of a zygote producing endalcanase to delete a cellulose-binding region, or a method in which a cellulose-binding region is deleted by a genetic method. And a method for artificially expressing an endalcanase having no expression.
  • the proteins of the present invention the above-mentioned modified proteins and homologues in particular can also be prepared by using DNA encoding the amino acid sequence thereof and by genetic engineering techniques known to those skilled in the art.
  • the protein of the present invention can also exert a high effect on the original endoglucanase having a cellulose binding region in fiber processing, detergents, and paper pulp applications.
  • fluff of regenerated cellulosic fibers such as lyocell
  • the removal activity (per protein weight) and the fluff removal activity (per protein weight) of cotton fabrics such as cotton knit can be much higher.
  • the protein of the present invention preferably has a fluff removing activity (based on protein weight) of regenerated cellulose fibers (eg, lyocell) that is preferably at least twice as much as that of purified endoglucanase having a cellulose binding region. Has an activity of 2.5 times or more, most preferably 3 times or more.
  • a fluff removing activity (per protein weight) of a cotton fabric such as a cotton knit
  • a purified end having a cellulose binding region. It has an activity of at least 5 times, more preferably at least 15 times, most preferably at least 20 times that of dalcanase.
  • a gene, an expression vector, a host cell transformed with the expression vector, and production of a cellulose-binding domain-deficient endodalcanase using the host cell The present invention relates to a gene encoding the protein of the present invention, a modified protein or a homolog thereof, and an expression vector comprising the gene.
  • the gene of the present invention may be any as long as it encodes the protein of the present invention, the modified protein or a homolog thereof, and the details of the specific nucleotide sequence are not particularly limited.
  • RCE I, RCE II, RCE III, MCE I, MCE II or PCE I in which the cellulose binding region is deleted for example, SEQ ID NO: 2 (RCE I), SEQ ID NO: 4 (RCE II), Those containing the nucleotide sequence represented by SEQ ID NO: 6 (RCE III), SEQ ID NO: 8 (MCE 1), SEQ ID NO: 10 (MCE II) or SEQ ID NO: 12 (PCE I) can be used.
  • the gene of the present invention has an amino acid in which the cellulose binding region has been deleted. It is a gene that contains a sequence and encodes a protein that exhibits endoglucanase activity, a modified protein thereof that exhibits endoglucanase activity, or a homologue thereof that exhibits endoglucanase activity.
  • the gene of the present invention is a gene comprising the following DNA (a) or (b).
  • stringent conditions refer to the conditions described in 1. above.
  • nucleotide sequence of the above gene can be optimized according to the type of host cell used for the subsequent transformation.
  • Such optimization of the base sequence can be performed, for example, with respect to codon usage in the host cell, intron recognition sequence in the host cell, and the like.
  • Codon usage can be performed, for example, by modifying the base sequence to include as many codons used frequently in the host cell without changing the encoded amino acid sequence.
  • optimization with respect to intron recognition sequences may include, for example, a DNA sequence that does not contain any DNA sequence that can be recognized as an intron in the host cell or that contains as little as possible without altering the encoded amino acid sequence.
  • the modification can be carried out, whereby the stability of DNA, which is a transcription product of the target gene, can be improved.
  • the intron recognition sequence varies depending on the type of host cell, but examples of the intron recognition sequence in filamentous fungi belonging to the incomplete fungi include GTAGN, GTATN, GTAAN, GTACGN, GTGTN, GCACGN, and GTTCGN (in each sequence, ⁇ N Represents A, T, C or G.).
  • the term “codon-optimized gene” refers to a gene obtained by codon usage and / or optimization of an intron recognition sequence, but is preferably a gene obtained by codon usage optimization, more preferably Is a gene obtained by codon usage and optimization for intron recognition sequences.
  • the codon-optimized gene is preferably optimized for expression in a filamentous fungus belonging to a defective fungus. Examples of such a codon-optimized gene include, for example, a codon-optimized endorcanase RCEI gene (SEQ ID NO: 13) described in International Publication No. WO00Z24879 in which a portion encoding a cellulose binding region has been deleted. No.
  • the expression vector of the present invention is capable of replicating in a host cell and expressing the protein, modified protein or homologue thereof of the present invention in the state of a target gene (protein of the present invention, (A gene encoding a modified protein or a homologue thereof).
  • a target gene protein of the present invention, (A gene encoding a modified protein or a homologue thereof).
  • Such an expression vector is a self-replicating vector, that is, a vector that exists as an extrachromosomal independent entity, the replication of which does not depend on chromosomal replication, For example, it can be constructed based on a plasmid.
  • the expression vector may be one which, when introduced into a host cell, is integrated into the genome of the host cell and replicated along with the chromosome (s) into which it has been integrated.
  • the procedure and method for constructing the vector according to the present invention may be those commonly used in the field of genetic engineering.
  • the expression vector of the present invention encodes the protein of the present invention, the modified protein or a homolog thereof in order to introduce the vector into a host cell to express the protein, the modified protein or a homolog thereof.
  • it preferably contains a DNA sequence that controls its expression, a genetic marker for selecting a transformant, and the like.
  • the DNA sequence controlling expression include a promoter and a terminator, a DNA sequence encoding a signal peptide, and the like.
  • the promoter and the enzyme are not particularly limited as long as they exhibit transcriptional activity in a host cell, and DNA that controls the expression of a gene encoding a protein of the same or different type from the host cell is used. It can be obtained as an array.
  • the signal peptide is not particularly limited as long as it contributes to secretion of the protein in the host cell, and may be obtained from a DNA sequence derived from a gene encoding a protein of the same or different type as the host cell. it can.
  • the gene marker in the present invention may be appropriately selected depending on the method for selecting a transformant, and examples thereof include a gene encoding drug resistance, a gene complementing auxotrophy and the like. These DNA sequences and gene markers are operably linked in the expression vector of the present invention.
  • the present invention relates to a host cell transformed with the above expression vector. Since the host cell used here must be capable of replicating the introduced expression vector, it differs depending on the type of the vector used for producing the expression vector.
  • an expression vector capable of replicating in the host cell can be prepared depending on the type of the host cell used here. That is, to obtain a transformant expressing the protein of the present invention, the modified protein or a homolog thereof, It is necessary to appropriately combine a host cell and an expression vector, and such a combination is called a host-vector system.
  • the host-vector system used in the present invention is not particularly limited, and includes, for example, a system using a microorganism such as Escherichia coli, actinomycetes, yeast, or a filamentous fungus as a host cell, and preferably a system using a filamentous fungus. In these systems, those expressing a fusion protein with another protein can also be used.
  • any filamentous fungus may be used.
  • a filamentous fungus belonging to the genus Humicola, the genus Aspergillus or the genus Trichoderma is used.
  • Particularly preferred examples of these filamentous fungi include Humicola insolens, Aspergillus niger or Aspergillus oryzae, or Trichoderma viride. Is mentioned. Transformation of a host cell with the expression vector of the present invention can be performed according to a method commonly used in the field of genetic engineering.
  • the present invention provides a method of culturing the host cell of the present invention, and the method of preparing the protein, modified protein or modified protein of the present invention from a host cell obtained by the culturing or a culture thereof. Relates to a method for producing a protein, comprising a step of collecting their homologs.
  • the cultivation of the transformant and its conditions may be essentially the same as those for the microorganism used.
  • the method of recovering the target protein may be any of those commonly used in this field. 3.
  • the present invention provides a protein of the present invention, a modified protein or a homolog thereof, or The present invention relates to a cellulase preparation comprising a protein produced by the protein production method of the present invention.
  • a cellulase preparation is a powder or liquid containing, for example, excipients (eg, lactose, sodium chloride, sorbitol, etc.), preservatives, nonionic surfactants, etc., in addition to the cellulase enzyme.
  • excipients eg, lactose, sodium chloride, sorbitol, etc.
  • preservatives eg., lactose, sodium chloride, sorbitol, etc.
  • nonionic surfactants e.
  • the cellulase preparation of the present invention includes, as the cellulase enzyme, a protein of the present invention, a modified protein or a homolog thereof, or a protein produced by the protein production method of the present invention (hereinafter, referred to as “protein of the present invention”). Is included.
  • the cellulase preparation of the present invention may contain, in addition to the protein and the like of the present invention, other cellulase enzymes, for example, cellobiohydrolase, ⁇ -darcosidase, and endoglucanase other than the present invention. .
  • Non-dusted granules one of the cellulase preparations, can be manufactured using conventional dry granulation methods. That is, the protein of the present invention in a powdered state is converted into a neutral and endoglucanase activity such as bentonite and montmorillonite, which are neutral and do not affect endoglucanase activity such as sodium sulfate and sodium chloride. After mixing with one or more minerals that do not affect, or one or more neutral organic substances typified by starch, granular cellulose, etc., one or more nonionic surfactants or fine powder Add the turbid suspension and mix or knead thoroughly.
  • a neutral and endoglucanase activity such as bentonite and montmorillonite, which are neutral and do not affect endoglucanase activity such as sodium sulfate and sodium chloride.
  • a synthetic polymer typified by polyethylene glycol, which binds solids, or a natural polymer such as starch is appropriately added and kneaded, followed by extrusion granulation using a disc pellet, etc. It is possible to produce non-dusted granules by forming the molded product into a spherical shape with a marmellaizer and then drying.
  • the amount of the one or more nonionic surfactants to be added is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0 to 50% by weight, based on the whole cellulase preparation of the present invention. 1 to 30% by weight, more preferably 1 to 20% by weight. It is also possible to control oxygen permeation and moisture permeation by coating the surface of the granules with a polymer or the like. It is possible.
  • a liquid preparation is prepared by adding a stabilizer for an endoglucanase enzyme such as a synthetic polymer or a natural high molecule to a solution containing the protein or the like of the present invention, and adding inorganic salts or a synthetic preservative as necessary.
  • one or more nonionic surfactants can be blended.
  • the amount of the one or more nonionic surfactants is not particularly limited, but is preferably 0.1 to 50% by weight, more preferably 0.1 to 50% by weight, based on the whole cellulase preparation of the present invention. -30% by weight, more preferably 1-20% by weight. 4.
  • the present invention relates to a method for treating a cellulose-containing fiber, which comprises the step of contacting the cellulose-containing fiber with the protein or the like of the present invention or the cellulase preparation of the present invention.
  • Conditions such as the contact temperature, the amount of the protein or the like or the amount of the cellulase preparation can be appropriately determined in consideration of other various conditions.
  • the above method can be used to reduce the rate at which the cellulose-containing fibers begin to fluff or to reduce the fluff of the cellulose-containing fibers.
  • the above method can be used for weight reduction processing for the purpose of improving the feel and appearance of the cellulose-containing fiber.
  • improvement in feel is achieved by reducing the rate at which the feel becomes poor.
  • the above method can be used to clarify the color of the colored cellulose-containing fiber.
  • the above method also provides for a local change in the color of the colored cellulose-containing fibers.
  • colored cellulose-containing fibers eg, denim
  • the protein concentrations of various endoglucanases were calculated by HPLC analysis using a TSKgel TMS-250 column (4.6 mml. D. X7.5 cm) (manufactured by Tosoh Corporation).
  • the above method can be used to reduce the speed at which the cellulose-containing fiber starts to stiffen or to reduce the stiffness of the cellulose-containing fiber.
  • the cellulose-containing fiber can be softened.
  • treatment of the cellulose-containing fibers can be accomplished through dipping, washing, or rinsing the fibers. That is, the above method of the present invention can be carried out by treating the cellulose-containing fiber during washing.
  • the treatment of the fiber may optionally involve adding the protein or the like or the cellulase preparation of the invention to the water in which the fiber is or is soaked during soaking or rinsing. May be implemented.
  • the present invention relates to a detergent additive comprising the protein or the like of the present invention or the cellulase preparation of the present invention in the form of non-dispersible granules or a stabilized liquid. Or a detergent composition comprising the cellular preparation of the present invention.
  • the detergent composition may also contain a surfactant (which may be anionic, nonionic, cationic, amphoteric or zwitterionic or a mixture thereof).
  • the detergent composition may also contain other detergent components known in the art, such as builders, bleaches, bleach activators, corrosion inhibitors, sequestrants, soil release polymers, fragrances, and other enzymes. (Tase, lipase, amylase, etc.), enzyme stabilizer, formulation aid, optical brightener, foaming accelerator and the like.
  • Typical anionic surfactants are linear alkyl benzene sulfonate (LAS), alkyl sulfate (AS), alpha olefin sulfonate (A0S), polyoxyethylene alkyl ether sulfate (AES) ,-Sulfo fatty acid ester salts (-SFMe) and alkali metal salts of natural fatty acids.
  • nonionic surfactants include polyoxyethylene alkyl ether (AE), alkyl polyethylene glycol ether, nonylphenol polyethylene glycol ether, fatty acid methyl ester ethoxylate, sucrose or dalco fatty acid ester, and alkyl darco. Examples include sides and esters of polyethoxylated alkyl darcosides.
  • the use of the evening protein or the like or the cellulase preparation of the present invention in a detergent composition improves grain soil removal, color clarification, hair removal, depiling, and hand roughness reduction. be able to.
  • the present invention relates to a method for deinking waste paper, which comprises using the protein or the like of the present invention or the cellulase preparation of the present invention in the step of deinking by treating the waste paper with a deinking chemical. .
  • the protein etc. or cellulase preparation of the present invention deinks when used on waste paper. It is useful in the process of manufacturing recycled paper from waste paper to improve the efficiency of recycling. According to the above deinking method, the residual ink fibers are significantly reduced, so that the whiteness of the used paper can be improved.
  • the de-Inki chemicals generally may be a drug for use in waste paper de-Inki, but are not limited to, for example, NaOH, Na 2 C0 3, etc. alkali, silicate source one da, hydrogen peroxide, phosphates, Examples include anionic surfactants, nonionic surfactants, and collecting materials such as oleic acid, and auxiliary agents include pH stabilizers, chelating agents, and dispersants.
  • waste paper to which the above-mentioned deinking method can be applied is not particularly limited as long as it is generally called waste paper.
  • waste paper For example, newspaper waste paper, magazine waste paper and lower- to middle-grade waste waste paper containing mechanical pulp and chemical pulp may be used. Examples include high quality waste paper made of pulp and printed waste paper such as coated paper.
  • the above-described deinking method can be applied to paper to which ink has been attached, even if the paper is not generally used paper.
  • the present invention relates to a method for improving the drainage of paper pulp, comprising the step of treating paper pulp with the protein or the like of the present invention or the cellulase preparation of the present invention. According to this method, it is considered that the drainage of paper pulp is significantly improved without a significant decrease in strength.
  • the pulp to which the method can be applied is not particularly limited, and examples thereof include waste paper pulp, recycled paperboard pulp, kraft pulp, sulfite pulp, processing heat treatment, and other high yield pulp.
  • the present invention relates to a method for improving digestibility of animal feed, comprising a step of treating the animal feed with the protein or the like of the present invention or the cellulase preparation of the present invention.
  • Rhizopusoryzae CP96001 strain was obtained under the accession number of FERM BP-68 89 under the Patent Organism Depositary Center, National Institute of Advanced Industrial Science and Technology, Japan No.-6) Pico Deposited on April 21, 1997.
  • Mucor circinelloides CP99001 strain was obtained under the accession number of FER M BP-6890 under the National Institute of Advanced Industrial Science and Technology (AIST), Patent Organism Depositary (1-1-1, Higashi, Tsukuba, Ibaraki, Japan 1 Central No. 6 ) Was deposited on July 2, 1999.
  • Phycomycesnitens CP99002 strain was obtained under the accession number of FERM BP-6891 under the Patent Organism Depositary Center, National Institute of Advanced Industrial Science and Technology (1-1-1 Higashi, Tsukuba, Ibaraki, Japan 1 Deposited with Chuo No. 6) on July 2, 1999.
  • the E. coli JM109 strain transformed with the expression vector PMKD01 used in the present invention was obtained under the accession number of FERM BP-5.974 (Original deposit: FERM P-15730, Original deposit: July 12, 1996). Deposited at the Patent Organism Depositary Center, National Institute of Advanced Industrial Science and Technology (Tsukuba-Higashi 1-chome, 1-Chuo No. 6 Ibaraki, Japan).
  • the Humicola insolens MN200_1 which can be a host of the expression vector of the present invention is obtained from FERM BP-5977 (Original deposit: FERM P-15736, Original deposit date: July 15, 1996). It has been deposited at the Patent Organism Depositary Center, National Institute of Advanced Industrial Science and Technology (Tsukuba-Higashi 1-1, Ibaraki, Japan). This description includes part or all of the contents as disclosed in the description of Japanese Patent Application No. 2000-354296, which is a priority document of the present application. BEST MODE FOR CARRYING OUT THE INVENTION
  • endalcanase activity means CMCase activity.
  • CMCase activity is measured by measuring the amount of reducing sugar released after incubating a solution of cellulase enzyme and carboxymethyl cellulose (CM (manufactured by Tokyo Chemical Industry Co., Ltd.)) for a certain period of time. The amount of enzyme that produces reducing sugars equivalent to ⁇ mol glucose is defined as one unit.
  • mRNA was prepared from Humicola 'insolens MN200-1 (FERM BP-5977), and cDNA was synthesized with reverse transcriptase to prepare a library.
  • Humicola Insolens MN200-1 (FERM BP-5977) in (N) medium (5.0% Avicel, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, pH6.8) for 2 days
  • N medium
  • the cells were cultured, and the cells were collected by centrifugation (3500 rpm, 10 minutes). 3 g of the cells were washed with sterile water, frozen in liquid nitrogen, and ground in liquid nitrogen using a mortar and pestle.
  • Total RNA was isolated from the ground cells by IS0GEN (manufactured by Nippon Gene) in accordance with the attached manual, and the total RNA was confirmed as a stained image by formaldehyde agarose gel electrophoresis.
  • RNA was eluted and isolated by applying to an oligo (dT) cellulose column using mRNA Purification Kit (Amersham Pharmacia Biotech) according to the attached manual. Furthermore, mRNA was confirmed as a smeared image by formaldehyde-agarose gel electrophoresis.
  • CDNA was synthesized from 5 g of the mRNA prepared in (2) using the Time Saver cDNA Synthesis Kit (Amersham Pharmacia Biotech) according to the attached manual. 4 Preparation of cDNA library
  • the blunt ends of all synthesized cDNAs are included in the Time Saver cDNA Synthesis Kit described above! ⁇
  • the RI-I adapter was connected according to the attached manual. The entire amount of this DNA fragment was ligated to the ⁇ RI arm of a phage vector 1 and ⁇ cloning kit (manufactured by Stratagene) using DNA Ligation Kit Ver.2 (manufactured by Takara Shuzo Co., Ltd.). It was dissolved in 10 mM Tris-HCl (pH 8.0, 1 mM EDTA) buffer. The thus obtained recombinant phage vector was subjected to in vitro packaging using Gigapack III Plus Packaging Extract (Stratagene) according to the attached manual.
  • Gigapack III Plus Packaging Extract Stratagene
  • the recombinant phage was infected with Escherichia coli XL1-Blue MRF 'and cultured on a plate to form plaques, thereby obtaining a phage library.
  • the target gene was cloned.
  • the cDNA prepared in (1) -3 was transformed into type II, and the DNA was amplified by PCR based on information on the partial amino acid sequence of cellulase NCE5.
  • PCR was performed using 1.25 units of LA in cDNA of 1 in 501 reaction solutions.
  • Tad DNA The reaction was carried out using a polymerase (manufactured by Takara Shuzo Co., Ltd.) and the attached buffer, 0.2 mM dNTP, 10 DMS0, and 1 M primers under the following conditions. 1 minute at 94, (94.0 ° C for 30 seconds, 55. (TC 30 seconds, 72.0 for 1 minute) X 25 times, 72.0 ° C for 5 minutes. This reaction amplifies about 500 bp of DNA, which is then transferred to DYEnamic ET.
  • the 500 bp DNA fragment lOOng amplified by the PCR method was labeled in advance with an ECL direct DNA / RNA labeling detection system (Amersham Pharmacia Biotech).
  • the phage plaques prepared in (1) -4 were transferred to a Hybond-N + nylon transfer membrane (Amersham Pharmacia Biotech), alkali-treated with 0.4 N sodium hydroxide, and the recombinant phage DNA on the membrane was removed. After denaturation to a single strand, the DNA was washed with 5 XSSC (1XSSC; 15 mM trisodium citrate, 150 mM sodium chloride) and air-dried to fix DNA. After that, according to the kit manual, high predication was carried out, a detection reaction was performed, and light was exposed to FUJI MEDICAL X-RAY FILM (manufactured by Fuji Photo Film Co., Ltd.) to obtain six positive clones.
  • FUJI MEDICAL X-RAY FILM manufactured by Fuji Photo Film Co., Ltd.
  • DNA was prepared from positive clones as plasmid DNA according to the manual attached to the kit.
  • a plasmid in which a DNA fragment was cloned into pBluescript SK (1) was prepared from E. coli S0LR TM resistant to ampicillin, and this was used as a template in (2). Using the N-terminal and T-43.0 primers, PCR was performed under the same conditions as described above. As a result, an amplification product of 500 bp was obtained with one plasmid. Therefore, it was predicted that the target DNA had been cloned into this plasmid. ⁇ Digested with RI and subjected to agarose gel electrophoresis.
  • nucleotide sequence of the ⁇ RI fragment was determined in the same manner as described above using primers for T3 and # 7 sequencing. As a result, the nucleotide sequence contained 0RF of 672 bp, and the nucleotide sequence and the amino acid sequence deduced from the 0RF are shown in SEQ ID NO: 39 and SEQ ID NO: 38 in the sequence listing, respectively.
  • sequence of 1 to 18 amino acids of this 0RF was considered to be a signal sequence for secreting this protein extracellularly.
  • the expression vector in Humicola's Insolens MN200-1 was constructed as follows using plasmid pJDOl (WO00 / 24879, Example D1 (2) (see W)).
  • a primer was designed to contain a sequence immediately upstream of the start codon and ⁇ ⁇ immediately downstream of the stop codon so that it could be ligated to the ⁇ iHI site of the plasmid pJDOl, and amplified by PCR.
  • the primers for mutagenesis were designed as follows.
  • the PCR reaction was performed under the same conditions as above using the positive recombinant pBluescript SK (-) plasmid obtained in Reference Example 1 as a template.As a result, the DNA was approximately 670 bp in 1.0% agarose gel electrophoresis. Since the amplified product of the fragment was confirmed, unreacted substances were removed using Micro Spin S-400 HR Columns (manufactured by Amersham Pharmacia Biotech), and ethanol precipitation was performed, followed by digestion with iHI.
  • the aforementioned plasmid pJDOl was digested with ⁇ , separated by 0.8% agarose gel electrophoresis, and a DNA fragment of about 8.0 Kb was recovered using the aforementioned Sephaglas BandPrep Kit. Was dephosphorylated according to the attached manual.
