WO2002040956A1 - Resonator chip sensor für druck, kraft mit mechanisch entkoppelten teilbereichen (schlitze) sowie weicher membran - Google Patents

Resonator chip sensor für druck, kraft mit mechanisch entkoppelten teilbereichen (schlitze) sowie weicher membran Download PDF

Info

Publication number
WO2002040956A1
WO2002040956A1 PCT/CH2001/000650 CH0100650W WO0240956A1 WO 2002040956 A1 WO2002040956 A1 WO 2002040956A1 CH 0100650 W CH0100650 W CH 0100650W WO 0240956 A1 WO0240956 A1 WO 0240956A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
force
chip
sensor according
lateral
Prior art date
Application number
PCT/CH2001/000650
Other languages
English (en)
French (fr)
Inventor
Claudio Cavalloni
Marco Gnielka
Martin Haueis
Original Assignee
K.K. Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K.K. Holding Ag filed Critical K.K. Holding Ag
Priority to US10/416,369 priority Critical patent/US20040011144A1/en
Priority to EP01980096A priority patent/EP1334341A1/de
Priority to JP2002542836A priority patent/JP2004513378A/ja
Publication of WO2002040956A1 publication Critical patent/WO2002040956A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0019Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a semiconductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/18Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material
    • G01L1/183Measuring force or stress, in general using properties of piezo-resistive materials, i.e. materials of which the ohmic resistance varies according to changes in magnitude or direction of force applied to the material by measuring variations of frequency of vibrating piezo-resistive material

