WO2002041126A1 - Portable information equipment - Google Patents

Portable information equipment Download PDF

Info

Publication number
WO2002041126A1
WO2002041126A1 PCT/JP2001/009984 JP0109984W WO0241126A1 WO 2002041126 A1 WO2002041126 A1 WO 2002041126A1 JP 0109984 W JP0109984 W JP 0109984W WO 0241126 A1 WO0241126 A1 WO 0241126A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
portable information
vacuum heat
case
Prior art date
Application number
PCT/JP2001/009984
Other languages
French (fr)
Japanese (ja)
Inventor
Akiko Yuasa
Yasuaki Tanimoto
Chie Hirai
Original Assignee
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000349356A external-priority patent/JP3558980B2/en
Priority claimed from JP2001116592A external-priority patent/JP3482399B2/en
Application filed by Matsushita Refrigeration Company filed Critical Matsushita Refrigeration Company
Priority to KR10-2003-7006581A priority Critical patent/KR100538854B1/en
Publication of WO2002041126A1 publication Critical patent/WO2002041126A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N51/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds having the sequences of atoms O—N—S, X—O—S, N—N—S, O—N—N or O-halogen, regardless of the number of bonds each atom has and with no atom of these sequences forming part of a heterocyclic ring

Definitions

  • the present invention relates to a portable information device such as a notebook computer, and more particularly to a portable information device that prevents heat generated inside from being transmitted to a user and preventing malfunction.
  • the heat source inside the computer is mainly CPU and power supply.
  • the surface temperature of CPU reaches a temperature exceeding about 100 ° C.
  • a heat insulating material for shutting off a space between a heat generating portion inside the device and the device case, and a heat radiating plate provided on a back surface of the display portion.
  • a heat pipe for transmitting heat generated inside the apparatus to a heating plate and a notebook computer having a vent.
  • the temperature rise on the surface of the main body case can be suppressed to some extent.
  • the effect of suppressing the amount of heat transferred to the surface of the equipment case is small, and to achieve this effect, increase the thickness of the heat insulating material. Need to be On the other hand, in recent years, notebook computers have been demanded to be thinner and lighter, and the heat insulating material also needs to be small and lightweight.
  • the heat generated inside the device may adversely affect external expansion terminals such as random access memory (RAM) cards and local area network (LAN) cards, leading to malfunction.
  • RAM random access memory
  • LAN local area network
  • a fibrous body such as glass wool or a foam such as urethane foam is used.
  • a foam such as urethane foam.
  • a vacuum heat insulating material composed of a core material for holding a space and a jacket material for shutting off the space and the outside air.
  • the core material powder materials, fiber materials, interconnected foams, and the like are generally used, but in recent years, vacuum insulating materials with higher performance have been required. Therefore, for the purpose of improving the performance of the core material, Japanese Patent Application Laid-Open No. 60-33479 discloses a vacuum heat insulation characterized in that powdered carbon is uniformly dispersed in parlite powder. Propose materials. Further, a vacuum heat insulating material characterized in that the powdered carbon is carbon black is disclosed, and by uniformly dispersing a force pump rack in the pearl, the heat insulating performance is improved under optimum conditions. 0% improvement.
  • Japanese Patent Application Laid-Open No. Sho 61-36595 proposes a vacuum heat insulating material characterized in that carbon powder is uniformly dispersed in various powders.
  • the heat insulation performance is improved by 20% under the optimum condition by uniformly dispersing carbon black in silica having a single particle diameter of 100 nm.
  • Japanese Patent Publication No. 8-200302 discloses that the production of It discloses a vacuum heat insulating material using fine powder produced from fumes produced from the fumes, and a vacuum heat insulating material containing at least 1 wt% or more carbon in the fine powder. This insulation shows a 23% improvement in insulation performance.
  • the power pump rack is generally a soot-like product obtained by incompletely burning an oil component, and therefore contains an organic gas as an impurity. Therefore, there was a problem that gas was generated over time, which increased the internal pressure of the vacuum heat insulating material and deteriorated the heat insulating performance.
  • reactive groups such as carbonyl groups present at the molecular structure terminals of carbon black react with moisture in the air, and also generate gas over time, similarly increasing the internal pressure of the vacuum insulation material.
  • the heat insulation performance deteriorates.
  • a porous material is used as the core material, and when roughly classified, it is classified into a communication form, a fiber type, and a powder type.
  • powdered silica powder is often used as a powder-based vacuum insulation material. However, it has excellent thermal insulation performance over time.
  • Japanese Patent Publication No. 4-46364 discloses a vacuum heat insulating material using a compact obtained by mixing and compressing wet silica and a fiber reinforcing material.
  • Japanese Patent Publication No. 5-66341 provides a vacuum heat insulating material using a compact formed by mixing and dispersing dry silica, wet silica, and fiber reinforcing material. '
  • wet silica and dry silica are used. Even if it is attempted to obtain a compact by mixing force, fiber material, and stirring and compression molding, it is difficult to become a compact and brittle because wet silica is mixed. In addition, powdering is severe and there is no flexibility. Disclosure of the invention
  • a portable information device such as a notebook computer, provided with a high-performance heat insulating material that blocks heat transfer between an internal heat generating portion and an apparatus case without hindering the thickness reduction.
  • This information device suppresses the temperature rise on the surface of the device and does not cause discomfort to the user.
  • the information equipment is equipped with a high-performance heat-insulating material that blocks heat transfer between the internal heat-generating part and the built-in external extension equipment mounting case, and suppresses the temperature rise of the external extension equipment to prevent malfunction.
  • FIG. 1 is a schematic diagram of a notebook computer according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a notebook computer according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of a notebook computer according to Embodiment 3 of the present invention.
  • FIG. 4A and FIG. 4B are schematic diagrams of an extension device mounting case according to Embodiment 4 of the present invention.
  • FIG. 5 is a sectional view of a vacuum heat insulating material according to Embodiment 5 of the present invention.
  • FIG. 6 is a sectional view of a vacuum heat insulating material according to Embodiment 6 of the present invention.
  • FIG. 7 is a sectional view of a vacuum heat insulating material according to Embodiment 7 of the present invention.
  • FIG. 8 is a sectional view of a vacuum heat insulating material according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic diagram of a notebook computer according to Embodiment 9 of the present invention.
  • FIG. 10 is a sectional view of a vacuum heat insulating material according to Embodiment 10 of the present invention.
  • FIG. 11 is a sectional view of a vacuum heat insulating material according to Embodiment 11 of the present invention.
  • FIG. 12 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 12 of the present invention.
  • FIG. 13 is a sectional view of a vacuum heat insulating material according to Embodiment 13 of the present invention.
  • FIG. 14 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 14 of the present invention.
  • FIG. 15 is a sectional view of a notebook computer according to Embodiment 15 of the present invention.
  • FIG. 16 shows a mixing container according to Embodiment 16 of the present invention.
  • FIG. 17 shows a mixing container according to Embodiment 17 of the present invention.
  • FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiments 18 to 23 and 25 of the present invention.
  • FIG. 19 is a sectional view of a vacuum heat insulating material according to Embodiment 24 of the present invention.
  • FIG. 20 is a sectional view of a notebook computer according to Embodiment 26 of the present invention.
  • FIG. 21 is a sectional view of the vacuum heat insulating material of Comparative Example 3.1. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a notebook computer 101 according to the first embodiment.
  • the computer 101 is a vacuum insulation material 105 that shuts off between the heating part 103 on the internal main node 102 and the bottom of the device case 104, and a heat sink 106 And. Since this computer can effectively block heat transfer to the bottom surface, it suppresses temperature rise on the equipment surface and does not transmit heat to the user. (Embodiment 2)
  • FIG. 2 shows a notebook computer 101 according to the second embodiment.
  • the computer box 101 is a vacuum insulation material 105 that blocks the heat-generating section 103 on the internal main board 102 between the heat-generating section 103 and the equipment case 104 at the bottom, and a heat sink 10 0 6 is provided.
  • the vacuum heat insulating material is formed into an L-shape in order to block the HDD and the heat generating portion. Since this computer effectively shuts off heat transfer to the bottom surface, it suppresses the temperature rise on the device surface and does not transfer heat to the user. In addition, it protects heat-sensitive parts such as the HDD 107 inside the equipment.
  • FIG. 3 shows a notebook computer 101 according to the third embodiment.
  • the computer 101 is equipped with a vacuum insulation material 105 that cuts off between the heating section 103 on the internal main board 102 and the bottom of the equipment case 104, and a heating section 103. It is provided with a vacuum heat insulating material 109 for shutting off the space between the extension device mounting case 108 and a heat radiating plate 106.
  • this computer suppresses temperature rise on the surface of the device and does not transmit heat to the user. Furthermore, since heat transfer to the external expansion device is effectively blocked, the temperature rise of the external expansion device is suppressed, and malfunction does not occur.
  • FIG. 4A is a perspective view of an extension device mounting case according to the fourth embodiment
  • FIG. 4B is a side view of the case.
  • a vacuum heat insulating material 109 is attached to the extension device mounting case 108. Is what it is. (Embodiment 5)
  • FIG. 5 is a sectional view of vacuum heat insulating material 105 or 109 according to the fifth embodiment, in which bag material 110 is filled with a core material made of inorganic powder 111.
  • FIG. 6 is a partially cutaway schematic view of the vacuum heat insulating material 105 or 109 according to the sixth embodiment, in which a bag material 110 is filled with a core material made of inorganic fibers 112. Is what it is.
  • FIG. 7 is a cross-sectional view of vacuum heat insulating material 105 or 109 according to Embodiment 7, in which bag material 110 is filled with a core material composed of inorganic powder 111 and inorganic fiber 112. Is what is being done.
  • FIG. 8 is a cross-sectional view of a vacuum heat insulating material 105 or 109 according to the eighth embodiment, in which a bag material 110 is filled with a core material made of a polyurethane communicating foam 113. .
  • FIG. 9 shows a notebook computer 101 according to the ninth embodiment.
  • the computer 101 is a microporous body made of a dry gel that blocks between the heating part 103 on the internal main node 102 and the device case 104, and heat radiation. Plate ⁇ 6.
  • the vacuum heat insulating material according to the above embodiment of the present invention comprises a core material and a bag material. The core material is sealed in the bag material under reduced pressure. The internal pressure is desirably 100 t0 rr or less, and more desirably 100 torr or less. Also, an adsorbent may be used.
  • the thickness of the vacuum heat insulating material is preferably 5 mm or less in order to reduce the thickness of the notebook computer. More preferably, it is 2 mm or less.
  • the core material of the vacuum heat insulating material As the core material of the vacuum heat insulating material, open cells made of a polymer material such as polystyrene / polyurethane, inorganic and organic powders, and inorganic and organic fiber materials can be used. In particular, inorganic powders, inorganic fibers, and mixtures thereof are desirable.
  • the bag material is composed of a surface protective layer, a gas barrier layer, and a heat-sealing layer, and one or more films are laminated on each.
  • a surface protective layer a polyethylene terephthalate film, a stretched product of a polypropylene film, or the like is used.
  • a metal vapor-deposited film, an inorganic vapor-deposited film, a metal foil, or the like is used.
  • a heat-sealing layer a low-density polyethylene film, a high-density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, or the like is used.
  • the inorganic powder powdered inorganic materials such as agglomerated silica powder, foamed pearlite powder, diatomaceous earth powder, calculated calcium powder, calcium carbonate powder, calcium carbonate powder, clay, and talc can be used.
  • agglomerated silicon powder having a secondary agglomerated particle diameter of 20 or less is preferable.
  • fiberized inorganic materials such as glass wool, ceramic fiber, and rock wool can be used. The shape is not limited, such as non-woven fabric, woven fabric, and cotton.
  • organic binder You may use a da.
  • the fine porous body made of dry gel is good, such as inorganic oxide air gel such as silica air gel and alumina air gel, and organic air gel such as polyurethane air gel, polyisocyanate air gel and phenolic air gel.
  • inorganic oxide air gel such as silica air gel and alumina air gel
  • organic air gel such as polyurethane air gel, polyisocyanate air gel and phenolic air gel.
  • a microporous body exhibiting excellent heat insulating properties can be applied.
  • a mixture of two or more air port gels may be used.
  • any of a granular shape and a monolithic shape can be used.
  • the heat insulating material that blocks heat transfer between the internal heat generating portion and the device case and the heat insulating material that blocks heat transfer between the heat generating portion and the expansion device mounting case are respectively They may be used alone or together.
  • Polyurethane communication foam was used as the core material of the vacuum heat insulating material.
  • the bag material used was a polyethylene terephthalate film for the surface protective layer, an aluminum foil for the gas barrier layer, and a non-stretched polypropylene for the heat welding layer.
  • the bag material was filled with polyurethane foam and sealed at a pressure of 0.1 torr to form a vacuum heat insulating material.
  • the thickness of the vacuum insulation is 1.5 mm.
  • the vacuum insulation was loaded into a notebook computer as shown in Fig. 1, and the bottom surface temperature was measured to be 46 ° C, which was 4 ° C lower than the blank, confirming the thermal insulation effect.
  • Example 1.2 Agglomerated silica powder was used as the core material of the vacuum heat insulating material.
  • the same bag material as in Example 1.1 was used.
  • the bag material was filled with the aggregated silica powder and sealed at a pressure of 0.1 t0 rr to obtain a vacuum heat insulating material.
  • the thickness of the vacuum insulation is 1.5 mm.
  • Vacuum insulation was loaded into a notebook computer as shown in Fig. 1, and the temperature at the bottom was measured. The temperature was 4 times lower than that of the blank, confirming the insulation effect. In addition, since it has flexibility, loading was easier than in Example 1.1.
  • Example 1.1 An inorganic fiber made of silica / alumina was used as a core material of the vacuum heat insulating material, and a bag material similar to that of Example 1.1 was used.
  • the bag material was filled with inorganic fibers and sealed at a pressure of 0.1 torr to obtain a vacuum heat insulating material.
  • the thickness of the vacuum insulation is 1.5 mm.
  • Vacuum insulation was loaded into a notebook computer as shown in Fig. 1, and the temperature at the bottom was measured to be 5 ° C lower than the blank, confirming the insulation effect.
  • the handleability was better than in Example 1.2.
  • loading was easier than in Example 1.1.
  • the core material of the vacuum heat insulating material a material obtained by previously mixing and molding a coagulated silica powder and an inorganic fiber made of silica / alumina was used.
  • the same bag material as in Example 1.1 was used.
  • the bag material was filled with a core material and sealed at a pressure of 0.1 torr to obtain a vacuum heat insulating material.
  • the thickness of the vacuum insulation is 1.5 mm.
  • Vacuum insulation was loaded into the notebook computer as shown in Fig. 1, and the bottom surface temperature was measured to be 5.5 ° C lower than the blank. The heat effect was confirmed.
  • the powder and the fiber were mixed, the pore diameter was smaller than in Examples 1.2 and 1.3, and the heat insulation performance was improved. The handleability was good.
  • loading was easier than in Example 1.1.
  • a monolithic silica air port gel with a thickness of 2 mm was used as the microporous body consisting of the dried gel.
  • This silica air port gel was loaded into a notebook computer as shown in Fig. 6, and the bottom surface temperature was measured. The temperature was 4t lower than that of the blank, confirming the heat insulating effect.
  • the silica air port gel can provide a heat insulating effect without vacuum evacuation, so that the manufacturing load was smaller than that of a vacuum heat insulating material.
  • the temperature at the bottom of the notebook computer without any insulation was 50 ° C.
  • Example 1.5 Using a foamed urethane foam with a thickness of 1.5 mm as a heat insulating material, the temperature at the bottom when loaded into a notebook computer as in Example 1.5 was 1 ° C lower than the blank, The insulation effect was small.
  • FIG. 10 is a cross-sectional view of a vacuum heat insulating material 201 according to the tenth embodiment, in which a covering material 202 having a metal foil layer and a thermoplastic polymer layer has a Jamaica 203 and powdered carbon material 204 are uniformly dispersed and filled.
  • the core material is encapsulated in the coating under reduced pressure.
  • Physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, and talcite, and chemical adsorbents such as alkali metal and alkaline earth metal oxides and hydroxides.
  • a moisture adsorbent or a gas adsorbent may be used.
  • the core material may be further sealed in the covering material. Further, the core material may be dried before vacuum sealing.
  • the fumed silica there can be used silicon oxide compounds having various particle diameters produced by dry methods, such as caic acid produced by an arc method, and caic acid produced by thermal decomposition. Also, mixtures of various particle size fumed silicas are available. For example, it is possible to use even a non-regular lot product in which the particle size generated when switching production between mass-produced product A and mass-produced product B with specified particle sizes is not controlled between A and B. In that case, it is possible to manufacture the vacuum insulation at a lower cost. If the heat insulation performance is the most important, it is preferable to use the one with an average primary particle diameter of 50 nm or less, and to further improve the performance, use the one with a diameter of 10 nm or less.
  • any powdered carbon material such as carbon black, graphitized carbon powder, activated carbon, and acetylene black can be used. Because it is versatile and inexpensive, it is easy to use Ribon Bon Black. However, when using carbon black, the specific surface area is preferably less than 100 m 2 Zg in order to control gas generation over time and maintain excellent heat insulating performance over a long period of time. Also, for similar reasons, black The use of leaded carbon powder is also preferred.
  • the covering material a material that can block the core material from the outside air can be used.
  • metal sheets such as stainless steel, aluminum, and iron, and laminates of metal sheets and plastic films.
  • the laminating material is preferably composed of a surface protective layer, a gas barrier layer, and a heat welding layer.
  • a surface protective layer a stretched product of a polyethylene terephthalate film or a polypropylene film can be used.
  • a nylon film is provided on the outside, the flexibility is improved. The bending resistance is improved.
  • As the gas barrier layer a metal foil film of aluminum or the like or a metal-deposited film can be used, but a metal-deposited film is preferable for suppressing heat leak and exhibiting an excellent heat insulating effect.
  • a metal on a polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer resin film, a polyethylene naphthalate film, or the like.
  • a low-density polyethylene film, a high-density polyethylene film, a polypropylene film, a polyacrylonitrile film, a non-stretched polyethylene terephthalate film, or the like can be used.
  • FIG. 11 is a cross-sectional view of a vacuum heat insulating material 201 according to Embodiment 11, in which a coating material 202 having a metal foil layer and a thermoplastic polymer layer has an average primary particle diameter of 50 nm or less.
  • a fumed silica 205 and a powdery carbon material 204 are uniformly dispersed and filled.
  • FIG. 12 is a cross-sectional view of a vacuum heat insulating material 201 according to Embodiment 12, in which a coating material 202 having a metal-deposited film layer and a thermoplastic polymer layer has a uniform uniform particle diameter of 50 nm.
  • the following fumed silica 205 and carbon black 206 having a specific surface area of less than 100 m 2 / g are uniformly dispersed and filled.
  • FIG. 13 is a cross-sectional view of a vacuum heat insulating material 201 according to Embodiment 13 in which a coating material 202 having a metal-deposited film layer and a thermoplastic polymer layer has a uniform uniform primary particle diameter of 50 nm.
  • the following fumed silica 205 and graphitized carbon powder 2007 are uniformly dispersed and filled.
  • FIG. 14 is a cross-sectional view of the vacuum heat insulating material 201 according to the embodiment 14, in which a coating material 202 having a metal-deposited film layer and a thermoplastic polymer layer is added to a nonwoven fabric 210 in advance.
  • Fumed silica 205 having an average primary particle diameter of 50 nm or less and carbon black 206 having a specific surface area of less than 100 m 2 Zg are uniformly dispersed and filled It is.
  • FIG. 15 is a cross-sectional view of the notebook computer 2 16 according to the embodiment 15.
  • the heat generating section 2 18 on the main board 2 17 inside the apparatus and the bottom of the apparatus case 2 19 are cut off. It includes the vacuum heat insulating material 201 according to Embodiment 14 and a radiator plate 220.
  • Insulation material 201 uses fumed silica, which has excellent heat insulation performance, as the base material, and the base material is evenly distributed with powdered foam. By being dispersed, it has better heat insulation performance than when only fumed silica is used as the core material.
  • the heat leak is suppressed by using the coating material having the metal-deposited film layer, the heat transfer to the bottom surface is effectively blocked. Therefore, the temperature rise on the device surface is suppressed and heat is not transmitted to the user.
  • due to the appropriate powdered carbon material there is no deterioration of heat insulation performance or deterioration over time due to an increase in internal pressure.
  • the notebook computer 1 is described as a typical example of a device that requires heat insulation in a range from an operating temperature range of room temperature to around 80 ° C, and is not particularly limited to this.
  • the present embodiment can be applied to heat insulation of a liquid crystal part of a car navigation system having a liquid crystal panel and a heat generating part by a CPU.
  • FIG. 16 shows a mixing vessel 2 33 having stirring blades 2 32 in the method for manufacturing a vacuum heat insulating material according to the embodiment 16.
  • a stirring blade for uniformly dispersing the powder disintegrates fumed silica secondary or tertiary aggregates present in the raw material.
  • the fumed silica and the powdered carbon material can be uniformly dispersed, so that deterioration of the heat insulation performance due to a partial decrease in the degree of dispersion can be suppressed.
  • FIG. 17 shows a mixing vessel 233 having stirring blades 232 in the method for manufacturing a vacuum heat insulating material according to the seventeenth embodiment.
  • the blades 232 rotate, and further the mixing vessel itself rotates, or the bottom mouth 234 rotates.
  • the powder is rotationally mixed. Fume in raw materials
  • the time required to disintegrate the secondary or tertiary aggregates of dosilica is shorter than that of the mixing vessel according to Embodiment 16, and more efficient uniform dispersion can be achieved.
  • a mixing container having a stirring blade capable of breaking secondary or tertiary aggregates of fumed silica present in the raw material can be used.
  • the shape of the mixing vessel is not particularly limited, even if it is cylindrical, spherical, or cubic.
  • the material mixed uniformly in the container is used as the core material.
  • the core material is filled in a bag made of polyester non-woven fabric
  • the surface protective layer is a polyethylene terephthalate film
  • the gas barrier layer is an ethylene / vinyl alcohol copolymer resin film that has been aluminum-evaporated