  • the plasmid pNCE5Bam obtained in 1 was also digested with ⁇ , a 670 bp DNA fragment was recovered, and each was ligated with DNA Ligation Kit Ver. 2 to obtain an expression plasmid pJND-c5.
  • Humicola-Insolens MN200-1 (FERM BP-5977) was cultured in (S) medium at 37, and after 24 hours, cells were collected by centrifugation at 3000 rpm for 10 minutes.
  • the composition of the (S) medium was the same as that of (N) medium described in Reference Example 1 except that glucose (3.0%) was added and Avicel was removed. The obtained cells were washed with 0.5 M sucrose and filtered through a 0.45 ⁇ m filter.
  • Protoplastase solution (3 mg / ml) 3-glucuronidase, lmg / ml Chitinase lmg / ml Zymolyase 0.5 M sucrose 10 ml Suspended in water.
  • the mixture was shaken at 30 ° C. for 60 to 90 minutes to make the mycelium protoplast. After filtering this suspension, centrifugation was performed at 2500 rpm for 10 minutes to collect protoplasts, and the SUTC buffer (0.5%) was collected. The cells were washed with M sucrose, 10 mM calcium chloride, and 10 Tris-HCl (pH 7.5)).
  • the protoplasts prepared as described above were suspended in 1 mL of SUTC buffer solution, and a 10 / g DNA (TE) solution (101) was added to 100 L of the suspension, and the mixture was allowed to stand on ice for 5 minutes.
  • a 10 / g DNA (TE) solution 101 was added to 100 L of the suspension, and the mixture was allowed to stand on ice for 5 minutes.
  • 400 L of a PEG solution (60% PEG 4000, 10 mM calcium chloride, 10 mM Tris-HCl (pH 7.5)) was added, and the mixture was allowed to stand on ice for 20 minutes, and then 10 ml of SUK buffer was added. Centrifugation was performed at 2500 rpm for 10 minutes.
  • the collected protoplasts were suspended in 1 mL of SUT: buffer, centrifuged at 4000 rpm for 5 minutes, and finally suspended in 100 L of SUTC buffer.
  • Protoplasts treated as described above are placed on a YMG medium (1% glucose, 0.4% yeast extract, 0.2% malt extract, 1% agar (pH 6.8)) supplemented with hygromycin (200 g / ml). Then, the cells were overlaid with YMG soft agar, cultured at 37: 5 for 5 days, and the formed colonies were used as transformants.
  • a YMG medium 1% glucose, 0.4% yeast extract, 0.2% malt extract, 1% agar (pH 6.8)
  • hygromycin 200 g / ml
  • Plasmid pl8-1 containing the codon-optimized endoglucanase gene RCE I is digested with the restriction enzyme ⁇ ) HI to obtain the codon-optimized endoglucanase gene.
  • Plasmid PR1H4 was prepared by cloning the fragment containing the fragment into the ligation site of plasmid PUC118. Using this PR1H4 as a type II, the first-stage PCR reaction was performed using TaKaRa LA PCR in vitro Mutagenesis Kit (Takara Shuzo) with two synthetic DNAs of RC-43F.RC-43R as primers. The reaction conditions were in accordance with the manual attached to the kit. The sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment 43-X2 of about 650 bp.
  • the plasmid pJND-c5 containing the NCE5 gene which is originally a family 45-endalcanase that does not have a cellulose-binding region, described in Reference Example 2, was type II, and two synthetic DNAs of NX-43F and NX-43R were used.
  • primers as TaKaRa LA PCR in vitro Mutagenesis The first-stage PCR was also performed using Kit (Takara Shuzo). The reaction conditions were in accordance with the manual attached to the kit. The sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment 43-XI of about 120 bp.
  • RC-43F CACCACGCGCTACTGGGACT (SEQ ID NO: 20);
  • RC-43R GGATCCTGCGTTTACTTGC (SEQ ID NO: 21);
  • NX-43F GGATCCTGGGACAAGATG (SEQ ID NO: 22);
  • NX-43R GCACGACGGCTTGCAGC (SEQ ID NO: 23)
  • Annealing was performed using PCR fragments 43-X1 and 43-X2 and TaKaRa LA PCR in vitro Mutagensis Kit.
  • a second-stage PCR reaction was performed.
  • primers two synthetic DNAs, NX-43F and RC-43R, were used, and the reaction conditions were in accordance with the manual attached to the kit.
  • the sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment H43 of about 700 bp. This fragment was digested with the restriction enzyme ⁇ jHI to prepare a plasmid PR1H43 which was ligated to the plasmid site of plasmid PUC118 using TaKaRa DNA Ligation Kit Ver.
  • the reaction conditions for enzymes and the like were in accordance with the manual conditions attached to the kit.
  • the obtained plasmid PR1H43 was subjected to a sequence reaction using Cy5-Auto Read Sequencing Kit (Amersham Pharmacia), and its sequence was analyzed using a DNA sequencer ALFred (Amersham Pharmacia).
  • the primer for the reaction the M13 primer attached to the kit was used.
  • NCE5 N-terminal secretion signal
  • CAD catalytic region
  • amino acid residues 19 to 24 are the N-terminal sequence of NCE5; amino acid residues 25 to 36 are a sequence derived from NCE5 or RCE I; The sequence after the amino acid residue is a sequence derived from the catalytic region of RCEI.
  • Amino acid substitutions were introduced into the RCE I gene using the PR1H4 of Example 1 as type III and RC-A121P, which is a synthetic DNA, and TaKaRa LA PCR in vitro Mutagenesis Kit (Takara Shuzo).
  • the reaction conditions were in accordance with the manual attached to the kit.
  • the sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment L9 of about 1 Kbp. This fragment was digested with the restriction enzyme iHI to prepare a plasmid pRlL9 which was ligated to the ⁇ site of the plasmid PUC118 using TaKaRa DNA Ligation Kit Ver.
  • the reaction conditions for the enzyme and the like were in accordance with the conditions in the manual attached to the kit.
  • the obtained plasmid PR1L9 was subjected to a sequence reaction using a Cy5-Auto Read Sequencing Kit (manufactured by Amersham-Pharmacia), and its sequence was analyzed using DNA Sequencer ALFred (manufactured by Amersham-Pharmacia). Synthetic as primer for reaction
  • H4-R1 a DNA, was used. As a result, it was confirmed that one alanine was changed to proline and the sequence was as expected.
  • RC-A121P GACTGCTGCAAGCCGTCGTGC (SEQ ID NO: 42);
  • H4-R1 GTTGCACATGTAGGAGTTGC (SEQ ID NO: 43)
  • a region encoding the secretory signal sequence of the RCE I gene Gene was amplified.
  • PCR reaction was performed using TaKaRa Ex TaQ Polymerase (Takara Shuzo) and one of the attached buffers.
  • the temperature of the thermal cycler (Perkin Elmer Co., Ltd .: 2400-R) was 94-1 min, 5 (TC-2 min, and 72 ° C-1 min) according to the conditions of the attached manual for the composition of the reaction solution.
  • the sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment 45-X1 of about lOOto.
  • the region encoding the catalytic region (CAD) of the RCEI gene was amplified using PR1L9 as type III. PCR was performed using two synthetic DNAs, RC-452F and RC-452R, as primers and TaKaRa Ex Taq Polymerase (Takara Shuzo) and one of the attached buffers. Regarding the composition of the reaction solution, the temperature conditions of the thermal cycler (Pa-Kin Elmer 1400-2R) were set to 94-1 min, 50-2 min, and 72 ° C-1 min. Cycle. The sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment 45-X2 of about 630 bp.
  • RC-451F GCGGATCCTGGGACAAGATG (SEQ ID NO: 25);
  • RC-451R GCCTGCAGAGCGGCGGAGGCCATC (SEQ ID NO: 26);
  • RC-452F GCCTGCAGGGAAAGTACAGCGCTGT (SEQ ID NO: 27);
  • RC-452R GCGGATCCTGCGTTTACTTGC (SEQ ID NO: 28)
  • the PCR fragments 45-X1 and 45-X2 were digested with the restriction enzyme £ ⁇ 1, ligated using TaKaRa DNA Ligation Kit Ver. 1, and then digested with the restriction enzyme 3 ⁇ 4il to obtain DNA fragment 45- ⁇ 3.
  • a PCR reaction was performed using 45-X3 as a type II, two synthetic DNAs of RC-451F and RC-452R as primers, and TaKaRa Ex TaQ Polymerase (Takara Shuzo) and one of the attached buffers.
  • the temperature condition of the thermal cycler (Pa-Kin Elmer Co., Ltd .: 2400-R) was set to 25 ° C for 1 minute at 94 ° C, 50-2 minutes, and -1 minute at 72. Cycle.
  • the sample after the reaction was separated by agarose gel electrophoresis to obtain a gene fragment H45 of about 700 bp. This fragment was digested with restriction enzyme 3 ⁇ 4 ⁇ and ligated to the BamHI site of plasmid PUC118 using TaKaRa DNA Ligation Kit Ver. Plasmid PR1H45 was prepared.
  • the reaction conditions were in accordance with the manual attached to the kit.
  • the amino acid sequence of RCEI mutant H45 deduced from the nucleotide sequence is shown below.
  • the 1st to 23rd amino acid residues are the signal peptide derived from RCEI
  • the 24th amino acid residue is the N-terminal sequence of RCEI
  • the 25th to 26th amino acid residues are This is a sequence introduced by the primer used
  • the sequence after the 27th amino acid residue is a sequence derived from the catalytic region of RCEI.
  • Plasmid pJDOl (see WO00 / 24879, Example D1 (2) (b)) was digested with ⁇ HI, and dephosphorylated using alkaline phosphatase derived from Escherichia coli (manufactured by Takara Shuzo Co., Ltd.) according to the attached manual.
  • the plasmids pRlH43 and PR1H45 obtained in Example 2 were similarly digested with 3 ⁇ 4 ⁇ to recover a DNA fragment of about 700 bp, and each was ligated with DM Ligation Kit Ver. 1, and the expression plasmid pJND-H43, pJND-H45 was obtained.
  • Humicola-Insolens MN200-1 (FERM BP-5977) was converted to Plasmid H PJND-H43, pJND-H45 and PJI4D01 containing codon-optimized RCEI gene (RCEI with codon optimized for expressing Rhizopus-derived RCEI in Humicola) Gene-containing plasmid: WO00 / 24879 (see Example D3 (3)).
  • Humicola-Insolence M 200-1 (FERM BP-5977) Culture at 37 ° C in a medium (3.0% glucose, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, pH 6.8), and after 24 hours, centrifuge at 3000 rpm for 10 minutes And collected. The obtained cells were washed with 0.5 M sucrose and filtered through a 0.45 xm filter. Protoplast enzyme solution (5 mg Zml Novozyme 234 (Novo), 5 mg / ml Cellulase Onozuka® -10 (manufactured by Yakult), 0.5M sucrose). The mycelium was shaken at 30 ° C for 60 to 90 minutes to protoplast.
  • the protoplasts prepared as described above were suspended in lm1 of SUTC buffer solution, 10 g of DNA (TE) solution (10 ⁇ l) was added to 1001 of the suspension, and the mixture was allowed to stand on ice for 5 minutes. Next, a 4001 PEG solution (60% PEG4000, 10 mM calcium chloride, 1 OmM Tris-HCl (pH 7.5)) was added, the mixture was allowed to stand on ice for 20 minutes, and then 10 ml of SUTC buffer was added. Centrifuged at 2500 rpm for 10 minutes. The collected protoplasts were suspended in lm1 of SUTC buffer, then centrifuged at 4000 rpm for 5 minutes, and finally suspended in 1001 of SUTC buffer.
  • the protoplasts thus treated were added to a YMG medium containing 200 g / m1 of hygromycin B (1% glucose, 0.4% yeast extract, 0.2% maltodex, 1% agar (pH 6.8). )) Overlaid with YMG soft agar and cultured at 37 ⁇ for 5 days, the formed colonies were used as transformants.
  • hygromycin B 1% glucose, 0.4% yeast extract, 0.2% maltodex, 1% agar (pH 6.8).
  • the resulting transformant is cultured at 37 ° C in (N) medium (5.0% Avicel, 2.0% yeast extract, 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, pH 6.8), and centrifuged. The culture supernatant from which solids were removed by separation was used as an enzyme sample.
  • N (N) medium
  • the purified Humicola insolens transformant was transformed into a (N) medium (5.0% Avicel, 2.0% yeast extract, The cells were inoculated into 0.1% polypeptone, 0.03% calcium chloride, 0.03% magnesium chloride, pH 6.8) and cultured with shaking at 37.
  • Transformants into which plasmids pJND-H43 and pJND-H45 had been introduced were cultured for 5 to 6 days.
  • the transformant into which the plasmid pJ I4D01 has been introduced has no degradation in the linker part, and the sample in which it is desired to obtain the RCE I enzyme while maintaining the cellulose binding region is cultured for 4 days.
  • the culture was extended for more than 4 days and cultured for 5 to 6 days.
  • Each of the obtained cultures was centrifuged at 7,000 rpm for 20 minutes to remove the cells, and the culture supernatant was used as a crudely purified cellulase preparation.
  • the culture solution of the transformant into which the plasmid pJND-H43 was introduced (hereinafter referred to as “H43 culture solution”) was prepared by adding plasmid pJND-H45 to the fraction obtained when the concentration of ammonium sulfate was 1.2 M.
  • H45 culture medium the fraction obtained when the concentration of ammonium sulfate was 0.9 M was added to the fraction obtained by introducing the plasmid pJI4D01.
  • H4 culture solution For those cultured for 4 days (hereinafter referred to as “H4 culture solution”), the transformants obtained by introducing the plasmid pJI4D01 into the fraction obtained when the ammonium sulfate concentration was 0.6 M were used. Among them, the culture solution in which the culture was prolonged and the decomposition was promoted (hereinafter referred to as “H4 degraded product”), the fraction obtained at 0.9 M showed strong lyocell fluff removal activity. Was done. Therefore, 100m each of these fractions was collected.
  • the H43 culture solution contained the fraction obtained when the ammonium sulfate concentration was 1.35M
  • the H45 culture solution contained the fraction obtained when the ammonium sulfate concentration was 1.05M
  • the H4 culture solution contained in the fraction obtained when the ammonium sulfate concentration was 1.05M.
  • the fraction obtained when the ammonium sulfate concentration was 0.75 M and the fraction obtained when the ammonium sulfate concentration was 1.05 M showed the lyocell fuzz removal activity. Therefore, 40 ml of these fractions were collected.
  • the obtained active fraction was prepared by diluting it to 150 ml of 50 acetate buffer (pH 4.0), and was previously equilibrated with 50 mM acetate buffer (pH 4.0). The mixture was applied to a MonoS 10 / 10HR column (Amersham-Pharmacia) at a flow rate of 2 ml min. Next, elution was carried out at a flow rate of S mlZmin from a 50 mM acetate buffer (pH 4.0) to a 1 M NaCl solution in 50 mM acetate buffer (pH 5.0) by a 0.1 M stepwise elution method. Painted.
  • the fractions obtained when the NaC1 concentration was about 0.2 to 0.3 M showed lyocell fluff removal activity. Therefore, a fraction 6 ml of which the activity was most strongly recognized was collected. These fractions were analyzed by SDS-PAGE.
  • the protein purified from the H43 culture solution, the H45 culture solution, and the H4 degradation product showed a single band of about 25 Kda, and the H culture solution showed a single band of about 40 KDa.
  • SDS-PAGE was performed using a Tefco system. That is, an electric bath (No. 03-101), a power supply (Mode 1: 3540), a gel 10% (01-015), and a buffer kit for SDS-PAGE (06-0301) were used. The electrophoresis conditions were 18 mA / 10 minutes, then 2 OmA / 90 minutes. For detection of proteins after electrophoresis, silver staining was performed using 2D-silver staining reagent for electrophoresis ⁇ II “Daiichi” (Daiichi Pure Chemicals). As a standard protein as a marker, Bio'Rad SDS-PAGE molecular weight standard protein'LowRange (161-0304) was used.
  • the lyocell fluff removing activity was measured according to the following method.
  • the pre-dyed lyocell knit fabric (manufactured by Toshima Co., Ltd.) was fluffed with a surfactant and a rubber ball in a large washer. After that, the fluffed lyocell knit fabric (9 cm x 10 cm, weight of about 2 g, manufactured by Toshima Co., Ltd.) was sewed in a tubular shape, and the fluff was removed by various enzymes under the following conditions. By this process, the protein concentration required to completely remove the fluff inside the cylindrical dough was calculated.
  • the protein concentrations of various endoglucanases were determined by HPLC analysis using a TSKgel TMS-250 column (4.6 mml. D. X7.5 cm) (manufactured by Tosoh Corporation) in 0.05% TFA (trifluoroacetic acid) in acetonitrile. The concentration was calculated from the peak area at UV280nm of various endoglucanases eluted at a flow rate of 1. Oml / min using a linear gradient from 0% to 80%. As the standard, purified NCE4, whose protein concentration had been measured in advance using a protein assay kit (manufactured by Bio-Rad Laboratories), was also subjected to HPLC analysis in the same manner.
  • Albumin Standard Bovine serum albumin, fraction V, manufactured by PIERCE
  • Purified NCE4 (first of SEQ ID NO: 18) 18-1088 bases) was isolated and purified from a Humicola insolens culture according to the method described in International Publication WO098 / 03640.
  • each fraction was subjected to SDS_PAGEmini (manufactured by Tefco), followed by electroblotting onto a PVDF membrane to obtain Coomassie Brilliant Blue R250 (Nacalai Tesque). ), Destained, washed with water and air-dried. A portion where the target protein was plotted was cut out from this, and the cut out was used for Protein Sequencer Model 492 (manufactured by PE Applied Biosystems) to analyze the N-terminal amino acid sequence.
  • the amino acid sequence of the enzyme purified from the H45 culture solution, H4 culture solution, and H4 degradation product could be read without any problem.However, for the enzyme purified from the H43 culture solution, no signal due to Edman degradation was obtained, and the N-terminal amino acid was not detected. The modification was found to be protected. Therefore, after immersing in 0.5% polyvinylpyrrolidone (molecular weight: 40,000: manufactured by Sigma) in 100 mM NaCl solution for 30 minutes at 37 ° C to block protein-unbound portions on the membrane, Piu PyroglutamateAminopeptidase (Takara Shuzo) For 5 hours at 50 ° C. Thus, the modified N-terminal residue was removed, and sequencing was performed again. The sequences obtained were as follows.
  • the fluff removal treatment of 6cmX 8cni was performed under the following conditions, and the amount of fluff left unremoved was visually determined. The amount of the purified enzyme that caused the remaining amount of fluff to be 50% was measured. BCA for measuring protein The assay was performed using Protein Assay Reagent (Pierce) according to the conditions of the attached manual.
  • the purified RCE I protein (RCE I-H4 (40KDa)) of 40KDa and the purified RCE I protein of 25KDa (RCE I-H43 (25KDa), RCE I-H45 (25KDa) and RCE I-H4 (25KDa)) Since the estimated molecular weight is about 1.5 times larger than that, even if the quantified amount of protein is the same, if converted to the number of enzyme molecules contained in it, the purified RCE I protein of 40 KDa will be closer to the protein. This means that only 25 kDa of the purified RCE I protein contains only about 2Z3 of the enzyme.
  • Reaction pH The reaction was performed at pH 7 (prepared using 1 mM phosphate buffer and deionized water). Four 16 g rubber balls were added to the treatment solution together with the enzyme solution.
  • RCE I an endodalcanase derived from zygote
  • CBD cellulose-binding domain
  • the 25 kDa protein lacking the protein exhibits a much higher level of fluff removal activity of cotton fabric than the 40 kDa protein carrying the cellulose-binding domain (CBD).
  • Example 7 Comparison of fluff removal specific activity of lyocell dough between RCE I lacking the cellulose binding region and RCE I retaining the cellulose binding region
  • Example 5 Using the endorcanase purified solely in Example 5, the lyocell dough (6 cm x 8 cm, manufactured by Toyoshima Co., Ltd.) was subjected to a fluff removal treatment under the same conditions as those described in Example 4 with an improvement. The amount of fluff left unremoved was visually determined, and the amount of purified enzyme required for complete removal of fluff was measured. The amount of protein was measured using BCA Protein Assay Reagent (Pierce) according to the conditions of the attached manual.
  • the purified RCE I protein of 40KDa (RCE I-H4 (40KDa)) and the purified RCE I protein of 25KDa (RCE I-H43 (25KDa), RCE I-H45 (25KDa) and RCE I-H4 (25KDa)) Since the estimated molecular weight is about 1.5 times larger than that, even if the quantified amount of protein is the same, if converted to the number of enzyme molecules contained in it, the purified RCE I protein of 40 KDa will be closer to the protein. This means that only 25 kDa of the purified RCE I protein contains only about 2-3 enzymes.
  • Reaction pH The reaction was carried out at pH 6 (prepared using 10 mM acetate buffer and deionized water). About 16 g rubber poles were added to the treatment solution together with the enzyme solution.
  • RCE I which is an endalkanase derived from zygote
  • the 25KDa protein lacking the cell binding region (CBD) exhibits a higher level of lyocell dough removal activity than the 40KDa protein retaining the cellulose binding region (CBD).
  • Example 8 Comparison of fluff removal specific activity of cotton fabric of RCE I lacking a cellulose binding region and RCE I retaining a cellulose binding region under conditions of alkali, low temperature, and presence of a surfactant
  • a cotton knit fabric fluffed in a large washer using the endalcanase purified solely in Example 5 (a cotton smooth knit No. 3900 manufactured by Nitto Boseki Co., Ltd.
  • the fluff removal processing of the fabric (6 cm x 8 cm) that has been reactively dyed brown by the company is performed under the following conditions, the amount of fuzz remaining without being removed is visually determined, and the remaining amount of fuzz is reduced to 50%.
  • the amount of the purified enzyme added was measured.
  • the amount of evening protein was measured using BCA Protein Assay Reagent (Pierce) according to the conditions of the attached manual.
  • the purified RCE I protein of 40KDa (RCE I-H4 (40KDa)) is the same as the purified RCE I protein of 25KDa (RCE I-H43 (25KDa), RCE I-H45 (25KDa) and RCE I-H4 (25KDa)). Since the estimated molecular weight is about 1.5 times larger than that, even if the quantified amount of protein is the same, if converted to the number of enzyme molecules contained in it, the purified RCE I protein of 40 KDa will be closer to the protein. This means that only 25 kDa of the purified RCE I protein contains only about 2-3 enzymes.
  • Reaction pH The reaction was performed at pH 10 (prepared using 5 mM sodium carbonate buffer and deionized water).
  • the treatment solution contains a non-aqueous solution with a final concentration of lOOppm, together with the enzyme solution and four rubber poles of about 16 g.
  • On-surfactant Persoft NK-100 (Nippon Yushi Co., Ltd.) was added.
  • RCEI-H4 (25KDa) 52 g
  • RCE I an endalcanase derived from zygote
  • a cotton knit fabric fluffed in a large washer using the endoglucanase purified solely in Example 5 (manufactured by Nitto Boseki Co., Ltd .: Cotton smooth knit No. 3900 was purchased from YAMAMO The fluff is removed from the fabric (6 cm x 8 cm) that has been reactively dyed brown by the company under the following conditions.The amount of fuzz remaining without being removed is visually determined, and the remaining amount of fuzz becomes 50%. The amount of the purified enzyme added was measured. The amount of protein was measured using BCA Protein Assay Reagent (Pierce) according to the conditions of the attached manual.
  • Reaction pH The reaction was carried out at pH 7 (prepared using IDIM phosphate buffer solution and deionized water). Four 16 g rubber balls were added to the treatment solution together with the enzyme solution.
  • RCEI- ⁇ 4 (25KDa) 18 g Based on the results in Table 5, RCE I-H43 (25KDa), RCEI-H45 (25KDa), RCEI-H4 (25KDa), etc. It can be seen that all of the proteins show a much higher level of cotton fabric fluff removal activity than the 40 kDa protein RCEI-H4 (40 kDa), which retains the cellulose binding domain (CBD). Therefore, regardless of the length of the linker remaining on the N-terminal side of the catalytic domain, the RCE I protein lacking the cellulose-binding domain (CBD) had a 40 KDa retention of the cellulose-binding domain (CBD).
  • the cotton fabric has a much higher activity in removing fluff than protein. Regardless of the method of deletion, artificial or non-artificial, the RCEI-H4, a 40 kDa protein retaining the cellulose-binding domain (CBD), was better for the RCE I protein lacking the cellulose-binding domain (CBD). It can be seen that the cotton fabric exhibits fluff removal activity at a much higher level than (40 KDa).
  • Example 10 Comparison of fluff removal specific activities of various purified RCE I lyocell doughs lacking the cellulose binding region
  • Example 5 Using the endodalcanase purified solely in Example 5, the treatment for removing naps of lyocell dough (6 cm X 8 cni, manufactured by Toshima Co., Ltd.) was carried out under the same conditions as those described in Example 4 except for improvements. The amount of fluff left unremoved was visually determined, and the amount of purified enzyme required for complete removal of fluff was measured. The amount of protein was measured using BCA Protein Assay Reagent (Pierce) according to the conditions of the attached manual.
  • purified RCE I protein (RCE I-H4 (40KDa)) of 40KDa and purified RCE I protein of 25KDa (RCE I-H43 (25KDa), RCE I-H45 (25KDa) and RCE I-H4 (25KDa)) Since the estimated molecular weight is about 1.5 times larger than that, even if the quantified amount of protein is the same, if converted to the number of enzyme molecules contained in it, the purified RCE I protein of 40 KDa will be closer to the protein. This means that only 25 kDa of the purified RCE I protein contains only about 2Z3 of the enzyme.
  • Reaction pH The reaction was performed at pH 6 (prepared using lOrn acetate buffer and deionized water). Four 16 g rubber balls were added to the treatment solution together with the enzyme solution.
  • the lyocell dough exhibits a higher fluff removing activity than the protein of the above.
  • the RCE I protein lacking the cellulosic binding domain (CBD) is a 40 kDa protein RCEI-H4 that retains the cellulose binding domain (CBD). It can be seen that the lyocell dough has a higher activity of removing fluff than that of (40 KDa).
  • SEQ ID NO: 13 Codon-optimized sequence corresponding to the RCEI protein (SEQ ID NO: 2)
  • SEQ ID NO: 17 Common amino acid sequence found in the cellulose-binding domain of family 45 endalcanase
  • SEQ ID NO: 24 Recombinant protein
  • SEQ ID NO: 29 Recombinant protein
  • SEQ ID NOS: 30-35 N-terminal amino acid sequence of recombinant protein
  • SEQ ID NO: 38 NCE5 amino acid sequence
  • SEQ ID NO: 39 NCE5 cDNA sequence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Genetics & Genomics (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Detergent Compositions (AREA)
  • Fodder In General (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