Definitions

  • the invention relates to a sensor according to the preamble of claim 1.
  • the chip used in which a resonator is used as a measuring sensor, is known from a lecture by Mr. M. Haueis at the 20th International Congress of Theoretical and Applied Mechanies, August 27 to September 02, 2000, Chicago, Illinois, USA, which was published as abstract TL1 "Single crystalline microresonator for force sensing with on-chip vibration excitation and detection" by M. Haueis et al.
  • a more detailed description of this sensor the development of which was based on the task of creating a sensor for an extended temperature range - up to about 300 ° C., is published in the paper: Haueis M. et al.
  • the chip of this known sensor is clamped in a housing by two bolts arranged on both sides of the sensor. It has now been shown that this sensor reacts sensitively to temperature fluctuations by which changing voltages are induced in the sensor. This temperature sensitivity is caused by different thermal expansion of chip material, in the present example silicon, and housing, which generally consists of steel.
  • the object of the invention is to at least reduce this temperature sensitivity, which is achieved by the features in the characterizing part of claim 1.
  • both sides of the chip can expand to different extents from the areas of the fastening without causing thermal mechanical stresses in the sensor.
  • the decoupled middle leg can be connected locally to the lateral legs by means of webs.
  • a precise adjustment of the chip in the direction of the force application can be achieved by a stop.
  • Another possibility is to align the outer edges of the lateral legs in the longitudinal direction parallel to the edge of the slot.
  • the middle leg via which the force is applied, can be prestressed relative to the lateral legs, preferably in tension, in order to improve the linearity of the measurement results and / or to determine the measurement range.
  • Fig. 1 in a spatial representation the chip containing the sensor
  • Fig. 2 shows a side view of the chip inserted into part of the housing
  • Fig. 3 is a plan view of FIG. 2;
  • Fig. 4 shows a longitudinal section IV-IV of Figure 3 through the complete, i.e. complemented by a second housing part, sensor; Fig. 5 in the same representation as Fig. 1, a second embodiment of the chip.
  • the measuring element of the sensor is a chip 1 (FIG. 1), which consists of three silicon wafers connected to one another in a gastight manner. He is Manufactured in a known manner using SOI technology and contains the actual sensor 2 in the middle layer, which is, for example, a micromechanical resonator, but can also be another force-sensitive element.
  • the middle layer which is, for example, a micromechanical resonator, but can also be another force-sensitive element.
  • piezoelectric or magnetorestrictive elements as well as piezoresistive or agnetoresistive resistors can be used as measuring sensors.
  • contact pads 3 are indicated above the sensor 2, via which the sensor 2 is connected to the associated electronics 15 (FIG. 2) by means of wire bonding.
  • a slot 4 shields the sensor 2 against mechanical incorrect loads, which can be caused, for example, by the bonded wire connections of the contact pads 3 to the electronics.
  • the sensor 2 is accommodated in a relatively narrow strip of the chip 1.
  • This strip which widens into a central leg 5 receiving the central fastening, is separated by slots 6 and cavities 7 from lateral legs 8 and mechanically decoupled, which in turn form the lateral fastenings. It has the task of bundling the forces introduced specifically to sensor 2.
  • a bolt 9 serves as the central fastening, which is inserted into a bore 10 of the chip 1 with slight play and is connected to a sensor head 11 (FIG. 4), for example, by crimping.
  • Partial surfaces 12 of the lateral legs 8 serve as lateral attachments, which are inserted into a slot 25 of a cylindrical housing part 13 (FIG. 2) and adjusted in the longitudinal direction of the chip 1 by a stop 14.
  • the subregions 12 can be additionally fixed in the housing part 13 by gluing or another fixed connection.
  • the chip 1 is aligned through the slot 25 in the two directions orthogonal to the introduction of force 17.
  • the sensor head 11, which has an internal thread 21 (FIG. 4) for connecting a force-introducing connection, is connected on its outer circumference to a steel membrane 22 which is connected in the longitudinal direction, ie in the direction of the force application, via a membrane sleeve 23 in the housing part 13 , adjustable and fixed (point 24).
  • this pretension preferably consists of a tensile load.
  • the membrane 22 is made relatively soft, as a result of which a high sensitivity and a reduction in the thermal errors reaching the measuring sensor are achieved.
  • the precise axial and central introduction of force into the chip 1 is improved with a soft membrane 22.
  • the webs 16 bridging the slots 6 have the effect that the elasticity of the sensor is great in the direction 17 of the force introduction, while there is increased rigidity in the two directions perpendicular thereto.
  • the thermal expansion of the components for the introduction of the force to be measured should be as large as possible as that of the fixing of the chip 1 in the housing part 13 and the introduction of force. This is preferably achieved by an identical choice of material for the components 11, 13 and 23 lying in between and an equal distance a between the application of force via the internal thread 21 to the bore 10 on the one hand and to the adhesive or clamping areas on the partial surfaces 12 of the lateral fastenings or to the stop 14 guaranteed.
  • a chip 1 for such a variant is shown in FIG. 5.
  • the displacement of the end of the side legs 8 or the fixing regions 12 resting against the stop 14 relative to the point of application of the force application at the bore 10 of the central leg 5 should be the difference in the thermal expansions of the different materials for the sensor head 11 on the one hand and for the membrane sleeve 23 and the housing part 13 on the other hand correspond to the maximum required temperature range.
  • the cylindrical housing part 13 is “cut open” on the left-hand side and forms a shell there, the free end of which is provided with a thread 18.
  • a second housing part 19 (FIG. 4) is screwed onto this, which closes the open shell of the housing part 13 and covers both the electronics 15 and the chip 1.
  • the part 19 is designed on the left as a hexagon head for the attachment of a wrench and on the right has a thread 20 with which the sensor can be screwed into a measurement object. Due to the two-part design of the housing, decoupling from the measurement object and an insensitivity to voltages caused by the installation of the sensor are also achieved.
  • the housing parts 13, 19 are preferably made of steel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Aufgrund unterschiedlicher thermischer Ausdehnungen zwischen dem, den Messfühler (2) enthaltenden, Chip (1), der vorzugsweise aus Silizium besteht, und dem im allgemeinen aus Stahl gefertigten Gehäuse (13, 19) werden nach der Montage des Chips (1) im Gehäuse (13, 19) in den Messfühlern (2) bei Temperaturänderungen thermische Spannungen induziert, die die Messergebnisse verfälschen können. Erfindungsgemäss werden derartige Spannungen zumindest reduziert, wenn zentrale (9, 10) und seitliche (12) Befestigungen in mechanisch voneinander entkoppelten Teilbereichen des Chips (1) auf der Seite des Messfühlers (2) angeordnet sind, auf der die Krafteinleitung (17) erfolgt.