  • the heat-welding layer is filling the coating material of the laminated bag of cast polypropylene, sealed with heat sealing device at a pressure 1 3 3 P a, the results of measuring the thermal conductivity of t each vacuum heat insulating material to obtain a vacuum heat insulating material It is shown in Table 201. As is clear from Table 201, the thermal conductivity of fumed silica with various average primary particle diameters was 30% to 47% by adding carbon black as compared with fumed silica without addition. %. When the average primary particle diameter of the fumed silica is 50 nm or less, the improvement effect is 40% or more, which is particularly effective. (Table 201)
  • the core material 89% by weight of fumed silica with an average primary particle size of 7nm, 10% by weight of carbon black with various specific surface areas as powdered carbon material, and 1% of others are uniformly mixed in a mixing vessel with stirring blades
  • the resulting material is used as the core material.
  • the core material was filled in a bag made of polyester nonwoven fabric, and the surface protective layer was made of polyethylene terephthalate film, and the gas barrier layer was made of aluminum / vinyl alcohol copolymer resin film by aluminum evaporation.
  • the heat-sealing layer is filled into the covering material of the unstretched polypropylene laminate bag, and sealed with a heat-sealing device at a pressure of 133 Pa to obtain a vacuum heat insulating material.
  • Table 202 shows the results of measuring the thermal conductivity of each vacuum heat insulating material. As is clear from Table 202, adding 10 wt% of carbon black having various specific surface areas to fumed silica has a thermal conductivity of 43% to 51% as compared with fumed silica without addition. Has been improved. A carbon black having a larger specific surface area has a greater effect of improving thermal conductivity. However, when carbon black having a specific surface area of 100 m 2 / g or more is added, the thermal conductivity after 10 days of storage is slightly low. This is due to an increase in internal pressure due to gas generated from the power pump rack.
  • the core material is filled into a bag made of non-woven fabric made of polyester, and the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of an ethylene / bier alcohol copolymer resin film, and the aluminum layer is deposited. Is filled into the coating material of the unstretched polypropylene laminating bag, and sealed with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material. Table 203 shows the measurement results of the thermal conductivity of each vacuum insulation material.
  • Fumed silica with an average primary particle diameter of 7 nm 59 wt%, graphitized carbon powder with two specific surface areas as powdered carbon material 40 wt%, and other 1% in a mixing vessel with stirring blades The material uniformly mixed with the above is used as a core material.
  • the core material is filled into a bag made of polyester non-woven fabric.
  • the surface protective layer is a polyethylene terephthalate film
  • the gas parier layer is an ethylene / vinyl alcohol copolymer resin film with aluminum vapor deposition
  • the heat welding layer is Fill the coating material of the unstretched polypropylene laminate bag and seal it with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material.
  • Table 204 shows the results of measuring the thermal conductivity of each vacuum heat insulating material. As is evident from Table 204, the addition of 40% by weight of graphitized carbon powder having two specific surface areas to fumed silica resulted in a thermal conductivity of 39% to 4% compared to fumed silica without addition. Up to 1%. The larger the specific surface area of the graphitized carbon powder, the greater the effect of improving the thermal conductivity.
  • the material that is uniformly mixed inside is used as the core material.
  • the core material is filled in a bag made of polyester non-woven fabric, and the surface protective layer is filled in a polyethylene terephthalate film, the gas barrier layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. Then, it is sealed with a heat sealing device under a pressure of 133 Pa to obtain a vacuum heat insulating material.
  • the measurement result of the actual thermal conductivity with a heat flow meter, taking into account the heat leak of the vacuum insulation material, is 0.033 kcal / mh ° C / mK.
  • Example 2.6 The fumed silica and powdered carbon material as the core material, the mixing ratio, and the mixing method are the same as those in Example 2.5.
  • the core material is filled in a bag made of polyester non-woven fabric, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of ethylene-vinyl alcohol copolymer resin film, and the aluminum layer is heat-sealed. Fill the coating material of the unstretched polypropylene laminating bag and seal with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material.
  • Example 2.7 The measurement result of the actual thermal conductivity with a heat flow meter, taking into account the heat leak of the vacuum insulation material, was 0.028 kca 1 Zm h ° C.
  • the gas barrier layer was made of aluminum foil. Thermal conductivity is improved compared to the specification. This is because heat leak was suppressed because the gas barrier layer of the coating material was formed by depositing aluminum on an ethylene-vinyl alcohol copolymer resin film.
  • a material uniformly mixed in the mixing vessel is used as a core material.
  • the core material is filled into a bag made of polyester non-woven fabric, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of ethylene-vinyl alcohol copolymer resin film, and the heat-welding layer is not stretched. Fill the coating material of the polypropylene laminate bag and seal it with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material.
  • Example 2.1 the temperature of the bottom of a notebook computer loaded with vacuum insulating material with a fumed silica average primary particle diameter of 7 nm as shown in Fig. 15 was measured using a vacuum insulating material. 5 ° C lower than none.
  • a vacuum insulating material 5 ° C lower than none.
  • the core material of the vacuum heat insulating material mixing with an average particle size 8 pearlite powder 9 0 wt% of Zzm, the powdered carbon material as a carbon black-click a specific surface area of 5 0m 2 Zg 1 0 wt% and a stirring blade and Use a homogeneous mixture in the container.
  • the core material is filled into a bag made of non-woven fabric made of polyester, and the surface protective layer is filled into a laminated bag made of polyethylene terephthalate film, the gas ply layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene.
  • sealing is performed with a heat sealing device to obtain a vacuum heat insulating material.
  • the thermal conductivity of this vacuum heat insulating material is 0.052 kcal / mh ° C.
  • the thermal conductivity of the vacuum heat insulator made of perlite powder alone is 0.065 kca 1 Zmh ° C. Therefore, adding 10% by weight of bonbon black to parlite powder only reduced the amount by 20%. The effect of improving the heat insulation performance is small. (Comparative Example 2.2)
  • the core material of the vacuum heat insulating material an average grain size of 2 4 pearlite powder 9 0 wt% of m, a powdery carbon material as a specific surface area of 5 0 m 2 / g force first pump rack 1 0 wt% of agitation Use a mixture that has been uniformly mixed in a mixing vessel having blades.
  • the core material is filled into a bag made of polyester non-woven fabric, and furthermore, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. Seal with a heat sealing device at a pressure of 133 Pa to obtain a vacuum heat insulating material. '
  • the thermal conductivity of this vacuum heat insulator is 0.0500 kcal Zmh ° C.
  • the thermal conductivity of the vacuum heat insulator made of pearlite powder alone is 0.058 kca1 / mhC.
  • the core material of the vacuum insulation material is agitated with 90 wt% of wet-type silica with an average primary particle diameter of 20 nm and 10 wt% of a carpump rack with a specific surface area of 50 m 2 Zg as a powdered carbon material. Use a mixture that has been uniformly mixed in a mixing vessel having blades.
  • the core material is filled into a bag made of polyester non-woven fabric, and furthermore, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. Sealed with a heat fusion device at a pressure of 13 3 Pa to obtain a vacuum insulation material You.
  • the thermal conductivity of this vacuum heat insulating material is 0.049 kcal / mh ° C.
  • the vacuum insulation of the powdered powder alone is 0.062 kcal Zmh ° C.
  • the core material is filled in a bag made of polyester non-woven fabric, the surface protective layer is made of polyethylene terephthalate film, and the gas barrier layer is made of ethylene-vinyl alcohol copolymer resin film with aluminum vapor deposited, heat welding
  • the layer is filled into the coating material of a laminated bag of unstretched polypropylene and sealed with a heat sealing device under a pressure of 133 Pa to obtain a vacuum heat insulating material.
  • this vacuum heat insulating material is 0.0048 kcal Zmh ° C. Since the secondary aggregates of the fumed silica are not uniformly mixed with the carbon black without being crushed, the heat insulating performance improving effect is significantly reduced.
  • FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 18.
  • the vacuum insulation material 301 includes a molded body 302 mixed with powder 303 and a fiber material 304, and a covering material 300 covering the molded body 302. You.
  • the molded body 302 is prepared by uniformly mixing 90 wt% of dry silica having an average primary particle diameter of 7 nm and 1 Owt% of glass wool having an average fiber diameter of 7 in a cut-and-mill, put into a molding die, and press.
  • pressure 1. is pressurized molding in 2 N / mm 2.
  • the molding density of the molded body 302 was 190 kgZm 3 under the atmospheric pressure, and the thermal conductivity under the atmospheric pressure was 0.026 W / mK.
  • the bending strength of the molded body 302 is 0.21 N / mm 2 .
  • the molded body 302 is dried at 110 ° C. for 1 hour, inserted into the jacket material 304, and the interior of the jacket material 105 is reduced in pressure to 20 Pa and sealed.
  • the outer cover material is made of a polyethylene terephthalate (thickness: 12 m) surface protective layer and an aluminum vapor deposition inside the ethylene-vinyl alcohol copolymer resin composition (thickness: 15 ⁇ Aim). And a heat-sealed layer of high-density polyethylene (50 rn thick).
  • Enveloping members 3 0 5 is 4-side sealed, t vacuum heat insulator 3 0 1 thermal conductivity fin 3 0 6 is generated in the periphery 0. 0 0 6 2 W / mK at average temperature 24 It is.
  • the thickness change rate ⁇ T between the thickness D 310 of the molded body before the jacket material is introduced and the thickness D 302 of the vacuum insulation material after fabrication is T
  • FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to the nineteenth embodiment.
  • the vacuum heat insulating material 301A includes a molded body 302A. Dry powder with a mean particle diameter of 7 nm 85.5 wt% and a carbon black with a mean particle diameter of 42 nm 4.5 wt% mixed powder 303 A, and fiber material 304 as the average fiber A molded body 302A is formed by mixing 10 wt% of glass wool having a diameter of 7.
  • press pressure 1. molding pressurized formation Form 3 0 2 A at 2 N / mm 2 I do.
  • the molding density of the molded body 302 A is 19 O kg / m 3 under the atmospheric pressure, and the thermal conductivity under the atmospheric pressure is 0-022 W / mK. This is a thermal conductivity superior to static electricity. Even if this molded body is used as it is under normal pressure without using it as a vacuum heat insulating material, it has a heat insulating effect.
  • the bending strength of the molded body 302 A is 0.21 NZmm 2 .
  • the molded body 302A is dried at 110 ° C for 1 hour, inserted into a jacket material 350, and the inside is reduced to 20 Pa and sealed.
  • the outer cover material 304 is the same as that of the eighteenth embodiment.
  • the thermal conductivity of the vacuum insulation material 301 A is 0.05 WZ mK at an average temperature of 24 ° C.
  • the thickness change rate ⁇ between the thickness D 310 of the molded body before inserting the jacket material and the thickness D 302 after the production of the vacuum heat insulating material is
  • the addition of the carbon black significantly reduces the thermal conductivity.
  • FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 20.
  • the vacuum heat insulating material 301B includes a molded body 302B.
  • Powder 0.30 B which is a mixture of dry silica 85.5 wt% with an average primary particle diameter of 7 nm and 4.5 wt% of titanium oxide with an average particle diameter of 60 nm, and an average fiber diameter as a fiber material 304
  • a molded body 302B is formed by mixing 7 m of glass wool 1 Owt%.
  • Molding density of the molded body 3 0 2 B is 1 8 O k gZm 3 under atmospheric pressure, thermal conductivity at atmospheric pressure Ru 0. 0 2 5 W / mK der.
  • the bending strength of the molded body 302B is 0.2 N / mm 2 .
  • the molded body 302B is dried at 110 ° C for 1 hour, inserted into a jacket material 350, and the inside is reduced to 20 Pa and sealed.
  • the covering material 2005 is the same as that of the embodiment 18.
  • the thermal conductivity of the vacuum insulation material 301 B is 0.062 W ZmK at an average temperature of 24.
  • FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 21.
  • the vacuum heat insulating material 301C includes a molded body 302C. Dry silica 90 with a uniform uniform particle diameter of 7 nm as powder 303, fiberglass material 304 w A fiber wool with an average fiber diameter of 0.
  • Molded product 302C is produced in the same manner as in Embodiment 18.
  • the compacting density of the molded body 302 C is 180 kg / m 3 under atmospheric pressure, the thermal conductivity under atmospheric pressure is 0.025 W / mK, and the bending strength is 0.24 N / mm. 2
  • the vacuum heat insulating material 301C is produced using the molded body 302C in the same manner as in Embodiment 18.
  • the covering material 304 is the same as that of the embodiment 18.
  • the thermal conductivity of the vacuum insulation material 301 C is 0.057 WZmK at an average temperature of 24.
  • the thickness change rate is 1%.
  • FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 22.
  • the vacuum heat insulating material 301D includes a molded body 302D.
  • a molded body 302D is formed by mixing glass wool 304 A10 wt%.
  • Molded body 302D is produced in the same manner as in Embodiment 19.
  • the molding density of the compact 302 D is 180 kg / m 3 at atmospheric pressure
  • the thermal conductivity at atmospheric pressure is 0.02 W / mK
  • the bending strength is 0.25 NZmm 2 .
  • Vacuum heat insulating material 301D is produced in the same manner as in Embodiment 19 using molded object 302D.
  • the covering material 304 is the same as that of the embodiment 19.
  • the thermal conductivity of the vacuum insulation material 301D is 0.0044W ZmK at an average temperature of 24 ° C, and the thickness change rate is 1%.
  • the addition of a force pump rack and the finer fiber diameter of the fibrous material significantly increase the thermal conductivity, bending strength, and thickness change rate. Improved.
  • FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 23.
  • the vacuum heat insulating material 301E includes a molded body 302E.
  • a powder 3003 A and a fiber material 304 A mixed with 85.5 wt% of dry silica with an average primary particle diameter of 7 nm and 4.5 wt% of a carbon black with an average particle diameter of 42 nm
  • a molded body 302E is molded by mixing with 10% by weight of glass wool having an average fiber diameter of 0.8 xm.
  • Shaped body 30 2 E, except that the pressing pressure and 0. 4 NZmm 2 is prepared in the same manner as in Embodiment 1 9 embodiment.
  • the molding density of the compact 302E is 140 kg / m 3 under atmospheric pressure, the thermal conductivity under atmospheric pressure is 0.02 W / mK, and the bending strength is 0.14N7mm 2 .
  • Vacuum heat insulating material 301E is produced in the same manner as in Embodiment 19 using molded object 302E.
  • the jacket material 305 having the same specifications as in the nineteenth embodiment was used.
  • the thermal conductivity of the vacuum insulation material 301E is 0.0042 W mK at an average temperature of 24 ° C, and the thickness change rate is 3%.
  • FIG. 19 is a sectional view of a vacuum heat insulating material according to the twenty-fourth embodiment.
  • the vacuum heat insulating material 301F includes a molded body 302F.
  • Fiber material consisting of powdered 303C, which is a mixture of 85.5 wt% of fumed silica with an average primary particle diameter of 56 nm and 9.5 wt% of force-pour black having an average particle diameter of 42 nm, and glass wool with an average fiber diameter of 7 m
  • the molded body 302F is molded by mixing 304 with 5 wt%.
  • Dry silicide force, carbon black and glass wool are simultaneously mixed by a cutter mill, put into a molding die, and pressurized at a pressing pressure of 1.2 NZmm 2 to form a molded body 302F.
  • the molded body 302F is dried at 110 ° C for 1 hour, inserted into the outer material 300A together with the adsorbent 307, and the inside of the outer material 205A is exposed to 20 Pa. Reduce pressure and seal.
  • the jacket material is a nylon film (thickness: 15 m) on the outermost layer, polyethylene terephthalate (thickness: 12 m) as a surface protective layer, and an aluminum foil (thickness: 6 m) in the middle
  • the outermost layer is a nylon film (15 m thick)
  • the surface protective layer is polyethylene terephthalate (12 m thick)
  • the middle part is an ethylene-vinyl alcohol copolymer resin composition (thickness).
  • It is a laminated film made of high-density polyethylene (thickness: 50 zm) with a film layer with aluminum vapor deposited inside and a heat sealing layer.
  • the adsorbent 307 is a moisture adsorbent made of granular calcium oxide put in a moisture-permeable bag.
  • the thermal conductivity of the above vacuum insulating material 301 F is 0.0049 WZmK at an average temperature of 24 ° C, and the thickness change rate is 1%.
  • the thermal conductivity of the powder is deteriorated by the increase in the particle size, but the vacuum heat insulating material 301 A is reduced by the decrease in the amount of the fiber material added. It has equivalent thermal conductivity.
  • the addition of the adsorbent 307 improves the reliability over time.
  • FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 25.
  • the vacuum heat insulating material 301G includes a molded body 302G.
  • Powder 303 D which is a mixture of 64 wt% of dry silica having an average primary particle diameter of 7 nm and 16 wt% of carbon black having an average particle diameter of 3 O nm, and 1 Owt% of silica alumina fiber having an average fiber diameter of 1 and average fiber
  • a molded product 302G is formed by mixing a fiber material 304B mixed with 1 Wt% of glass wool having a diameter of 8 m.
  • Molded product 302G is produced in the same manner as in Embodiment 19, except that the pressing pressure is 1.5 N / mm 2 .
  • the molding density of the green body 302 G is 200 kgZm 3 under the atmospheric pressure, the thermal conductivity under the atmospheric pressure is 0.22 WZmK, and the bending strength is 0.23 N / mm 2 .
  • the molded body 302G is dried at 110 ° C. for 1 hour, introduced into the jacket material 305B, and the inside of the jacket material 305B is reduced in pressure to 20 Pa and sealed.
  • One side of the jacket material 305B is a film layer with nylon (12-zm thick) on the outermost layer, polyethylene naphthalate (12-m thick) in the middle, and aluminum on the inside, and ethylene on the inside.
  • the film layer and the heat-sealing layer on which aluminum is deposited on the outside of a vinyl alcohol copolymer resin film (thickness: 12 m) are made of polypropylene (thickness: 50 m).
  • the outermost layer is nylon (thickness 12 / xm)
  • the surface protective layer is polyethylene terephthalate (thickness 12 m)
  • the middle part is aluminum foil (thickness 6 m)
  • the heat seal layer is polypropylene. (50 m thick).
  • the thermal conductivity of the vacuum insulation material 301 G is 0.0050 W ZmK at an average temperature of 24 ° C, and the thickness change rate is 1%.
  • Fiber diameter finer compared to vacuum insulation material 301 A according to Embodiment 19 The fibers are blended in consideration of the balance between the reduction in thermal conductivity due to the increase in the thermal conductivity and the reduction in cost due to the increase in the fiber diameter.
  • a vacuum insulation material with the same thermal conductivity but excellent bending strength and thickness change rate can be obtained.
  • Embodiment 90 wt% 10 wt%
  • Embodiment Normal pressure 0.025
  • FIG. 20 is a sectional view of the notebook computer according to Embodiment 26.
  • the notebook computer 308 is a vacuum heat insulator 310 and a radiator plate 31 that shuts off the space between the heating section 310 on the main port 309 inside the device and the bottom of the device case 310. And 2.
  • the material and manufacturing method of the vacuum heat insulating material 301D are the same as those in Embodiment 22.
  • the size of the formed body in the vacuum heat insulating material 301D is 60 ⁇ 60 ⁇ 1 mm.
  • the fin portion 303 of the jacket material 305 generated around the vacuum heat insulating material 301D is bent, and the radiator plate 12 is provided on the surface in the bent direction.
  • the temperature at the bottom of the laptop 308 is 5 ° C lower than that of a laptop without vacuum insulation. In addition, accelerated tests did not confirm any deterioration in thermal insulation performance after 10 years.
  • FIG. 21 is a sectional view of the vacuum heat insulating material of Comparative Example 3.1.
  • the vacuum heat insulating material 301a includes a compact 302a mixed with the powder 303a and the fiber material 304.
  • the molded body 302a is inserted into the jacket material 304, and the interior of the jacket material 300 is reduced in pressure and sealed.
  • 90 wt% of dry silica having an average secondary particle diameter of 150 nm as powder 303 a, and glass wool having an average fiber diameter of 7 m 1 as fiber material 304 And 0 wt% are uniformly mixed with a cutter mill, put into a mold, and pressurized at a press pressure of 1.2 N / mm 2 to form a molded body 302a.
  • the molded body 302a is very fragile, partly collapsed when held in hand, and severely dusted.
  • Molding density of the molded body 3 0 2 a is the thermal conductivity of the under 2 5 0 kgm atmospheric pressure at atmospheric pressure 0.
  • OS SWZmK flexural strength is 0. 0 3 NZmm 2.
  • the molded body 302a is dried at 110 ° C for 1 hour, carefully placed on a plastic plate, and inserted into the jacket material 350.
  • the plastic plate is taken out, and the inside of the jacket material 305 is reduced in pressure to 20 Pa and sealed.
  • the covering material 304 is the same as that of the embodiment 18.
  • the thermal conductivity of the vacuum insulation material 301a is 0.068 W / mK at an average temperature of 24: the thickness change rate is 7%, and the surface is rough.
  • Table 302 shows the evaluation results of the vacuum insulating material 301a.
  • FIG. 21 is a cross-sectional view of the vacuum heat insulating material of Comparative Example 3.2.
  • the vacuum heat insulating material 301b includes a molded body 302b.
  • the molded body 302b is very fragile, partly collapsed when held in hand, and severely dusted.
  • the molding density of the molded body 302 b is 250 kg / m 3 at atmospheric pressure, the thermal conductivity at atmospheric pressure is 0.028 W / mK, and the bending strength is 0.03 NZmm 2 It is.
  • the molded body 302 b is dried at 110 ° C. for 1 hour, placed on a plastic plate, and carefully inserted into the covering material 350.
  • the plastic material 305 is taken out of the plastic plate, and the inside thereof is reduced in pressure to 20 Pa and sealed.
  • the covering material 304 is the same as that of the embodiment 18.
  • the thermal conductivity of the vacuum insulation material 301 b is 0.053 W / mK at an average temperature of 24: the thickness change rate is 7%, and the surface is rough.
  • FIG. 21 is a cross-sectional view of the vacuum heat insulating material of Comparative Example 3.3.
  • the vacuum heat insulating material 301c includes a molded body 302c.
  • Powder 3O3c which is a mixture of 45% by weight of dry silica with an average primary particle diameter of 7nm and 45% by weight of wet silica with an average primary particle diameter of 13nm, and a fiber material 304 with an average fiber diameter of 7 ⁇ of glass wool and 10 wt% are mixed together to form a molded body 302 c. Is shaped.
  • Molded product 302c is very fragile, partly collapsed when held in hand, and severely dusted.
  • the compacting density of the compact 302c is 230 kg / m 3 at atmospheric pressure, the thermal conductivity under atmospheric pressure is 0.028 WZmK, and the bending strength is 0.05 NZmm 2 .
  • the molded body 302 c is dried at 110 ° C. for 1 hour, carefully placed on a plastic plate, and inserted into the outer cover material 305.
  • the plastic material 305 is taken out of the plastic plate, and the inside is reduced in pressure to 20 Pa and sealed.
  • the covering material 305 is the same as that of the eighteenth embodiment.
  • the thermal conductivity of the vacuum insulation material 301c is 0.0064 W / mK at an average temperature of 24, the thickness change rate is 6%, and the surface is rough.
  • Table 302 shows the results of this evaluation.
  • a portable information device such as a thin notebook computer, provided with a high-performance heat insulating material capable of blocking heat transfer between an internal heat generating portion and a device case and suppressing a temperature rise on the device surface.
  • a portable information device that is equipped with a high-performance heat insulating material that blocks heat transfer between the heating section and the extension device mounting case, and that suppresses malfunction and temperature rise of external extension devices is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Toxicology (AREA)
  • Thermal Insulation (AREA)

Abstract

A portable information equipment such as a notebook-sized personal computer, comprising a high performance insulator capable of interrupting a heat transfer between a heating part therein and an equipment case to suppress the temperature rise of an equipment surface, a high performance insulator capable of interrupting a heat transfer between the heating part and an extension device mounting case to suppress the temperature rise of an external extension device so as to prevent the maloperation thereof, and a radiating plate, wherein the insulators are vacuum insulators with inorganic fibers as core materials.