セルロース結合領域を欠失した接合菌由来エンドダルカナーゼ酵素
技術分野
本発明は、 セルロース結合領域を欠失させることにより、 セルロース含有繊維 加工や洗剤、 紙パルプ用途における効果を増加させたェンドグルカナーゼ酵素と 明
その製造方法、 及び効果を増加させたセルラーゼ調製物に関するものである。
田 背景技術
セルロース含有繊維を、 その繊維に所望の特性を与えるためにセルラ一ゼで処 理することが行われている。 例えば、 繊維業界においては、 セルロース含有繊維 の肌触り及び外観を改善するために、 あるいは着色されたセルロース含有繊維に その色の局所的な変化を提供する「ストーンゥォッシュ」の外観を与えるために、 セルラ一ゼによる処理が行われている (ヨーロッパ特許第 307, 564号)。
着色されたセルロース含有繊維は繰り返し洗濯をすることによつて毛羽が生じ、 着色生地の色を不鮮明にすることが知られている。 そこで、 洗剤中にセルラーゼ を含ませることによって、 毛羽を除去し、 着色生地の色を鮮明にする、 すなねち 澄明化することから(ヨーロッパ特許第 220, 016号)、セルラーゼを含んだ洗剤が 欧米を中心に市販されている。
上記の用途においては、 主に木材腐朽菌であるトリコデルマ (Tric oderma)や フミコーラ (Humicola) 由来のセルラ一ゼ力使用されている。 最近では経済性を 高めるために、 これらセルラーゼ成分から繊維処理に高活性を有するエンドダル カナーゼのみを単離し、 遺伝子工学的にその効果を増強したセルラーゼ調製物が 使用されている。 例えば、 これら高活性エンドダルカナーゼとしては、 綿生地に 強く作用するフミコーラ ·インソレンス (Humicola insolens) 由来の EGV (国 際公開第 W091/17243号) や NCE4 (国際公開第 W098Z03640号) があり、 リヨ セル生地に強く作用するリゾプス ·オリゼー (Rhizopus oryzae) 由来の RCE I、 RCE I I、 RCEI I L ムコール ·サーシネロイデス (Mucor c i rcinel loides) 由来の MCE L MCE I Iとファイコマイセス ·二テンス (Phycomyces ni tens) 由来の PCE I がある (国際公開第 TO00Z24879号)。
上記の用途において用いられるエンドダルカナーゼのうち、 前出の EGV (国際 公開第 W091/17243号)、 NCE4 (国際公開第 W098 03640号)、 RCE I、 RCE I I、 RCEI I L MCE I、 MCE II、 PCE I (国際公開第 WO00/24879号) などは、 そのアミ ノ酸配列から、 同じファミリ一 (ファミリー 45) に属するエンドダルカナーゼで あるとされており、 また、 ここに挙げられた酵素が持っている構造には共通性が 見られる。 すなわち、 これらのエンドダルカナーゼは、 その基質であるセルロー スに結合するための機能を持ったセルロース結合領域 (Cel lulose Bind ing Domain、 以下 cBDj という。)、 活性の中心となる触媒領域 (Catalyt ic Act ive Domain, 以下「CAD」 という。)、及びこれら 2つの領域を連結する、 親水性アミノ酸残基の 含量が高いリンカ一領域からなる。
フアミリ一45に属するェンドグルカナーゼである EGVにおいて、 CBD領域を欠 失させた酵素を用いた解析が為されているが (特表平 9- 500667; Enzyme and Microbial Technology, 27 (2000) , 325-329)、 セルロース結合領域 (CBD) を欠 失させることによって、 エンドダルカナーゼの有するセルロース繊維の毛羽除去 活性が向上するといつたような報告はされていない。 エンドダルカナーゼの持つ セルロース結合領域がェンドグルカナーゼ活性を示す上で担つている役割につい ては未だ未解明な部分が多く、 特定の菌、 例えばトリコデルマ (Trichoderma)属 由来のセルラーゼに関する報告 (Kiovula, A. et al. , Trichoderma Gl ioc lad ium, 2 (1998) , 3-23) のような限定された範囲での検討にとどまつている。 接合菌由 来のエンドダルカナーゼの持つセルロース結合領域について詳細に検討した知見 は、 これまでに知られていない。 上記の用途において、 セルラ一ゼの効果を向上させるため、 又はセルラーゼの 性能を向上させるための数々の工夫が今までに行われてきた。 例えば、 酵素に変 異を加えて性質を変化させたり、 培養条件を改良して酵素の生産性を向上させる といったことが行われてきた。 しかしな力 Sら、 使用するセルラーゼのコストが高 いために、 工業的実用化レベルに見合うセルラーゼ調製物を提供するためには、 さらなるセルラーゼ効果の向上へのニーズがある。 また、 最近では、 経済性を高 めるために、 繊維処理に高活性を有するェンドグルカナーゼのみを遺伝子工学的 に増強したセルラーゼ調製物が使用されている。 従って、 このような高活性セル ラーゼについてはさらなる活性の向上が望まれている。 発明の開示
本発明の目的は、 活性の向上したエンドダルカナーゼ、 及びこれを含むセルラ —ゼ調製物、 並びにこれらを用いたセルロース含有繊維の各種処理方法を提供す ることにある。
本発明者らは、 接合菌由来のエンドダルカナーゼにおいて、 セルロース含有繊 維への作用におけるセルロース結合領域のもつ役割について鋭意検討し、 セル口 —ス結合領域が欠失しているェンドグルカナ一ゼが、 セルロース結合領域を持つ ているエンドダルカナーゼよりも綿、 リョセル等に対する毛羽除去活性がはるか に高いことを見出し、 本発明に至った。
従って、 本発明は、 セルロース結合領域を欠失させることにより、 セルロース 含有繊維に対する毛羽除去効果が向上した接合菌由来のェンドグルカナーゼ (例 えば、 セルロース結合領域を欠失させることにより、 セルロース含有'繊維に対す る毛羽除去効果が向上した、 RCE I、 RCE I I、 RCE I I I、 MCE I、 MCEI L 及び PCE I のアミノ酸配列を含んでなるェンドグルカナーゼ活性を示す酵素、 ェンドグルカ ナーゼ活性を示すその改変タンパク質、又はそれらの相同体)、及びそれらのェン ドグルカナーゼを含有するセルラーゼ調製物に関するものである。 また、 本発明 は、 これらのようなエンドダルカナーゼをコードする遺伝子によって形質転換さ れた宿主細胞にて生産されたエンドダルカナーゼに関するものであり、 さらに、 セルロース結合領域を欠失して活性の向上した上記エンドグルカナーゼ又は上記 セルラーゼ調製物によりセルロース含有繊維を処理する方法に関するものである。 すなわち、 本発明は以下の発明を包含する。
(1) 接合菌由来のエンドグルカナーゼにおいて、 セルロース結合領域が欠失し ており、 かつエンドグルカナーゼ活性を示す夕ンパク質。
(2)接合菌由来のファミリー 45に属するエンドダルカナーゼにおいて、 セル口 ース結合領域が欠失しており、かつェンドグルカナーゼ活性を示すタンパク 質。
(3)接合菌がリゾプス (Rhizopus) 属に属する微生物、 ムコール (Mucor) 属に 属する微生物及びファイコマイセス (Phycomyces)属に属する微生物からな る群より選択される微生物である、 (1) 又は (2) に記載のタンパク質。
(4) 接合菌がリゾプス (Rhizopus) 属に属する微生物である、 (3) に記載の夕 ンパク質。
(5) 配列番号 1、 配列番号 3、 配列番号 5、 配列番号 7、 配列番号 9若しくは 配列番号 1 1で表されるアミノ酸配列において、セルロース結合領域が欠失 したアミノ酸配列を含み、 かつェンドグルカナーゼ活性を示すタンパク質、 エンドダルカナーゼ活性を示すその改変タンパク質、又はエンドダルカナー ゼ活性を示すそれらの相同体。
(6) 配列番号 1、 配列番号 3、 配列番号 5、 配列番号 7、 配列番号 9若しくは 配列番号 1 1で表されるアミノ酸配列において、セルロース結合領域が欠失 したアミノ酸配列を含み、 かつエンドグルカナーゼ活性を示すタンパク質。
(7) (1) 〜 (6) のいずれか 1つに記載のタンパク質、 改変タンパク質又はそ れらの相同体をコードする遺伝子。
(8) (7) に記載の遺伝子を含んでなる発現ベクター。 (9) (8) に記載の発現ベクターにより形質転換された宿主細胞。
(10) 宿主細胞が糸状菌の細胞である (9) に記載の宿主細胞。
(11) 宿主細胞がフミコーラ (Humicola) 属に属する微生物の細胞である (10) に記載の宿主細胞。
(12) (9) 〜 (11) のいずれか 1つに記載の宿主細胞を培養する工程、 及び 該培養によって得られる宿主細胞若しくはその培養物から (1) 〜 (6) の いずれか 1つに記載のタンパク質、改変タンパク質若しくはそれらの相同体 を採取する工程を含んでなる、 タンパク質の生産方法。
(13) (12) に記載の方法により生産されたタンパク質。
(14) (1)〜 (6)及び(13) のいずれか 1つに記載のタンパク質、 改変夕 ンパク質又はそれらの相同体を含んでなるセルラーゼ調製物。
(15) セルロース含有繊維の処理方法であって、 セルロース含有繊維を、 (1) 〜 (6)及び(13) のいずれか 1つに記載のタンパク質、 改変タンパク質 若しくはそれらの相同体又は(14)に記載のセルラ一ゼ調製物と接触させ る工程を含んでなる前記方法。
(16) セルロース含有繊維が毛羽立ち始める速度を低減するか又はセルロース 含有繊維の毛羽立ちを低減させる方法であって、 セルロース含有繊維を、
(1)〜 (6)及び (13) のいずれか 1つに記載のタンパク質、 改変タン パク質若しくはそれらの相同体又は(14)に記載のセルラーゼ調製物と接 触させる工程を含んでなる前記方法。
(17) セルロース含有繊維の肌触り及び外観の改善を目的として減量加工する 方法であって、 セルロース含有繊維を、 (1) 〜 (6) 及び (13) のいず れか 1つに記載のタンパク質、改変タンパク質若しくはそれらの相同体又は
( 14)に記載のセルラ一ゼ調製物と接触させる工程を含んでなる前記方法。 (18) 着色されたセルロース含有繊維の色を澄明化する方法であって、 着色さ れたセルロース含有繊維を、 (1) 〜 (6) 及び (13) のいずれか 1つに 記載のタンパク質、 改変タンパク質若しくはそれらの相同体又は(14) に 記載のセルラーゼ調製物で処理する工程を含んでなる前記方法。
(19) 着色されたセルロース含有繊維の色の局所的な変化を提供する方法であ つて、 着色されたセルロース含有繊維を、 (1) 〜 (6) 及び (13) のい ずれか 1つに記載のタンパク質、改変タンパク質若しくはそれらの相同体又 は( 14)に記載のセルラーゼ調製物で処理する工程を含んでなる前記方法。 (20) セルロース含有繊維がごわ付き始める速度を低減するか又はセルロース 含有繊維のごわ付きを低減する方法であって、セルロース含有繊維を、 (1) 〜 (6) 及び(13) のいずれか 1つに記載のタンパク質、 改変タンパク質 若しくはそれらの相同体又は( 14) に記載のセルラーゼ調製物で処理する 工程を含んでなる前記方法。
(21) 繊維の処理がその繊維の浸漬、 洗濯、 又はすすぎを通じて行われる、
(15) 〜 (20) のいずれか 1つに記載の方法。
(22) (1) 〜 (6) 及び(13) のいずれか 1つに記載のタンパク質、 改変夕 ンパク質若しくはそれらの相同体又は(14)に記載のセルラーゼ調製物を、 飛散性のない顆粒状又は安定化された液体状で含有してなる洗剤添加物。 (23) (1) 〜 (6) 及び(13) のいずれか 1つに記載のタンパク質、 改変夕 ンパク質若しくはそれらの相同体又は(14) に記載のセルラーゼ調製物を 含んでなる洗剤組成物。
(24) 古紙を脱インキ薬品により処理して脱インキを行う工程において、 (1) 〜 (6) 及び(13) のいずれか 1つに記載のタンパク質、 改変タンパク質 若しくはそれらの相同体又は(14) に記載のセルラーゼ調製物を用いるこ とを特徴とする古紙の脱ィンキ方法。
(25) 紙パルプのろ水性の改善方法であって、 紙パルプを、 (1) 〜 (6) 及び (13)のいずれか 1つに記載のタンパク質、改変タンパク質若しくはそれ らの相同体又は(14) に記載のセルラーゼ調製物で処理する工程を含んで なる前記方法。
( 2 6 ) 動物飼料の消化能を改善する方法であって、 動物飼料を、 (1 ) 〜 (6 ) 及び(1 3 ) のいずれか 1つに記載のタンパク質、 改変タンパク質若しくは それらの相同体又は(1 4 ) に記載のセルラーゼ調製物で処理する工程を含 んでなる前記方法。
1 . セルロース結合領域欠失ェンドグルカナーゼ
本発明は、 接合菌由来のエンドダルカナーゼにおいて、 セルロース結合領域が 欠失しており、 かつエンドダルカナーゼ活性を示すタンパク質に関する。
本明細書において、 「接合菌」 とは、 接合菌門 (Zygomycota) に属する微生物、 すなわち、 有性生殖で配偶子嚢が接合して接合胞子を生じる菌類を意味し、 該接 合菌門には接合菌綱 (Zygomyce tes) とトリコミケス綱 (Trichomyce tes) 力含ま れる。 本発明における接合菌としては、 特に制限されないが、 好ましくは接合菌 綱に属するもの、 より好ましくはケカビ目 (Mucorales) に属するもの、 さらに好 ましくはリゾプス (Rhizopus) 属、 ムコール (Mucor) 属又はファイコマイセス (Phycomyces) 属に属するもの、 最も好ましくはリゾプス (Rhizopus) 属に属す るものを用いる。
本明細書において、 「エンドグルカナーゼ活性」 とは、 CMCァーゼ活性を意味す る。 さらに、 「CMC ァーゼ活性」 とは、 カルボキシメチルセルロース (CMC、 東京 化成工業株式会社製) を加水分解する活性を意味し、 被験タンパク質と CMC溶液 を一定時間ィンキュベ一ションした後に遊離してくる還元糖量を測定して、 1分 間に 1 /zmolのグルコース相当の還元糖を生成する酵素量を 1単位と定義する。 エンドダルカナ一ゼ活性は、 例えば、 次のような手順により測定することがで きる。まず、被験タンパク質を含む溶液 0. 5m 1を、 2 %の CMCを溶解させた 50mM 酢酸—酢酸ナ卜リゥム緩衝液 (pH6. 0) 0. 5m 1に添加し、 50°Cで 30分間ィンキュ ベーシヨンする。 次いで、 得られる反応液の生成還元糖濃度を、 3, 5-ジニトロサ リチル酸法 (DNS法) で定量する。 すなわち、 反応 30分後の反応液 1.0m l 中に DNS試薬 3. Om lを添加し、 沸騰水浴中で 5分間インキュベーションした 後、 蒸留水 8. Om lで希釈し、 540nmの吸光度を測定する。 段階的に希釈したグ ルコース溶液を用いて検量線を作成し、 酵素反応液中の生成還元糖量をダルコ一 ス換算で決定する。 1分間に 1 mol のグルコース相当の還元糖を生成する酵素 量を 1単位として活性を算出する。 なお、 DNS試薬は文献 (例えば、 「生物化学 実験法 1一還元糖の定量法」、 第 19〜20頁、 福井作蔵著、 学会出版センター) の 記載に従って調製することができるが、 例えば、 次のような手順で調製すること ができる。 まず、 45%水酸化ナトリゥム水溶液 300m 1に、 1 %3, 5-ジニトロサ リチル酸溶液 880m 1、及びロッセル塩 255 gを添加する(溶液 A)。別に、 1 0 % 水酸化ナトリウム水溶液 22m 1に結晶フエノール 10 gを加え、さらに水を加えて 溶解して 100m lとする (溶液 B)。 溶液 B69m 1に炭酸水素ナトリウム 6.9gを 加えて溶解させ、 溶液 Aを注いでロッセル塩が十分に溶解するまで攪拌混合し、 2日間放置した後に濾過する。
本明細書において 「エンドダルカナ一ゼ」 とは、 エンドダルカナ一ゼ活性を示 す酵素、 すなわちエンド一 1, 4一 /3—ダルカナーゼ (EC 3. 2. 1. 4) を 意味し、 該酵素は、 )3— 1, 4—グルカンの )3— 1, 4—ダルコビラノシル結合 を加水分解する。
エンドダルカナーゼは、 そのアミノ酸配列等の情報から複数のファミリーに分 類されている。 本発明におけるエンドダルカナーゼはいずれのファミリ一に属す るものであってもよいが、好ましくはファミリー 45に属するものである。ここで、 「ファミリー 45に属する」エンドダルカナーゼとは、触媒領域(CAD)内に(Ser、 Thr又は Ala) -Thr-Arg-Tyr- (Trp, Tyr又は Phe) -Asp-Xaa-Xaa-Xaa-Xaa-Xaa- (Cys 又は Ala) の共通配列を有するものをいい、 フミコーラ ·インソレンス (Humicola insolens) 由来の EGV (特表平 5-509223) や NCE4 (国際公開第 WO98/03640号) などもファミリ一 45に属している。 ファミリ一 45に属するエンドダルカナーゼのタンパク質は、 機能の面から、 触 媒領域 (CAD)、 セルロース結合領域 (CBD)、 及びこれらを連結するリンカ一領域 に分けられる。 セルロース結合領域 (CBD) は、 その名の通り、 セルロースに結合 する領域として存在することが知られており、 配列の特徴として、 次のような共 通配列が保存されていることが確かめられている (Hoif ren, A. -M. et al. , Prote in Engineering 8 :443-450, 1995)。
CBD共通配列:
1 10
Xaa Xaa Xaa Xaa Xaa Xaa Gin Cys Gly Gly Xaa Xaa Xaa Xaa
20
Gly Xaa Xaa Xaa Cys Xaa Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa
30
Xaa Xaa Xaa Asn Xaa Xaa Tyr Xaa Gin Cys Xaa (配列番号 1 7 ) ここで、 Xaaは限定されないいずれかのアミノ酸を示す力 2 0、 2 1、 2 2、 2 3、 2 4、 3 0、 3 1位の Xaaは存在しなくてもよい。 その他の Xaaは必ず存 在しており、 限定されないいずれかのアミノ酸を示す。 Xaa 以外のアミノ酸は 3 文字表記法に従った。 この CBD領域は CADの N末端側又は C末端側のどちらかに リンカ一を介して連結されているが、 フミコ一ラ 'インソレンス (Humicola insolens) 由来の NCE 5 (ァミノ酸配列:配列番号 3 8、 c D N A配列:配列番 号 3 9 ) のように、 元々 CBDを持っていないファミリー 45エンドグルカナーゼも 報告されている。
リンカー領域については明確な認識配列は無いものの、 Serや Thrなどの親水 性のアミノ酸残基に富んだ配列となっており、 また、 その長さはエンドダルカナ ーゼの種類によって異なる。
本発明における接合菌由来のエンドダルカナーゼとしては、 例えば、 リゾブス (Rhizopus)属、 ファイコマイセス (Phycomyces)属又はムコール (Mucor)属由来 の国際公開第 WO0OZ24879号記載のエンドダルカナーゼ活性を示す酵素、 すなわ ち、 RCE I (配列番号 1)、 RCE II (配列番号 3)、 RCE III (配列番号 5)、 MCE I
(配列番号 7)、 MCEII (配列番号 9)及び PCEI (配列番号 11)が挙げられる。 これらの酵素のアミノ酸配列における各領域の配置は、 以下の表 1のようになつ ている。
〔表 1〕
CBD リンカ一領域の一部分 CAD
配列番号 1 3〜38 99〜; L 08 109〜315 配列番号 3 3〜38 127〜136 137〜343
50-85
配列番号 5 3〜40 122〜131 32 337 配列番号 7 3〜40 104〜 113 14 316 配列番号 9 3〜40 153〜: 162 63 365
52〜89
配列番号 3〜40 115〜 124 25〜327 また、 RCE I、 MCE I及び PCE Iの N末端アミノ酸配列は、 それぞれ配列番号 14、配列番号 15及び配列番号 16に示すように同定されている(国際公開 第 W000/24879号)。