Description

RESONATOR CHIP SENSOR FÜR DRUCK, KRAFT MIT MECHANISCH ENTKOPPELTEN TEILBEREICHEN (SCHLITZE) SOWIE WEICHER MEMBRAN
Die Erfindung betrifft einen Sensor ge äss Oberbegriff von Anspruch 1. Der eingesetzte Chip, bei dem als Messfühler ein Resonator eingesetzt ist, ist bekannt durch einen Vortrag von Herrn M. Haueis auf dem 20th International Congress of Theoretical and Applied Mechanies, August 27 to September 02, 2000, Chicago, Illinois, USA, der als Abstract TL1 "Single cristalline microreso- nator for force sensing with on-chip Vibration exitation and de- tection" von M. Haueis et al veröffentlicht worden ist. Eine ausführlichere Beschreibung dieses Sensors, dessen Entwicklung die Aufgabe zugrundelag, einen Sensor für einen erweiterten Temperaturbereich — bis etwa 300° C — zu schaffen, ist publiziert in dem Paper: Haueis M. et al . : "Packaged bulk micromachined resonant-force sensor for high te perature applications" , SPIE - Design, Test, Integration and Packaging of MEMS/MOEMS, Paris, May 2000, vol. 4019, 2000, pp. 379-388.
Der Chip dieses bekannten Sensors ist in einem Gehäuse durch zwei, auf beiden Seiten des Messfühlers angeordnete Bolzen eingespannt. Es hat sich nun gezeigt, dass dieser Sensor empfindlich auf Temperaturschwankungen reagiert, durch die wechselnde Spannungen in den Messfühler induziert werden. Diese Temperaturempfindlichkeit ist verursacht durch unterschiedliche thermische Ausdehnung von Chipmaterial, im vorliegenden Beispiel Silizium, und Gehäuse, welches im allgemeinen aus Stahl besteht.
Aufgabe der Erfindung ist es, diese Temperaturempfindlichkeit mindestens zu reduzieren, was durch die Merkmale im Kennzeichen von Anspruch 1 erreicht wird.
Ist der Chip nur auf einer Seite des Messfühlers mit dem Gehäuse verbunden, so können sich beide Chipseiten von den Bereichen der Befestigung aus ungehindert verschieden stark ausdehnen, ohne dass dadurch in dem Messfühler thermisch mechanische Spannungen induziert werden.
Eine vorteilhafte Ausführungsform ergibt sich beispielsweise, wenn die zentrale Befestigung durch einen Bolzen in einem mittleren Schenkel des Chips erfolgt, während die seitlichen Befestigungen durch Einschieben seitlicher Schenkel in einen Schlitz des Gehäuses gewährleistet sind.
Um die Steifigkeit des Chips in den beiden Richtungen senkrecht zur Richtung der Krafteinleitung zu erhöhen, kann man den entkoppelten mittleren Schenkel mit den seitlichen Schenkeln örtlich durch Stege verbinden.
Eine genaue Justierung des Chips in Richtung der Krafteinleitung lässt sich durch einen Anschlag erreichen. Eine weitere Möglichkeit besteht darin, die Aussenkanten der seitlichen Schenkel in Längsrichtung parallel zur Kante des Schlitzes auszurichten.
Weiterhin kann der mittlere Schenkel, über den die Krafteinleitung erfolgt, relativ zu den seitlichen Schenkeln, vorzugsweise auf Zug, vorgespannt sein, um die Linearität der Messergebnisse zu verbessern und/oder den Messbereich festzulegen.
Im folgenden wird die Erfindung an einem Ausführungsbeispiel im Zusammenhang mit der Zeichnung näher erläutert.
Es zeigen
Fig . 1 in räumlicher Darstellung den, den Messfühler enthaltenden Chip;
Fig . 2 in einer Seitenansicht, den in einen Teil des Gehäuses eingeschobenen Chip;
Fig . 3 eine Aufsicht auf Fig. 2 ;
Fig . 4 einen Längsschnitt IV -IV von Fig.3 durch den vollständigen, d.h. durch einen zweiten Gehäuseteil ergänzten, Sensor; Fig. 5 in gleicher Darstellung wie Fig. 1 eine zweite Ausführungsform des Chips.
Das Messelement des Sensors ist ein Chip 1 (Fig. 1) , der aus drei gasdicht miteinander verbundenen Silizium-Wafern besteht. Er ist in bekannter Weise mittels der SOI-Technik gefertigt und enthält in der mittleren Schicht den eigentlichen Messfühler 2, der beispielsweise ein mikromechanischer Resonator ist, jedoch auch ein anderes kraftempfindliches Element sein kann. So können zum Beispiel als Messfühler auch piezoelektrische oder magnetorestriktive Elemente sowie piezoresistive oder agnetoresistive Widerstände eingesetzt werden.
In Fig.l sind oberhalb des Messfühlers 2 Kontaktpads 3 angedeutet, über die der Messfühler 2 mittels Wirebonding mit der zugehörigen Elektronik 15 (Fig.2) verbunden wird. Ein Schlitz 4 schirmt den Messfühler 2 gegen mechanische Fehlbelastungen ab, die beispielsweise durch die gebondeten Drahtverbindungen der Kontaktpads 3 zur Elektronik verursacht sein können.
Der Messfühler 2 ist in einem relativ schmalen Streifen des Chips 1 untergebracht. Dieser Streifen, der sich zu einem, die zentrale Befestigung aufnehmenden, mittleren Schenkel 5 erweitert, ist durch Schlitze 6 und Hohlräume 7 von seitlichen Schenkeln 8 getrennt und mechanisch entkoppelt, die ihrerseits die seitlichen Befestigungen bilden. Er hat die Aufgabe die eingeleiteten Kräfte gezielt zum Messfühler 2 hin zu bündeln.
Als zentrale Befestigung dient ein Bolzen 9 (Fig.4) , der mit leichtem Spiel in eine Bohrung 10 des Chips 1 eingesetzt und beispielsweise durch Börteln mit einem Sensorkopf 11 (Fig.4) verbunden ist .