Description

明細書 携帯情報機器 技術分野  Description Portable information equipment Technical field
本発明はノート型コンピュータ等の携帯情報機器に関し、 特に内部で 発生した熱が利用者に伝わらず誤作動を防ぐ携帯情報機器に関する。 背景技術  The present invention relates to a portable information device such as a notebook computer, and more particularly to a portable information device that prevents heat generated inside from being transmitted to a user and preventing malfunction. Background art
近年ノー卜型コンピュータ等の情報携帯機器の内部で発生した熱が装 置ケースの表面に伝達され、 装置ケース表面の温度が上昇したとき、 装 置利用者の身体と前記装置ケース表面とが長時間接触する部分の熱が、 装置利用者に不快感を与える。 コンピュータ内部での発熱源は、 主に C P U、 電源であり、 特に C P Uの表面温度は約 1 0 0 °cを超える温度に 達する。  In recent years, when heat generated inside an information portable device such as a notebook computer is transmitted to the surface of the device case and the temperature of the device case surface rises, the body of the device user and the surface of the device case become longer. The heat of the parts that come in contact with the time gives the user discomfort. The heat source inside the computer is mainly CPU and power supply. In particular, the surface temperature of CPU reaches a temperature exceeding about 100 ° C.
このような中で、 最近の技術として、 装置内部の発熱部と装置ケース の間を断熱材を用いて遮断する技術が提案されている。  Under these circumstances, a recent technology has been proposed that uses a heat insulating material to cut off the space between the heating section inside the equipment and the equipment case.
例えば、 特開平 1 1— 2 0 2 9 7 8号公報に示されるように、 装置内 部の発熱部と装置ケースの間を遮断する断熱材と、 表示部の裏面に設け られた放熱板と、 装置内部で発生した熱を加熱板に伝達するヒ一卜パイ プと、 通気口を有する構成のノート型コンピュータが提案されている。 特開平 1 1 - 2 0 2 9 7 8号公報において示される技術を活用すること により、 本体部ケース表面の温度上昇をある程度抑制することができる < しかしながら、 断熱材の断熱性能が低い塲合、 装置ケース表面に伝達 される熱量の抑制効果が小さく、 効果を得るためには断熱材の厚さを増 す必要がある。 一方、 近年、 ノート型コンピュータは、 薄型化、 軽量化 が望まれており、 断熱材もまた、 小型 ·軽量である必要があり。 For example, as disclosed in Japanese Patent Application Laid-Open No. H11-229798, a heat insulating material for shutting off a space between a heat generating portion inside the device and the device case, and a heat radiating plate provided on a back surface of the display portion. There have been proposed a heat pipe for transmitting heat generated inside the apparatus to a heating plate and a notebook computer having a vent. By utilizing the technique disclosed in Japanese Patent Application Laid-Open No. 11-200980, the temperature rise on the surface of the main body case can be suppressed to some extent. The effect of suppressing the amount of heat transferred to the surface of the equipment case is small, and to achieve this effect, increase the thickness of the heat insulating material. Need to be On the other hand, in recent years, notebook computers have been demanded to be thinner and lighter, and the heat insulating material also needs to be small and lightweight.
一方、 装置内部で発生した熱が、 ランダムアクセスメモリ (R A M ) カードやローカルエリアネットワーク (L A N ) カードなどの外部拡張 端子に悪影響を及ぼし、 誤作動を招く可能性がある。  On the other hand, the heat generated inside the device may adversely affect external expansion terminals such as random access memory (RAM) cards and local area network (LAN) cards, leading to malfunction.
一般的な断熱材としては、 グラスウールなどの繊維体やウレタンフォ —ムなどの発泡体が用いられている。 しかし、 これらの断熱材の断熱性 を向上するためには断熱材の厚さを増す必要があり、 断熱材を充填でき る空間に制限があって省スペースや空間の有効利用が必要な場合には適 用することができない。  As a general heat insulating material, a fibrous body such as glass wool or a foam such as urethane foam is used. However, in order to improve the heat insulating properties of these heat insulating materials, it is necessary to increase the thickness of the heat insulating material, and when the space where the heat insulating material can be filled is limited and space saving or effective use of space is required. Cannot be applied.
このような課題を解決する一手段として、 空間を保持する芯材と、 空 間と外気を遮断する外被材によって構成される真空断熱材がある。 その 芯材として、 一般に、 粉体材料、 繊維材料、 連通化した発泡体などが用 いられているが、 近年では一層高性能な真空断熱材が求められている。 そこで、 芯材の高性能化を目的に、 特開昭 6 0 _ 3 3 4 7 9号公報で は、 パ一ライト粉末中に粉末状カーボンが均一分散していることを特徴 とする真空断熱材を提案している。 また、 粉末状カーボンが、 カーボン ブラックであることを特徴とする真空断熱材が開示されており、 パーラ ィ ト中に力一ポンプラックを均一分散させることにより、 最適条件にお いて断熱性能が 2 0 %改善される。  As one means for solving such a problem, there is a vacuum heat insulating material composed of a core material for holding a space and a jacket material for shutting off the space and the outside air. As the core material, powder materials, fiber materials, interconnected foams, and the like are generally used, but in recent years, vacuum insulating materials with higher performance have been required. Therefore, for the purpose of improving the performance of the core material, Japanese Patent Application Laid-Open No. 60-33479 discloses a vacuum heat insulation characterized in that powdered carbon is uniformly dispersed in parlite powder. Propose materials. Further, a vacuum heat insulating material characterized in that the powdered carbon is carbon black is disclosed, and by uniformly dispersing a force pump rack in the pearl, the heat insulating performance is improved under optimum conditions. 0% improvement.
また、 特開昭 6 1 - 3 6 5 9 5号公報では、 種々粉体にカーボン粉末 が均一分散していることを特徴とした真空断熱材を提案している。 実施 例では、 単粒子径 1 0 0 n mのシリカに、 カーボンブラックを均一分散 することにより、 最適条件において断熱性能が 2 0 %改善される。  Further, Japanese Patent Application Laid-Open No. Sho 61-36595 proposes a vacuum heat insulating material characterized in that carbon powder is uniformly dispersed in various powders. In the embodiment, the heat insulation performance is improved by 20% under the optimum condition by uniformly dispersing carbon black in silica having a single particle diameter of 100 nm.
また、 特公平 8— 2 0 0 3 2号公報では、 フエ口シリコン生産で発生 するヒュームより生成される微粉末を用いた真空断熱材を開示している また、 その微粉末には少なくとも炭素が 1 w t %以上含有されている真 空断熱材が開示されている。 この断熱材では 2 3 %の断熱性能の改善が 示されている。 In addition, Japanese Patent Publication No. 8-200302 discloses that the production of It discloses a vacuum heat insulating material using fine powder produced from fumes produced from the fumes, and a vacuum heat insulating material containing at least 1 wt% or more carbon in the fine powder. This insulation shows a 23% improvement in insulation performance.
しかしながら、 特公昭 6 0— 3 3 4 7 9号公報におけるパーライトや, 特開昭 6 1— 3 6 5 9 5号公報における単粒子径 1 0 0 n mのシリカ、 特公平 8 - 2 0 0 3 2号公報におけるフエロシリコン生産で発生するヒ ユームに、 粉末状カーボンや炭素を含有した仕様では、 母材として用い るパ一ライトゃ、 単粒子径 l O O n mのシリカ、 フエロシリコン生産で 発生するヒュームが、 真空断熱材の芯材として特別優れた性能を示さな レ したがって粉末状カーボンや炭素を含有した高度化を狙った仕様に おいても他の真空断熱材と比較して飛躍的に断熱性能は向上せず断熱性 能改善効果は 2 0 %程度にとどまる。  However, pearlite in Japanese Patent Publication No. 60-33479, silica with a single particle diameter of 100 nm in Japanese Patent Application Laid-Open No. 61-36595, and Japanese Patent Publication No. In the specification that contains powdered carbon and carbon in the fumes generated in the production of ferrosilicon in Japanese Patent No. 2 The generated fume does not show particularly excellent performance as a core material of vacuum heat insulating material.Therefore, even in specifications aimed at sophistication that contains powdered carbon and carbon, it is dramatically faster than other vacuum heat insulating materials However, the heat insulation performance is not improved, and the heat insulation performance improvement effect is only about 20%.
また、 粉末状カーボンとしてカーボンブラックを用いる仕様では、 力 一ポンプラックは、 一般に、 油成分を不完全燃焼することによって得ら れる煤状生成物であるため、 その不純物として有機ガスを含んでいるこ とから、 経時的にガスが発生し、 そのために真空断熱材の内圧が増加、 断熱性能が悪化するという課題があった。 また、 カーボンブラックの分 子構造末端に存在するカルポニル基などの反応活性基が、 空気中の水分 などと反応し、 やはり経時的にガスを発生し、 同様に、 真空断熱材の内 圧が増加、 断熱性能が悪化する。  In the specification using carbon black as the powdered carbon, the power pump rack is generally a soot-like product obtained by incompletely burning an oil component, and therefore contains an organic gas as an impurity. Therefore, there was a problem that gas was generated over time, which increased the internal pressure of the vacuum heat insulating material and deteriorated the heat insulating performance. In addition, reactive groups such as carbonyl groups present at the molecular structure terminals of carbon black react with moisture in the air, and also generate gas over time, similarly increasing the internal pressure of the vacuum insulation material. However, the heat insulation performance deteriorates.
芯材としては一般的に多孔体が用いられ、 大きく分類すると、 連通フ オーム, 繊維系, 粉末系に分類される。  Generally, a porous material is used as the core material, and when roughly classified, it is classified into a communication form, a fiber type, and a powder type.
これらのうち、 粉末系真空断熱材としてシリ力粉末がよく用いられる < シリカ粉末を用いた真空断熱材は初期断熱性能は繊維系にはおよばない が、 経時断熱性能に優れている。 Of these, powdered silica powder is often used as a powder-based vacuum insulation material. However, it has excellent thermal insulation performance over time.
しかし、 粉末であるため、 作業性が悪い、 粉末を内袋に封入して使用 するため異形化が困難である。 また廃棄時に粉末が飛散し作業環境が悪 くなる。 それを改善するためにシリ力粉末を成形体とする試みが行われ ている。 しかし、 シリカ粉末を単独で多孔体に成形することは困難であ るため、 各種バインダーが用いられる。  However, since it is a powder, workability is poor, and it is difficult to deform it because the powder is used in an inner bag. At the time of disposal, the powder scatters and the working environment deteriorates. In order to improve this, attempts have been made to use compacted powders. However, since it is difficult to mold silica powder alone into a porous body, various binders are used.
例えば、 特公平 4一 4 6 3 4 8号公報では、 湿式シリカと繊維強化材 を混合し圧縮した成形体を用いた真空断熱材を開示している。  For example, Japanese Patent Publication No. 4-46364 discloses a vacuum heat insulating material using a compact obtained by mixing and compressing wet silica and a fiber reinforcing material.
これは、 湿式シリカと繊維強化材、 および真空断熱材を使用する壁間 の温度差が大きい場合には輻射防止材を添加 ·混合し、 圧縮成形して成 形体を形成するものである。  In this method, when the temperature difference between the walls using wet silica, fiber reinforcement, and vacuum insulation is large, an anti-radiation material is added and mixed, and compression molding is performed to form a molded body.
また、 特公平 5— 6 6 3 4 1号公報では、 乾式シリカ, 湿式シリカ, および繊維強化材を混合分散し圧縮した成形体を用いた真空断熱材を提 供している。 '  In addition, Japanese Patent Publication No. 5-66341 provides a vacuum heat insulating material using a compact formed by mixing and dispersing dry silica, wet silica, and fiber reinforcing material. '
これは、 乾式シリカの長所である低熱伝導率、 および湿式シリカの長 所であるプレス作業の容易性を補完しあい、 かつ繊維強化材を混合する ことによって成形体を形成するものである。  This complements the low thermal conductivity, which is an advantage of dry silica, and the ease of pressing work, which is the advantage of wet silica, and forms a compact by mixing a fiber reinforcing material.
しかしシリ力粉末を単独で成形することは困難である。  However, it is difficult to mold the sily powder alone.
また、 特公平 4一 4 6 3 4 8号公報のように、 湿式シリカを繊維材料 と混合撹拌, 圧縮成形して成形体を得た場合でも、 その成形体は手に持 つと崩れるくらいもろいものである。 また、 粉立ちも激しく、 作業性や 取り扱い性が悪い。 また、 例えば円筒形にしょうとしてももろいために すぐに崩れてしまい、 可とう性がなく、 したがって適用箇所に限界があ る。  Also, as disclosed in Japanese Patent Publication No. Hei 4 (1988) -46838, even when wet silica is mixed with a fibrous material, stirred, and compression molded to obtain a molded product, the molded product is brittle enough to collapse when it is held in hand. It is. In addition, powdering is severe, and workability and handling are poor. In addition, the fragility of a cylindrical shape, for example, causes it to collapse quickly because of its brittleness, and is inflexible, thus limiting its application.
また、 特公平 5— 6 6 3 4 1号公報のように、 湿式シリカ, 乾式シリ 力, 繊維材料を混合撹拌, 圧縮成形して成形体を得ようとする場合でも、 湿式シリカが混入されているため、 成形体になりにくく、 もろいもので ある。 また、 粉立ちも激しく、 可とう性がない。 発明の開示 Also, as disclosed in Japanese Patent Publication No. 5-663341, wet silica and dry silica are used. Even if it is attempted to obtain a compact by mixing force, fiber material, and stirring and compression molding, it is difficult to become a compact and brittle because wet silica is mixed. In addition, powdering is severe and there is no flexibility. Disclosure of the invention
薄型化を阻害することなく、 内部の発熱部と装置ケースの間の熱伝達 を遮断する高性能な断熱材を具備する、 ノート型コンピュータ等の携帯 情報機器を提供する。 この情報機器は装置表面の温度上昇が抑えられ利 用者に不快感を与えない。 また、 その情報機器は内部の発熱部と内蔵さ れる外部拡張機器取り付けケースとの間の熱伝達を遮断する高性能な断 熱材を具備し、 外部拡張機器の温度上昇を抑え誤作動を防ぐ。 図面の簡単な説明  A portable information device, such as a notebook computer, provided with a high-performance heat insulating material that blocks heat transfer between an internal heat generating portion and an apparatus case without hindering the thickness reduction. This information device suppresses the temperature rise on the surface of the device and does not cause discomfort to the user. In addition, the information equipment is equipped with a high-performance heat-insulating material that blocks heat transfer between the internal heat-generating part and the built-in external extension equipment mounting case, and suppresses the temperature rise of the external extension equipment to prevent malfunction. . BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態 1によるノ一ト型コンピュータの模式図で ある。  FIG. 1 is a schematic diagram of a notebook computer according to Embodiment 1 of the present invention.
図 2は本発明の実施の形態 2によるノート型コンピュータの模式図で ある。  FIG. 2 is a schematic diagram of a notebook computer according to Embodiment 2 of the present invention.
図 3は本発明の実施の形態 3によるノート型コンピュータの模式図で ある。  FIG. 3 is a schematic diagram of a notebook computer according to Embodiment 3 of the present invention.
図 4 Aと図 4 Bとは本発明の実施の形態 4による拡張機器取り付けケ —スの模式図である。  FIG. 4A and FIG. 4B are schematic diagrams of an extension device mounting case according to Embodiment 4 of the present invention.
図 5は本発明の実施の形態 5による真空断熱材の断面図である。  FIG. 5 is a sectional view of a vacuum heat insulating material according to Embodiment 5 of the present invention.
図 6は本発明の実施の形態 6による真空断熱材の断面図である。  FIG. 6 is a sectional view of a vacuum heat insulating material according to Embodiment 6 of the present invention.
図 7は本発明の実施の形態 7による真空断熱材の断面図である。  FIG. 7 is a sectional view of a vacuum heat insulating material according to Embodiment 7 of the present invention.
図 8は本発明の実施の形態 8による真空断熱材の断面図である。 図 9は本発明の実施の形態 9によるノー卜型コンピュータの模式図で ある。 FIG. 8 is a sectional view of a vacuum heat insulating material according to Embodiment 8 of the present invention. FIG. 9 is a schematic diagram of a notebook computer according to Embodiment 9 of the present invention.
図 1 0は本発明の実施の形態 1 0による真空断熱材の断面図である。 図 1 1は本発明の実施の形態 1 1による真空断熱材の断面図である。 図 1 2は本発明の実施の形態 1 2による真空断熱材の断面図である。 図 1 3は本発明の実施の形態 1 3による真空断熱材の断面図である。 図 1 4は本発明の実施の形態 1 4による真空断熱材の断面図である。 図 1 5は本発明の実施の形態 1 5によるノート型コンピュータの断面 図である。  FIG. 10 is a sectional view of a vacuum heat insulating material according to Embodiment 10 of the present invention. FIG. 11 is a sectional view of a vacuum heat insulating material according to Embodiment 11 of the present invention. FIG. 12 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 12 of the present invention. FIG. 13 is a sectional view of a vacuum heat insulating material according to Embodiment 13 of the present invention. FIG. 14 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 14 of the present invention. FIG. 15 is a sectional view of a notebook computer according to Embodiment 15 of the present invention.
図 1 6は本発明の実施の形態 1 6による混合容器を示す。  FIG. 16 shows a mixing container according to Embodiment 16 of the present invention.
図 1 7は本発明の実施の形態 1 7による混合容器を示す。  FIG. 17 shows a mixing container according to Embodiment 17 of the present invention.
図 1 8は本発明の実施の形態 1 8から 2 3、 2 5による真空断熱材の 断面図である。  FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiments 18 to 23 and 25 of the present invention.
図 1 9は本発明の実施の形態 2 4による真空断熱材の断面図である。 図 2 0は本発明の実施の形態 2 6によるノート型コンピュータの断面 図である。  FIG. 19 is a sectional view of a vacuum heat insulating material according to Embodiment 24 of the present invention. FIG. 20 is a sectional view of a notebook computer according to Embodiment 26 of the present invention.
図 2 1は比較例 3 . 1の真空断熱材の断面図である。 発明を実施するための最良の形態  FIG. 21 is a sectional view of the vacuum heat insulating material of Comparative Example 3.1. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
図 1は実施の形態 1によるノート型コンピュータ 1 0 1を示す。 コン ピュー夕 1 0 1は内部のメインポ一ド 1 0 2上の発熱部 1 0 3と装置ケ ース 1 0 4底部との間を遮断する真空断熱材 1 0 5と、 放熱板 1 0 6と を具備する。 このコンピュータは、 底面への熱伝達を効果的に遮断でき るため、 装置表面の温度上昇を抑え利用者に熱を伝えない。 (実施の形態 2 ) FIG. 1 shows a notebook computer 101 according to the first embodiment. The computer 101 is a vacuum insulation material 105 that shuts off between the heating part 103 on the internal main node 102 and the bottom of the device case 104, and a heat sink 106 And. Since this computer can effectively block heat transfer to the bottom surface, it suppresses temperature rise on the equipment surface and does not transmit heat to the user. (Embodiment 2)
図 2は実施の形態 2によるノート型コン^ 1°ュ一夕 1 0 1を示す。 コン ピュー夕 1 0 1は内部のメインボード上 1 0 2の発熱部 1 0 3と装置ケ —ス 1 0 4との間を底部にて遮断する真空断熱材 1 0 5と、 放熱板 1 0 6とを具備する。 本形態では、 真空断熱材は H D Dと発熱部とを遮断す るため、 L型に成型されている。 このコンピュータ一は、 底面への熱伝 達を効果的に遮断するため、 装置表面の温度上昇を抑え利用者に熱を伝 えない。 さらに装置内の H D D 1 0 7など熱に弱い部品を保護する。  FIG. 2 shows a notebook computer 101 according to the second embodiment. The computer box 101 is a vacuum insulation material 105 that blocks the heat-generating section 103 on the internal main board 102 between the heat-generating section 103 and the equipment case 104 at the bottom, and a heat sink 10 0 6 is provided. In this embodiment, the vacuum heat insulating material is formed into an L-shape in order to block the HDD and the heat generating portion. Since this computer effectively shuts off heat transfer to the bottom surface, it suppresses the temperature rise on the device surface and does not transfer heat to the user. In addition, it protects heat-sensitive parts such as the HDD 107 inside the equipment.
(実施の形態 3 ) (Embodiment 3)
図 3は実施の形態 3によるノート型コンピュータ 1 0 1を示す。 コン ピュー夕 1 0 1は内部のメインボード 1 0 2上の発熱部 1 0 3と装置ケ —ス 1 0 4底部との間を遮断する真空断熱材 1 0 5と、 発熱部 1 0 3と 拡張機器取り付けケ一ス 1 0 8との間を遮断する真空断熱材 1 0 9と、 放熱板 1 0 6とを具備する。 このコンピュータ一は、 底面への熱伝達を 効果的に遮断するため、 装置表面の温度上昇を抑え利用者に熱を伝えな い。 さらに外部拡張機器への熱伝達を効果的に遮断するため、 外部拡張 機器の温度上昇を抑え、 誤作動を生じることがない。  FIG. 3 shows a notebook computer 101 according to the third embodiment. The computer 101 is equipped with a vacuum insulation material 105 that cuts off between the heating section 103 on the internal main board 102 and the bottom of the equipment case 104, and a heating section 103. It is provided with a vacuum heat insulating material 109 for shutting off the space between the extension device mounting case 108 and a heat radiating plate 106. In order to effectively block heat transfer to the bottom, this computer suppresses temperature rise on the surface of the device and does not transmit heat to the user. Furthermore, since heat transfer to the external expansion device is effectively blocked, the temperature rise of the external expansion device is suppressed, and malfunction does not occur.
(実施の形態 4 ) (Embodiment 4)
図 4 Aは、 実施の形態 4による拡張機器取り付けケースの斜視図、 図 4 Bは、 ケースの側面図であり、 拡張機器取り付けケース 1 0 8に、 真 空断熱材 1 0 9が貼付されているものである。 (実施の形態 5 ) FIG. 4A is a perspective view of an extension device mounting case according to the fourth embodiment, and FIG. 4B is a side view of the case. A vacuum heat insulating material 109 is attached to the extension device mounting case 108. Is what it is. (Embodiment 5)
図 5は、 実施の形態 5による真空断熱材 1 0 5又は 1 0 9の断面図で あり、 袋材 1 1 0に、 無機粉末 1 1 1からなる芯材が充填されているも のである。  FIG. 5 is a sectional view of vacuum heat insulating material 105 or 109 according to the fifth embodiment, in which bag material 110 is filled with a core material made of inorganic powder 111.