本発明のタンパク質は、 上記のようなエンドダルカナーゼにおいてセルロース 結合領域を含まないものであればよく、 エンドダルカナーゼ活性を有する限りに おいて、 他の領域について特に構造的な制限はない。 従って、 本発明のタンパク 質は、 リンカ一領域を含んでも含まなくてもよく、 また、 リンカ一領域の一部を 含んでもよいが、 好ましくは、 10アミノ酸程度のリンカ一領域の断片が残って いるとよい。
本発明の別の態様では、本発明は、配列番号 1 (RCEI)、配列番号 3 (RCEII)、 配列番号 5 (RCEIII)、 配列番号 7 (MCEI)、 配列番号 9 (MCEII) 若しくは配列 番号 1 1 (PCE I) で表されるアミノ酸配列において、 セルロース結合領域が欠失 したアミノ酸配列を含み、 かつエンドダルカナーゼ活性を示すタンパク質に関す る。 さらに、 本発明は、 このようなタンパク質の改変タンパク質及び相同体であ つて、 ェンドグルカナーゼ活性を示すものに関する。
本明細書において、 「改変タンパク質」 とは、 セルロース結合領域が欠失した RCE I、 RCE II、 RCE I II、 MCE I、 MCE II又は PCE Iのアミノ酸配列において、 1個又は複数個のアミノ酸の付加、 挿入、 削減、 欠失、 又は置換などの改変が生 じたアミノ酸配列を含んでなるタンパク質を意味する。 該改変に係るアミノ酸の 数は、 改変タンパク質がエンドダルカナーゼ活性を有する限りにおいて特に制限 されないが、 好ましくは 1〜約 5 0個、 より好ましくは 1〜約 3 0個、 さらに好 ましくは:!〜 9個である。
本明細書において、 「相同体」 とは、 セルロース結合領域が欠失した RCE I、 RCE I I、 RCE III、 MCE I、 MCE I I、 及び PCE Iのアミノ酸配列をコードする遺伝子、 例えば、 配列番号 2又は配列番号 1 3 (RCE I)、 配列番号 4 (RCE II)、 配列番号 6 (RCE II I) , 配列番号 8 (MCE I)、 配列番号 1 0 (MCE II)、 配列番号 1 2 (PCE I)等で表される塩基配列においてセルロース結合領域をコードする部分を除いた 塩基配列を有する DNAと、 ストリンジェン卜な条件下でハイプリダイズする遺伝 子 (塩基配列) によりコードされるアミノ酸配列を有し、 かつエンドダルカナー ゼ活性を有するポリペプチドを意味する。 ここで、 「ストリンジェン卜な条件下」 とは、 セルロース結合領域が欠失した RCE I、 RCE I I、 RCEIIL MCE I、 MCE I I、 及び PCEI のアミノ酸配列又はその改変タンパク質のアミノ酸配列の一部又は全 部をコードする塩基配列を含んでなるプローブと相同体をコードする遺伝子とが ハイブリダィズする一方で、 このプローブが、 国際公開第 W098/03640号に記載 のエンドダルカナーゼ NCE4遺伝子(配列番号 1 8 )及び国際公開第 W098Z54332 号に記載のエンドダルカナーゼ SCE 3遺伝子 (配列番号 1 9 ) とはハイブリダィ ズしない程度に制御された条件を意味する (なお、 ここで、 DNA量は、 N C E 4 遺伝子、 SCE 3遺伝子、相同体をコードする遺伝子とも同量使用することとする)。 より具体的には、プローブとして標識化した、セルロース結合領域が欠失した RCE I等のアミノ酸配列をコードする DNA配列の全長を有するものを用い、 ECL ダイ レクト DNAZRNAラベリング検出システム (アマシャム社製) の方法に従って、 1 時間のプレハイブリダィゼーシヨン (42°C) の後に前記プローブを添加し、 15時 間のハイブリダィゼーシヨン (42°C) を行った後、 0.4%SDS及び 6M尿素を添加 した 0.5倍濃度 SSC (1XSSC ; 15mMクェン酸三ナトリウム、 150mM塩化ナトリウ ム) を用いて 42でで 20分間の洗浄を 2回繰り返し、 次に 5倍濃度 SSCを用いて 室温 (約 25で) で 10分間の洗浄を 2回行うような条件が挙げられる。
このような改変タンパク質又は相同体としては、 セルロース結合領域が欠失し た RCE I、 RCE II、 RCEIIL CE I、 MCE II、 又は PCEI のアミノ酸配列と、 好ま しくは 70%以上、 より好ましくは 80%以上、 さらに好ましくは 90%以上、 さらに好ましくは 95%以上、 最も好ましくは 98 %以上の相同性を有するアミ ノ酸配列を有するタンパク質が挙げられる。なお、ここで示した相同性の数値は、 当業者に公知の相同性検索プログラムを用いて算出される数値であってよいが、 好ましくは FASTA3 [Science, 227, 1435-1441 (1985) ; Proc. Natl. Acad. Sci. USA, 85, 2444-2448 (1988) ; http:〃 www, ddbj. nig, ac. j /E-mail/ homo logy-j- html] においてデフォルト (初期設定) のパラメ一夕を用いて算出さ れる数値である。
本発明のタンパク質は、 セルロース結合領域を含まないタンパク質である。 従 つて、 上記の改変タンパク質及び相同体もまた、 セルロース結合領域を含むもの であってはならない。 これは、 対象となるタンパク質のアミノ酸配列を調べ、 そ の中に上記共通配列 (Hoffren, A. - M. et al., Protein Engineering 8:443-450, 1995;配列番号 1 7) が存在するか否かを調べることによって確認することがで きる。
また、 本発明のタンパク質は、 エンドダルカナーゼ活性を有するタンパク質で ある。 従って、 上記の改変タンパク質及び相同体もまた、 エンドダルカナーゼ活 性を有するものでなければならない。 これは、 対象となるタンパク質のエンドグ ルカナーゼ活性を、上述の方法を用いて調べることにより確認することができる。 本発明のタンパク質は、 接合菌由来の公知のェンドグルカナーゼのアミノ酸配 列に基づき、 そのセルロース結合領域を含まないアミノ酸配列を含むタンパク質 として、 当業者に公知の方法により調製することができる。 このような方法とし ては、 例えば、 エンドダルカナーゼを生産する接合菌の培養中にプロテアーゼに よってリンカ一部分を分解してセルロース結合領域を欠失させる方法、 遺伝子ェ 学的手法によりセルロース結合領域を持たないエンドダルカナーゼを人為的に発 現させる方法等が挙げられる。 本発明のタンパク質のうち、 特に上記の改変タン パク質及び相同体は、 そのアミノ酸配列をコ ドする DNAを用いて、 当業者に公 知の遺伝子工学的手法により調製することもできる。
本発明のタンパク質は、 繊維加工、 洗剤、 紙パルプ用途において、 セルロース 結合領域を有する元来のェンドグルカナーゼょりも高い効果を奏することができ、 特に、 リヨセルのような再生セルロース系繊維の毛羽除去活性 (タンパク重量当 り)、 及び綿ニットのような綿生地の毛羽除去活性(タンパク重量当り) について は、 はるかに高い効果を得ることができる。 この点に関し、 本発明のタンパク質 は、 再生セルロース繊維 (例えば、 リヨセル) の毛羽除去活性 (タンパク重量当 り) について、 好ましくは、 セルロース結合領域を有する精製エンドグルカナー ゼの 2倍以上、 より好ましくは 2. 5倍以上、 最も好ましくは 3倍以上の活性を有 し、 あるいは、 綿ニットのような綿生地の毛羽除去活性 (タンパク重量当り) に ついて、 好ましくは、 セルロース結合領域を有する精製エンドダルカナーゼの 5 倍以上、 より好ましくは 15倍以上、 最も好ましくは 20倍以上の活性を有する。 2 . 遺伝子、 発現ベクター、 該発現べクタ一で形質転換された宿主細胞、 及び該 宿主細胞を用いるセルロース結合領域欠失エンドダルカナーゼの生産 本発明は、 本発明のタンパク質、 改変タンパク質又はそれらの相同体をコード する遺伝子及び該遺伝子を含んでなる発現ベクターに関する。
本発明の遺伝子は、 本発明のタンパク質、 改変タンパク質又はそれらの相同体 をコ一ドするものであればよく、 その具体的な塩基配列の詳細については特に限 定されないが、 本発明のタンパク質としてセルロース結合領域欠失型の RCE I、 RCE I I、 RCE I I I、 MCE I、 MCE I I又は PCE Iを発現させるためには、 例えば、 配 列番号 2 (RCE I)、配列番号 4 (RCE I I)、配列番号 6 (RCE I I I)、配列番号 8 (MCE 1)、 配列番号 1 0 (MCE I I) 又は配列番号 1 2 (PCE I) で表される塩基配列を含 むものを利用することができる。
すなわち、 本発明の遺伝子は、 配列番号 1、 配列番号 3、 配列番号 5、 配列番 号 7、 配列番号 9若しくは配列番号 1 1で表されるアミノ酸配列において、 セル ロース結合領域が欠失したアミノ酸配列を含み、 かつェンドグルカナーゼ活性を 示すタンパク質、 エンドダルカナーゼ活性を示すその改変タンパク質、 又はェン ドグルカナーゼ活性を示すそれらの相同体をコードする遺伝子である。
また、 本発明の遺伝子は、 以下の(a)又は (b)の DNAからなる遺伝子である。
(a) 配列番号 2又は配列番号 1 3、 配列番号 4、 配列番号 6、 配列番号 8、 配列 番号 1 0、 配列番号 1 2で表される塩基配列においてセルロース結合領域を コードする部分を除いた塩基配列を有する DNA
(b) 配列番号 2又は配列番号 1 3、 配列番号 4、 配列番号 6、 配列番号 8、 配列 番号 1 0、 配列番号 1 2で表される塩基配列においてセルロース結合領域を コードする部分を除いた塩基配列を有する DNAとストリンジェントな条件下 でハイブリダィズする DNA
ここで、 ストリンジェントな条件下とは前項 1 . で説明した条件をいう。
また、 上記遺伝子の塩基配列は、 後の形質転換に使用する宿主細胞の種類に応 じて最適化することもできる。 このような塩基配列の最適化は、 例えば、 宿主細 胞におけるコドン使用、 宿主細胞におけるイントロン認識配列等に関して行うこ とができる。 コドン使用に関する最適化は、 例えば、 コードされるアミノ酸配列 を変更することなく、 宿主細胞において高頻度で使用されるコドンを出来るだけ 多く含むように塩基配列を改変することによって行うことができ、 これにより、 遺伝子からタンパク質への翻訳の効率を向上させることができる。 イントロン認 識配列に関する最適化は、 例えば、 コードされるアミノ酸配列を変更することな く、 宿主細胞においてイントロンと認識され得る DNA配列を全く含まないか、 又 は出来るだけ含まないように塩基配列を改変することによって行うことができ、 これにより、目的遺伝子の転写産物である Di NAの安定性の向上を図ることができ る。 イントロン認識配列は宿主細胞の種類によって異なるが、 不完全菌類に属す る糸状菌におけるイントロン認識配列としては、 例えば、 GTAGN、 GTATN、 GTAAN、 GTACGN、 GTGTN、 GCACGN、 GTTCGN (それぞれの配列において、 「N」 は A、 T、 C又は Gを示す。) 等の DNA配列を挙げることができる。
本明細書において、 「コドン最適化遺伝子」 とは、 コドン使用及び 又はイン卜 ロン認識配列に関する最適化により得られる遺伝子を意味するが、 好ましくはコ ドン使用に関する最適化により得られる遺伝子、 より好ましくはコドン使用及び イントロン認識配列に関する最適化により得られる遺伝子である。 また、 該コド ン最適化遺伝子は、 好ましくは不完全菌類に属する糸状菌における発現のために 最適化されたものである。 このようなコドン最適化遺伝子としては、 例えば、 国 際公開第 WO00Z24879号記載のコドン最適化エンドダルカナーゼ RCE I遺伝子 (配列番号 1 3 ) においてセルロース結合領域をコードする部分が欠失したもの が挙げられる。
本発明の発現べクタ一は、 宿主細胞内において複製可能で、 かつ、 本発明の夕 ンパク質、 改変タンパク質又はそれらの相同体を発現可能な状態で、 目的の遺伝 子 (本発明のタンパク質、 改変タンパク質又はそれらの相同体をコードする遺伝 子) を含んでなる。 このような発現ベクターは、 自己複製ベクター、 すなわち、 染色体外の独立体として存在し、その複製が染色体の複製に依存しないベクター、 例えば、 プラスミドを基本に構築することができる。 あるいは、 該発現ベクター は、 宿主細胞に導入されたとき、 その宿主細胞のゲノム中に組み込まれ、 それが 組み込まれた染色体と一緒に複製されるものであってもよい。 本発明によるべク ター構築の手順及び方法は、 遺伝子工学の分野で慣用されているものを用いるこ とができる。
本発明の発現ベクターは、 これを宿主細胞に導入して本発明のタンパク質、 改 変タンパク質又はそれらの相同体を発現させるために、 本発明のタンパク質、 改 変タンパク質又はそれらの相同体をコードする遺伝子の他に、 その発現を制御す る DNA配列や形質転換体を選択するための遺伝子マーカー等を含んでいるのが望 ましい。 発現を制御する DNA配列としては、 プロモーター及びターミネータ一、 シグナルペプチドをコ一ドする DNA配列等がこれに含まれる。 該プロモーター及 び夕一ミネ一夕一は、 宿主細胞において転写活性を示すものであれば特に限定さ れず、 宿主細胞と同種又は異種のいずれかのタンパク質をコードする遺伝子の発 現を制御する DNA配列として得ることができる。 該シグナルべプチドは、 宿主細 胞においてタンパク質の分泌に寄与するものであれば特に限定されず、 宿主細胞 と同種又は異種のいずれかのタンパク質をコードする遺伝子から誘導される DNA 配列より得ることができる。 また、 本発明における遺伝子マーカーは、 形質転換 体の選択の方法に応じて適宜選択されてよく、 例えば、 薬剤耐性をコードする遺 伝子、 栄養要求性を相補する遺伝子等が挙げられる。 これらの DNA配列及び遺伝 子マーカーは、本発明の発現べクタ一中にそれぞれが機能し得る形で連結される。 さらに、本発明は、上記発現ベクターにより形質転換された宿主細胞に関する。 ここで使用する宿主細胞は、 導入された上記発現ベクターが複製し得るものであ る必要があるため、 上記発現べクタ一の作製に用いたベクターの種類によって異 なる。 あるいは、 ここで使用する宿主細胞の種類に応じて、 該宿主細胞中で複製 し得る発現ベクターを作製することもできる。 すなわち、 本発明のタンパク質、 改変タンパク質又はそれらの相同体を発現する形質転換体を得るためには、 使用 する宿主細胞と発現ベクターを適切に組み合わせる必要があり、 このような組合 せを宿主—ベクター系という。 本発明において使用する宿主—ベクター系は特に 限定されず、 例えば、 宿主細胞として大腸菌、 放線菌、 酵母、 糸状菌等の微生物 を用いる系が挙げられ、 好ましくは糸状菌を用いる系が挙げられる。 また、 これ らの系において、 他のタンパク質との融合タンパク質を発現するものを用いるこ ともできる。
宿主として糸状菌を用いる場合には、 いかなる糸状菌を用いてもよいが、 好ま しくは、 フミコーラ (Humicola) 属、 ァスペルギルス (Aspergi l lus) 属又はトリ コデルマ (Trichoderma)属に属するものを用いる。 これらの糸状菌の特に好まし い例としては、フミコーラ'インソレンス (Humicola insolens) ,ァスペルギルス · 二ガー (Aspergi l lus niger) 若しくはァスペルギリレス ·オリゼー (Aspergi l lus oryzae)、 又はトリコデルマ · ビリデ (Trichoderma viride) が挙げられる。 本発明の発現ベクターによる宿主細胞の形質転換は、 遺伝子工学の分野で慣用 されている方法に従って実施することができる。
以上のようにして得られる形質転換体 (形質転換された宿主細胞) を適当な培 地で培養し、 その培養物から上記の本発明のタンパク質、 改変タンパク質若しく はそれらの相同体を単離して得ることができる。 従って、 本発明の別の態様によ れば、 本発明は、 本発明の宿主細胞を培養する工程、 及び該培養によって得られ る宿主細胞若しくはその培養物から本発明のタンパク質、 改変タンパク質若しく はそれらの相同体を採取する工程を含んでなる、タンパク質の生産方法に関する。 形質転換体の培養及びその条件は、 使用する微生物についてのそれと本質的に同 等であってよい。 また、 形質転換体を培養した後、 目的のタンパク質を回収する 方法は、 この分野で慣用されているものを用いることができる。 3 . セルラーゼ調製物
本発明は、 本発明のタンパク質、 改変タンパク質若しくはそれらの相同体又は 本発明のタンパク質生産法により生産されるタンパク質を含んでなるセルラーゼ 調製物に関する。
一般に、 セルラ一ゼ調製物とは、 セルラーゼ酵素の他に、 例えば、 賦形剤 (例 えば、 乳糖、 塩化ナトリウム、 ソルビトール等)、 防腐剤、 非イオン系界面活性剤 等を含有する粉末、 液体等であり、 例えば、 粉剤、 粒剤、 顆粒剤、非粉塵化顆粒、 液体製剤等の形態をとる。 本発明のセルラーゼ調製物は、 上記セルラーゼ酵素と して本発明のタンパク質、 改変タンパク質若しくはそれらの相同体又は本発明の タンパク質生産法により生産されるタンパク質 (以下 「本発明のタンパク質等」 という。) を含むものである。 さらに、 本発明のセルラーゼ調製物は、 本発明の夕 ンパク質等に加えて、 他のセルラ一ゼ酵素、 例えば、 セロビォヒドロラーゼ、 β 一ダルコシダーゼ及び本発明以外のェンドグルカナーゼを含めてもよい。
セルラーゼ調製物の 1種である非粉塵化顆粒は、 通常の乾式造粒法を用いて製 造することが可能である。 すなわち、 粉末状態の本発明のタンパク質等を、 硫酸 ナトリゥム、 塩化ナトリゥム等に代表される中性でェンドグルカナーゼ活性に影 響を及ぼさない無機塩、 ベントナイト、 モンモリナイト等に代表されるエンドグ ルカナーゼ活性に影響を及ぼさない鉱物、 又は澱粉、 粒状セルロース等に代表さ れる中性の有機物の 1種又は複数種に混合した後、 非イオン界面活性剤の 1種若 しくは複数種の粉末又は微細に懸濁された懸濁液を加えて十分に混合又は混練す る。 状況に応じ、 固形物を結着させるポリエチレングリコールに代表される合成 高分子やスターチなどの天然高分子を適宜添加してさらに混練した後、 ディスク ペレツ夕一などの押し出し成形造粒を行レゝ、 成形物をマルメライザ一により球状 に成形後、 乾燥させることで非粉塵化顆粒を製造することが可能である。 非ィォ ン界面活性剤の 1種又は複数種の添加量は特に限定されないが、 本発明のセルラ ーゼ調製物の全体に対して、 好ましくは 0. 1〜50重量%、 より好ましくは 0. 1〜 30重量%、 さらに好ましくは 1〜20重量%とする。 また、 顆粒表面をポリマ一等 でコーティングすることにより、 酸素透過や水分透過をコントロールすることも 可能である。
一方、 液状製剤は、 本発明のタンパク質等を含む溶液に、 合成高分子、 天然高 分子等のェンドグルカナ一ゼ酵素の安定化剤を配合し、 必要に応じて無機塩類や 合成防腐剤を添加して調製することが可能である。 このとき、 非イオン界面活性 剤の 1種又は複数種を配合することも可能である。 非イオン界面活性剤の 1種又 は複数種の添加量は特に限定されないが、 本発明のセルラーゼ調製物の全体に対 して、 好ましくは 0. 1〜50重量%、 より好ましくは 0. 1〜30重量%、 さらに好ま しくは 1〜20重量%とする。 4. 本発明のタンパク質等及び本発明のセルラーゼ調製物の用途
本発明は、 セルロース含有繊維の処理方法に関し、 該方法は、 セルロース含有 繊維を、 本発明のタンパク質等又は本発明のセルラーゼ調製物と接触させる工程 を含む。 接触温度、 該タンパク質等又は該セルラーゼ調製物の量などの条件は、 他の種々の条件を勘案して適宜決定することができる。
上記の方法は、 セルロース含有繊維が毛羽立ち始める速度を低減するか又はセ ルロース含有繊維の毛羽立ちを低減させるために用いることができる。 この用途 においては、 30〜60で程度の温度で、 0. 001〜l mg/lのタンパク濃度の上記タン パク質等又は上記セルラーゼ調製物を使用することが好ましい。