Als seitliche Befestigungen dienen Teilflächen 12 der seitlichen Schenkel 8, die in einem Schlitz 25 eines zylindrischen Gehäuseteils 13 (Fig.2) eingeschoben und durch einen Anschlag 14 in Längsrichtung des Chips 1 justiert sind. Die Teilbereiche 12 können durch Kleben oder eine andere feste Verbindung im Gehäuseteil 13 zusätzlich fixiert sein. In den beiden zur Krafteinleitung 17 orthogonalen Richtungen ist der Chip 1 durch den Schlitz 25 ausgerichtet . Der Sensorkopf 11, der ein Innengewinde 21 (Fig.4) für einen An- schluss einer krafteinleitenden Verbindung aufweist, ist an seinem äusseren Umfang mit einer Stahlmembrane 22 verbunden, die über eine Membranhülse 23 im Gehäuseteil 13 in Längsrichtung, d.h. in Richtung der Krafteinleitung, einstellbar verschoben und fixiert (Punkt 24) werden kann. Mit Hilfe dieser Verschiebbarkeit der Membrane 22 ist es möglich, eine gewisse Vorspannung am mittleren Schenkel 5, und damit am Messfühler 2, gegenüber den durch den Anschlag 14 justierten seitlichen Schenkeln 8 einzustellen. Wie bereits erwähnt, besteht diese Vorspannung vorzugsweise aus einer Zugbelastung. Die Membrane 22 wird relativ weich ausgebildet, wodurch eine hohe Empfindlichkeit und eine Verringerung der auf den Messfühler gelangenden thermischen Fehler erzielt wird. Darüber hinaus wird mit einer weichen Membrane 22 die genau axiale und zentrale Krafteinleitung in den Chip 1 verbessert.
Die die Schlitze 6 überbrückenden Stege 16 bewirken, dass die Elastizität des Sensors in Richtung 17 der Krafteinleitung gross ist, während in den beiden dazu senkrechten Richtungen eine erhöhte Steifigkeit vorhanden ist.
Um unerwünschte mechanische Belastungen auf den Messfühler 2 durch die mechanische Fixierung des Chips 1 im Gehäuse 13 infolge von Temperatur-Änderungen zu minimieren, sollte die thermische Ausdehnung der Bauelemente für die Einleitung der zu messenden Kraft möglichst gleich gross sein wie diejenige der Fixierung des Chips 1 im Gehäuseteil 13 und der Krafteinleitung. Dies wird vorzugsweise durch eine gleiche Materialwahl der dazwischen liegenden Bauelemente 11,13 und 23 und einen gleichen Abstand a der Krafteinleitung über das Innengewinde 21 einerseits zu der Bohrung 10 und andererseits zu den Klebe- bzw. Klemmbereichen auf den Teilflächen 12 der seitlichen Befestigungen bzw. zu dem Anschlag 14 gewährleistet.
Selbstverständlich ist es auch möglich, für die Elemente 11,13 und 23 verschiedene Materialien mit unterschiedlichen thermischen Ausdehnungen vorzusehen, was beispielsweise aus fertigungstechnischen Gründen notwendig sein kann. Hierfür ist es zweckmässig, unterschiedliche Abstände der Krafteinleitung bei 21 zu den Fixierungen einerseits der zentralen Befestigung 9,10 des Chips 1 und andererseits zu den Klebe- bzw. Klemmbereichen 12 der seitlichen Befestigungen vorzusehen, wobei der für Temperaturdehnungen massgebende Abstand Krafteinleitung/Fixierung der seitlichen Befestigung auch durch den Anschlag 14 des Chips 1 im Gehäuseteil 13 gegeben sein kann.
Ein Chip 1 für eine solche Variante ist in Fig. 5 gezeigt. Theoretisch sollte bei diesem Chip 1 die Verschiebung des am Anschlag 14 anliegenden Endes der seitlichen Schenkel 8 bzw. der Fixierungsbereiche 12 gegenüber dem Angriffspunkt der Krafteinleitung an der Bohrung 10 des zentralen Schenkels 5 der Differenz der Wärmedehnungen der verschiedenen Materialien für den Sensorkopf 11 einerseits und für die Membranhülse 23 und den Gehäuseteil 13 andererseits für den maximal geforderten Temperaturbereich entsprechen.
Wie die Figuren 2 und 3 erkennen lassen, ist der zylindrische Gehäuseteil 13 auf der linken Seite "aufgeschnitten" und bildet dort eine Schale, deren freies Ende mit einem Gewinde 18 versehen ist.
Auf dieses ist ein zweiter Gehäuseteil 19 (Fig.4) aufgeschraubt, der die offene Schale des Gehäuseteils 13 schliesst und sowohl die Elektronik 15 als auch den Chip 1 abdeckt. Der Teil 19 ist links als Sechskantkopf für den Ansatz eines Maulschlüssels ausgebildet und hat rechts ein Gewinde 20, mit dem der Sensor in ein Messobjekt eingeschraubt werden kann. Durch die Zweiteiligkeit des Gehäuses wird darüber hinaus eine Entkopplung vom Messobjekt und eine Une pfindlichkeit gegenüber Spannungen erreicht, die durch den Einbau des Sensors verursacht werden.
Wie bereits beschrieben, bestehen die Gehäuseteile 13,19 vorzugsweise aus Stahl . Referenzliste
Fig. 1 1 Si-Chip
2 Messfühler
3 Kontaktpad
4 Abschirmschlitz
5 Mittlerer Schenkel
6 Entkopplungs-Schlitze
7 Entkopplungs-Hohlräume
8 Seitliche Schenkel
10 Bohrung
12 Teilfläche für seitliche Befestigung
16 Steg
17 Richtung der Krafteinleitung
Fig. 2 13 Gehäuseteil und 3 14 Anschlag
15 Elektronik
18 Gewinde
22 Stahlmembrane
25 Schlitz a Abstand Krafteinleitung/Fixierungen
Fig . 4 9 Bolzen
11 Sensorköpf
19 Gehäuseteil
20 Gewinde
21 Innengewinde 23 Membranhülse
24 Fixierungsstelle