(実施の形態 6 ) (Embodiment 6)
図 6は、 実施の形態 6による真空断熱材 1 0 5又は 1 0 9の一部切り 欠いた模式図であり、 袋材 1 1 0に、 無機繊維 1 1 2からなる芯材が充 填されているものである。  FIG. 6 is a partially cutaway schematic view of the vacuum heat insulating material 105 or 109 according to the sixth embodiment, in which a bag material 110 is filled with a core material made of inorganic fibers 112. Is what it is.
(実施の形態 7 ) (Embodiment 7)
図 7は、 実施の形態 7による真空断熱材 1 0 5又は 1 0 9の断面図で あり、 袋材 1 1 0に、 無機粉末 1 1 1と無機繊維 1 1 2とからなる芯材 が充填されているものである。  FIG. 7 is a cross-sectional view of vacuum heat insulating material 105 or 109 according to Embodiment 7, in which bag material 110 is filled with a core material composed of inorganic powder 111 and inorganic fiber 112. Is what is being done.
(実施の形態 8 ) (Embodiment 8)
図 8は、 実施の形態 8による真空断熱材 1 0 5又は 1 0 9の断面図で あり、 袋材 1 1 0に、 ポリウレタン連通フォーム 1 1 3からなる芯材が 充填されているものである。  FIG. 8 is a cross-sectional view of a vacuum heat insulating material 105 or 109 according to the eighth embodiment, in which a bag material 110 is filled with a core material made of a polyurethane communicating foam 113. .
(実施の形態 9 ) (Embodiment 9)
図 9は実施の形態 9によるノート型コンピュータ 1 0 1を示す。 コン ピュー夕 1 0 1は内部のメインポ一ド 1 0 2上の発熱部 1 0 3と装置ケ ース 1 0 4との間を遮断する乾燥ゲルからなる微細多孔体 1 1 4と、 放 熱板 Γθ 6とを具備する。 本発明の以上の実施の形態による真空断熱材は芯材と袋材とからなり- 減圧下で芯材を袋材に封入したものである。 内圧は 1 0 0 t 0 r r以下 が望ましく、 より好ましくは 1 0 t o r r以下である。 また、 吸着剤を 使用しても良い。 また、 真空断熱材の厚さは、 ノート型コンピュータの 薄型化より、 5 mm以下が望ましい。 より好ましくは、 2 mm以下であ る。 FIG. 9 shows a notebook computer 101 according to the ninth embodiment. The computer 101 is a microporous body made of a dry gel that blocks between the heating part 103 on the internal main node 102 and the device case 104, and heat radiation. Plate Γθ 6. The vacuum heat insulating material according to the above embodiment of the present invention comprises a core material and a bag material. The core material is sealed in the bag material under reduced pressure. The internal pressure is desirably 100 t0 rr or less, and more desirably 100 torr or less. Also, an adsorbent may be used. In addition, the thickness of the vacuum heat insulating material is preferably 5 mm or less in order to reduce the thickness of the notebook computer. More preferably, it is 2 mm or less.
真空断熱材の芯材としては、 ポリスチレンゃポリウレタンなどポリマ 一材料の連通気泡体や、 無機および有機の粉末、 無機および有機の繊維 材料などが利用できる。 特に、 無機粉末、 および、 無機繊維、 それらの 混合物が望ましい。  As the core material of the vacuum heat insulating material, open cells made of a polymer material such as polystyrene / polyurethane, inorganic and organic powders, and inorganic and organic fiber materials can be used. In particular, inorganic powders, inorganic fibers, and mixtures thereof are desirable.
袋材は表面保護層、 ガスバリア層、 および熱溶着層によって構成し、 それぞれ 1種類以上のフィルムを積層している。 表面保護層としては、 ポリエチレンテレフ夕レートフイルム、 ポリプロピレンフィルムの延伸 加工品などが用いられる。 ガスバリア層としては金属蒸着フィルム、 無 機質蒸着フィルム、 金属箔などが用いられる。 熱溶着層としては低密度 ポリエチレンフィルム、 高密度ポリエチレンフィルム、 ポリプロピレン フィルム、 ポリアクリロニトリルフィルム、 無延伸ポリエチレンテレフ 夕レートフイルムなどが用いられる。  The bag material is composed of a surface protective layer, a gas barrier layer, and a heat-sealing layer, and one or more films are laminated on each. As the surface protective layer, a polyethylene terephthalate film, a stretched product of a polypropylene film, or the like is used. As the gas barrier layer, a metal vapor-deposited film, an inorganic vapor-deposited film, a metal foil, or the like is used. As the heat-sealing layer, a low-density polyethylene film, a high-density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, or the like is used.
無機粉末は凝集シリカ粉末、 発泡パーライ ト粉砕粉末、 珪藻土粉末、 計算カルシウム粉末、 炭酸カルシウム粉末、 炭酸カルシウム粉末、 クレ 一、 タルクなど、 粉末化された無機材料が利用できる。 特に、 凝集シリ 力粉末であって、 二次凝集粒子径が 2 0 以下のものが好ましい。 無機繊維は、 グラスウール、 セラミックファイバ一、 ロックウールな ど、 繊維化された無機材料が利用できる。 また不織布状、 織物状、 綿状 など形状は問わない。 また無機繊維を集合体とするために、 有機バイン ダ一を用いても良い。 As the inorganic powder, powdered inorganic materials such as agglomerated silica powder, foamed pearlite powder, diatomaceous earth powder, calculated calcium powder, calcium carbonate powder, calcium carbonate powder, clay, and talc can be used. In particular, an agglomerated silicon powder having a secondary agglomerated particle diameter of 20 or less is preferable. As the inorganic fibers, fiberized inorganic materials such as glass wool, ceramic fiber, and rock wool can be used. The shape is not limited, such as non-woven fabric, woven fabric, and cotton. In addition, organic binder You may use a da.
乾燥ゲルからなる微細多孔体はシリカエア口ゲル、 アルミナエアロゲ ルなどの無機酸化物エア口ゲルや、 ポリウレタンエア口ゲル、 ポリイソ シァネートエア口ゲル、 フエノール系エア口ゲルなどの有機エア口ゲル など、 良好な断熱性を示す微細多孔体が適用できる。 また、 2種以上の エア口ゲルの混合物であっても良い。 また、 形状は、 粒状、 またはモノ リス状のいずれも使用可能である。  The fine porous body made of dry gel is good, such as inorganic oxide air gel such as silica air gel and alumina air gel, and organic air gel such as polyurethane air gel, polyisocyanate air gel and phenolic air gel. A microporous body exhibiting excellent heat insulating properties can be applied. Also, a mixture of two or more air port gels may be used. As for the shape, any of a granular shape and a monolithic shape can be used.
以上の実施の形態においては、 内部の発熱部と装置ケースの間の熱伝 達を遮断する断熱材と、 発熱部と拡張機器取り付けケースとの間の熱伝 達を遮断する断熱材は、 それぞれ単独で使用してもよく、 共に利用して も良い。  In the above embodiment, the heat insulating material that blocks heat transfer between the internal heat generating portion and the device case and the heat insulating material that blocks heat transfer between the heat generating portion and the expansion device mounting case are respectively They may be used alone or together.
以下に断熱材の実施例を示す。 ただし断熱材はこれらのみに限定さ れるものではない。 (実施例 1 . 1 )  Examples of the heat insulating material will be described below. However, the heat insulating material is not limited to these. (Example 1.1)
真空断熱材の芯材にはポリウレタン連通フォームを用いた。 袋材は、 表面保護層がポリエチレンテレフタレートフィルム、 ガスバリア層がァ ルミ箔、 熱溶着層が無延伸ポリプロピレンのものを使用した。 袋材にポ リウレタン連通フォームを充填し、 圧力 0 . 1 t o r rにて封止し、 真 空断熱材とした。 真空断熱材の厚さは 1 . 5 mmである。 真空断熱材を 図 1のようにノート型コンピューターに装填し、 底面の温度を測定した ところ、 4 6 °Cであり、 ブランクよりも 4 °C低下しており、 断熱効果を 確認した。 (実施例 1 . 2 ) 真空断熱材の芯材には、 凝集シリカ粉末を用いた。 袋材は実施例 1. 1と同様のものを使用した。 袋材に凝集シリカ粉末を充填し、 圧力 0. 1 t 0 r rにて封止し、 真空断熱材とした。 真空断熱材の厚さは 1. 5 mmである。 真空断熱材を図 1のようにノート型コンピューターに装填 し、 底面の温度を測定したところ、 ブランクよりも 4 低下しており、 断熱効果を確認した。 また、 可とう性を有するため、 実施例 1. 1より も装填が容易であった。 Polyurethane communication foam was used as the core material of the vacuum heat insulating material. The bag material used was a polyethylene terephthalate film for the surface protective layer, an aluminum foil for the gas barrier layer, and a non-stretched polypropylene for the heat welding layer. The bag material was filled with polyurethane foam and sealed at a pressure of 0.1 torr to form a vacuum heat insulating material. The thickness of the vacuum insulation is 1.5 mm. The vacuum insulation was loaded into a notebook computer as shown in Fig. 1, and the bottom surface temperature was measured to be 46 ° C, which was 4 ° C lower than the blank, confirming the thermal insulation effect. (Example 1.2) Agglomerated silica powder was used as the core material of the vacuum heat insulating material. The same bag material as in Example 1.1 was used. The bag material was filled with the aggregated silica powder and sealed at a pressure of 0.1 t0 rr to obtain a vacuum heat insulating material. The thickness of the vacuum insulation is 1.5 mm. Vacuum insulation was loaded into a notebook computer as shown in Fig. 1, and the temperature at the bottom was measured. The temperature was 4 times lower than that of the blank, confirming the insulation effect. In addition, since it has flexibility, loading was easier than in Example 1.1.
(実施例 1. 3) (Example 1.3)
真空断熱材の芯材には、 シリカ · アルミナからなる無機繊維を用いた, 袋材は実施例 1. 1と同様のものを使用した。 袋材に無機繊維を充填し- 圧力 0. 1 t o r rにて封止し、 真空断熱材とした。 真空断熱材の厚さ は 1. 5mmである。 真空断熱材を図 1のようにノート型コンピュータ —に装填し、 底面の温度を測定したところ、 ブランクよりも 5°C低下し ており、 断熱効果を確認した。 また、 繊維材料であるため粉立ちがなく . 実施例 1. 2より取り扱い性が良かった。 また、 可とう性を有するため. 実施例 1. 1よりも装填が容易であった。  An inorganic fiber made of silica / alumina was used as a core material of the vacuum heat insulating material, and a bag material similar to that of Example 1.1 was used. The bag material was filled with inorganic fibers and sealed at a pressure of 0.1 torr to obtain a vacuum heat insulating material. The thickness of the vacuum insulation is 1.5 mm. Vacuum insulation was loaded into a notebook computer as shown in Fig. 1, and the temperature at the bottom was measured to be 5 ° C lower than the blank, confirming the insulation effect. In addition, since it is a fiber material, there is no dusting. The handleability was better than in Example 1.2. In addition, since it has flexibility, loading was easier than in Example 1.1.
(実施例 1. 4) (Example 1.4)
真空断熱材の芯材には、 凝集シリカ粉末と、 シリカ · アルミナからな る無機繊維とをあらかじめ混合、 成型したものを用いた。 袋材は実施例 1. 1と同様のものを使用した。 袋材に芯材を充填し、 圧力 0. 1 t o r rにて封止し、 真空断熱材とした。 真空断熱材の厚さは 1. 5mmで ある。 真空断熱材を図 1のようにノート型コンピュータ一に装填し、 底 面の温度を測定したところ、 ブランクよりも 5. 5°C低下しており、 断 熱効果を確認した。 また、 粉末と繊維とを混合しているため、 空隙径が、 実施例 1. 2および実施例 1. 3より小さくなり、 断熱性能は向上した また、 粉立ちがなく、 実施例 1. 2より取り扱い性が良かった。 また、 可とう性を有するため、 実施例 1. 1よりも装填が容易であった。 As the core material of the vacuum heat insulating material, a material obtained by previously mixing and molding a coagulated silica powder and an inorganic fiber made of silica / alumina was used. The same bag material as in Example 1.1 was used. The bag material was filled with a core material and sealed at a pressure of 0.1 torr to obtain a vacuum heat insulating material. The thickness of the vacuum insulation is 1.5 mm. Vacuum insulation was loaded into the notebook computer as shown in Fig. 1, and the bottom surface temperature was measured to be 5.5 ° C lower than the blank. The heat effect was confirmed. In addition, since the powder and the fiber were mixed, the pore diameter was smaller than in Examples 1.2 and 1.3, and the heat insulation performance was improved. The handleability was good. In addition, since it has flexibility, loading was easier than in Example 1.1.
(実施例 1. 5) (Example 1.5)
乾燥ゲルからなる微細多孔体には、 厚さ 2 mmのシリカエア口ゲルの モノリス体を用いた。 このシリカエア口ゲルを図 6のようにノート型コ ンピューターに装填し、 底面の温度を測定したところ、 ブランクよりも 4t低下しており、 断熱効果を確認した。 また、 シリカエア口ゲルは、 真空排気することなく、 断熱効果が得られるため、 真空断熱材と比較し て、 製造負荷が小さかった。  A monolithic silica air port gel with a thickness of 2 mm was used as the microporous body consisting of the dried gel. This silica air port gel was loaded into a notebook computer as shown in Fig. 6, and the bottom surface temperature was measured. The temperature was 4t lower than that of the blank, confirming the heat insulating effect. In addition, the silica air port gel can provide a heat insulating effect without vacuum evacuation, so that the manufacturing load was smaller than that of a vacuum heat insulating material.
(比較例 1. 1) (Comparative Example 1.1)
断熱材を装填していない、 ノ一ト型コンピュータの底面の温度は 5 0 °Cであった。  The temperature at the bottom of the notebook computer without any insulation was 50 ° C.
(比較例 1. 2) (Comparative Example 1.2)
厚さ 1. 5mmの発泡ウレタンフォームを断熱材として用い、 実施例 1. 5と同様にノ一ト型コンピューターに装填したときの底面の温度は, ブランクよりも 1°C低下していたが、 断熱効果は小さかった。  Using a foamed urethane foam with a thickness of 1.5 mm as a heat insulating material, the temperature at the bottom when loaded into a notebook computer as in Example 1.5 was 1 ° C lower than the blank, The insulation effect was small.
(実施の形態 1 0) . (Embodiment 10).
図 10は実施の形態 10による真空断熱材 201の断面図であり、 金 属箔層と熱可塑性ポリマー層とを有する被覆材 202に、 ヒュームドシ リカ 2 0 3と、 粉末状カーボン材料 2 0 4が均一分散され、 充填されて いるものである。 FIG. 10 is a cross-sectional view of a vacuum heat insulating material 201 according to the tenth embodiment, in which a covering material 202 having a metal foil layer and a thermoplastic polymer layer has a Rica 203 and powdered carbon material 204 are uniformly dispersed and filled.
真空断熱材では、 減圧下で芯材が被覆材に封入される。 また合成ゼォ ライト、 活性炭、 活性アルミナ、 シリカゲル、 ドーソナイト、 ハイ ド口 タルサイ トなどの物理吸着剤、 および、 アルカリ金属やアルカリ土類金 属の酸化物および水酸化物などの化学吸着剤などの、 水分吸着剤やガス 吸着剤を使用しても良い。 また、 芯材を不織布に封入したあと、 さらに それを被覆材に封入してもよい。 また、 真空封止前に、 芯材を乾燥させ ても良い。  In vacuum insulation, the core material is encapsulated in the coating under reduced pressure. Physical adsorbents such as synthetic zeolite, activated carbon, activated alumina, silica gel, dawsonite, and talcite, and chemical adsorbents such as alkali metal and alkaline earth metal oxides and hydroxides. Alternatively, a moisture adsorbent or a gas adsorbent may be used. After the core material is sealed in the nonwoven fabric, it may be further sealed in the covering material. Further, the core material may be dried before vacuum sealing.
ヒュームドシリカとしては、 アーク法により製造されたケィ酸、 熱分 解により製造されたケィ酸などの乾式により製造された種々の粒径を有 する酸化珪素化合物が使用可能である。 また、 種々の粒径ヒュームドシ リカの混合物も利用可能である。 例えば、 粒径を規定した量産品 Aと量 産品 Bの生産切り替えの際に生成する粒径が Aから Bの間で制御されて いない正規ロット外品であっても利用することが可能であり、 その場合 はより低コストで真空断熱材を製造することが可能である。 断熱性能を 最も重視するのであれば、 平均一次粒子径が 5 0 n m以下のものを、 さ らに高性能を求める場合には 1 0 n m以下のものを使用することが好ま しい。  As the fumed silica, there can be used silicon oxide compounds having various particle diameters produced by dry methods, such as caic acid produced by an arc method, and caic acid produced by thermal decomposition. Also, mixtures of various particle size fumed silicas are available. For example, it is possible to use even a non-regular lot product in which the particle size generated when switching production between mass-produced product A and mass-produced product B with specified particle sizes is not controlled between A and B. In that case, it is possible to manufacture the vacuum insulation at a lower cost. If the heat insulation performance is the most important, it is preferable to use the one with an average primary particle diameter of 50 nm or less, and to further improve the performance, use the one with a diameter of 10 nm or less.
粉末状カーボン材料としては、 カーボンブラック、 黒鉛化炭素粉末、 活性炭、 アセチレンブラックなど、 粉末状のカーボン材料であれば使用 可能である。 汎用性があり安価であることから、 力一ボンブラックの使 用が簡便である。 しかし力一ボンブラックを用いる際には経時的なガス 発生を制御し長期間にわたって優れた断熱性能を維持するため、 比表面 積 1 0 0 m 2 Z g未満のものが好ましい。 また、 同様の理由により、 黒 鉛化炭素粉末の利用も好ましい。 As the powdered carbon material, any powdered carbon material such as carbon black, graphitized carbon powder, activated carbon, and acetylene black can be used. Because it is versatile and inexpensive, it is easy to use Ribon Bon Black. However, when using carbon black, the specific surface area is preferably less than 100 m 2 Zg in order to control gas generation over time and maintain excellent heat insulating performance over a long period of time. Also, for similar reasons, black The use of leaded carbon powder is also preferred.
被覆材としては、 芯材と外気とを遮断することが可能なものが利用で きる。 例えば、 ステンレススチール、 アルミニウム、 鉄などの金属薄板 や、 金属薄板とプラスチックフィルムとのラミネート材などである。 ラ ミネ一ト材は、 表面保護層、 ガスバリア層、 および熱溶着層によって構 成されることが好ましい。 表面保護層としては、 ポリエチレンテレフタ レートフィルム、 ポリプロピレンフィルムの延伸加工品などが利用でき る。 さらに、 外側にナイロンフィルムなどを設けると可とう性が向上し. 耐折り曲げ性などが向上する。 ガスバリア層としては、 アルミなどの金 属箔フィルムや金属蒸着フィルムが利用可能であるが、 よりヒー卜リー クを抑制し、 優れた断熱効果を発揮するには金属蒸着フィルムが好まし い。 ボリエチレンテレフ夕レートフイルム、 エチレン · ビニルアルコ一 ル共重合体樹脂フィルム、 ポリエチレンナフタレー卜フィルムなどへ金 属を蒸着したものが好ましい。 また、 熱溶着層としては、 低密度ポリエ チレンフィルム、 高密度ボリエチレンフィルム、 ポリプロピレンフィル ム、 ポリアクリロニトリルフィルム、 無延伸ポリエチレンテレフタレ一 トフイルムなどが使用可能である。  As the covering material, a material that can block the core material from the outside air can be used. For example, metal sheets such as stainless steel, aluminum, and iron, and laminates of metal sheets and plastic films. The laminating material is preferably composed of a surface protective layer, a gas barrier layer, and a heat welding layer. As the surface protective layer, a stretched product of a polyethylene terephthalate film or a polypropylene film can be used. Furthermore, if a nylon film is provided on the outside, the flexibility is improved. The bending resistance is improved. As the gas barrier layer, a metal foil film of aluminum or the like or a metal-deposited film can be used, but a metal-deposited film is preferable for suppressing heat leak and exhibiting an excellent heat insulating effect. It is preferable to deposit a metal on a polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer resin film, a polyethylene naphthalate film, or the like. As the heat-welding layer, a low-density polyethylene film, a high-density polyethylene film, a polypropylene film, a polyacrylonitrile film, a non-stretched polyethylene terephthalate film, or the like can be used.
(実施の形態 1 1 ) (Embodiment 11)
図 1 1は実施の形態 1 1による真空断熱材 2 0 1の断面図であり、 金 属箔層と熱可塑性ポリマー層とを有する被覆材 2 0 2に、 平均一次粒子 径 5 0 n m以下であるヒュームドシリカ 2 0 5と粉末状.カーボン材料 2 0 4が均一分散され、 充填されているものである。 (実施の形態 1 2 ) 図 1 2は実施の形態 1 2による真空断熱材 2 0 1の断面図であり、 金 属蒸着フィルム層と熱可塑性ポリマー層とを有する被覆材 2 0 2に、 平 均一次粒子径 5 0 n m以下であるヒュームドシリカ 2 0 5と、 比表面積 1 0 0 m 2 / g未満のカーボンブラック 2 0 6が均一分散され、 充填さ れているものである。 FIG. 11 is a cross-sectional view of a vacuum heat insulating material 201 according to Embodiment 11, in which a coating material 202 having a metal foil layer and a thermoplastic polymer layer has an average primary particle diameter of 50 nm or less. A fumed silica 205 and a powdery carbon material 204 are uniformly dispersed and filled. (Embodiment 12) FIG. 12 is a cross-sectional view of a vacuum heat insulating material 201 according to Embodiment 12, in which a coating material 202 having a metal-deposited film layer and a thermoplastic polymer layer has a uniform uniform particle diameter of 50 nm. The following fumed silica 205 and carbon black 206 having a specific surface area of less than 100 m 2 / g are uniformly dispersed and filled.
(実施の形態 1 3 ) (Embodiment 13)
図 1 3は実施の形態 1 3による真空断熱材 2 0 1の断面図であり、 金 属蒸着フィルム層と熱可塑性ポリマー層とを有する被覆材 2 0 2に、 平 均一次粒子径 5 0 n m以下であるヒュームドシリカ 2 0 5と、 黒鉛化炭 素粉末 2 0 7が均一分散され、 充填されているものである。  FIG. 13 is a cross-sectional view of a vacuum heat insulating material 201 according to Embodiment 13 in which a coating material 202 having a metal-deposited film layer and a thermoplastic polymer layer has a uniform uniform primary particle diameter of 50 nm. The following fumed silica 205 and graphitized carbon powder 2007 are uniformly dispersed and filled.
(実施の形態 1 4 ) (Embodiment 14)
図 1 4は実施の形態 1 4による真空断熱材 2 0 1の断面図であり、 金 属蒸着フィルム層と熱可塑性ポリマ一層とを有する被覆材 2 0 2に、 あ らかじめ不織布 2 0 8にて被覆された平均一次粒子径 5 0 n m以下であ るヒュームドシリカ 2 0 5と、 比表面積 1 0 0 m 2 Z g未満のカーボン ブラック 2 0 6が均一分散され、 充填されているものである。 (実施の形態 1 5 ) FIG. 14 is a cross-sectional view of the vacuum heat insulating material 201 according to the embodiment 14, in which a coating material 202 having a metal-deposited film layer and a thermoplastic polymer layer is added to a nonwoven fabric 210 in advance. Fumed silica 205 having an average primary particle diameter of 50 nm or less and carbon black 206 having a specific surface area of less than 100 m 2 Zg are uniformly dispersed and filled It is. (Embodiment 15)