また、 上記の方法は、 セルロース含有繊維の肌触り及び外観の改善を目的とし て減量加工するために用いることができる。この用途において、肌触りの改善は、 肌触りが悪くなる速度が低減されることにより達成される。 該用途においては、 30〜60 程度の温度で、 0. OOl lOO mgZlのタンパク濃度の上記タンパク質等又 は上記セルラーゼ調製物を使用することが好ましい。
また、 上記の方法は、 着色されたセルロース含有繊維の色を澄明化するために 用いることができる。
また、 上記の方法は、 着色されたセルロース含有繊維の色の局所的な変化を提 供するために用いることができる。 この用途においては、 例えば、 着色セルロー ス含有繊維 (例えば、 デニム地) にストーンウォッシュの外観を与えることがで きる。 該用途においては、 40〜60°C程度の温度で、 0.01〜100 mg/1 のタンパク 濃度の上記夕ンパク質等又は上記セルラーゼ調製物を使用することが好ましい。 各種ェンドグルカナーゼのタンパク濃度は、 TSKgel TMS-250 カラム(4.6mml. D. X7.5cm) (東ソ一社製) を用いた HPLC分析により算出した。 該 HPLC分析では、 0.05%TFA (トリフルォロ酢酸) 中のァセトニトリルを、 濃度 0%〜80%のリニア グラジェントにより流速 1. Oml/min で流すことによってエンドグルカナーゼを 溶出し、 UV280nmでのピーク面積から算出する。 スタンダードとしては、 プロテ インアツセィキット (バイオラッドラボラトリー社製) によりあらかじめタンパ ク濃度を測定しておいた精製 NCE4を同様に HPLC分析して用いる。精製 NCE4は国 際公開第 W098/03640 号公報に記載の方法に従って、 フミコーラ ·インソレンス MN200 - 1 [FERM BP— 5977 (原寄託: FERM P— 1 573 6、 原寄託日 : 1996年 7月 1 5日) の受託番号のもと独立行政法人産業技術 総合研究所 特許生物寄託センター (日本国茨城県つくば市東 1丁目 1番地 1中 央第 6) に寄託] を培養し、 培養物から精製したものを使用する。 プロテインァ ッセィキットにおけるタンパク濃度測定のスタンダードは Albumin Standard (Bovine serum albumin, fraction V, PIERCE社製) を用いる。
また、 上記の方法は、 セルロース含有繊維がごわ付き始める速度を低減するか 又はセルロース含有繊維のごわ付きを低減するために用いることができる。 この 用途においては、 セルロース含有繊維を柔軟化することができる。
以上のような用途においては、セルロース含有繊維の処理は、その繊維の浸漬、 洗濯、 又はすすぎを通じて行うことができる。 すなわち、 本発明の上記方法は、 洗濯中にセルロース含有繊維を処理することにより実施できる。 しかしながら、 繊維の処理は、 場合によって、 ソーキング又はすすぎ中に、 繊維が浸漬されてい るか又は浸漬されうる水に、 本発明のタンパク質等又はセルラーゼ調製物を添加 することによって実施されてもよい。
さらに、 本発明は、 本発明のタンパク質等又は本発明のセルラーゼ調製物を、 飛散性のない顆粒状又は安定化された液体状で含有してなる洗剤添加物に関し、 さらには、 本発明のタンパク質等又は本発明のセルラ一ゼ調製物を含んでなる洗 剤組成物に関する。
該洗剤組成物は、 界面活性剤 (ァニオン性、 ノニオン性、 カチオン性、 両性又 は双性イオン性あるいはそれらの混合物であり得る) をも含有し得る。 また、 該 洗剤組成物は、 当分野で既知の他の洗剤成分、 例えば、 ビルダー、 漂白剤、 漂白 活性剤、 腐食防止剤、 金属イオン封鎖剤、 汚れ解離ポリマー、 香料、 他の酵素 (プ 口テアーゼ、 リパーゼ、 アミラーゼなど)、 酵素安定剤、 製剤化補助剤、 蛍光増白 剤、 発泡促進剤等をも含有し得る。 代表的なァニオン性界面活性剤は直鎖状アル キルベンゼンスルホン酸塩 (LAS)、 アルキル硫酸塩 (AS)、 アルファーォレフイン スルホン酸塩 (A0S)、 ポリオキシエチレンアルキルエーテル硫酸塩 (AES)、 - スルホ脂肪酸エステル塩 (ひ- SFMe) 及び天然脂肪酸のアルカリ金属塩等がある。 ノニオン性界面活性剤の例としてはポリオキシエチレンアルキルエーテル (AE)、 アルキルポリエチレングリコ一ルエーテル、 ノニルフエノ一ルポリエチレングリ コールエーテル、 脂肪酸メチルエステルエトキシレート、 スクロース又はダルコ —スの脂肪酸エステル、 並びにアルキルダルコシド、 ポリエトキシル化アルキル ダルコシドのエステル等がある。
本発明の夕ンパク質等又はセルラ一ゼ調製物を洗剤組成物中で用いることによ り、粒質土壌除去、色彩澄明化、脱毛羽立ち、脱ピリング及び手粗さ軽減に関し、 それらを改善することができる。
さらに、 本発明は、 古紙を脱インキ薬品により処理して脱インキを行う工程に おいて、 本発明のタンパク質等又は本発明のセルラーゼ調製物を用いることを特 徴とする古紙の脱ィンキ方法に関する。
本発明のタンパク質等又はセルラーゼ調製物は、 古紙に作用させると脱インキ の効率を向上させるため、 古紙から再生紙を製造する過程において有用である。 上記脱インキ方法によれば、 残インキ繊維が大幅に減少するため、 古紙の白色度 を向上させることができる。
上記脱ィンキ薬品は、 一般に古紙の脱ィンキに用いられる薬品であればよく、 特に限定されないが、 例えば、 NaOH、 Na2C03等のアルカリ、 硅酸ソ一ダ、 過酸化 水素、 燐酸塩、 ァニオン系の界面活性剤、 ノニオン系の界面活性剤、 ォレイン酸 等の補集材などが挙げられ、 助剤として、 pH安定剤、 キレート剤、 分散剤等が挙 げられる。
上記脱ィンキ方法を適用し得る古紙は、 一般に古紙と呼ばれるものであればよ く、特に限定されないが、例えば、機械パルプと化学パルプを配合した新聞古紙、 雑誌古紙及び下級〜中級印刷古紙、 化学パルプよりなる上質古紙、 これらの塗工 紙等の印刷古紙が挙げられる。 さらに、 一般に古紙と呼ばれるもの以外であって も、 インクの付着している紙であれば、 上記脱インキ方法を適用することができ る。
さらに、 本発明は、 紙パルプのろ水性の改善方法に関し、 該方法は、 紙パルプ を、本発明のタンパク質等又は本発明のセルラーゼ調製物で処理する工程を含む。 該方法によれば、 紙パルプのろ水性が、 強度の著しい低下を伴うことなく、 有 意に改善されるものと考えられる。 該方法を適用し得るパルプは特に限定されな いが、例えば、古紙パルプ、再循環板紙パルプ、 クラフトパルプ、亜硫酸パルプ、 加工熱処理その他の高収率パルプ等が挙げられる。
さらに、 本発明は、 動物飼料の消化能を改善する方法に関し、 動物飼料を、 本 発明のタンパク質等又は本発明のセルラーゼ調製物で処理する工程を含む。
該方法によれば、 動物飼料中のダルカンが適度に低分子化されるため、 動物飼 料の消化能を改善することができる。
5 . 微生物の寄託 リゾプス 'オリゼ一 (Rhizopusoryzae) CP96001株は、 FERM BP— 68 89の受託番号のもと、 独立行政法人産業技術総合研究所 特許生物寄託センタ 一 (日本国茨城県つくば巿東 1丁目 1番地 1中央第- 6) 〖こ 1997年 4.月 21日 付けで寄託されている。
ムコール'サーシネロイデス (Mucor circinelloides) CP99001 株は、 FER M BP— 6890の受託番号のもと、 独立行政法人産業技術総合研究所 特許 生物寄託センター (日本国茨城県つくば市東 1丁目 1番地 1中央第 6) に 199 9年 7月 2日付けで寄託されている。
ファイコマイセス '二テンス (Phycomycesnitens) CP99002株は、 FERM B P- 6891の受託番号のもと、 独立行政法人産業技術総合研究所 特許生物寄 託センター (日本国茨城県つくば市東 1丁目 1番地 1中央第 6) に 1999年 7 月 2日付けで寄託されている。
本発明に用いる発現ベクター PMKD 01で形質転換された大腸菌 JM109 株は、 FERM BP— 5.974 (原寄託: FERM P— 15730、 原寄託 日 : 1996年 7月 12日) の受託番号のもと、 独立行政法人産業技術総合研究 所 特許生物寄託センター (日本国茨城県つくば巿東 1丁目 1番地 1中央第 6) に寄託されている。
本発明の発現べクタ一の宿主となりうるフミコーラ ·インソレンス MN 200 _ 1は、 FERM BP- 5977 (原寄託: FERM P— 15736、 原寄 託日 : 1996年 7月 15日) の受託番号のもと、 独立行政法人産業技術総合研 究所 特許生物寄託センター(日本国茨城県つくば巿東 1丁目 1番地 1中央第 6 ) に寄託されている。 本明細書は、 本願の優先権の基礎である特願 2000-354296号の明細書に記載さ れた内容を包含する。 発明を実施するための最良の形態
本発明を以下の実施例及び参考例によりさらに詳細に説明するが、 本発明はこ れら実施例及び参考例に限定されるものではない。
なお、 以下において、 エンドダルカナーゼ活性とは、 CMC ァーゼ活性を意味す る。 さらに、 「CMCァーゼ活性」 は、 セルラーゼ酵素とカルボキシメチルセルロー ス (CM (:、 東京化成工業株式会社製) 溶液を一定時間インキュベーション後、 遊離 してくる還元糖量を測定し、 1分間に l ^mol のグルコース相当の還元糖を生成 する酵素量を 1単位と定義する。
また、試験の実施にあたっては、国際公開 第 WO98/03667号 及び第 WO00/24879 号に記載の実施例を参考とした。
〔参考例〕
参考例 1 :セルラーゼ NCE 5の cDNAのクローニング
(1) cDN Aの単離とライブラリーの作成
セルラーゼ成分 NCE 5遺伝子のスクリーニングには、フミコーラ'インソレン ス MN200-1 (FERM BP- 5977) から mRNAを調製し、 逆転写酵素により cDNAを合成しライブラリーを作製した。
① 全 RNAの調製
フミコ一ラ 'インソレンス MN200- 1 (FERM BP— 5977) を (N) 培地 (5.0%アビセル、 2.0%酵母エキス、 0.1%ポリペプトン、 0.03%塩化カルシウム、 0.03%塩化マグネシウム、 pH6.8) で 2日間培養し、 菌体を遠心分離(3500rpm, 10 分) により回収した。 そのうち 3gの菌体を滅菌水で洗浄し、 液体窒素で凍結後、 乳鉢と乳棒を用いて液体窒素中で磨砕した。 この磨砕した菌体から IS0GEN (ニッ ボンジーン社製) により、 添付のマニュアルに従い全 RNAを単離し、 ホルムアル デヒド ·ァガロースゲル電気泳動法により染色像として全 RNAを確認した。
② ポリ Aティル +RNA (=mRNA) の調製 ①で調製した全 RNA のうち lmg から、 mRNA Purification Kit (Amersham Pharmacia Biotech 社製) を用い、 添付のマニュアルに従い、 オリゴ (dT) セル ロースカラムにアプライし mR Aを溶出単離した。 さらに、 ホルムアルデヒド -ァ ガロースゲル電気泳動法によりスメアーな染色像として mRNAを確認した。
③ cDNAの合成
②で調製した mRNAの 5 gから、 Time Saver cDNA Synthesis Kit (Amersham Pharmacia Biotech社製)を用い、添付のマニュアルに従い、 cDNA合成を行った。 ④ cDNAライブラリーの作製
合成した全 cDNAの平滑末端に前述の Time Saver cDNA Synthesis Kitに含まれ ている!^ RI- Iアダプターを、添付マニュアルに従い連結した。 この DNA断片 の全量を、 ファージベクタ一、 λΖΑΡΙΙ クロ一ニングキット (ストラタジーン社 製) の^ RIアームに DNA Ligation Kit Ver.2 (宝酒造株式会社製) を用い連結 させ、 エタノール沈澱後、 TE (10 mM トリス塩酸 pH 8.0, 1 mM EDTA) 緩衝液に溶 解した。 このようにして得られた組換えファージベクターを、 Gigapack III Plus Packaging Extract (ストラタジーン社製) により添付のマニュアルにしたがって in vitro パッケージングを行った。 その後、 この組換えファージを大腸菌 XLl-Blue MRF' に感染させ、 プレートにて培養しプラークを形成させ、 ファージ ライブラリ一とした。 これを用いて目的遺伝子をクローニングした。
(2) PCR法にょるDNAの増幅と解析
(1)-③で作製した cDNAを鐯型にし、 セルラーゼ NCE 5の部分アミノ酸配列 の情報をもとに PCR法により DNAを増幅した。
各プライマーとしては、 以下のような合成オリゴヌクレオチドを作製した。 N末: 5' -TAY TGG GAY TGY TGY AAR CC- 3' (20mer) (配列番号 36) ;
T-43.0: 5'-TCI GCR TTI ARR AAC CAR TC-3' (20mer) (配列番号 37)
(塩基配列中、 Rは G又は Aを示し、 Yは T又は Cを示し、 Iはイノシンを示す。) PCRは、 50 1の反応液中、 1 の cDNAを銹型とし、 1.25unitの LA Tad DNA ポリメラーゼ (宝酒造株式会社製) と添付の緩衝液、 0.2mM dNTP、 10 DMS0, 及 び 1 M の各プライマ一を用い、 以下の条件で反応を行った。 94で 1分間、 (94.0°C 30秒間、 55. (TC 30秒間、 72.0で 1分間) X 25回、 72.0°C 5分間。 この反応により約 500 bpの DNAが増幅され、 これを DYEnamic ET terminator cycle seauencing premix kit (Amer sham Phermacia Biotech社製) と ABI PRISM 310 Genetic Analyzer (PE Applied Biosysteras 社製) を用いて、 添付のプロト コールに従いシーケンスを行った。 その結果、 決定された塩基配列から推定され るアミノ酸配列には、セルラーゼ NCE 5の部分アミノ酸配列を全て含んでいた。 よって、 以降のスクリーニングのプローブとして用いた。
(3) セルラーゼ成分 NCE 5遺伝子のクローニング
① プラークハイブリダィゼーシヨンによるスクリーニング
PCR法により増幅させた 500 bpのDNA断片 lOOngを、 あらかじめ ECLダイレク ト DNA/RNAラベリング検出システム(Amersham Pharmacia Biotech社製)により、 標識化した。
(1)-④で作製したファージプラークは、 Hybond-N+ナイロントランスファーメ ンブラン (Amersham Pharmacia Biotech社製) に写し取り、 0.4 N水酸化ナトリ ゥムでアルカリ処理し、 メンブラン上の組換えファージ DNAを 1本鎖に変成後、 5 XSSC(1XSSC; 15 mM クェン酸 3ナトリウム、 150mM塩化ナトリウム) で洗浄 し、 風乾させ DNAを固定した。 その後、 キットのマニュアルにしたがって、 ハイ プリダイゼーションを行い、 検出反応をし、 FUJI MEDICAL X-RAY FILM (富士写真 フィルム社製) に感光させ、 6個の陽性クローンを得た。
② ファージ DNAの調製
陽性クローンからの DNAの調製は、 キットの添付マニュアルに従い、 プラスミ ド DNAとして調製した。
アンピシリンに耐性を示す大腸菌 S0LR™から、 pBluescript SK (一) に DNA断 片がクローン化されたプラスミドを調製し、 これをテンプレー卜に(2)で使用し た N末端と T- 43.0のプライマーを用い、前述と同様の条件下で PC Rを行った。 その結果、 1個のプラスミドにおいて 500 bpの増幅産物を得られた。 よって、 こ のプラスミドに目的とする DNAがクローン化されていることが予測されたので、 これを!^ RIで消化し、 ァガロースゲル電気泳動に供した。
その結果、 約 lkbpの!^ RI断片を含んでいた。
(4) cDNA塩基配列の決定
(3)の②において得られた陽性組換え pBluescript SK (-) プラスミドに揷入 された約 1 kbpの!^ RI断片の塩基配列は、 T3、 Τ7シーケンス用プライマーを使 用し、 前述と同様の方法で決定した。 結果、 この塩基配列は 672 bpの 0RFを含ん でおり、 その塩基配列、 及び 0RFから推定されるアミノ酸配列はそれぞれ、 配列 表の配列番号 39、 及び配列番号 38に示した。
さらにこの 0RFの 1〜18アミノ酸の配列については、本タンパク質を細胞外に 分泌させるためのシグナル配列であると考えられた。
参考例 2 : NCE 5遺伝子のフミコーラ'インゾレンスでの発現
フミコーラ'インソレンス MN200- 1 (FERM B P— 5977 )における発現 ベクターは、 プラスミド pJDOl (WO00/24879 実施例 D 1 (2) (W参照) を利用 し、 以下のように構築した。
(1) NCE 5発現プラスミド pJND- c5の構築
① NCE 5遺伝子への部位特異的変異導入
NCE5遺伝子は、 プラスミド pJDOlの^ iHI部位に連結できるように、 開始 コドンのすぐ上流の配列と終止コドンのすぐ下流にあらかじめ^ ιΗΙを含む形で プライマ一を設計し、 PCR法にて増幅した。 変異導入用プライマーは以下のよう にデザインした。
NCE 5 -N-BamHI:
5 ' -GGGGATCCTGGGACAAGATGCAGCTCCCCCTGACCACG-3 ' (38mer) (配列番号 40); NCE 5 -C-BamHI: 5' -GGGGATCCTGCATTTAACGCGAGCAGCCGCTCTTGGCC-3' (38mer) (配列番号 41)。
PCRの反応は、 参考例 1で得られた陽性組換え pBluescript SK (-) プラスミ ドをテンプレートに、 前述と同様の条件下で行った結果、 1.0%ァガロースゲル電 気泳動にて約 670 bpの DNA断片の増幅産物を確認したので、 Micro Spin S-400 HR Columns (Amersham Pharmacia Biotech社製) にて未反応物を除去しエタノール 沈澱後、 iHIにて消化した。次に、全量を 1.0%ァガロースゲル電気泳動に供し、 670 bpの DNA断片を Sephaglas BandPrep Kit (Amersham Pharmacia Biotec 社 製)を用いて添付のマニュアルに従い回収し、その¾0断片をプラスミド PUC118 の ^ HI部位にサブクローニングし、 プラスミド pNCE5Bamを得た。 さらに、 この 挿入断片について前述の方法にて塩基配列を決定し、 確認した。
② プラスミド pJND-c5の作製
前述のプラスミド pJDOlを ιΗΙにて消化し、 0.8%ァガロースゲル電気泳動に より分離し、約 8.0 Kb の DNA断片を前述の Sephaglas BandPrep Ki tにて回収し、 これを大腸菌由来のアルカリフォスファターゼ (宝酒造株式会社製) を用い添付 のマニュアルに従い脱リン酸化した。 また、 ①で得られたプラスミド pNCE5Bam においても同様に ιΗΙにて消化し、 670 bpの DNA断片を回収しそれぞれを DNA Ligation Kit Ver.2にて連結し、 発現プラスミド pJND-c5を得た。
(2) プラスミド pJND-c5によるフミコーラ'インソレンスの形質転換
フミコーラ-インソレンス MN200-1 (FERM BP— 5977)を(S)培地中 37 で培養し、 24時間後、 3000rpm、 10分間遠心分離により集菌した。 (S)培地の 組成は、 参考例 1に記載した (N)培地にグルコース (3.0%) を加え、 アビセルを 除いたものである。 得られた菌体を 0.5 Mシュークロースで洗浄し、 0.45 ΠΙの フィル夕一で濾過したプロトプラスト化酵素溶液 (3 mg/ml )3 -glucuronidase, lmg/ml Chitinase lmg/ml Zymolyase 0.5M シユークロース) 10mlに懸濁した。 30°Cで 60〜90分間振盪し、菌糸をプロトプラスト化させた。 この懸濁液を濾過し た後、 2500 rpm, 10分間遠心分離してプロトプラストを回収し、 SUTC緩衝液(0.5 M シユークロース、 10 mM塩化カルシウム、 10 トリス塩酸 (pH 7. 5)) で洗浄 した。