図 1 5は実施の形態 1 5によるノート型コンピュータ 2 1 6の断面図 であり、 装置内部のメインボード 2 1 7上の発熱部 2 1 8と装置ケース 2 1 9底部との間を遮断する、 実施の形態 1 4における真空断熱材 2 0 1と、 放熱板 2 2 0とを具備する。 断熱材 2 0 1では、 断熱性能に優れ たヒュームドシリカを母材とし、 さらに母体に粉末状力一ボンが均一に 分散されることにより、 ヒュームドシリカのみを芯材として用いた場合 よりも一層優れた断熱性能を有する。 かつ、 金属蒸着フィルム層を有す る被覆材の使用によりヒートリークが抑制されているため、 底面への熱 伝達を効果的に遮断する。 したがって装置表面の温度上昇を抑え利用者 に熱が伝わらない。 また、 適切な粉末状力一ボン材料により、 内圧増加 による断熱性能の劣化や経時劣化がない。 FIG. 15 is a cross-sectional view of the notebook computer 2 16 according to the embodiment 15. The heat generating section 2 18 on the main board 2 17 inside the apparatus and the bottom of the apparatus case 2 19 are cut off. It includes the vacuum heat insulating material 201 according to Embodiment 14 and a radiator plate 220. Insulation material 201 uses fumed silica, which has excellent heat insulation performance, as the base material, and the base material is evenly distributed with powdered foam. By being dispersed, it has better heat insulation performance than when only fumed silica is used as the core material. In addition, since the heat leak is suppressed by using the coating material having the metal-deposited film layer, the heat transfer to the bottom surface is effectively blocked. Therefore, the temperature rise on the device surface is suppressed and heat is not transmitted to the user. In addition, due to the appropriate powdered carbon material, there is no deterioration of heat insulation performance or deterioration over time due to an increase in internal pressure.
ノート型コンピュータ一は、 動作温度帯である常温から 8 0 °C付近ま での範囲で断熱を必要とする機器の代表として記したものであり、 特に これに限ったものではない。 例えば、 液晶パネルを有するカーナビゲー ションシステムの液晶部分と C P Uによる発熱部分の断熱にも本実施の 形態を適用できる。  The notebook computer 1 is described as a typical example of a device that requires heat insulation in a range from an operating temperature range of room temperature to around 80 ° C, and is not particularly limited to this. For example, the present embodiment can be applied to heat insulation of a liquid crystal part of a car navigation system having a liquid crystal panel and a heat generating part by a CPU.
(実施の形態 1 6 ) (Embodiment 16)
図 1 6は実施の形態 1 6による真空断熱材の製造方法における、 攪拌 羽根 2 3 2を有する混合容器 2 3 3を示す。 粉体を均一に分散するため の攪拌羽根が原料中に存在するヒュームドシリカの二次、 あるいは、 三 次凝集体を解砕する。 その結果、 ヒュームドシリカと粉末状カーボン材 料は、 均一に分散可能となるため、 部分的な分散度の低下による断熱性 能の悪化を抑制できる。  FIG. 16 shows a mixing vessel 2 33 having stirring blades 2 32 in the method for manufacturing a vacuum heat insulating material according to the embodiment 16. A stirring blade for uniformly dispersing the powder disintegrates fumed silica secondary or tertiary aggregates present in the raw material. As a result, the fumed silica and the powdered carbon material can be uniformly dispersed, so that deterioration of the heat insulation performance due to a partial decrease in the degree of dispersion can be suppressed.
(実施の形態 1 7 ) (Embodiment 17)
図 1 7は実施の形態 1 7による真空断熱材の製造方法における、 攪拌 羽根 2 3 2を有する混合容器 2 3 3を示す。 容器 2 3 3では羽根 2 3 2 が回転し、 さらに混合容器が自ら回転、 または底部の口一夕一 2 3 4が 回転する。 これにより粉体を回転混合する。 原料中に存在するヒューム ドシリカの二次、 あるいは、 三次凝集体を解砕するのに要する時間が実 施の形態 1 6による混合容器より短縮され、 より効率のよい均一分散が 可能となる。 FIG. 17 shows a mixing vessel 233 having stirring blades 232 in the method for manufacturing a vacuum heat insulating material according to the seventeenth embodiment. In the vessel 233, the blades 232 rotate, and further the mixing vessel itself rotates, or the bottom mouth 234 rotates. Thus, the powder is rotationally mixed. Fume in raw materials The time required to disintegrate the secondary or tertiary aggregates of dosilica is shorter than that of the mixing vessel according to Embodiment 16, and more efficient uniform dispersion can be achieved.
真空断熱材の製造方法における攪拌羽根を有する混合容器としては、 原料中に存在するヒュームドシリカの二次、 あるいは、 三次凝集体を解 砕できる攪拌羽根を有しているものが使用できる。 混合容器は、 円筒 状 ·球 ·立方体であっても、 特に形状を問わない。  As the mixing vessel having a stirring blade in the method for producing a vacuum heat insulating material, a mixing container having a stirring blade capable of breaking secondary or tertiary aggregates of fumed silica present in the raw material can be used. The shape of the mixing vessel is not particularly limited, even if it is cylindrical, spherical, or cubic.
以下にこれら上記実施の形態による実施例を示す。 本発明はこれら のみに限定されるものではない。  Examples according to the above embodiments will be described below. The present invention is not limited only to these.
(実施例 2 . 1 ) (Example 2.1)
種々の平均 1次粒子径のヒュームドシリカ 8 9 w t %、 粉末状カーボ ン材料として比表面積 5 0 m 2 Z gのカーボンブラック 1 0 w t %、 そ の他 1 %を、 攪拌羽根を有する混合容器内で均一混合させたものを芯材 として用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さ らに、 表面保護層がポリエチレンテレフタレートフィルム、 ガスバリア 層がエチレン · ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を 施したもの、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被覆材 に充填し、 圧力 1 3 3 P aで熱融着装置にて封止し、 真空断熱材を得る t それぞれの真空断熱材の熱伝導率を測定した結果を表 2 0 1に示す。 表 2 0 1から明らかなように、 種々平均 1次粒子径のヒュームドシリ 力に対して、 カーボンブラックを添加することにより、 無添加のヒュ一 ムドシリカと比較すると熱伝導率が 3 0 %から 4 7 %まで改善されてい る。 また、 ヒュームドシリカの平均一次粒子径が 5 0 n m以下の場合に は、 この改善効果は 4 0 %以上となり、 ·特に効果的である。 (表 2 0 1 ) Fumed silica 8 9 wt% of the various average primary particle size of carbon black 1 0 wt% of the powdered specific surface area 5 0 as carbon emission material m 2 Z g, other 1% of that, mixed with a stirring blade The material mixed uniformly in the container is used as the core material. The core material is filled in a bag made of polyester non-woven fabric, the surface protective layer is a polyethylene terephthalate film, the gas barrier layer is an ethylene / vinyl alcohol copolymer resin film that has been aluminum-evaporated, and the heat-welding layer is filling the coating material of the laminated bag of cast polypropylene, sealed with heat sealing device at a pressure 1 3 3 P a, the results of measuring the thermal conductivity of t each vacuum heat insulating material to obtain a vacuum heat insulating material It is shown in Table 201. As is clear from Table 201, the thermal conductivity of fumed silica with various average primary particle diameters was 30% to 47% by adding carbon black as compared with fumed silica without addition. %. When the average primary particle diameter of the fumed silica is 50 nm or less, the improvement effect is 40% or more, which is particularly effective. (Table 201)
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
Figure imgf000020_0002
(実施例 2 . 2 ) (Example 2.2)
平均 1次粒子径が 7 n mのヒュームドシリカ 8 9 w t %、 粉末状カー ボン材料として種々の比表面積のカーボンブラック 1 0 w t %、 その他 1 %を、 攪拌羽根を有する混合容器内で均一混合させたものを芯材とし て用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さらに, 表面保護層がポリエチレンテレフタレ一トフイルム、 ガスバリァ層がェ チレン · ビニルアルコール共重合体樹脂フィルムにアルミ蒸着を施した もの、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被覆材に充填 し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得る。 それぞれの真空断熱材の熱伝導率を測定した結果を表 2 0 2に示す。 表 2 0 2から明らかなように、 種々比表面積のカーボンブラックをヒ ユー厶ドシリカに 1 0 w t %添加することにより、 無添加のヒュームド シリカと比較すると熱伝導率が 4 3 %から 5 1 %まで改善されている。 また、 カーボンブラックの比表面積のより大きいものが熱伝導率改善 効果は大きい。 しかしながら、 比表面積が 1 0 0 m 2 / g以上のカーボ ンブラックを添加した場合、 経時 1 0日後の熱伝導率が若干低い。 これ は、 力一ポンプラックより発生する気体による内圧増加による。 89% by weight of fumed silica with an average primary particle size of 7nm, 10% by weight of carbon black with various specific surface areas as powdered carbon material, and 1% of others are uniformly mixed in a mixing vessel with stirring blades The resulting material is used as the core material. The core material was filled in a bag made of polyester nonwoven fabric, and the surface protective layer was made of polyethylene terephthalate film, and the gas barrier layer was made of aluminum / vinyl alcohol copolymer resin film by aluminum evaporation. The heat-sealing layer is filled into the covering material of the unstretched polypropylene laminate bag, and sealed with a heat-sealing device at a pressure of 133 Pa to obtain a vacuum heat insulating material. Table 202 shows the results of measuring the thermal conductivity of each vacuum heat insulating material. As is clear from Table 202, adding 10 wt% of carbon black having various specific surface areas to fumed silica has a thermal conductivity of 43% to 51% as compared with fumed silica without addition. Has been improved. A carbon black having a larger specific surface area has a greater effect of improving thermal conductivity. However, when carbon black having a specific surface area of 100 m 2 / g or more is added, the thermal conductivity after 10 days of storage is slightly low. This is due to an increase in internal pressure due to gas generated from the power pump rack.
比表面積が 1 0 0 m 2 Z g以上のカーボンブラックを使用した場合であ つても、 添加量が 1 0 %であるため、 熱伝導率は大きくは低くならない ( Even when carbon black having a specific surface area of 100 m 2 Zg or more is used, the thermal conductivity does not decrease significantly because the added amount is 10% (
(表 2 0 2 ) (Table 20)
Figure imgf000022_0001
Figure imgf000022_0001
(実施例 2 . 3 ) (Example 2.3)
平均 1次粒子径が 7 n mのヒュームドシリカ 5 9 w t %、 粉末状カー ボン材料として種々の比表面積のカーボンブラック 4 0 w t %、 その他 1 %を、 攪拌羽根を有する混合容器内で均一混合させたものを芯材とし て用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さらに. 表面保護層がポリエチレンテレフタレ一トフイルム、 ガスバリァ層がェ チレン · ビエルアルコール共重合体樹脂フィルムにアルミ蒸着を施した もの、 熱溶着層が無延伸ポリプロピレンのラミネ一ト袋の被覆材に充填 し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得る。 それぞれの真空断熱材の熱伝導率の測定結果を表 2 0 3に示す。  59% by weight of fumed silica with an average primary particle diameter of 7nm, 40% by weight of carbon black with various specific surface areas as powdered carbon material, and 1% of others are uniformly mixed in a mixing vessel with stirring blades The resulting material is used as the core material. The core material is filled into a bag made of non-woven fabric made of polyester, and the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of an ethylene / bier alcohol copolymer resin film, and the aluminum layer is deposited. Is filled into the coating material of the unstretched polypropylene laminating bag, and sealed with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material. Table 203 shows the measurement results of the thermal conductivity of each vacuum insulation material.
表 2 0 3より明らかなように、 種々比表面積のカーボンブラックをヒ ユームドシリカに 4 0 w t %添加することにより、 無添加のヒュームド シリカと比較すると熱伝導率が 3 7 %から 4 3 %まで改善されている。 しかしながら、 比表面積が 1 0 0m2/g以上のカーボンブラックを 添加した場合、 経時 1 0日後の熱伝導率が低い。 これは、 カーボンブラ ックの添加量が 40w t %であるため、 カーボンブラックより発生する 気体により内圧が増加し、 熱伝導率に 1 Ow t %添加の場合より顕著に 熱伝導率に影響を及ぼしているためである。 As is clear from Table 203, the addition of 40 wt% of carbon black with various specific surface areas to fumed silica improved the thermal conductivity from 37% to 43% compared to fumed silica without addition. Have been. However, when carbon black having a specific surface area of 100 m 2 / g or more is added, the thermal conductivity after 10 days of aging is low. This is because the amount of carbon black added is 40 wt%, the gas generated from the carbon black increases the internal pressure, and the thermal conductivity is significantly affected by the addition of 1 wt%. It is because it has exerted.
(表 2 0 3 ) (Table 203)
Figure imgf000024_0001
Figure imgf000024_0001
(実施例 2 . 4 ) (Example 2.4)
平均 1次粒子径が 7 n mのヒュームドシリカ 5 9 w t %、 粉末状カー ボン材料として 2種の比表面積の黒鉛化炭素粉末 4 0 w t %、 その他 1 %を、 攪拌羽根を有する混合容器内で均一混合させたものを芯材とし て用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さらに. 表面保護層がポリエチレンテレフタレートフィルム、 ガスパリァ層がェ チレン · ビニルアルコール共重合体榭脂フィルムにアルミ蒸着を施した もの、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被覆材に充填 し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得る。 それぞれの真空断熱材の熱伝導率を測定した結果を表 2 0 4に示す。 表 2 0 4から明らかなように、 2種の比表面積の黒鉛化炭素粉末をヒ ムドシリカに 4 0 w t %添加することにより、 無添加のヒュームド シリカと比較すると熱伝導率が 3 9 %から 4 1 %まで改善されている。 また、 黒鉛化炭素粉末の比表面積のより大きいもの方が熱伝導率改善 効果は大きい。 Fumed silica with an average primary particle diameter of 7 nm 59 wt%, graphitized carbon powder with two specific surface areas as powdered carbon material 40 wt%, and other 1% in a mixing vessel with stirring blades The material uniformly mixed with the above is used as a core material. The core material is filled into a bag made of polyester non-woven fabric. Further, the surface protective layer is a polyethylene terephthalate film, the gas parier layer is an ethylene / vinyl alcohol copolymer resin film with aluminum vapor deposition, and the heat welding layer is Fill the coating material of the unstretched polypropylene laminate bag and seal it with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material. Table 204 shows the results of measuring the thermal conductivity of each vacuum heat insulating material. As is evident from Table 204, the addition of 40% by weight of graphitized carbon powder having two specific surface areas to fumed silica resulted in a thermal conductivity of 39% to 4% compared to fumed silica without addition. Up to 1%. The larger the specific surface area of the graphitized carbon powder, the greater the effect of improving the thermal conductivity.
また、 黒鉛化炭素粉末では、 経時 1 0日後の熱伝導率に変化がない。 これは、 黒鉛化炭素粉末からは経時的に発生する気体よる内圧変化がな いためである。 In the graphitized carbon powder, there is no change in thermal conductivity after 10 days of aging. This is because there is no change in internal pressure due to gas generated over time from the graphitized carbon powder.
(表 2 04) (Table 204)
Figure imgf000026_0001
Figure imgf000026_0001
(実施例 2. 5) (Example 2.5)
平均 1次粒子径が 7 nmのヒュームドシリカ 8 9 w t , 粉末状力一 ボン材料として比表面積 5 0 m 2 / gのカーボンブラック 1 0 w t %、 その他 1 %を、 攪拌羽根を有する混合容器内で均一混合させたものを芯 材として用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さらに、 表面保護層がポリエチレンテレフタレ一トフイルム、 ガスバリ ァ層がアルミ箔、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被 覆材に充填し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材 を得る。 A mixing vessel with stirring blades containing fumed silica with an average primary particle diameter of 7 nm, 89 wt, carbon black with a specific surface area of 50 m 2 / g as powdered carbon material, 10 wt%, and other 1% The material that is uniformly mixed inside is used as the core material. The core material is filled in a bag made of polyester non-woven fabric, and the surface protective layer is filled in a polyethylene terephthalate film, the gas barrier layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. Then, it is sealed with a heat sealing device under a pressure of 133 Pa to obtain a vacuum heat insulating material.
この真空断熱材のヒートリークを見込んだ実質熱伝導率の熱流計によ る測定結果は 0. 0 0 3 3 k c a l /m h °C/mKである。  The measurement result of the actual thermal conductivity with a heat flow meter, taking into account the heat leak of the vacuum insulation material, is 0.033 kcal / mh ° C / mK.
(実施例 2. 6) 芯材であるヒュームドシリカ、 粉末状カーボン材料と、 その混合比、 混合方法は実施例 2 . 5と同様である。 芯材を、 ポリエステル製不織布 からなる袋に充填し、 さらに、 表面保護層がポリエチレンテレフ夕レー トフイルム、 ガスバリア層がエチレン · ビニルアルコール共重合体樹脂 フィルムにアルミ蒸着を施したもの、 熱溶着層が無延伸ポリプロピレン のラミネート袋の被覆材に充填し、 圧力 1 3 3 P aにて熱融着装置にて 封止し、 真空断熱材を得る。 (Example 2.6) The fumed silica and powdered carbon material as the core material, the mixing ratio, and the mixing method are the same as those in Example 2.5. The core material is filled in a bag made of polyester non-woven fabric, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of ethylene-vinyl alcohol copolymer resin film, and the aluminum layer is heat-sealed. Fill the coating material of the unstretched polypropylene laminating bag and seal with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material.
この真空断熱材のヒートリークを見込んだ実質熱伝導率の熱流計での 測定結果は 0 . 0 0 2 8 k c a 1 Zm h °Cであり、 実施例 2 . 5におけ るガスバリア層がアルミ箔仕様のものより熱伝導率が改善される。 これ は、 被覆材のガスバリア層がエチレン · ビニルアルコール共重合体樹脂 フィルムにアルミ蒸着を施したものであるために、 ヒートリークが抑制 されたためである。 (実施例 2 . 7 )  The measurement result of the actual thermal conductivity with a heat flow meter, taking into account the heat leak of the vacuum insulation material, was 0.028 kca 1 Zm h ° C. In Example 2.5, the gas barrier layer was made of aluminum foil. Thermal conductivity is improved compared to the specification. This is because heat leak was suppressed because the gas barrier layer of the coating material was formed by depositing aluminum on an ethylene-vinyl alcohol copolymer resin film. (Example 2.7)
平均 1次粒子径が 7 n mのヒュームドシリ力 8 9 w t %、 粉末状カー ボン材料として比表面積 5 0 m 2 / gの力一ポンプラック 1 0 w t %、 その他 1 %を、 攪拌羽根を有し、 さらに底部のローターを回転させるこ とにより、 混合容器内で均一混合させたものを芯材として用いる。 芯材 をポリエステル製不織布からなる袋に充填し、 さらに、 表面保護層がポ リエチレンテレフタレートフイルム、 ガスバリァ層がエチレン · ビニル アルコール共重合体樹脂フィルムにアルミ蒸着を施したもの、 熱溶着層 が無延伸ポリプロピレンのラミネート袋の被覆材に充填し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得る。 Has a fumed silica force with an average primary particle diameter of 7 nm 8.9 wt%, a pump surface with a specific surface area of 50 m 2 / g as powdered carbon material, 10 wt%, and other 1%, with stirring blades By further rotating the rotor at the bottom, a material uniformly mixed in the mixing vessel is used as a core material. The core material is filled into a bag made of polyester non-woven fabric, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of ethylene-vinyl alcohol copolymer resin film, and the heat-welding layer is not stretched. Fill the coating material of the polypropylene laminate bag and seal it with a heat fusion device at a pressure of 133 Pa to obtain a vacuum heat insulating material.
この真空断熱材のヒートリークを見込んだ実質熱伝導率の熱流計によ る測定結果は 0. 0 0 2 8 k c a 1 /mh°Cであり、 実施例 2. 6と同 等である。 A heat flow meter of real thermal conductivity, taking into account the heat leak of this vacuum insulation material, The measurement result is 0.028 kca 1 / mh ° C, which is the same as in Example 2.6.
しかしながら攪拌羽根を有し、 さらに底部のローターを回転させて芯 材を混合するため、 混合時間が実施例 2. 6と比較して 2 0 %短縮され る。  However, since it has stirring blades and further rotates the bottom rotor to mix the core material, the mixing time is reduced by 20% as compared with Example 2.6.
(実施例 2. 8) (Example 2.8)
実施例 2. 1におけるヒュームドシリカ平均一次粒子径が 7 nmの真 空断熱材を図 1 5のように装填されたノ一ト型コンピュータの底面の温 度は、 真空断熱材を適用していないものよりも 5°C低下している。 また 加速試験による断熱材の劣化の評価では 1 0年経過条件での断熱性能の 劣化は確認できない。  In Example 2.1, the temperature of the bottom of a notebook computer loaded with vacuum insulating material with a fumed silica average primary particle diameter of 7 nm as shown in Fig. 15 was measured using a vacuum insulating material. 5 ° C lower than none. In addition, in the evaluation of the deterioration of the heat insulating material by the accelerated test, deterioration of the heat insulating performance under the condition of 10 years cannot be confirmed.
(比較例 2. 1) (Comparative Example 2.1)
真空断熱材の芯材には、 平均粒径 8 zzmのパーライ ト粉末 9 0 w t % と、 粉末状カーボン材料として比表面積 5 0m2Zgのカーボンブラッ ク 1 0 w t %とを攪拌羽根を有する混合容器内で均一混合させたものを 用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さらに、 表面保護層がポリエチレンテレフタレ一トフイルム、 ガスパリァ層がァ ルミ箔、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被覆材に充 填し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得る。 The core material of the vacuum heat insulating material, mixing with an average particle size 8 pearlite powder 9 0 wt% of Zzm, the powdered carbon material as a carbon black-click a specific surface area of 5 0m 2 Zg 1 0 wt% and a stirring blade and Use a homogeneous mixture in the container. The core material is filled into a bag made of non-woven fabric made of polyester, and the surface protective layer is filled into a laminated bag made of polyethylene terephthalate film, the gas ply layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. At a pressure of 133 Pa, sealing is performed with a heat sealing device to obtain a vacuum heat insulating material.
この真空断熱材の熱伝導率は 0. 0 0 5 2 k c a l /mh°Cである。 パーライト粉末単独の真空断熱材の熱伝導率は 0. 0 0 6 5 k c a 1 Zmh°Cである。 したがつて力一ボンブラックをパ一ライト粉末に 1 0 w t %添加することにより 2 0 %低下するだけで、 本実施の形態と比較 して断熱性能改善効果が小さい。 (比較例 2. 2) The thermal conductivity of this vacuum heat insulating material is 0.052 kcal / mh ° C. The thermal conductivity of the vacuum heat insulator made of perlite powder alone is 0.065 kca 1 Zmh ° C. Therefore, adding 10% by weight of bonbon black to parlite powder only reduced the amount by 20%. The effect of improving the heat insulation performance is small. (Comparative Example 2.2)