以上のように調製したプロトプラストを l mLの SUTC緩衝液に懸濁し、この 100 Lに対し 10 / gの DNA (TE)溶液(10 1) を加え氷中に 5分間静置した。次に、 400 Lの PEG溶液 (60% PEG4000, 10mM塩化カルシウム、 lO mMトリス塩酸 (pH 7. 5))を加え、氷中に 20分間静置した後、 10 mlの SUK緩衝液を加え、 2500rpm、 10分間遠心分離した。集めたプロトプラストを l mLの SUT :緩衝液に懸濁した後、 4000 rpmで 5分間遠心分離して、 最終的に 100 Lの SUTC緩衝液に懸濁した。 以上の処理を加えたプロトプラストを、 ハイグロマイシン (200 g/ml) 添加 YMG培地 (1 % グルコース、 0. 4% 酵母エキス、 0. 2% モルトエキス、 1 %寒天 (pH 6. 8) )上に、 YMG軟寒天とともに重層し、 37 :、 5日間培養後、 形成したコ ロニ一を形質転換体とした。
〔実施例 1〕 セルロース結合領域が欠失した RCE I変異体 H43を発現する遺伝子 の構築
コドン最適化エンドグルカナーゼ遺伝子 RCE I を含むプラスミ ド pl8- 1 (WO00/24879 実施例 D 3 ( 1 ) g) 参照) を制限酵素^ )HIで切断し、 コドン最 適化エンドダルカナーゼ遺伝子を含む断片をプラスミド PUC118の ιΗΙサイトに クローン化したプラスミド PR1H4を作製した。この PR1H4を錶型に、 RC- 43F.RC- 43R の 2本の合成 DNAをプライマ一にして TaKaRa LA PCR in vi tro Mutagenesis Ki t (宝酒造) を用いて 1段目の PCR反応を行った。 反応条件についてはキットに添 付のマニュアルの条件に従った。 ァガロースゲル電気泳動により反応後のサンプ ルを分離し、 約 650bpの遺伝子断片 43- X2を得た。
参考例 2に記載した、元来セルロース結合領域を持たないファミリ一 45エンド ダルカナ一ゼである NCE5遺伝子を含むプラスミド pJND- c5 を錶型に、 NX-43F · NX-43Rの 2本の合成 DNAをプライマーにして TaKaRa LA PCR in vi tro Mutagenesi s Ki t (宝酒造) を用いて同じく 1段目の PCR反応を行った。 反応条件についてはキ ッ卜に添付のマニュアルの条件に従った。 ァガロースゲル電気泳動により反応後 のサンプルを分離し、 約 120bpの遺伝子断片 43- XIを得た。
RC-43F : CACCACGCGCTACTGGGACT (配列番号 2 0 ) ;
RC-43R: GGATCCTGCGTTTACTTGC (配列番号 2 1 ) ;
NX-43F : GGATCCTGGGACAAGATG (配列番号 2 2 ) ;
NX-43R: GCACGACGGCTTGCAGC (配列番号 2 3 )
PCR断片 43-X1及び 43 - X2と、 TaKaRa LA PCR in vi t ro Mu tagenes i s Ki tを用 いてアニーリング · 2段目の PCR反応を行つた。プライマーは NX-43F及び RC-43R の 2本の合成 DNAを使用し、 反応条件についてはキットに添付のマニュアルの条 件に従った。ァガロースゲル電気泳動により反応後のサンプルを分離し、約 700bp の遺伝子断片 H43 を得た。 この断片を制限酵素 ^jHI にて切断し、 プラスミド PUC 1 18の^ ιΗΙサイ卜に TaKaRa DNA Ligat ion Ki t Ver. 1を用いて連結したプラ スミド PR1H43を作製した。酵素等の反応条件についてはキッ卜に添付のマ二ユア ルの条件に従った。 得られたプラスミド PR1H43を Cy5- Auto Read Sequenc ing Ki t (アマシャム 'フアルマシア社製) にてシークェンス反応を行い、 DNA シークェ ンサー ALFred (アマシャム ·フアルマシア社製) にてその配列を解析した。 反応 用のプライマ一はキットに添付の M13プライマーを使用した。 その結果、 N末端 側の分泌シグナルが NCE5由来のもので、 残りの触媒領域 (CAD) 部分が RCE I由 来の配列になっており、 予想通りの配列になっていることを確認した。 塩基配列 から推測される RCE I変異体 H43のアミノ酸配列を以下に示す。
H43: MQLPLTTLLTLLPALAAAQSGSGRTTRYWDCCKPSCSWPGKANVSSPVKSCNKDGVTALSDSNAQSG CNGGNSY CNDNQPWAVNDNLAYGFAAAAISGGGESRWCCSCFELTFTSTSVAGKKMVVQVTNTGGDLGSST GAHFDLQMPGGGVGIFNGCSSQWGAPNDGWGSRYGGISSASDCSSLPSALQAGCKWRFNWFKNADNPSMTYK EVTCPKEITAKTGCSRK (配列番号 2 4 )
このアミノ酸配列(配列番号 2 4 ) において、 第 1〜1 8アミノ酸残基は NCE 5 由来のシグナルペプチドであり、 第 1 9〜2 4アミノ酸残基は NCE 5の N末端配 列であり、 第 2 5〜3 6アミノ酸残基は NCE5又は RCE I由来の配列であり、 第 3 7アミノ酸残基以降の配列は RCE Iの触媒領域由来の配列である。
なお、 上記の方法に従って実施した場合、 遺伝子断片 H43の塩基配列がコード するタンパク質のアミノ酸配列として、配列番号 2 4記載の配列、及び 34番目の ァミノ酸残基がァラニンとなる配列の 2種類が得られるが、 以降の操作において は、 配列番号 2 4のアミノ酸配列をコ一ドする塩基配列を有する遺伝子断片を用 いた。 〔実施例 2〕 セルロース結合領域が欠失した RCE I変異体 H45を発現する遺伝子 の構築
実施例 1の PR1H4を铸型に、 合成 D N Aである RC-A121P及び TaKaRa LA PCR in vi tro Mutagenesis Ki t (宝酒造) を用いて、 RCE I遺伝子にアミノ酸置換を導入 した。 反応条件についてはキットに添付のマニュアルの条件に従った。 ァガロー スゲル電気泳動により反応後のサンプルを分離し、 約 lKbpの遺伝子断片 L9を得 た。 この断片を制限酵素 iHIにて切断し、 プラスミド PUC118の ^ ΗΙサイ卜に TaKaRa DNA Ligat ion Ki t Ver. 1を用いて連結したプラスミド pRlL9を作製した。 酵素等の反応条件についてはキッ卜に添付のマニュアルの条件に従った。 得られ たプラスミド PR1L9を Cy5-Auto Read Sequencing Ki t (アマシャム ·フアルマシ ァ社製) にてシークェンス反応を行い、 DNAシークェンサ一 ALFred (アマシャム · フアルマシア社製) にてその配列を解析した。 反応用のプライマ一としては合成
D NAである H4- R1を使用した。 その結果、 1ケ所のァラニンがプロリンに変わ つており、 予想通りの配列になっていることを確認した。
RC-A 121P: GACTGCTGCAAGCCGTCGTGC (配列番号 4 2 ) ;
H4-R1: GTTGCACATGTAGGAGTTGC (配列番号 4 3 )
この PR1L9を銬型に、 RCE I遺伝子の分泌シグナル配列部分をコードする領域 の遺伝子を増幅した。 RC-451F及び RC- 451Rの 2本の合成 DNAをプライマーにし、 TaKaRa Ex TaQ Polymerase (宝酒造) 及び添付のバッファ一類を用いて PCR反応 を行った。 反応液組成については添付のマニュアルの条件に従い、 サーマルサイ クラ一 (パーキンエルマ一社: 2400— R) の温度条件は、 94 - 1分、 5(TC- 2分、 及び 72°C- 1分を 25サイクルとした。ァガロースゲル電気泳動により反応後のサ ンプルを分離し、 約 lOOtoの遺伝子断片 45-X1を得た。
同様に、 PR1L9を錶型に、 RCE I遺伝子の触媒領域 (CAD) をコードする領域を 増幅した。 RC-452F及び RC- 452Rの 2本の合成 DNAをプライマーにし、 TaKaRa Ex Taq Polymerase (宝酒造) 及び添付のバッファ一類を用いて PCR反応を行った。 反応液組成については添付のマニュアルの条件に従い、 サーマルサイクラ一 (パ —キンエルマ一社 2400— R) の温度条件は、 94 - 1分、 50で- 2分、 及び 72°C - 1分を 25サイクルとした。ァガロースゲル電気泳動により反応後のサンプルを分 離し、 約 630bpの遺伝子断片 45-X2を得た。
RC-451F : GCGGATCCTGGGACAAGATG (配列番号 2 5 ) ;
RC-451R: GCCTGCAGAGCGGCGGAGGCCATC (配列番号 2 6 );
RC-452F : GCCTGCAGGGAAAGTACAGCGCTGT (配列番号 2 7 ) ;
RC-452R: GCGGATCCTGCGTTTACTTGC (配列番号 2 8 )
PCR断片 45-X1及び 45-X2を制限酵素 £^1で切断し、 TaKaRa DNA Ligat ion Ki t Ver. 1を用いて連結した後、制限酵素 ¾ilで切断し、 DNA断片 45-Χ3を得た。 45-X3 を錶型に、 RC-451F及び RC- 452Rの 2本の合成 DNAをプライマーにし、 TaKaRa Ex TaQ Polymerase (宝酒造) 及び添付のバッファ一類を用いて PCR反応を行った。 反応液組成については添付のマニュアルの条件に従い、 サーマルサイクラ一 (パ —キンエルマ一社: 2400— R) の温度条件は、 94°C- 1分、 50 - 2分、 72で- 1分 を 25サイクルとした。ァガロースゲル電気泳動により反応後のサンプルを分離し、 約 700bpの遺伝子断片 H45を得た。 この断片を制限酵素 ¾Πにて切断し、 ブラ スミド PUC118の BamHIサイ卜に TaKaRa DNA Ligat ion Ki t Ver. 1を用いて連結し たプラスミド PR1H45を作製した。反応条件についてはキッ卜に添付のマニュアル の条件に従った。 塩基配列から推測される RCE I変異体 H45のアミノ酸配列を以 下に示す。
H45: MKFITIASSALLALALGTEMASAALQGKYSAVSGGASGNGVTTRYWDCCKPSCSWPGKANVSSPVKS CNKDGVTALSDSNAQSGCNGGNSYMCNDNQPWAVNDNLAYGFAAAAISGGGESRWCCSCFELTFTSTSVAGK KMVVQVTNTGGDLGSSTGAHFDLQMPGGGVGIFNGCSSQWGAPNDGWGSRYGGISSASDCSSLPSALQAGCK WRFNWFKNADNPSMTYKEVTCPKEITAKTGCSRK (配列番号 29 )
このアミノ酸配列(配列番号 29) において、 第 1〜23アミノ酸残基は RCEI 由来のシグナルペプチドであり、 第 24アミノ酸残基は RCE Iの N末端配列であ り、 第 25〜26アミノ酸残基は使用したプライマーにより導入された配列であ り、 第 27アミノ酸残基以降の配列は RCE Iの触媒領域由来の配列である。
〔実施例 3〕 コドン最適化ェンドグルカナーゼ RCE I遺伝子及びそのセルロース 結合領域を欠失した変異体 RCE I- H43,H45のフミコーラ ·インソレンスにおける 腿
プラスミド pJDOl (WO00/24879 実施例 D 1 (2) (b)参照) を^ HIにて消化 し、 大腸菌由来のアルカリフォスファターゼ (宝酒造株式会社製) を用い添付の マニュアルに従い脱リン酸化した。 実施例 2で得られたプラスミド pRlH43、 PR1H45においても同様に ¾Πにて消化し、約 700bpの DNA断片を回収しそれぞ れを DM Ligation Kit Ver.1にて連結し、 発現プラスミド pJND- H43、 pJND-H45 を得た。
フミコーラ -インソレンス MN200- 1 (FERM BP- 5977) を、 プラスミ H PJND-H43, pJND- H45及びコドン最適化 RCEI遺伝子を含む PJI4D01 (リゾブス 由来の RCEI をフミコーラで発現させるためにコドンを最適化した RCEI 遺伝子 を含むプラスミド: WO00/24879 実施例 D 3 (3) 参照) で形質転換した。 すな わち、 フミコーラ -インソレンス M 200- 1 (FERM BP— 5977) を (S) 培地 (3.0%グルコース、 2.0%酵母エキス、 0.1%ポリペプトン、 0.03%塩化カル シゥム、 0.03%塩化マグネシウム、 pH 6.8) 中 37°Cで培養し、 24時間後、 3 000 r pm、 10分間遠心分離により集菌した。 得られた菌体を 0. 5Mシュ 一クロースで洗浄し、 0. 45 xmのフィル夕一で濾過したプロトプラスト化酵 素溶液 (5mgZm l Novozyme 234 (N o v o社製)、 5mg/m 1 Cellulase OnozukaR-10 (ヤクルト社製)、 0. 5M シユークロース) 10mlに懸濁した。 30°Cで 60〜90分間振盪し、 菌糸をプロトプラスト化させた。 この懸濁液を 濾過した後、 2500 r pm、 10分間遠心分離してプロトプラストを回収し、 SUTC緩衝液 (0. 5Mシュ一クロース、 1 OmM塩化カルシウム、 1 OmM トリス塩酸 (pH7. 5)) で洗浄した。
以上のように調製したプロトプラストを lm 1の SUTC緩衝液に懸濁し、 こ の 100 1に対し 10 gの DNA (TE) 溶液 (10 μ 1 ) を加え、 氷中に 5分間静置した。 次に、 400 1の PEG溶液 (60 % PEG4000、 10 mM塩化カルシウム、 1 OmMトリス塩酸 (pH7. 5)) を加え、 氷中に 20分 間静置した後、 10mlの SUTC緩衝液を加え、 2500 r pm、 10分間遠 心分離した。 集めたプロトプラストを lm 1の SUTC緩衝液に懸濁した後、 4 000 r pmで 5分間遠心分離して、 最終的に 100 1の SUTC緩衝液に懸 濁した。
以上の処理を加えたプロ卜プラストを、 200 g/m 1のハイグロマイシン Bを含む YMG培地 (1 %グルコース、 0. 4%酵母エキス、 0. 2%モルトェ キス、 1%寒天 (pH6. 8)) 上に、 YMG軟寒天とともに重層し、 37^で 5 日間培養した後、 形成したコロニーを形質転換体とした。
得られた形質転換体を (N)培地 (5.0%アビセル、 2.0%酵母エキス、 0.1%ポ リペプトン、 0.03%塩化カルシウム、 0.03%塩化マグネシウム、 pH6.8) で 37°C にて培養し、 遠心分離により固形分を除いた培養上清を酵素試料とした。 〔実施例 4〕 フミコーラ 'インソレンス形質転換体からの RCE I変異体の単離精 フミコ一ラ ·インソレンス形質転換体を、 (N) 培地 (5. 0%アビセル、 2. 0%酵 母エキス、 0. 1 %ポリペプトン、 0. 03%塩化カルシウム、0. 03%塩化マグネシウム、 pH 6. 8) に植菌し、 37でで振とう培養した。 プラスミド pJND-H43、 pJND- H45を導 入された形質転換体については 5〜6日間培養した。 プラスミド pJ I4D01を導入 された形質転換体については、 リンカ一部分における分解がなく、 セルロース結 合領域を保持したままの RCE I酵素を得たいサンプルについては 4日間培養し、 一方、 リンカ一部分の分解が進み、 セルロース結合領域が欠失した RCE I酵素を 得たいサンプルについては 4日間よりも培養を延長し、 5〜6日間培養した。 得 られた各培養液を 7, 000 rpmで 20分間遠心することにより菌体を除き、培養上清 液を粗精製セルラ一ゼ調製液とした。
この粗精製セルラーゼ調製液 100ml を、 最終濃度 1. 5M硫酸アンモニゥムの溶 液になるように調製した後、 あらかじめ 1. 5Mの硫酸アンモニゥム液で平衡化さ せた Macro- Prep HIC Methyl Support 疎水クロマトグラフィー (ゲル体積 270ml : バイオラッドラボラトリーズ社製) に流速 10. 0ml Zminでアプライした。 次に、 硫酸アンモニゥム濃度を 1. 5Mから 0· 3Mずつのステップワイズ溶離法により流 速 10. 0mlノ minで溶出して、分画した。 この内ブラスミド pJND- H43を導入された 形質転換体の培養液 (以下 「H43培養液」 という。) については硫酸アンモニゥム 濃度が 1. 2Mのときに得られた画分に、 プラスミド pJND- H45を導入された形質転 換体の培養液 (以下 「H45培養液」 という。) については硫酸アンモニゥム濃度が 0. 9Mのときに得られた画分に、プラスミド pJI4D01を導入された形質転換体の内、 4日間培養を行ったもの (以下 「H4 培養液」 という。) については硫酸アンモニ ゥム濃度が 0. 6Mのときに得られた画分に、 プラスミド pJ I4D01 を導入された形 質転換体の内、培養を延長し、分解を促進した培養液(以下「H4分解物」 という。) については 0. 9Mのときに得られた画分に、 リヨセルの毛羽除去活性が強く認め られた。 そこでこれらの画分各 100m】を分取した。
ここで、 得られた各活性画分 100ml を、 最終濃度 1. 5M硫酸アンモニゥムの溶 液になるように調製した後、 あらかじめ 1. 5Mの硫酸アンモニゥム液で平衡化さ せた Macro- Prep Me thyl HIC Support HIC 疎水クロマトグラフィー (ゲル体積 270ml:バイオラッドラボラトリーズ社製)に流速 10. OmlZminで再度アプライし た。 次に、 脱イオン水中、 硫酸アンモニゥム濃度を 1. 5Mから 0. 15Mずつのステ ップワイズ溶離法により流速 10. 0ml Zniinで溶出して、 分画した。 このうち、 H43 培養液については硫酸アンモニゥム濃度が 1. 35Mのときに得られた画分に、 H45 培養液については硫酸アンモニゥム濃度が 1. 05Mのときに得られた画分に、 H4 培養液については硫酸アンモニゥム濃度が 0. 75Mの時に得られた画分に、 H4分解 物については硫酸アンモニゥム濃度が 1. 05Mの時に得られた画分にリョセルの 毛羽除去活性が認められた。 そこで、 これらの画分 40mlを分取した。
ここで、 得られた活性画分 40mlを、 最終濃度 1. 5M硫酸アンモニゥムの溶液に なるように調製した後、 あらかじめ 1. 5Mの硫酸アンモニゥム液で平衡化させた Macro-Prep Methyl HIC Support HIC 疎水クロマトグラフィー (ゲル体積 25ml : バイオラッドラボラトリーズ社製) に流速 4. OmlZminでアプライした。 次に、 脱 イオン水により流速 4. OmlZniiiiで溶出して、 分画した。 この内、 リヨセルの毛羽 除去活性が強く認められた画分 8 mlを分取した。
さらに、 得られた活性画分を 150m 1の 50 酢酸緩衝液 (pH 4. 0) になるよう に希釈して調製した後、 あらかじめ 50mM酢酸緩衝液 (pH 4. 0) で平衡化させた、 MonoS 10/10HRカラム (アマシャム 'フアルマシア社製) に流速 2 ml minでァ プライした。 次に 50mM酢酸緩衝液 (pH 4. 0) から 50mM酢酸緩衝液 (pH 5. 0) 中 1 M N a C 1への、 0. 1Mずつのステップワイズ溶離法により流速 S mlZmin で 溶出し、 分画した。 この内、 N a C 1濃度が約 0. 2— 0. 3Mのときに得られた画分 にそれぞれリヨセル毛羽除去活性が認められた。 そこで、 この内の最も活性が強 く認められた画分 6m 1を分取した。 これらの画分は S D S— P A G Eにおいて、 H43培養液、 H45培養液、 H4分解物から精製したタンパク質については約 25Kda、 H 培養液については約 40KDaの単一なバンドを示した。