真空断熱材の芯材には、 平均粒径 2 4 mのパーライ ト粉末 9 0 w t %と、 粉末状カーボン材料として比表面積 5 0 m2/ gの力一ポンプ ラック 1 0 w t %とを攪拌羽根を有する混合容器内で均一混合させたも のを用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さら に、 表面保護層がポリエチレンテレフタレ一トフイルム、 ガスバリア層 がアルミ箔、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被覆材 に充填し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得 る。 ' The core material of the vacuum heat insulating material, an average grain size of 2 4 pearlite powder 9 0 wt% of m, a powdery carbon material as a specific surface area of 5 0 m 2 / g force first pump rack 1 0 wt% of agitation Use a mixture that has been uniformly mixed in a mixing vessel having blades. The core material is filled into a bag made of polyester non-woven fabric, and furthermore, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. Seal with a heat sealing device at a pressure of 133 Pa to obtain a vacuum heat insulating material. '
この真空断熱材の熱伝導率は 0. 0 0 5 0 k c a l Zmh°Cである。 パーライト粉末単独の真空断熱材の熱伝導率は 0. 0 0 5 8 k c a 1 /mh Cである。 カーボンブラックをパーライ ト粉末に 1 0 w t %添カロ することにより 1 5 %伝導率が低下するのみであり、 本実施の形態と比 較して断熱性能改善効果が小さい。  The thermal conductivity of this vacuum heat insulator is 0.0500 kcal Zmh ° C. The thermal conductivity of the vacuum heat insulator made of pearlite powder alone is 0.058 kca1 / mhC. By adding 10 wt% of carbon black to the perlite powder, only the conductivity decreases by 15%, and the effect of improving the heat insulation performance is smaller than in the present embodiment.
(比較例 2. 3) (Comparative Example 2.3)
真空断熱材の芯材には、 平均 1次粒子径 2 0 nmの湿式シリ力 9 0 w t %と、 粉末状カーボン材料として比表面積 5 0 m2Z gのカーポンプ ラック 1 0 w t %とを攪拌羽根を有する混合容器内で均一混合させたも のを用いる。 芯材を、 ポリエステル製不織布からなる袋に充填し、 さら に、 表面保護層がポリエチレンテレフタレ一トフイルム、 ガスバリア層 がアルミ箔、 熱溶着層が無延伸ポリプロピレンのラミネート袋の被覆材 に充填し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得 る。 The core material of the vacuum insulation material is agitated with 90 wt% of wet-type silica with an average primary particle diameter of 20 nm and 10 wt% of a carpump rack with a specific surface area of 50 m 2 Zg as a powdered carbon material. Use a mixture that has been uniformly mixed in a mixing vessel having blades. The core material is filled into a bag made of polyester non-woven fabric, and furthermore, the surface protective layer is made of polyethylene terephthalate film, the gas barrier layer is made of aluminum foil, and the heat-sealing layer is made of unstretched polypropylene. Sealed with a heat fusion device at a pressure of 13 3 Pa to obtain a vacuum insulation material You.
この真空断熱材の熱伝導率は 0. 0 049 k c a l /mh°Cである。 パ一ライ ト粉末単独の真空断熱材は 0. 0 0 6 2 k c a l Zmh°Cで ある。 カーボンブラックを湿式シリカに 1 0 w t %添加することにより 2 0 %伝導率が低下するのみで、 本実施の形態と比較して断熱性能改善 効果が小さい。  The thermal conductivity of this vacuum heat insulating material is 0.049 kcal / mh ° C. The vacuum insulation of the powdered powder alone is 0.062 kcal Zmh ° C. By adding 10 wt% of carbon black to wet silica, only the conductivity is reduced by 20%, but the effect of improving the heat insulating performance is small as compared with the present embodiment.
(比較例 2. 4) (Comparative Example 2.4)
平均 1次粒子径が 7 nmのヒュームドシリカ 9 0w t %、 粉末状カー ボン材料として比表面積 5 0m2/gのカーボンブラック 9w t %、 そ の他 1 %を、 攪拌羽根のない、 底部にロータ一のみで混合攪拌させたも のを芯材として用いる。 材料が均一混合されていないために芯材にはヒ ユームドシリカの塊が生じる。 芯材を、 ポリエステル製不織布からなる 袋に充填し、 さらに、 表面保護層がポリエチレンテレフ夕レー卜フィル ム、 ガスバリア層がエチレン · ビニルアルコール共重合体樹脂フィルム にアルミ蒸着を施したもの、 熱溶着層が無延伸ポリプロピレンのラミネ 一ト袋の被覆材に充填し、 圧力 1 3 3 P aにて熱融着装置にて封止し、 真空断熱材を得る。 90 wt% of fumed silica with an average primary particle diameter of 7 nm, 9 wt% of carbon black with a specific surface area of 50 m 2 / g as a powdered carbon material, and 1% of other, without stirring blades, bottom The material mixed and stirred with only the rotor is used as the core material. The lumps of fumed silica are generated in the core material because the materials are not uniformly mixed. The core material is filled in a bag made of polyester non-woven fabric, the surface protective layer is made of polyethylene terephthalate film, and the gas barrier layer is made of ethylene-vinyl alcohol copolymer resin film with aluminum vapor deposited, heat welding The layer is filled into the coating material of a laminated bag of unstretched polypropylene and sealed with a heat sealing device under a pressure of 133 Pa to obtain a vacuum heat insulating material.
この真空断熱材の熱伝導率は 0. 0 048 k c a l Zmh°Cである。 ヒュームドシリカの二次凝集体が解砕されることなくカーボンブラック と均一に混合されないために、 断熱性能改善効果が著しく低下する。  The thermal conductivity of this vacuum heat insulating material is 0.0048 kcal Zmh ° C. Since the secondary aggregates of the fumed silica are not uniformly mixed with the carbon black without being crushed, the heat insulating performance improving effect is significantly reduced.
(比較例 2. 5) (Comparative Example 2.5)
比較例 2. 3の真空断熱材を図 1 5のように装填されたノート型コン ピュー夕の底面の温度は、 真空断熱材を適用しないものよりも 2°C低下 するにとどまり、 実施例 2. 8より断熱効果は低い。 Comparative Example 2.3 The temperature at the bottom of a notebook computer loaded with the vacuum insulation material shown in Fig. 15 as shown in Fig. 15 is 2 ° C lower than that without vacuum insulation material. However, the heat insulation effect is lower than in Example 2.8.
(実施の形態 1 8) (Embodiment 18)
図 1 8は実施の形態 1 8における真空断熱材の断面図である。  FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 18.
真空断熱材 3 0 1は粉末 3 0 3とおよび繊維材料 3 04を混合した成 形体 3 0 2と、 成形体 3 0 2を覆う外被材 3 0 5とを備え、 内部は減圧 され密封される。  The vacuum insulation material 301 includes a molded body 302 mixed with powder 303 and a fiber material 304, and a covering material 300 covering the molded body 302. You.
成形体 3 0 2は、 平均一次粒子径 7 nmの乾式シリカ 9 0w t %と、 平均繊維径 7 のグラスウール 1 Ow t %をカツ夕一ミルにて均一混 合し、 成形型に入れ、 プレス圧 1. 2 N /mm 2にて加圧し成型される。 成形体 3 0 2の成形密度は大気圧下で 1 9 0 k gZm3であり、 大気圧 下での熱伝導率は、 0. 0 2 6W/mKであった。 また、 成形体 3 0 2 の曲げ強度は 0. 2 1 N/mm2である。 The molded body 302 is prepared by uniformly mixing 90 wt% of dry silica having an average primary particle diameter of 7 nm and 1 Owt% of glass wool having an average fiber diameter of 7 in a cut-and-mill, put into a molding die, and press. pressure 1. is pressurized molding in 2 N / mm 2. The molding density of the molded body 302 was 190 kgZm 3 under the atmospheric pressure, and the thermal conductivity under the atmospheric pressure was 0.026 W / mK. The bending strength of the molded body 302 is 0.21 N / mm 2 .
成形体 3 0 2は 1 1 0°Cで 1時間乾燥され、 外被材 3 0 5中に挿入さ れ、 外被材 3 0 5内部を 2 0 P aまで減圧し封止する。  The molded body 302 is dried at 110 ° C. for 1 hour, inserted into the jacket material 304, and the interior of the jacket material 105 is reduced in pressure to 20 Pa and sealed.
外被材 3 0 5は、 ポリエチレンテレフタレ一ト (厚さ 1 2 m) の表 面保護層、 エチレン一ビニルアルコール共重合体樹脂組成物 (厚さ 1 5 ■ Aim) の内側にアルミニウム蒸着を施したフィルム層, 高密度ポリェチ レン (厚さ 5 0 rn) の熱シール層とを備える。  The outer cover material is made of a polyethylene terephthalate (thickness: 12 m) surface protective layer and an aluminum vapor deposition inside the ethylene-vinyl alcohol copolymer resin composition (thickness: 15 ■ Aim). And a heat-sealed layer of high-density polyethylene (50 rn thick).
外被材 3 0 5は 4方シールされ、 周辺部にはひれ部 3 0 6が発生する t 真空断熱材 3 0 1の熱伝導率は平均温度 24 にて 0. 0 0 6 2 W/ mKである。 Enveloping members 3 0 5 is 4-side sealed, t vacuum heat insulator 3 0 1 thermal conductivity fin 3 0 6 is generated in the periphery 0. 0 0 6 2 W / mK at average temperature 24 It is.
外被材揷入前の成形体の厚み D 3 0 1と真空断熱材作製後の厚み D 3 0 2での厚み変化率△ Tは  The thickness change rate で T between the thickness D 310 of the molded body before the jacket material is introduced and the thickness D 302 of the vacuum insulation material after fabrication is T
AT= (D 3 0 2 -D 3 0 1) X 1 0 0 /D 3 0 1 = 2 % である。 AT = (D 3 0 2 -D 3 0 1) X 1 0 0 / D 3 0 1 = 2% It is.
これらの結果を表 3 0 1に示す。  The results are shown in Table 301.
(実施の形態 1 9) (Embodiment 19)
図 1 8は実施の形態 1 9における真空断熱材の断面図である。  FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to the nineteenth embodiment.
真空断熱材 3 0 1 Aは成形体 3 0 2 Aを備える。 平均一次粒子径 7 n mの乾式シリカ 8 5. 5w t %と、 平均粒子径 42 nmのカーボンブラ ック 4. 5 w t %を混合した粉末 3 0 3 A、 および繊維材料 3 04とし て平均繊維径 7 のグラスウール 1 0 w t %とを混合して成形体 3 0 2 Aが成形される。  The vacuum heat insulating material 301A includes a molded body 302A. Dry powder with a mean particle diameter of 7 nm 85.5 wt% and a carbon black with a mean particle diameter of 42 nm 4.5 wt% mixed powder 303 A, and fiber material 304 as the average fiber A molded body 302A is formed by mixing 10 wt% of glass wool having a diameter of 7.
粉末 3 0 3 Aをカッターミルで混合した後、 さらに繊維材料 3 04を 加えて混合し、 成形型に入れ、 プレス圧 1. 2 N/mm2にて加圧し成 形体 3 0 2 Aを成型する。 成形体 3 0 2 Aの成形密度は大気圧下で 1 9 O k g/m3であり、 大気圧下での熱伝導率は 0 - 0 2 2 W/mKであ る。 これは静止電気に勝る熱伝導率であり、 この成形体を真空断熱材に 用いず、 常圧下でそのまま用いても断熱効果がある。 After the powder 3 0 3 A were mixed in a cutter mill, further added and mixed fiber material 3 04, placed in a mold, press pressure: 1. molding pressurized formation Form 3 0 2 A at 2 N / mm 2 I do. The molding density of the molded body 302 A is 19 O kg / m 3 under the atmospheric pressure, and the thermal conductivity under the atmospheric pressure is 0-022 W / mK. This is a thermal conductivity superior to static electricity. Even if this molded body is used as it is under normal pressure without using it as a vacuum heat insulating material, it has a heat insulating effect.
また、 成形体 3 0 2 Aの曲げ強度は 0. 2 1 NZmm2である。 The bending strength of the molded body 302 A is 0.21 NZmm 2 .
成形体 3 0 2 Aを 1 1 0 °Cで 1時間乾燥し、 外被材 3 0 5中に挿入し. 内部を 2 0 P aまで減圧し封止する。 外被材 3 0 5は、 実施の形態 1 8 と同じである。  The molded body 302A is dried at 110 ° C for 1 hour, inserted into a jacket material 350, and the inside is reduced to 20 Pa and sealed. The outer cover material 304 is the same as that of the eighteenth embodiment.
真空断熱材 3 0 1 Aの熱伝導率は平均温度 24°Cにて 0. 0 0 5 WZ mKである。  The thermal conductivity of the vacuum insulation material 301 A is 0.05 WZ mK at an average temperature of 24 ° C.
外被材挿入前の成形体の厚み D 3 0 1と真空断熱材作製後の厚み D 3 0 2との厚み変化率 ΔΤは  The thickness change rate ΔΤ between the thickness D 310 of the molded body before inserting the jacket material and the thickness D 302 after the production of the vacuum heat insulating material is
Δ T= (D 3 0 2 -D 3 0 1) X 1 0 0 /D 3 0 1 = 2 % である。 Δ T = (D 3 0 2 -D 3 0 1) X 1 0 0 / D 3 0 1 = 2% It is.
この評価結果を表 3 0 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 1 8記載の真空断熱材 3 0 1と比較して、 カーボンブラッ クを添加したことにより、 熱伝導率が大幅に低減される。  Compared to the vacuum heat insulating material 301 described in Embodiment 18, the addition of the carbon black significantly reduces the thermal conductivity.
(実施の形態 2 0) (Embodiment 20)
図 1 8は実施の形態 2 0における真空断熱材の断面図である。  FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 20.
真空断熱材 3 0 1 Bは成形体 3 0 2 Bを備える。 平均一次粒子径 7 n mの乾式シリカ 8 5. 5w t %と、 平均粒子径 6 0 nmの酸化チタン 4. 5 w t %を混合した粉末 3 0 3 B、 および繊維材料 3 04として平均繊 維径 7 mのグラスウール 1 Ow t %とを混合して成形体 3 02 Bは形 成される。  The vacuum heat insulating material 301B includes a molded body 302B. Powder 0.30 B, which is a mixture of dry silica 85.5 wt% with an average primary particle diameter of 7 nm and 4.5 wt% of titanium oxide with an average particle diameter of 60 nm, and an average fiber diameter as a fiber material 304 A molded body 302B is formed by mixing 7 m of glass wool 1 Owt%.
粉末 3 0 3 Bをカツ夕一ミルで混合した後、 さらに繊維材料 3 04を 加えて混合し、 成形型に入れ、 プレス圧 1 - 2 N/mm2にて加圧し成 形体 3 0 2 Bを成型する。 成形体 3 0 2 Bの成形密度は大気圧下で 1 8 O k gZm3であり、 大気圧下での熱伝導率は 0. 0 2 5 W/mKであ る。 After mixing the powder 3 0 3 B cutlet evening in one mill, further added and mixed fiber material 3 04, placed in a mold, press pressure 1 - pressurized formed form at 2 N / mm 2 3 0 2 B Mold. Molding density of the molded body 3 0 2 B is 1 8 O k gZm 3 under atmospheric pressure, thermal conductivity at atmospheric pressure Ru 0. 0 2 5 W / mK der.
また、 成形体 3 0 2 Bの曲げ強度は 0. 2 N/mm2である。 The bending strength of the molded body 302B is 0.2 N / mm 2 .
成形体 3 0 2 Bを 1 1 0 °Cで 1時間乾燥し、 外被材 3 0 5中に挿入し、 内部を 2 0 P aまで減圧し封止する。 外被材 3 0 5は実施の形態 1 8と 同じである。  The molded body 302B is dried at 110 ° C for 1 hour, inserted into a jacket material 350, and the inside is reduced to 20 Pa and sealed. The covering material 2005 is the same as that of the embodiment 18.
真空断熱材 3 0 1 Bの熱伝導率は平均温度 24 にて 0. 0 0 6 2 W ZmKである。  The thermal conductivity of the vacuum insulation material 301 B is 0.062 W ZmK at an average temperature of 24.
外被材揷入前の成形体の厚み D 3 0 1と真空断熱材作製後の厚み D 3 0 2の厚み変化率 Δ Tは Δ T= (D 3 0 2 -D 3 0 1 ) X I 0 0 / D 3 0 1 = 2 % The thickness change rate ΔT of the thickness D 310 of the molded body before the jacket material is introduced and the thickness D 302 of the vacuum body after the production of the vacuum heat insulating material is Δ T = (D 3 0 2 -D 3 0 1) XI 0 0 / D 3 0 1 = 2%
である。 It is.
この評価結果を表 3 0 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 1 8記載の真空断熱材 3 0 1と比較して、 固形化強度に差 はないが、 酸化チタン添加により熱伝導率低減効果はほとんどない。  Although there is no difference in the solidification strength as compared with the vacuum heat insulating material 301 described in Embodiment 18, there is almost no effect of reducing the thermal conductivity by adding titanium oxide.
(実施の形態 2 1 ) (Embodiment 21)
図 1 8は実施の形態 2 1における真空断熱材の断面図である。  FIG. 18 is a cross-sectional view of the vacuum heat insulating material according to Embodiment 21.
真空断熱材 3 0 1 Cは成形体 3 0 2 Cを備える。 粉末 3 0 3として平 均一次粒子径 7 nmの乾式シリカ 9 0 w t 繊維材料 3 04 Aとして 平均繊維径 0. のグラスウール 1 0w t %を混合して成形体 3 0 The vacuum heat insulating material 301C includes a molded body 302C. Dry silica 90 with a uniform uniform particle diameter of 7 nm as powder 303, fiberglass material 304 w A fiber wool with an average fiber diameter of 0.
2 Cは成形される。 2C is molded.
成形体 3 0 2 Cは、 実施の形態 1 8と同じ方法で作製する。 成形体 3 0 2 Cの成形密度は大気圧下で 1 8 0 k g/m3、 大気圧下での熱伝導 率は 0. 0 2 5 W/mK:、 曲げ強度は 0. 24 N/mm2である。 Molded product 302C is produced in the same manner as in Embodiment 18. The compacting density of the molded body 302 C is 180 kg / m 3 under atmospheric pressure, the thermal conductivity under atmospheric pressure is 0.025 W / mK, and the bending strength is 0.24 N / mm. 2
真空断熱材 3 0 1 Cは成形体 3 0 2 Cを用いて実施の形態 1 8と同じ 方法で作製する。 外被材 3 0 5も実施の形態 1 8と同じである。  The vacuum heat insulating material 301C is produced using the molded body 302C in the same manner as in Embodiment 18. The covering material 304 is the same as that of the embodiment 18.
真空断熱材 3 0 1 Cの熱伝導率は、 平均温度 24 にて 0. 0 0 5 7 WZmKである。 また厚み変化率は 1 %である。  The thermal conductivity of the vacuum insulation material 301 C is 0.057 WZmK at an average temperature of 24. The thickness change rate is 1%.
この評価結果を表 3 0 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 1 8記載の真空断熱材 3 0 1と比較して、 繊維材料の繊維 径を微細にしたことにより熱伝導率, 曲げ強度, 厚み変化率ともに向上 する。  Compared with the vacuum heat insulating material 301 described in Embodiment 18, by making the fiber diameter of the fiber material finer, the thermal conductivity, the bending strength, and the thickness change rate are improved.
(実施の形態 2 2) 図 1 8は実施の形態 2 2における真空断熱材の断面図である。 (Embodiment 2 2) FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 22.
真空断熱材 3 0 1 Dは成形体 3 0 2 Dを備える。 平均一次粒子径 7 n mの乾式シリカ 8 5. 5w t %と、 平均粒子径 42 nmのカーボンブラ ック 4. 5 w t %を混合した粉末 3 0 3 A、 および平均繊維径 0. 8 mのグラスウール 3 04 A 1 0 w t %とを混合して成形体 3 0 2 Dは 成形される。  The vacuum heat insulating material 301D includes a molded body 302D. A powder obtained by mixing 85.5 wt% of dry silica with an average primary particle diameter of 7 nm and 4.5 wt% of a carbon black with an average particle diameter of 42 nm, and a powder of 0.3 A with an average fiber diameter of 0.8 m A molded body 302D is formed by mixing glass wool 304 A10 wt%.
成形体 3 0 2 Dは、 実施の形態 1 9と同じ方法で作製する。 成形体 3 0 2 Dの成形密度は大気圧下で 1 8 0 k g/m3、 大気圧下での熱伝導 率は 0. 0 2W/mK:、 曲げ強度は 0. 2 5 NZmm2である。 Molded body 302D is produced in the same manner as in Embodiment 19. The molding density of the compact 302 D is 180 kg / m 3 at atmospheric pressure, the thermal conductivity at atmospheric pressure is 0.02 W / mK, and the bending strength is 0.25 NZmm 2 .
真空断熱材 3 0 1 Dは、 成形体 3 0 2 Dを用いて実施の形態 1 9と同 じ方法で作製する。 外被材 3 0 5も実施の形態 1 9と同じである。  Vacuum heat insulating material 301D is produced in the same manner as in Embodiment 19 using molded object 302D. The covering material 304 is the same as that of the embodiment 19.
真空断熱材 3 0 1 Dの熱伝導率は平均温度 24°Cにて 0. 0 044W ZmK:、 厚み変化率は 1 %である。  The thermal conductivity of the vacuum insulation material 301D is 0.0044W ZmK at an average temperature of 24 ° C, and the thickness change rate is 1%.
この評価結果を表 3 0 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 1 8記載の真空断熱材 3 0 1と比較して、 力一ポンプラッ クを添加しさらに繊維材料の繊維径を微細にしたことにより、 熱伝導率, 曲げ強度, 厚み変化率ともに大幅に向上した。  Compared to the vacuum heat insulating material 301 described in Embodiment 18, the addition of a force pump rack and the finer fiber diameter of the fibrous material significantly increase the thermal conductivity, bending strength, and thickness change rate. Improved.
(実施の形態 2 3) (Embodiment 23)
図 1 8は実施の形態 2 3における真空断熱材の断面図である。  FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 23.
真空断熱材 3 0 1 Eは成形体 3 0 2 Eを備える。 平均一次粒子径 7 n mの乾式シリカ 8 5. 5w t %と、 平均粒子径 42 nmのカーボンブラ ック 4. 5 w t %を混合した粉末 3 0 3 A、 および繊維材料 3 04 Aと して平均繊維径 0. 8 xmのグラスウール 1 0 w t %とを混合して成形 体 3 0 2 Eは成形される。 成形体 30 2 Eは、 プレス圧を 0. 4 NZmm2とした以外は実施の 形態 1 9と同じ方法で作製する。 成形体 302 Eの成形密度は大気圧下 で 140 k g/m3、 大気圧下での熱伝導率は 0. 02W/mK、 曲げ 強度は 0. 14N7mm2である。 The vacuum heat insulating material 301E includes a molded body 302E. As a powder 3003 A and a fiber material 304 A mixed with 85.5 wt% of dry silica with an average primary particle diameter of 7 nm and 4.5 wt% of a carbon black with an average particle diameter of 42 nm A molded body 302E is molded by mixing with 10% by weight of glass wool having an average fiber diameter of 0.8 xm. Shaped body 30 2 E, except that the pressing pressure and 0. 4 NZmm 2 is prepared in the same manner as in Embodiment 1 9 embodiment. The molding density of the compact 302E is 140 kg / m 3 under atmospheric pressure, the thermal conductivity under atmospheric pressure is 0.02 W / mK, and the bending strength is 0.14N7mm 2 .
真空断熱材 30 1 Eは、 成形体 302 Eを用いて実施の形態 1 9と同 じ方法で作製される。 外被材 305も実施の形態 19と同じ仕様のもの を使用した。  Vacuum heat insulating material 301E is produced in the same manner as in Embodiment 19 using molded object 302E. The jacket material 305 having the same specifications as in the nineteenth embodiment was used.
真空断熱材 30 1 Eの熱伝導率は平均温度 24°Cにて 0. 0042 W mK、 厚み変化率は 3 %である。  The thermal conductivity of the vacuum insulation material 301E is 0.0042 W mK at an average temperature of 24 ° C, and the thickness change rate is 3%.
この評価結果を表 30 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 22記載の真空断熱材 30 1 Dと比較して、 プレス圧を低 下させることにより、 熱伝導率は改善されるが曲げ強度は低下する。  As compared with the vacuum heat insulating material 301D described in the twenty-second embodiment, lowering the pressing pressure improves the thermal conductivity but lowers the bending strength.
(実施の形態 24) (Embodiment 24)
図 19は実施の形態 24における真空断熱材の断面図である。  FIG. 19 is a sectional view of a vacuum heat insulating material according to the twenty-fourth embodiment.
真空断熱材 30 1 Fは成形体 302 Fを備える。 平均一次粒子径 56 nmの乾式シリカ 85. 5 w t %と平均粒子径 42 nmの力一ポンブラ ック 9. 5 w t %を混合した粉末 303 C、 および平均繊維径 7 mの グラスウールからなる繊維材料 304を 5 w t %とを混合して成形体 3 02 Fは成形される。  The vacuum heat insulating material 301F includes a molded body 302F. Fiber material consisting of powdered 303C, which is a mixture of 85.5 wt% of fumed silica with an average primary particle diameter of 56 nm and 9.5 wt% of force-pour black having an average particle diameter of 42 nm, and glass wool with an average fiber diameter of 7 m The molded body 302F is molded by mixing 304 with 5 wt%.
乾式シリ力とカーボンブラックとグラスウールをカッターミルで同時 に混合し、 成形型に入れ、 プレス圧 1. 2 NZmm2にて加圧し成形体 302 Fは成型される。 Dry silicide force, carbon black and glass wool are simultaneously mixed by a cutter mill, put into a molding die, and pressurized at a pressing pressure of 1.2 NZmm 2 to form a molded body 302F.
成形体 302 Fの成形密度は大気圧下で 1 80 k /m 大気圧下 での熱伝導率は 0. O Z lWZmK 曲げ強度は 0. 2 1 NZmm2で ある。 In the molding density thermal conductivity under 1 80 k / m atmospheric pressure at atmospheric pressure 0. OZ lWZmK flexural strength of the molded body 302 F is 0. 2 1 NZmm 2 is there.
成形体 3 0 2 Fは 1 1 0°Cで 1時間乾燥され、 吸着剤 3 0 7とともに 外被材 3 0 5 A中に挿入され、 外被材 3 0 5 Aの内部を 2 0 P aまで減 圧し封止する。  The molded body 302F is dried at 110 ° C for 1 hour, inserted into the outer material 300A together with the adsorbent 307, and the inside of the outer material 205A is exposed to 20 Pa. Reduce pressure and seal.
外被材 3 0 5 Aの片面は、 最外層にナイロンフィルム (厚さ 1 5 m) 、 表面保護層としてポリエチレンテレフタレート (厚さ 1 2 m) 、 中間部にはアルミニウム箔 (厚さ 6 m) 、 熱シール層が高密度ポリエ チレン (厚さ 5 0 zm) からなるラミネー小フィルムである。 もう一方 の面は、 最外層にナイロンフィルム (厚さ 1 5 m) 、 表面保護層がポ リエチレンテレフタレート (厚さ 1 2 m) 、 中間部がエチレン一ビニ ルアルコール共重合体樹脂組成物 (厚さ 1 5 zm) の内側にアルミニゥ ム蒸着を施したフィルム層、 熱シール層が高密度ポリエチレン (厚さ 5 0 zm) からなるラミネートフィルムである。  One side of the jacket material is a nylon film (thickness: 15 m) on the outermost layer, polyethylene terephthalate (thickness: 12 m) as a surface protective layer, and an aluminum foil (thickness: 6 m) in the middle A small laminar film in which the heat sealing layer is made of high-density polyethylene (thickness: 50 zm). On the other side, the outermost layer is a nylon film (15 m thick), the surface protective layer is polyethylene terephthalate (12 m thick), and the middle part is an ethylene-vinyl alcohol copolymer resin composition (thickness). It is a laminated film made of high-density polyethylene (thickness: 50 zm) with a film layer with aluminum vapor deposited inside and a heat sealing layer.
吸着剤 3 0 7は粒状酸化カルシウムからなる水分吸着剤を透湿性のあ る袋に入れたものである。  The adsorbent 307 is a moisture adsorbent made of granular calcium oxide put in a moisture-permeable bag.
以上のような真空断熱材 3 0 1 Fの熱伝導率は、 平均温度 24°Cにて 0. 0 049 WZmK、 厚み変化率は 1 %である。  The thermal conductivity of the above vacuum insulating material 301 F is 0.0049 WZmK at an average temperature of 24 ° C, and the thickness change rate is 1%.
この評価結果を表 3 0 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 1 9記載の真空断熱材 3 0 1 Aと比較して、 粒径増大によ り粉末の熱伝導率は悪化するが、 繊維材料の添加量減少により真空断熱 材 3 0 1 Aと同等の熱伝導率を有する。  Compared to the vacuum heat insulating material 301 A described in Embodiment 19, the thermal conductivity of the powder is deteriorated by the increase in the particle size, but the vacuum heat insulating material 301 A is reduced by the decrease in the amount of the fiber material added. It has equivalent thermal conductivity.
吸着剤 3 0 7を添加することにより経時的な信頼性が向上する。  The addition of the adsorbent 307 improves the reliability over time.
(実施の形態 2 5) (Embodiment 25)
図 1 8は実施の形態 2 5における真空断熱材の断面図である。 真空断熱材 301 Gは成形体 302 Gを備える。 平均一次粒子径 7 n mの乾式シリカ 64w t %と、 平均粒子径 3 O nmのカーボンブラック 16 w t %を混合した粉末 303 D、 および平均繊維径 1. のシ リカアルミナ繊維 1 Owt %と平均繊維径 8 mのグラスウール 1 Ow t %とを混合した繊維材料 304 Bを混合して成形体 302 Gは成形さ れる。 FIG. 18 is a cross-sectional view of a vacuum heat insulating material according to Embodiment 25. The vacuum heat insulating material 301G includes a molded body 302G. Powder 303 D, which is a mixture of 64 wt% of dry silica having an average primary particle diameter of 7 nm and 16 wt% of carbon black having an average particle diameter of 3 O nm, and 1 Owt% of silica alumina fiber having an average fiber diameter of 1 and average fiber A molded product 302G is formed by mixing a fiber material 304B mixed with 1 Wt% of glass wool having a diameter of 8 m.
成形体 302 Gは、 プレス圧を 1. 5 N/mm2とした以外は実施の 形態 1 9と同じ方法で作製される。 成形体 302 Gの成形密度は大気圧 下で 20 0 k gZm3、 大気圧下での熱伝導率は 0. 0 22 WZmK、 曲げ強度は 0. 23N/mm2である。 Molded product 302G is produced in the same manner as in Embodiment 19, except that the pressing pressure is 1.5 N / mm 2 . The molding density of the green body 302 G is 200 kgZm 3 under the atmospheric pressure, the thermal conductivity under the atmospheric pressure is 0.22 WZmK, and the bending strength is 0.23 N / mm 2 .
成形体 302 Gは 1 10°Cで 1時間乾燥され、 外被材 305 B中に揷 入され、 外被材 305 Bは内部を 20 P aまで減圧され封止される。 外被材 305 Bの片面は最外層にナイロン (厚さ 1 2 zm) 、 中間部 がポリエチレンナフタレート (厚さ 12 ^m) の内側にアルミニウム蒸 着を施したフィルム層、 およびその内側にエチレン一ビニルアルコール 共重合体樹脂フィルム (厚さ 12 m) の外側にアルミニウム蒸着を施 したフィルム層、 熱シール層がポリプロピレン (厚さ 50 ^m) からな る。 もう片面は最外層にナイロン (厚さ 12 /xm) 、 表面保護層がポリ エチレンテレフタレ一ト (厚さ 1 2 m) 、 中間部がアルミニウム箔 (厚さ 6 m) 、 熱シール層がポリプロピレン (厚さ 50 m) からな る。  The molded body 302G is dried at 110 ° C. for 1 hour, introduced into the jacket material 305B, and the inside of the jacket material 305B is reduced in pressure to 20 Pa and sealed. One side of the jacket material 305B is a film layer with nylon (12-zm thick) on the outermost layer, polyethylene naphthalate (12-m thick) in the middle, and aluminum on the inside, and ethylene on the inside. The film layer and the heat-sealing layer on which aluminum is deposited on the outside of a vinyl alcohol copolymer resin film (thickness: 12 m) are made of polypropylene (thickness: 50 m). On the other side, the outermost layer is nylon (thickness 12 / xm), the surface protective layer is polyethylene terephthalate (thickness 12 m), the middle part is aluminum foil (thickness 6 m), and the heat seal layer is polypropylene. (50 m thick).
真空断熱材 30 1 Gの熱伝導率は平均温度 24°Cにて 0. 00 50 W ZmK、 厚み変化率は 1 %である。  The thermal conductivity of the vacuum insulation material 301 G is 0.0050 W ZmK at an average temperature of 24 ° C, and the thickness change rate is 1%.
この評価結果を表 30 1に示す。  The results of this evaluation are shown in Table 301.
実施の形態 19による真空断熱材 301 Aと比較して、 繊維径微細化 による熱伝導率低減および繊維径増大によるコスト削減のバランスを考 慮して繊維がブレンドされる。 プレス圧を増大することにより、 熱伝導 率は同等であるが、 曲げ強度, 厚み変化率ともに優れた真空断熱材が得 られる。 Fiber diameter finer compared to vacuum insulation material 301 A according to Embodiment 19. The fibers are blended in consideration of the balance between the reduction in thermal conductivity due to the increase in the thermal conductivity and the reduction in cost due to the increase in the fiber diameter. By increasing the pressing pressure, a vacuum insulation material with the same thermal conductivity but excellent bending strength and thickness change rate can be obtained.
(表 3 0 1) (Table 31)
芯材の構成  Structure of core material
粉末 繊維  Powder fiber
ンリカ  Nirica
乾式 カーボン グラス  Dry carbon glass
その他 アルミナ プレス圧 シリ力 ブラック ウール  Other Alumina Press pressure Siri force Black wool
wt¾ m - (N/mm2) wt% wt% ϊ% wt¾ m-(N / mm 2 ) wt% wt% ϊ%
(粒子径) t¾  (Particle size) t¾
(粒子径) (粒子径) (繊維径)  (Particle diameter) (Particle diameter) (Fiber diameter)
実施の形態 90wt% 10wt% Embodiment 90 wt% 10 wt%
1. 1.
1 8 ( nmj 1 8 (nmj
実施の形態 85.5 t% 4.5wt¾ I0wt% Embodiment 85.5 t% 4.5wt¾ I0wt%
1.2 1 9 1 nni (つ m  1.2 1 9 1 nni (tsu m
ί μΠΐ、  ί μΠΐ,
酸化チタン  Titanium oxide
実施の形態 85.5wt% 10wt¾ Embodiment 85.5wt% 10wt¾
4. OWlA 1.2 2 0 (7nm) (7μηι)  4.OWlA 1.2 2 0 (7nm) (7μηι)
(60nm)  (60nm)
実施の形態 90wt¾ 10wt¾ Embodiment 90wt¾ 10wt¾
1.2 2 1 (7nm) (0.8μπι)  1.2 2 1 (7nm) (0.8μπι)
実施の形態 85.5wt¾ 4.5wt¾ 10wt¾ Embodiment 85.5wt¾ 4.5wt¾ 10wt¾
1. 2 2 (7nm) (42nm) (0.8μΒΐ)  1.2 2 (7nm) (42nm) (0.8μΒΐ)
実施の形態 85.5wt% 4.5wt¾ 10wt¾ Embodiment 85.5wt% 4.5wt¾ 10wt¾
0.4 2 3 (7nm) (42nm) (0.8μΐη)  0.4 2 3 (7nm) (42nm) (0.8μΐη)
実施の形態 85.5wt% 9.5wt¾ 5wt¾ Embodiment 85.5wt% 9.5wt¾ 5wt¾
1. 24 (7nm) (42nm) (7μηι)  1.24 (7nm) (42nm) (7μηι)
実施の形態 64wt% 16wt¾ 10wt¾ 10wt¾ Embodiment 64wt% 16wt¾ 10wt¾ 10wt¾
1.2 2 5 (7nm) (30nm) (8μΠΐ) (1. Ιμπι) 芯材、 真空断熱材の特性  1.2 2 5 (7nm) (30nm) (8μΠΐ) (1.Ιμπι) Characteristics of core material and vacuum insulation
曲げ 厚み 熱伝導率 密度  Bending thickness Thermal conductivity Density
強度 変化率 (W/mK) (kg/m3) Strength change rate (W / mK) (kg / m 3 )
(N/mm2) (¾) 実施の形態 常圧 0.026 (N / mm 2 ) (¾) Embodiment Normal pressure 0.026
190 0.21 2 1 8 20Pa 0.0062  190 0.21 2 1 8 20Pa 0.0062
実施の形態 常圧 0.0022 Embodiment Normal pressure 0.0022
190 0.21 2 1 9 20Pa 0.005  190 0.21 2 1 9 20Pa 0.005
実施の形態 常圧 0.0025 Embodiment Normal pressure 0.0025
180 0.2 2 2 0 20Pa 0.0062  180 0.2 2 2 0 20Pa 0.0062
実施の形態 常圧 0.025 Embodiment Normal pressure 0.025
180 0.24 1 2 1 20Pa 0.0057  180 0.24 1 2 1 20Pa 0.0057
実施の形態 常圧 0.02 Embodiment Normal pressure 0.02
180 0.25 1 2 2 20Pa 0.0044  180 0.25 1 2 2 20Pa 0.0044
実施の形態 常圧 0.02 Embodiment Normal pressure 0.02
140 0.14 3 2 3 20Pa 0.0042 実施の形態 常圧 0. 021 140 0.14 3 2 3 20Pa 0.0042 Embodiment Normal pressure 0.021
180 0. 21 1 180 0. 21 1
2 4 20Pa 0. 0049 2 4 20Pa 0.0049
実施の形態 常圧 0. 22  Embodiment Normal pressure 0.22
200 0. 23 1 200 0.23 1
2 5 20Pa 0. 005 2 5 20Pa 0.005
(実施の形態 2 6 ) (Embodiment 26)
図 2 0は実施の形態 2 6におけるノ一卜型コンピュータの断面図であ る。  FIG. 20 is a sectional view of the notebook computer according to Embodiment 26.
ノート型コンピュータ 3 0 8は、 装置内部のメインポ一ド 3 0 9上の 発熱部 3 1 0と装置ケース 3 1 1底部との間を遮断する、 真空断熱材 3 0 1 Dと放熱板 3 1 2とを具備する。  The notebook computer 308 is a vacuum heat insulator 310 and a radiator plate 31 that shuts off the space between the heating section 310 on the main port 309 inside the device and the bottom of the device case 310. And 2.
真空断熱材 3 0 1 Dの材料, 作製方法は実施の形態 2 2と同様である 真空断熱材 3 0 1 D中の成形体のサイズは 6 0 X 6 0 X 1 mmである。 真空断熱材 3 0 1 Dの周辺に発生する外被材 3 0 5のひれ部 3 0 6は折 り曲られ、 折り曲げられた方向の面に放熱板 1 2が設けられる。  The material and manufacturing method of the vacuum heat insulating material 301D are the same as those in Embodiment 22. The size of the formed body in the vacuum heat insulating material 301D is 60 × 60 × 1 mm. The fin portion 303 of the jacket material 305 generated around the vacuum heat insulating material 301D is bent, and the radiator plate 12 is provided on the surface in the bent direction.
ノート型コンピュータ 3 0 8の底面の温度は、 真空断熱材を装着しな いノート型コンピュータよりも 5 °C低い。 また、 加速試験により 1 0年 経過条件での断熱性能の劣化は確認できない。  The temperature at the bottom of the laptop 308 is 5 ° C lower than that of a laptop without vacuum insulation. In addition, accelerated tests did not confirm any deterioration in thermal insulation performance after 10 years.
(比較例 3 . 1 ) (Comparative Example 3.1)
図 2 1は比較例 3 . 1の真空断熱材の断面図である。  FIG. 21 is a sectional view of the vacuum heat insulating material of Comparative Example 3.1.
真空断熱材 3 0 1 aは粉末 3 0 3 aおよび繊維材料 3 0 4とを混合し た成形体 3 0 2 aを備える。 成形体 3 0 2 aが外被材 3 0 5中に挿入さ れ、 外被材 3 0 5は内部を減圧されて密封される。  The vacuum heat insulating material 301a includes a compact 302a mixed with the powder 303a and the fiber material 304. The molded body 302a is inserted into the jacket material 304, and the interior of the jacket material 300 is reduced in pressure and sealed.
粉末 3 0 3 aとして平均二次粒子径 1 5 0 n mの乾式シリカ 9 0 w t %、 および繊維材料 3 0 4として平均繊維径 7 mのグラスウール 1 0 w t %とをカッターミルにて均一混合し、 成形型に入れ、 プレス圧 1. 2 N /mm 2にて加圧し成形体 3 0 2 aが成型される。 90 wt% of dry silica having an average secondary particle diameter of 150 nm as powder 303 a, and glass wool having an average fiber diameter of 7 m 1 as fiber material 304 And 0 wt% are uniformly mixed with a cutter mill, put into a mold, and pressurized at a press pressure of 1.2 N / mm 2 to form a molded body 302a.
成形体 3 0 2 aは非常にもろく、 手に持つと一部崩れ、 粉立ちも激し い。  The molded body 302a is very fragile, partly collapsed when held in hand, and severely dusted.
成形体 3 0 2 aの成形密度は大気圧下で 2 5 0 k g m 大気圧下 での熱伝導率は 0. O S SWZmK:、 曲げ強度は 0. 0 3 NZmm2で ある。 Molding density of the molded body 3 0 2 a is the thermal conductivity of the under 2 5 0 kgm atmospheric pressure at atmospheric pressure 0. OS SWZmK :, flexural strength is 0. 0 3 NZmm 2.
成形体 3 0 2 aは 1 1 0°Cで 1時間乾燥され、 プラスチック板の上に のせて外被材 3 0 5中に慎重に挿入される。 プラスチック板が取り出さ れて外被材 3 0 5は内部を 2 0 P aまで減圧され封止される。 外被材 3 0 5は実施の形態 1 8と同じである。  The molded body 302a is dried at 110 ° C for 1 hour, carefully placed on a plastic plate, and inserted into the jacket material 350. The plastic plate is taken out, and the inside of the jacket material 305 is reduced in pressure to 20 Pa and sealed. The covering material 304 is the same as that of the embodiment 18.
真空断熱材 3 0 1 aの熱伝導率は平均温度 24 にて 0. 0 0 6 8 W /mK:、 厚み変化率は 7 %であり、 表面が粗い。  The thermal conductivity of the vacuum insulation material 301a is 0.068 W / mK at an average temperature of 24: the thickness change rate is 7%, and the surface is rough.
したがって、 パソコンなど薄型の真空断熱材を必要とする機器には適 用できない。  Therefore, it cannot be applied to equipment that requires thin vacuum insulation such as personal computers.
真空断熱材 3 0 1 aの評価結果を表 3 0 2に示す。  Table 302 shows the evaluation results of the vacuum insulating material 301a.
実施の形態 1 8記載の真空断熱材と比較して、 粒子径の大きな粉末を 用いているため、 成形体が得にくく、 曲げ強度は小さい。 (比較例 3. 2)  Compared to the vacuum heat insulating material described in Embodiment 18, since a powder having a large particle diameter is used, it is difficult to obtain a compact and the bending strength is low. (Comparative Example 3.2)
図 2 1は比較例 3. 2の真空断熱材の断面図である。  FIG. 21 is a cross-sectional view of the vacuum heat insulating material of Comparative Example 3.2.
真空断熱材 3 0 1 bは成形体 3 0 2 bを備える。 平均一次粒子径 1 2 0 11111の湿式シリカ 8 5. 5w t %と、 平均粒子径 42 nmのカーボン ブラック 4. 5 w t %を混合した粉末 3 0 3 b、 および繊維材料 3 04 として平均繊維径 7 imのグラスウール 1 0w t %とを混合して成形体 3 0 2 bは成形される。 The vacuum heat insulating material 301b includes a molded body 302b. Powder 0.30 b mixed with wet silica 85.5 wt% of average primary particle diameter 1 2 0 11111 and 4.5 wt% of carbon black with average particle diameter of 42 nm, and average fiber diameter as fiber material 304 7 im glass wool 10 wt% and mixed 302b is molded.
粉末 3 0 3 bをカッターミルで混合した後、 さらに繊維材料 3 04を 加えて混合し、 成形型に入れ、 プレス圧 1 - 2 N/mm2にて加圧し成 形体 3 0 2 bは成型される。 After the powder 3 0 3 b were mixed in a cutter mill, further added and mixed fiber material 3 04, placed in a mold, press pressure 1 - 2 N / mm 2 at pressurized formation Form 3 0 2 b is molded Is done.
成形体 3 0 2 bは非常にもろく、 手に持つと一部崩れ、 粉立ちも激し い。  The molded body 302b is very fragile, partly collapsed when held in hand, and severely dusted.
成形体 3 0 2 bの成形密度は大気圧下で 2 5 0 k g/m3、 大気圧下 での熱伝導率は 0. 0 2 8 W/mK:、 曲げ強度は 0. 0 3 NZmm2で ある。 The molding density of the molded body 302 b is 250 kg / m 3 at atmospheric pressure, the thermal conductivity at atmospheric pressure is 0.028 W / mK, and the bending strength is 0.03 NZmm 2 It is.
成形体 3 0 2 bは 1 1 0°Cで 1時間乾燥され、 プラスチック板の上に のせて外被材 3 0 5中に慎重に挿入される。 外被材 3 0 5はプラスチッ ク板を取り出されて内部を 2 0 P aまで減圧され封止される。 外被材 3 0 5は実施の形態 1 8と同じである。  The molded body 302 b is dried at 110 ° C. for 1 hour, placed on a plastic plate, and carefully inserted into the covering material 350. The plastic material 305 is taken out of the plastic plate, and the inside thereof is reduced in pressure to 20 Pa and sealed. The covering material 304 is the same as that of the embodiment 18.
真空断熱材 3 0 1 bの熱伝導率は平均温度 2 4 にて 0. 0 0 5 3 W /mK:、 厚み変化率は 7 %であり、 表面は粗い。  The thermal conductivity of the vacuum insulation material 301 b is 0.053 W / mK at an average temperature of 24: the thickness change rate is 7%, and the surface is rough.
この評価結果を表 3 0 2に示す。  The results of this evaluation are shown in Table 302.
実施の形態 1 9による真空断熱材 3 0 1 Aと比較して、 粒子径の大き な粉末を用いているため、 成形体が得にくく、 曲げ強度は小さい。  Compared with the vacuum heat insulating material 301A according to Embodiment 19, since a powder having a large particle diameter is used, it is difficult to obtain a compact and the bending strength is small.
(比較例 3. 3) (Comparative Example 3.3)
図 2 1は比較例 3. 3の真空断熱材の断面図である。  FIG. 21 is a cross-sectional view of the vacuum heat insulating material of Comparative Example 3.3.
真空断熱材 3 0 1 cは成形体 3 0 2 cを備える。 平均一次粒子径 7 n mの乾式シリカ 4 5 w t %と平均一次粒子径 1 3 0 nmの湿式シリ力 4 5 w t %を混合した粉末 3 0 3 c、 および繊維材料 3 04として平均繊 維径 7 πιのグラスウール 1 0 w t %とを混合して成形体 3 0 2 cは成 形される。 The vacuum heat insulating material 301c includes a molded body 302c. Powder 3O3c, which is a mixture of 45% by weight of dry silica with an average primary particle diameter of 7nm and 45% by weight of wet silica with an average primary particle diameter of 13nm, and a fiber material 304 with an average fiber diameter of 7 πι of glass wool and 10 wt% are mixed together to form a molded body 302 c. Is shaped.
粉末 303 cをカツ夕一ミルで混合した後、 さらに繊維材料 304を 加えて混合し、 成形型に入れ、 プレス圧 1 NZmm2にて加圧し成形体 302 cは成型される。 After mixing the powder 303 c cutlet evening in one mill, further added and mixed fiber material 304, placed in a mold, pressed mold body 302 c at a pressing pressure of 1 NZmm 2 is molded.
成形体 302 cは非常にもろく、 手に持つと一部崩れ、 粉立ちは激し い。  Molded product 302c is very fragile, partly collapsed when held in hand, and severely dusted.
成形体 302 cの成形密度は大気圧下で 23 0 k g/m3, 大気圧下 での熱伝導率は 0. 028 WZmK、 曲げ強度は 0. 0 5 NZmm2で ある。 The compacting density of the compact 302c is 230 kg / m 3 at atmospheric pressure, the thermal conductivity under atmospheric pressure is 0.028 WZmK, and the bending strength is 0.05 NZmm 2 .
成形体 302 cは 1 10°Cで 1時間乾燥され、 プラスチック板の上に のせて外被材 305中に慎重に挿入される。 外被材 30 5はプラスチッ ク板を取り出され内部を 20 P aまで減圧され封止される。 外被材 30 5は実施の形態 18と同じである。  The molded body 302 c is dried at 110 ° C. for 1 hour, carefully placed on a plastic plate, and inserted into the outer cover material 305. The plastic material 305 is taken out of the plastic plate, and the inside is reduced in pressure to 20 Pa and sealed. The covering material 305 is the same as that of the eighteenth embodiment.
真空断熱材 30 1 cの熱伝導率は平均温度 24 にて0. 0064W /mK、 厚み変化率は 6 %であり、 表面は粗い。  The thermal conductivity of the vacuum insulation material 301c is 0.0064 W / mK at an average temperature of 24, the thickness change rate is 6%, and the surface is rough.
この評価結果を表 302に示す。  Table 302 shows the results of this evaluation.
実施の形態 1 8記載の真空断熱材 30 1と比較して、 粒子径の大きな 湿式シリカがブレンドされているため、 成形体は得にくく、 曲げ強度は 小さい。 Compared to the vacuum heat insulating material 301 described in Embodiment 18, since a wet silica having a large particle diameter is blended, it is difficult to obtain a molded product, and the bending strength is small.
(表 3 0 2 ) (Table 30)
Figure imgf000045_0001
Figure imgf000045_0001
Figure imgf000045_0002
産業上の利用可能性
Figure imgf000045_0002
Industrial applicability
本発明によれば、 内部の発熱部と装置ケースの間の熱伝達を遮断し得 る高性能な断熱材を具備し、 装置表面の温度上昇を抑える薄いノ一卜型 コンピュータ等の携帯情報機器を提供する。 さらに発熱部と拡張機器取 り付けケースとの間の熱伝達を遮断する高性能な断熱材を具備し、 外部 拡張機器の誤動作と温度上昇を抑える携帯情報機器を提供する。  According to the present invention, a portable information device, such as a thin notebook computer, provided with a high-performance heat insulating material capable of blocking heat transfer between an internal heat generating portion and a device case and suppressing a temperature rise on the device surface. I will provide a. In addition, a portable information device that is equipped with a high-performance heat insulating material that blocks heat transfer between the heating section and the extension device mounting case, and that suppresses malfunction and temperature rise of external extension devices is provided.