SDS— PAGEはテフコ社のシステムを用いて実施した。 すなわち、 電気泳 動槽 (No. 03— 101)、 電源 (Mod e 1 : 3540)、 ゲル 10 % (01 -015), SDS— PAGE用バッファーキット (06— 0301) を用いた。 泳動条件は、 18mA/l 0分、 次いで 2 OmA/90分であった。 泳動後の夕 ンパク質の検出には、 電気泳動用 2D—銀染色試薬 · I I 「第一」 (第一化学薬品 社製) を用いて銀染色を行った。 マーカーとしての標準タンパク質は、 バイオ ' ラッド社の SDS— PAGE分子量標準タンパク質 'LowRange (161 -030 4) を用いた。
なお、 上述のリヨセル毛羽除去活性は、 以下の方法に従い測定した。
あらかじめ染色されたリヨセルニットの生地 (豊島株式会社製) を界面活性剤 及びゴムボールとともに大型ワッシャー中で毛羽立たせた。 その後、 この毛羽立 たせたリヨセルニットの生地 (豊島株式会社製 9cmX10cm、 重量約 2 g) を筒 状に縫い、 下記の条件で各種酵素による毛羽除去処理を行った。 この処理により 筒状の生地の内側にある毛羽が完全に除去されるのに要するタンパク濃度を算出 した。
各種エン ドグルカナ一ゼのタンパク濃度は、 TSKgel TMS-250 カラム (4.6mml. D. X7.5cm) (東ソ一社製) を用いた HPLC分析により、 0.05%TFA (トリフ ルォロ酢酸) 中、 ァセトニトリル濃度を 0%から 80% までのリニアグラジェント により流速 1. Oml/minで溶出した各種エンドグルカナ一ゼの UV280nmでのピーク 面積から算出した。 スタンダードとしては、 プロテインアツセィキット (バイオ ラッドラボラトリー社製) によりあらかじめタンパク濃度を測定しておいた精製 NCE4を同じく HPLC分析したものを用いた。プロテインアツセィキットにおけ るタンパク濃度測定のスタンダードは Albumin Standard (Bovine serum albumin, fraction V, PIERCE社製)を用いた。 また、 精製 NCE4 (配列番号 18の第 1 1 8〜1088塩基にコードされる)は、国際公開第 W098/03640号公報記載の方 法に従い、 フミコーラ ·インソレンス培養液から単離精製した。
試験機械:ラウンダーメーター (LaunderMeter) L-12 (株式会社大栄科学精器製 作所製)
温度: 55で
時間: 60分
反応液量: 40m l
反応 pH: pH5 (10mM酢酸緩衝液)
pH6 (lOmM酢酸緩衝液)
処理液には、 エンドダルカナーゼ溶液とともに約 16 gのゴムポールを 4個加 えた。
〔実施例 5〕 フミコーラ ·インソレンス形質転換体からの単離精製した RCE I変 異体タンパク質の N末端アミノ酸配列の同定
実施例 4において精製したタンパク質の N末端アミノ酸配列を決定するため、 各画分を SDS_PAGEmini (テフコ社製) を行った後、 PVDF膜へエレク トロブロッテイングし、 クマジーブリリアントブルー R 250 (ナカライテスク 社製) で染色した後、 脱色し、 水で洗浄し、 風乾した。 ここから目的のタンパク 質がプロットされた部分を切り出し、 プロテインシークェンサ一 Model 492 (PE Applied Biosystems社製) に供し、 N末端アミノ酸配列の解析を試みた。 H45培 養液、 H4培養液、 H4分解物から精製した酵素については問題無くアミノ酸配列が 読めたが、 H43 培養液から精製した酵素についてはエドマン分解によるシグナル は得られず、 N末端のアミノ酸が修飾保護されていることが判明した。 そこで、 0.5%ポリビニルピロリドン(分子量 40, 000:Sigma社製)ノ lOOmM醉酸溶液に 37°C で 30 分間浸漬し、 膜上のタンパク質未結合部分をブロックした後、 Piu PyroglutamateAminopeptidase (宝酒造社製) を用いて 50°Cで 5時間処理するこ とにより修飾 N末端残基を除去し、 あらためてシークェンシングを行った。 得ら れた配列は以下の通りであった。
RCE I-H43の N末端アミノ酸配列:
Gln-Ser-Gly-Ser-Gly-Arg-Thr (7残基) (配列番号 3 0 )、
RCE I-H 5の N末端アミノ酸配列:
Lys-Tyr-Ser-Ala-Val-Ser-Gly (7残基) (配列番号 3 1 ) ;
Al a-Val-Ser-Gly-Gly-Al a-Ser (7残基) (配列番号 3 2 )、
RCE I-H4 (25KDa)の N末端アミノ酸配列:
Ser-Al a-Val-Ser-Gly-Gly-Al a (7残基) (配列番号 3 3 ) ;
Gly-Gly-Al a-Ser-Gly-Asn-Gly (7残基) (配列番号 3 4 )、
RCE I-H4 (40KDa)の N末端アミノ酸配列:
Al a-Glu- (Cys) -Ser-Lys-Leu-Tyr (7残基) (配列番号 3 5 )。
N末端アミノ酸配列の同定の結果より、 H4培養液から精製した酵素(以下「RCE
I - H4 (40KDa)」 という。) のみがセルロース結合領域 (CBD) を保持しており、 残り の H43培養液から精製した酵素 (以下 「RCE I-H43 (25KDa)」 という。)、 H45培養 液から精製した酵素 (以下 「RCE I-H45 (25KDa)」 という。)、 及び H4分解物から精 製した酵素 (以下 「RCE I- H4 (25KDa)」 という。) はセルロース結合領域 (CBD) を 有しておらず、 触媒領域 (CAD) のみの構造であることが明らかとなった。 〔実施例 6〕 セルロース結合領域を欠失した RCE Iとセルロース結合領域を保持 した RCE Iの綿生地の毛羽除去比活性の比較
実施例 5にて単一に精製されたエンドグルカナ一ゼを用いて、 大型ワッシャー 中で毛羽立たせた綿ニッ卜生地 (日東紡績株式会社製:綿スムースニッ卜 No. 3
9 0 0を艷友染ェ株式会社にて茶色に反応染色した生地 6cmX 8cni)の毛羽除去処 理を下記の条件にて行い、 除去されずに残った毛羽の量を目視にて判定し、 毛羽 の残存量が 50%になる精製酵素の添加量を測定した。 タンパク量の測定には BCA Protein Assay Reagent (ピアス社) を用い、 添付のマニュアルの条件に従って行 つた。 なお、 40KDaの精製 RCE Iタンパク質 (RCE I-H4 (40KDa) ) は 25KDaの精製 RCE Iタンパク質 (RCE I-H43 (25KDa) , RCE I- H45 (25KDa)及び RCE I-H4 (25KDa) ) と比べて約 1. 5倍の推定分子量があるため、 仮に定量したタンパク質量が同じで あつたとしても、 中に含まれる酵素分子の数に換算すると、 40KDa の精製 RCE I 夕ンパク質のほうには 25KDaの精製 RCE I夕ンパク質の約 2Z3の分子数の酵素し か含まれていないことになる。
試験機械:洗濯堅牢度試験機 L- 20 (大栄科学精器製作所社製)
温度: 40又は 55で
時間: 120分
反応液量: 0ml
反応 pH : pH 7 ( l mMリン酸緩衝液、 脱イオン水を用いて調製) で反応させた。 処理液には、 酵素溶液とともに約 1 6 gゴムボールを 4個加えた。
その結果は、 下記の表 2に示されるとおりであった。
〔表 2〕
添加した酵素量 添加した酵素量
40°C
精製 RCEI- H4 (40KDa) 3 9 0 μ. g以上 3 9 0 g以上
精製 RCEI- H4 (25KDa) 1 8 g 5 3 g 表 2の結果から、 接合菌由来のエンドダルカナーゼである RCE Iは、 元は同じ 酵素であるにもかかわらず、 セルロース結合領域(CBD) が欠失した 25KDaのタン パク質の方がセルロース結合領域 (CBD) を保持した 40KDaのタンパク質よりも、 はるかに高いレベルで綿生地の毛羽除去活性を示すことが分かる。 〔実施例 7〕 セルロース結合領域を欠失した RCE Iとセルロース結合領域を保持 した RCE Iのリヨセル生地の毛羽除去比活性の比較
実施例 5にて単一に精製されたエンドダルカナーゼを用いて、リヨセル生地(豊 島株式会社製 6cmX 8cm)の毛羽除去処理を実施例 4記載の方法に改良を加えた条 件にて行い、 除去されずに残った毛羽の量を目視にて判定し、 毛羽が完全に除去 されるのに要する精製酵素の添加量を測定した。 タンパク量の測定には BCA Protein Assay Reagent (ピアス社) を用い、 添付のマニュアルの条件に従って行 つた。 なお、 40KDaの精製 RCE Iタンパク質 (RCE I-H4 (40KDa) ) は 25KDaの精製 RCE Iタンパク質 (RCE I-H43 (25KDa)、 RCE I- H45 (25KDa)及び RCE I-H4 (25KDa) ) と比べて約 1. 5倍の推定分子量があるため、 仮に定量したタンパク質量が同じで あつたとしても、 中に含まれる酵素分子の数に換算すると、 40KDa の精製 RCE I 夕ンパク質のほうには 25KDaの精製 RCE I夕ンパク質の約 2ノ3の分子数の酵素し か含まれていないことになる。
試験機械:洗濯堅牢度試験機 L-20 (大栄科学精器製作所社製)
温度: 4CTC
時間: 90分
反応液量: 50ml
反応 pH : pH 6 (10mM酢酸緩衝液、 脱イオン水を用いて調製) で反応させた。 処理液には、 酵素溶液とともに約 1 6 gゴムポールを 4個加えた。
その結果は、 下記の表 3に示されるとおりであった。
〔表 3〕
添加した酵素量
精製 RCEI- H4 (40KDa) 3 2 g
精製 RCEI- H4 (25KDa) 1 1 g 表 3の結果から、 接合菌由来のエンドダルカナ一ゼである RCE Iは、 セルロー ス結合領域(CBD)が欠失した 25KDaのタンパク質の方がセルロース結合領域(CBD) を保持した 40KDaのタンパク質よりも、 高いレベルでリョセル生地の毛羽除去比 活性を示すことが分かる。 〔実施例 8〕 アルカリ ·低温 ·界面活性剤存在下条件においての、 セルロース結 合領域を欠失した RCE Iとセルロース結合領域を保持した RCE Iの綿生地の毛羽 除去比活性の比較
実施例 5にて単一に精製されたエンドダルカナーゼを用いて、 大型ワッシャー 中で毛羽立たせた綿ニット生地 (日東紡績株式会社製 綿スムースニット No. 3 9 0 0を艷友染ェ株式会社にて茶色に反応染色した生地 6cm X 8cm)の毛羽除去処 理を下記の条件にて行い、 除去されずに残った毛羽の量を目視にて判定し、 毛羽 の残存量が 50%になる精製酵素の添加量を測定した。 夕ンパク量の測定には BCA Protein Assay Reagent (ピアス社) を用い、 添付のマニュアルの条件に従って行 つた。 なお、 40KDaの精製 RCE Iタンパク質 (RCE I-H4 (40KDa) ) は 25KDaの精製 RCE Iタンパク質 (RCE I-H43 (25KDa) , RCE I - H45 (25KDa)及び RCE I-H4 (25KDa) ) と比べて約 1. 5倍の推定分子量があるため、 仮に定量したタンパク質量が同じで あつたとしても、 中に含まれる酵素分子の数に換算すると、 40KDa の精製 RCE I 夕ンパク質のほうには 25KDaの精製 RCE I夕ンパク質の約 2ノ3の分子数の酵素し か含まれていないことになる。
試験機械:洗濯堅牢度試験機 L-20 (大栄科学精器製作所社製)
温度: 30
時間: 120分
反応液量: 40ml
反応 pH : pH10 (5mM炭酸ナトリウム緩衝液、 脱イオン水を用いて調製) で反応 させた。
処理液には、酵素溶液、約 1 6 gゴムポール 4個とともに終濃度 lOOppmの非ィ オン系界面活性剤パーソフト NK-100 (日本油脂株式会社) を加えた。
その結果は、 下記の表 4に :示されるとおりであった。
〔表 4〕
添加した酵素量
精製 RCEI-H4 (40KDa) 3 9 0 g以上
精製 RCEI-H4 (25KDa) 5 2 g 表 4の結果から、 低温,アルカリ ·界面活性存在下といった実際に洗剤を使用 するような条件下においても、接合菌由来のエンドダルカナーゼである RCE Iは、 元は同じ酵素であるにもかかわらずセルロース結合領域(CBD)が欠失した 25KDa のタンパク質の方がセルロース結合領域(CBD)を保持した 40KDaのタンパク質よ りも、 はるかに高いレベルで綿生地の毛羽除去活性を示すことが分かる。
〔実施例 9〕 セルロース結合領域が欠失した各種精製 RCE Iの綿生地の毛羽除去 比活性の比較
実施例 5にて単一に精製されたェンドグルカナーゼを用いて、 大型ワッシャー 中で毛羽立たせた綿ニット生地 (日東紡績株式会社製:綿スムースニット No. 3 9 0 0を艷友染ェ株式会社にて茶色に反応染色した生地 6cmx 8cm)の毛羽除去処 理を下記の条件にて行い、 除去されずに残った毛羽の量を目視にて判定し、 毛羽 の残存量が 50%になる精製酵素の添加量を測定した。 タンパク量の測定には BCA Protein Assay Reagent (ピアス社) を用い、 添付のマニュアルの条件に従って行 つた。 なお、 40KDaの精製 RCE Iタンパク質 (RCE I- H4 (40KDa) ) は 25KDaの精製 RCE Iタンパク質 (RCE I-H43 (25KDa) , RCE I- H45 (25KDa)及び RCE I-H4 (25KDa) ) と比べて約 1. 5倍の推定分子量があるため、 仮に定量したタンパク質量が同じで あつたとしても、 中に含まれる酵素分子の数に換算すると、 40KDa の精製 RCE I タンパク質のほうには 25KDaの精製 RCE Iタンパク質の約 2Z3の分子数の酵素し か含まれていないことになる。 試験機械:洗濯堅牢度試験機 L- 20 (大栄科学精器製作所社製) 温度: 40
時間: 120分
反応液量: 40ml
反応 pH : pH 7 ( I DIMリン酸緩衝液、 脱イオン水を用いて調製) で反応させた。 処理液には、 酵素溶液とともに約 1 6 gゴムボールを 4個加えた。
その結果は、 下記の表 5に示されるとおりであった。
〔表 5〕
添加した酵素量
精製 RCEI - H4 (40KDa) 3 9 0 g以上
精製 RCEI-H43 (25KDa) 2 6 s
精製 RCEI- H45 (25KDa) 1 8 /x g
精製 RCEI- Η4 (25KDa) 1 8 g 表 5の結果から、 RCE I-H43 (25KDa)、 RCEI-H45 (25KDa)、 RCEI - H4 (25KDa)とい つた、 セルロース結合領域が欠失した各種 RCE Iタンパク質は、 どれもセルロー ス結合領域 (CBD) を保持した 40KDaのタンパク質 RCEI- H4 (40KDa)よりも、 はる かに高いレベルで綿生地の毛羽除去活性を示すことが分かる。 この事から、 触媒 領域の N末端側に残っているリンカ一部分の長短にかかわらず、 セルロース結合 領域 (CBD) が欠失した RCE Iタンパク質の方がセルロース結合領域 (CBD) を保 持した 40KDaのタンパク質よりも、 はるかに高いレベルで綿生地の毛羽除去活性 を示すことが分かる。 また、 人為的 ·非人為的、 どちらの欠失のしかたによって も、 セルロース結合領域 (CBD) が欠失した RCE Iタンパク質の方がセルロース結 合領域 (CBD) を保持した 40KDaのタンパク質 RCEI-H4 (40KDa)よりも、 はるかに 高いレベルで綿生地の毛羽除去活性を示すことが分かる。 〔実施例 1 0〕 セルロース結合領域が欠失した各種精製 RCE Iのリヨセル生地の 毛羽除去比活性の比較
実施例 5にて単一に精製されたエンドダルカナーゼを用いて、リョセル生地(豊 島株式会社製 6cmX 8cni)の毛羽除去処理を実施例 4記載の方法に改良を加えた条 件にて行い、 除去されずに残った毛羽の量を目視にて判定し、 毛羽が完全に除去 されるのに要する精製酵素の添加量を測定した。 タンパク量の測定には BCA Protein Assay Reagent (ピアス社) を用い、 添付のマニュアルの条件に従って行 つた。 なお、 40KDaの精製 RCE Iタンパク質 (RCE I-H4 (40KDa) ) は 25KDaの精製 RCE Iタンパク質 (RCE I-H43 (25KDa) , RCE I - H45 (25KDa)及び RCE I-H4 (25KDa) ) と比べて約 1. 5倍の推定分子量があるため、 仮に定量したタンパク質量が同じで あつたとしても、 中に含まれる酵素分子の数に換算すると、 40KDa の精製 RCE I 夕ンパク質のほうには 25KDaの精製 RCE I夕ンパク質の約 2Z3の分子数の酵素し か含まれていないことになる。
試験機械:洗濯堅牢度試験機 L-20 (大栄科学精器製作所社製)
温度: 40で
時間: 90分
反応 ί夜量: 40ml
反応 pH : pH 6 (lOrn 酢酸緩衝液、 脱イオン水を用いて調製) で反応させた。 処理液には、 酵素溶液とともに約 1 6 gゴムボールを 4個加えた。
その結果は、 下記の表 6に示されるとおりであった。
〔表 6〕
添加した酵素量
"SMRCEI-H4 (40KDa) - 一 3 2 ^ g
精製 RCEI-H43 (25KDa) 1 2 / g
精製 RCEI- H45 (25KDa) H u g
精製 RCEI-H4 (25KDa) l i n g 表 6の結果から、 RCE I-H43 (25KDa)、 RCEI-H45 (25KDa)、 RCEI-H4 (25KDa)とい つた、 セルロース結合領域が欠失した各種 RCE Iタンパク質は、 どれもセルロー ス結合領域 (CBD) を保持した 40KDaのタンパク質 RCEI-H4 (40KDa)よりも、 高い レベルでリヨセル生地の毛羽除去活性を示すことが分かる。 この事から、 触媒領 域の N末端側に残っているリンカ一部分の長短にかかわらず、 セルロース結合領 域 (CBD) が欠失した RCE Iタンパク質の方がセルロース結合領域 (CBD) を保持 した 40KDaのタンパク質よりも、 高いリョセル生地の毛羽除去活性を示すことが 分かる。 また、 人為的 ·非人為的、 どちらの欠失のしかたによっても、 セルロー ス結合領域 (CBD) が欠失した RCE Iタンパク質の方がセルロース結合領域 (CBD) を保持した 40KDaのタンパク質 RCEI- H4 (40KDa)よりも、高いリョセル生地の毛羽 除去活性を示すことが分かる。 本明細書中で引用した全ての刊行物、 特許及び特許出願をそのまま参考として 本明細書中にとり入れるものとする。 産業上の利用の可能性
セルロース結合領域を欠失した RCE I、 RCE I I、 RCE I I I、 MCE I、 MCE I I、 又 は PCE Iなどの接合菌由来のエンドダルカナーゼを作用させると、 セルロース結 合領域を保持したエンドダルカナーゼに比べその効果を飛躍的に向上させること ができるため、 セルロース含有繊維の毛羽立ちの低減、 肌触り及び外観の改善、 色の澄明化、 色の局所的変化、 柔軟化などの繊維加工処理や古紙の脱インキ、 紙 パルプのろ水性の改善処理において、 より少ない酵素量での実施が可能になり、 大幅にコストが低減化される。 配列表フリーテキスト
配列番号 1 3 : RCE Iタンパク質 (配列番号 2 ) に対応するコドン最適化配列 配列番号 1 7 : ファミリー 4 5エンドダルカナーゼのセルロース結合領域に見ら れる共通アミノ酸配列
配列番号 2 0〜 2 3 :プライマー
配列番号 2 4 :組換えタンパク質
配列番号 2 5〜2 8 :プライマー
配列番号 2 9 :組換えタンパク質
配列番号 3 0〜3 5 :組換えタンパク質の N末端アミノ酸配列
配列番号 3 6、 3 7 :プライマー
配列番号 3 8 : NCE5ァミノ酸配列
配列番号 3 9 : NCE5 c D NA配列
配列番号 4 0〜4 3 :プライマー