Claims

請求の範囲 The scope of the claims
1 . ケースと、  1. Case and
前記ケース内に配置される発熱部と。  A heat-generating part disposed in the case;
前記ケースと前記発熱部との間に配置される断熱材と  A heat insulating material disposed between the case and the heat generating portion;
を備えた携帯情報機器。 Portable information equipment with.
2 . 前記ケース内に配置され、 前記発熱部で発生する熱を放熱する放熱 板をさらに備えた請求の範囲第 1項記載の携帯情報機器。 2. The portable information device according to claim 1, further comprising a heat radiating plate disposed in the case and radiating heat generated in the heat generating portion.
3 . ケースと、 3. Case and
前記ケース内に配置される発熱部と、  A heating section arranged in the case;
前記ケース内に配置される拡張機器取り付けケースと、 前記発熱部と前記拡張機器取り付けケースとの間に配置される断 熱材と  An extension device mounting case disposed in the case; and a heat insulating material disposed between the heat generating portion and the extension device mounting case.
を備えた携帯情報機器。 Portable information equipment with.
4 . ケースと、 4. Case and
前記ケース内に配置される発熱部と、  A heating section arranged in the case;
前記ケース内に配置され、 断熱材を有する拡張機器取り付けケ スと  An extension device mounting case which is disposed in the case and has heat insulating material;
を備えた携帯情報機器。 Portable information equipment with.
5 . 前記断熱材の厚さは 5 mm以下である、 請求の範囲第 1から 4項の いずれかに記載の携帯情報機器。 5. The portable information device according to any one of claims 1 to 4, wherein a thickness of the heat insulating material is 5 mm or less.
6. 前記断熱材は真空断熱材である、 請求の範囲第 1から 5項のいずれ かに記載の携帯情報機器。 6. The portable information device according to any one of claims 1 to 5, wherein the heat insulating material is a vacuum heat insulating material.
7. 前記真空断熱材は無機粉末からなる芯材を備えた、 請求の範囲第 6 項記載の携帯情報端末。 7. The portable information terminal according to claim 6, wherein the vacuum heat insulating material includes a core material made of an inorganic powder.
8. 前記真空断熱材は無機繊維からなる芯材を備えた、 請求の範囲第 6 項記載の携帯情報機器。 8. The portable information device according to claim 6, wherein the vacuum heat insulating material includes a core material made of inorganic fibers.
9. 前記真空断熱材は無機粉末と無機繊維とからなる芯材を備えた、 請 求の範囲第 6項記載の携帯情報機器。 9. The portable information device according to claim 6, wherein said vacuum heat insulating material includes a core material composed of inorganic powder and inorganic fiber.
10. 前記真空断熱材は粉末状カーボンを少なくとも 1 w t %以上含有 するヒュ一ムドシリカからなる芯材と前記芯材を収容する被覆材とを備 えた、 請求の範囲第 6記載の携帯情報機器。 10. The portable information device according to claim 6, wherein the vacuum heat insulating material includes a core material made of fumed silica containing at least 1 wt% or more of powdered carbon, and a covering material for containing the core material.
1 1. 前記ヒュームドシリカの平均一次粒子径は 50 nm以下である、 請求の範囲第 1 0項記載の携帯情報機器。 1 1. The portable information device according to claim 10, wherein the fumed silica has an average primary particle diameter of 50 nm or less.
1 2. 前記粉末状力一ボンは比表面積 1 00m2Zg未満の力一ポンプ ラックである、 請求の範囲第 10または 1 1項記載の携帯情報機器。 12. The portable information device according to claim 10 or 11, wherein the powdered force pump is a force pump rack having a specific surface area of less than 100 m 2 Zg.
1 3. 前記粉末状カーボンは比表面積 3 001112/8未満1 00m2Z g以上のカーボンブラックであり、 前記ヒュームドシリカは前記粉末状 カーボンを 3 0wt %以下含有する、 請求の範囲第 1 0または 1 1項記 載の携帯情報機器。 1 3. The powdered carbon is a specific surface area of 3 00111 2/8 less than 1 00m 2 Z g or more carbon blacks, the fumed silica contains less 3 0 wt% of the powdered carbon, claims first 0 or 1 1 Portable information device.
1 4. 前記粉末状力一ボンは黒鉛化炭素粉末である、 請求の範囲第 1 0 または 1 1項記載の携帯情報機器。 14. The portable information device according to claim 10 or 11, wherein the powdered carbon is a graphitized carbon powder.
1 5. 前記芯材と前記被覆材との間に配され、 前記芯材を被覆する不織 布をさらに備えた請求の範囲第 1 0から 14項のいずれかに記載の携帯 15. The mobile phone according to any one of claims 10 to 14, further comprising a nonwoven fabric disposed between the core material and the covering material and covering the core material.
1 6. 前記被覆材は金属蒸着フィルム層と熱可塑性ポリマー層とを備え る、 請求の範囲第 1 0から 1 5項のいずれかに記載の携帯情報機器。 16. The portable information device according to any one of claims 10 to 15, wherein the covering material includes a metal-deposited film layer and a thermoplastic polymer layer.
1 7. 前記真空断熱材は、 平均一次粒子径が 1 0 0 nm以下の乾式シリ 力と平均繊維径 1 0 m以下の繊維材料とを含む成形体と、 ガスバリア 性を有する外被材とを備えた、 請求の範囲第 6項記載の携帯情報機器。 1 7. The vacuum heat insulating material comprises: a molded body containing dry-type silica having an average primary particle diameter of 100 nm or less and a fiber material having an average fiber diameter of 10 m or less; and a jacket material having gas barrier properties. The portable information device according to claim 6, comprising:
1 8. 前記成形体は粉末状力一ボンをさらに含む、 請求の範囲第 1 7項 記載の携帯情報機器。 18. The portable information device according to claim 17, wherein the molded body further includes a powder-like force.
1 9. 前記断熱材は乾燥ゲルからなる厚さ 5mm以下の微細多孔体であ る、 請求の範囲第 1または 2項記載の携帯情報機器。 1 9. The portable information device according to claim 1, wherein the heat insulating material is a microporous body made of a dried gel and having a thickness of 5 mm or less.
PCT/JP2001/009984 2000-11-16 2001-11-15 Portable information equipment WO2002041126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-7006581A KR100538854B1 (en) 2000-11-16 2001-11-15 Portable information equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-349356 2000-11-16
JP2000349356A JP3558980B2 (en) 2000-11-16 2000-11-16 Vacuum insulation material, method for manufacturing vacuum insulation material, refrigerator-freezer and refrigerator, notebook computer, electric water heater, microwave oven
JP2001-116592 2001-04-16
JP2001116592A JP3482399B2 (en) 2001-04-16 2001-04-16 Vacuum insulation material, method for manufacturing vacuum insulation material, notebook computer, refrigeration equipment, electric water heater, microwave oven

Publications (1)

Publication Number Publication Date
WO2002041126A1 true WO2002041126A1 (en) 2002-05-23

Family

ID=26604071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009984 WO2002041126A1 (en) 2000-11-16 2001-11-15 Portable information equipment

Country Status (3)

Country Link
KR (1) KR100538854B1 (en)
CN (1) CN1208705C (en)
WO (1) WO2002041126A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075993A4 (en) * 2007-07-02 2009-12-02 Huawei Tech Co Ltd A mobile terminal preventing temperature rising of user-sensitive surface
KR101161126B1 (en) * 2011-12-06 2012-06-28 한국항공우주연구원 Mobile reference station
US9606587B2 (en) * 2012-10-26 2017-03-28 Google Inc. Insulator module having structure enclosing atomspheric pressure gas
CN104159428A (en) * 2013-05-13 2014-11-19 纬创资通股份有限公司 Heat radiation system and manufacture method thereof, and heat insulation device
CN103888564B (en) * 2014-03-23 2016-08-24 青岛玉兰祥商务服务有限公司 The manufacture device of sterilization mobile phone protective case
KR20170012202A (en) * 2014-05-30 2017-02-02 아사히 가라스 가부시키가이샤 Vacuum heat-insulating material
CN105704978A (en) * 2014-11-26 2016-06-22 英业达科技有限公司 Electronic device
CN109874185B (en) * 2019-02-25 2022-08-02 毕平均 Heating device and heating equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114283A (en) * 1991-09-13 1993-05-07 Sony Corp Sealing box of electric device
JPH06281089A (en) * 1993-03-25 1994-10-07 Meisei Kogyo Kk Vacuum heat-insulating material
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH11191024A (en) * 1997-12-26 1999-07-13 Toshiba Corp Small-sized electronic equipment
JP2000106495A (en) * 1998-09-29 2000-04-11 Kitagawa Ind Co Ltd Inner structure of electric/electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05114283A (en) * 1991-09-13 1993-05-07 Sony Corp Sealing box of electric device
JPH06281089A (en) * 1993-03-25 1994-10-07 Meisei Kogyo Kk Vacuum heat-insulating material
JPH07139690A (en) * 1993-11-22 1995-05-30 Asahi Chem Ind Co Ltd Vacuum heat insulation material
JPH11191024A (en) * 1997-12-26 1999-07-13 Toshiba Corp Small-sized electronic equipment
JP2000106495A (en) * 1998-09-29 2000-04-11 Kitagawa Ind Co Ltd Inner structure of electric/electronic apparatus

Also Published As

Publication number Publication date
KR20030051826A (en) 2003-06-25
CN1474968A (en) 2004-02-11
CN1208705C (en) 2005-06-29
KR100538854B1 (en) 2005-12-23

Similar Documents

Publication Publication Date Title
WO2001095077A1 (en) Portable information appliance
US11905647B2 (en) Thermal insulation sheet and method for producing the same, and electronic device and battery unit
US5084320A (en) Evacuated thermal insulation
CN108288739B (en) Thermal management module for cylindrical battery, preparation method of thermal management module and battery pack
KR100540522B1 (en) Vacuum insulating material and device using the same
JP3212309B2 (en) High insulation panel
US4594279A (en) Heat insulator
JP2005036975A (en) Heat insulation material, method for manufacturing the same, and device using the heat insulation material
JP3482399B2 (en) Vacuum insulation material, method for manufacturing vacuum insulation material, notebook computer, refrigeration equipment, electric water heater, microwave oven
WO2002041126A1 (en) Portable information equipment
KR20070089252A (en) Thermal insulator
KR20170012202A (en) Vacuum heat-insulating material
CN103210250A (en) Vacuum insulation material and method for producing same
JP2008215492A (en) Vacuum heat insulation material
JP3563716B2 (en) Vacuum insulation material, method of manufacturing vacuum insulation material, refrigerator and refrigerator using vacuum insulation material, notebook computer, electric water heater
JP2002161994A (en) Vacuum insulant, vacuum insulant applied refrigerator
JPH09145241A (en) Vacuum heat-insulating material
JP3590758B2 (en) Notebook computer
JP2000291881A (en) Decompressed heat insulating body and manufacture thereof
JP2001350546A5 (en)
JP2007239904A (en) Information apparatus
TW514702B (en) Evacuated insulation article having a plurality of porous inner supports
JP3558980B2 (en) Vacuum insulation material, method for manufacturing vacuum insulation material, refrigerator-freezer and refrigerator, notebook computer, electric water heater, microwave oven
JPH06281089A (en) Vacuum heat-insulating material
JP2010261501A (en) Vacuum heat insulating box

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 018187978

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020037006581

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037006581

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020037006581

Country of ref document: KR