Claims

請 求 の 範 囲
1 . 接合菌由来のエンドダルカナーゼにおいて、 セルロース結合領域が欠失し ており、 かつェンドグルカナーゼ活性を示すタンパク質。
2 . 接合菌由来のファミリー 45に属するエンドダルカナーゼにおいて、セル口 ース結合領域が欠失しており、 かつエンドダルカナーゼ活性を示すタンパク 質。
3 . 接合菌がリゾプス (Rhizopus) 属に属する微生物、 ムコール (Mucor) 属 に属する微生物及びファイコマイセス (Phycomyces) 属に属する微生物から なる群より選択される微生物である、 請求の範囲第 1項又は第 2項に記載の タンパク質。
4 接合菌がリゾプス (Rhi zopus) 属に属する微生物である、 請求の範囲第 3 項に記載のタンパク質。
5 配列番号 1、 配列番号 3、 配列番号 5、 配列番号 7、 配列番号 9若しくは 配列番号 1 1で表されるアミノ酸配列において、 セルロース結合領域が欠失 したアミノ酸配列を含み、 かつエンドダルカナーゼ活性を示すタンパク質、 ェンドグルカナーゼ活性を示すその改変タンパク質、 又はェンドグルカナー ゼ活性を示すそれらの相同体。
6 . 配列番号 1、 配列番号 3、 配列番号 5、 配列番号 7、 配列番号 9若しくは 配列番号 1 1で表されるアミノ酸配列において、 セルロース結合領域が欠失 したアミノ酸配列を含み、 かつェンドグルカナーゼ活性を示すタンパク質。
7 . 請求の範囲第 1項〜第 6項のいずれか一項に記載のタンパク質、 改変タン パク質又はそれらの相同体をコードする遺伝子。
8 . 請求の範囲第 7項に記載の遺伝子を含んでなる発現ベクター。
9 . 請求の範囲第 8項に記載の発現ベクターにより形質転換された宿主細胞。
1 0 . 宿主細胞が糸状菌の細胞である請求の範囲第 9項に記載の宿主細胞。
1 . 宿主細胞がフミコーラ (Humicola) 属に属する微生物の細胞である請求の 範囲第 1 0項に記載の宿主細胞。
2 . 請求の範囲第 9項〜第 1 1項のいずれか一項に記載の宿主細胞を培養す る工程、 及び該培養によって得られる宿主細胞若しくはその培養物から請求 の範囲第 1項〜第 6項のいずれか一項に記載のタンパク質、 改変タンパク質 若しくはそれらの相同体を採取する工程を含んでなる、 タンパク質の生産方 法。
3 . 請求の範囲第 1 2項に記載の方法により生産されたタンパク質。
4. 請求の範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記 載のタンパク質、 改変タンパク質又はそれらの相同体を含んでなるセルラー ゼ調製物。
5 . セルロース含有繊維の処理方法であって、 セルロース含有繊維を、 請求の 範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記載の夕ンパ ク質、 改変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に記 載のセルラーゼ調製物と接触させる工程を含んでなる前記方法。
6 . セルロース含有繊維が毛羽立ち始める速度を低減するか又はセルロース 含有繊維の毛羽立ちを低減させる方法であって、 セルロース含有繊維を、 請 求の範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記載の夕 ンパク質、 改変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項 に記載のセルラーゼ調製物と接触させる工程を含んでなる前記方法。
7 . セルロース含有繊維の肌触り及び外観の改善を目的として減量加工する 方法であって、 セルロース含有繊維を、 請求の範囲第 1項〜第 6項及び請求 の範囲第 1 3項のいずれか一項に記載のタンパク質、 改変タンパク質若しく はそれらの相同体又は請求の範囲第 1 4項に記載のセルラーゼ調製物と接触 させる工程を含んでなる前記方法。
. 着色されたセルロース含有繊維の色を澄明化する方法であって、 着色され たセルロース含有繊維を、 請求の範囲第 1項〜第 6項及び請求の範囲第 1 3 項のいずれか一項に記載のタンパク質、 改変タンパク質若しくはそれらの相 同体又は請求の範囲第 1 4項に記載のセルラーゼ調製物で処理する工程を含 んでなる前記方法。
1 9 . 着色されたセルロース含有繊維の色の局所的な変化を提供する方法であ つて、 着色されたセルロース含有繊維を、 請求の範囲第 1項〜第 6項及び請 求の範囲第 1 3項のいずれか一項に記載のタンパク質、 改変タンパク質若し くはそれらの相同体又は請求の範囲第 1 4項に記載のセルラーゼ調製物で処 理する工程を含んでなる前記方法。
2 0 . セルロース含有繊維がごわ付き始める速度を低減するか又はセルロース 含有繊維のごわ付きを低減する方法であって、 セルロース含有繊維を、 請求 の範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記載の夕ン パク質、 改変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に 記載のセルラーゼ調製物で処理する工程を含んでなる前記方法。
2 1 . 繊維の処理がその繊維の浸漬、 洗濯、 又はすすぎを通じて行われる、 請求 の範囲第 1 5項〜第 2 0項のいずれか一項に記載の方法。
2 2 . 請求の範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記 載のタンパク質、 改変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に記載のセルラ一ゼ調製物を、 飛散性のない顆粒状又は安定化された 液体状で含有してなる洗剤添加物。
2 3 . 請求の範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記 載のタンパク質、 改変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に記載のセルラーゼ調製物を含んでなる洗剤組成物。
2 4. 古紙を脱インキ薬品により処理して脱インキを行う工程において、 請求の 範囲第 1項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記載のタンパ ク質、 改変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に記 載のセルラーゼ調製物を用いることを特徴とする古紙の脱インキ方法。. 紙パルプのろ水性の改善方法であって、 紙パルプを、 請求の範囲第 1項〜 第 6項及び請求の範囲第 1 3項のいずれか一項に記載のタンパク質、 改変夕 ンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に記載のセルラー ゼ調製物で処理する工程を含んでなる前記方法。
. 動物飼料の消化能を改善する方法であって、 動物飼料を、 請求の範囲第 1 項〜第 6項及び請求の範囲第 1 3項のいずれか一項に記載のタンパク質、 改 変タンパク質若しくはそれらの相同体又は請求の範囲第 1 4項に記載のセル ラーゼ調製物で処理する工程を含んでなる前記方法。
PCT/JP2001/010188 2000-11-21 2001-11-21 Zygomycetes-origin endoglucanase lacking cellulose-binding domain WO2002042474A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP01997189.4A EP1344820B1 (en) 2000-11-21 2001-11-21 Zygomycetes-origin endoglucanase lacking cellulose-binding domain
JP2002545179A JP3970770B2 (ja) 2000-11-21 2001-11-21 セルロース結合領域を欠失した接合菌由来エンドグルカナーゼ酵素
DK01997189.4T DK1344820T3 (en) 2000-11-21 2001-11-21 Endoglucanase OF Zygomycetes-ORIGIN WITHOUT CELLULOSE BINDING DOMAIN
US10/432,290 US7445922B2 (en) 2000-11-21 2001-11-21 Zygomycetes-derived endoglucanase enzyme lacking cellulose-binding domain
ES01997189.4T ES2542135T3 (es) 2000-11-21 2001-11-21 Endoglucanasa originada a partir de zigomicetos que carece del dominio de enlace a celulosa
AU2002224068A AU2002224068A1 (en) 2000-11-21 2001-11-21 Zygomycetes-origin endoglucanase lacking cellulose-binding domain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000354296 2000-11-21
JP2000-354296 2000-11-21

Publications (1)

Publication Number Publication Date
WO2002042474A1 true WO2002042474A1 (en) 2002-05-30

Family

ID=18826910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010188 WO2002042474A1 (en) 2000-11-21 2001-11-21 Zygomycetes-origin endoglucanase lacking cellulose-binding domain

Country Status (7)

Country Link
US (1) US7445922B2 (ja)
EP (1) EP1344820B1 (ja)
JP (1) JP3970770B2 (ja)
AU (1) AU2002224068A1 (ja)
DK (1) DK1344820T3 (ja)
ES (1) ES2542135T3 (ja)
WO (1) WO2002042474A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291431A1 (en) * 2000-05-22 2003-03-12 Meiji Seika Kaisha Ltd. Endoglucanase nce5 and cellulase preparations containing the same
JP2010516247A (ja) * 2007-01-18 2010-05-20 ダニスコ・ユーエス・インク、ジェネンコー・ディビジョン 修飾を受けたエンドヌクレアーゼiiと使用法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2575526T3 (es) * 2003-12-03 2016-06-29 Meiji Seika Pharma Co., Ltd. Endoglucanasa STCE y preparación de celulasa que contiene la misma
US7348172B2 (en) 2004-04-16 2008-03-25 Ab Enzymes Oy Method and DNA constructs for increasing the production level of carbohydrate degrading enzymes in filamentous fungi
DE602005021479D1 (de) * 2004-04-16 2010-07-08 Ab Enzymes Oy Verfahren und dna-konstrukte zur erhöhung des produktionsniveaus von kohlenhydrat abbauenden enzymen in filamentösen pilzen
JP2008525027A (ja) * 2004-12-23 2008-07-17 ジェネンコー・インターナショナル・インク 中性セルラーゼ触媒コア及びそれを生産する方法
CN101624583B (zh) * 2008-07-07 2012-06-20 上海纤化生物科技有限公司 纺织专用节能环保型煮漂复合酶制剂的制造工艺
CN102174758B (zh) * 2011-01-26 2013-02-13 申琳 一种包装物的制备方法
CN102162198B (zh) * 2011-01-26 2012-11-28 申琳 一种多酶复合制剂及其制备方法和应用
EP2673353A4 (en) 2011-02-09 2014-12-03 Novozymes As MIXTURES OF ENZYMES CELLULASES FOR UNBLOCKING AND USES THEREOF
US12116420B1 (en) 2019-10-16 2024-10-15 United States of America as represented by the Administrator of NASA and the Secretary of the Interior Functionalizing biological substrates with bioengineered peptides to bind targeted molecules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021801A2 (en) * 1993-03-17 1994-09-29 Genencor International, Inc. Purification and molecular cloning of eg iii cellulase
WO1998003640A1 (fr) 1996-07-24 1998-01-29 Meiji Seika Kaisha, Ltd. Endoglucanase et preparations a base de cellulase contenant cette enzyme
WO1998054332A1 (fr) 1997-05-27 1998-12-03 Meiji Seika Kaisha, Ltd. Preparation contenant la cellulase sce3 extremement active
WO2000024879A1 (fr) * 1998-10-23 2000-05-04 Meiji Seika Kaisha, Ltd. Preparations a base d'endoglucanases et de cellulase
WO2001090375A1 (en) * 2000-05-22 2001-11-29 Meiji Seika Kaisha, Ltd. Endoglucanase nce5 and cellulase preparations containing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK163591C (da) * 1985-10-08 1992-08-24 Novo Nordisk As Fremgangsmaade til behandling af et tekstilstof med en cellulase
US4832864A (en) * 1987-09-15 1989-05-23 Ecolab Inc. Compositions and methods that introduce variations in color density into cellulosic fabrics, particularly indigo dyed denim

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021801A2 (en) * 1993-03-17 1994-09-29 Genencor International, Inc. Purification and molecular cloning of eg iii cellulase
WO1998003640A1 (fr) 1996-07-24 1998-01-29 Meiji Seika Kaisha, Ltd. Endoglucanase et preparations a base de cellulase contenant cette enzyme
WO1998054332A1 (fr) 1997-05-27 1998-12-03 Meiji Seika Kaisha, Ltd. Preparation contenant la cellulase sce3 extremement active
WO2000024879A1 (fr) * 1998-10-23 2000-05-04 Meiji Seika Kaisha, Ltd. Preparations a base d'endoglucanases et de cellulase
WO2001090375A1 (en) * 2000-05-22 2001-11-29 Meiji Seika Kaisha, Ltd. Endoglucanase nce5 and cellulase preparations containing the same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AZEVEDO H. ET AL.: "Effects of agitation level on the adsorption, desorption and activities on cotton fabrics of full length and core domains of EGV (humicola insolens) and CenA (cellulomonas fimi)", ENZYME MICROB. TECHNOL., vol. 27, no. 3-5, August 2000 (2000-08-01), pages 325 - 329, XP002909370 *
HOFFREN, A. -M. ET AL., PROTEIN ENGINEERING, vol. 8, 1995, pages 443 - 450
PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 2444 - 2448
SCIENCE, vol. 227, 1985, pages 1435 - 1441
See also references of EP1344820A4
TAKASHIMA S. ET AL.: "Comparison of gene structures and enzymatic properties between two endoglucanases from humicola grisea", J. BIOTECHNOL., vol. 67, no. 2-3, 1999, pages 85 - 97, XP004157885 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1291431A1 (en) * 2000-05-22 2003-03-12 Meiji Seika Kaisha Ltd. Endoglucanase nce5 and cellulase preparations containing the same
EP1291431A4 (en) * 2000-05-22 2004-12-01 Meiji Seika Kaisha ENDOCLUCANASE NCES
JP2010516247A (ja) * 2007-01-18 2010-05-20 ダニスコ・ユーエス・インク、ジェネンコー・ディビジョン 修飾を受けたエンドヌクレアーゼiiと使用法

Also Published As

Publication number Publication date
ES2542135T3 (es) 2015-07-31
EP1344820B1 (en) 2015-06-24
US7445922B2 (en) 2008-11-04
EP1344820A4 (en) 2006-06-14
AU2002224068A1 (en) 2002-06-03
JP3970770B2 (ja) 2007-09-05
JPWO2002042474A1 (ja) 2004-03-25
EP1344820A1 (en) 2003-09-17
US20040043400A1 (en) 2004-03-04
DK1344820T3 (en) 2015-07-13

Similar Documents

Publication Publication Date Title
JP4547335B2 (ja) エンドグルカナーゼstceおよびそれを含むセルラーゼ調製物
JP5193997B2 (ja) エンドグルカナーゼppceおよびそれを含んでなるセルラーゼ調製物
JP4230149B2 (ja) エンドグルカナーゼ酵素nce5及びそれを含んでなるセルラーゼ調製物
JP4757191B2 (ja) 新規なバチルスmHKcelセルラーゼ
JP4392778B2 (ja) 新規なセルラーゼを産生する放線菌、その放線菌が産生するセルラーゼ、およびそのセルラーゼを作成する方法。
JP4017824B2 (ja) エンドグルカナーゼ酵素およびそれを含んでなるセルラーゼ調製物
JP5745411B2 (ja) β−グルコシダーゼ活性を有する新規タンパク質およびその用途
JP4629664B2 (ja) 新規なバチルス029celセルラーゼ
JP2002533071A (ja) 新規変異体egiii様セルラーゼ組成物
BRPI0806921A2 (pt) Endoglicanase ii modificada e métodos de uso
WO2002042474A1 (en) Zygomycetes-origin endoglucanase lacking cellulose-binding domain
JP2003501021A (ja) 新規エンド−β−1,4−グルカナーゼ
JP4669203B2 (ja) 非イオン界面活性剤を含有するセルラーゼ調製物及び繊維処理方法
JP2007525179A (ja) 新規なバチルスBagCelセルラーゼ
JP2004313022A (ja) エンドグルカナーゼmte1およびそれを含んでなるセルラーゼ調製物
JP4272995B2 (ja) 還元剤を含有するセルラーゼ調製物及び繊維処理方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002545179

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10432290

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001997189

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001997189

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642