Claims

Patentansprüche
1. Sensor für Druck- und/oder Kraftmessungen, dessen Messfühler (2) in einem Chip (1) angeordnet ist, bei dem die Krafteinleitung in Richtung (17) seiner Längsachse parallel zur Oberfläche erfolgt, dadurch gekennzeichnet, dass zentrale (9,10) und seitliche (12) Befestigungen auf der Seite der Krafteinleitung in den Sensor in voneinander mechanisch entkoppelten Teilbereichen des Chips (1) angeordnet sind.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, dass der Chip (1) in einem zweiteiligen Gehäuse (13,19) montiert ist, in das die
Kraft über eine relativ weiche Membrane (22) eingeleitet wird.
3. Sensor nach Anspruch 2, dadurch gekennzeichnet, dass die zentrale Befestigung (9,10) durch einen Bolzen (9) in einem mittleren Schenkel (5) des Chips (1) erfolgt, während die seitlichen Befestigungen durch Einschieben seitlicher Schenkel (8) in einen Schlitz (25) eines hülsenartigen Gehäuseteils (13) gewährleistet sind, wobei die Krafteinleitung axial und zentral in den mittleren Schenkel (5) erfolgt, und die seitlichen Befestigungen symmetrisch zur zentralen Krafteinleitung (17) ausgebildet sind.
4. Sensor nach Anspruch 3, dadurch gekennzeichnet, dass die entkoppelten zentralen und seitlichen Schenkel (5,8) des Chips (1) örtlich durch Stege (16) miteinander verbunden sind.
5. Sensor nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der Chip (1) im Gehäuse (13,19) durch einen Anschlag
(14) in Richtung (17) der Krafteinleitung justiert ist.
6. Sensor nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, dass die Aussenkanten der seitlichen Schenkel (8) in Längsrichtung parallel zur Kante des Schlitzes (25) verlaufen.
7. Sensor nach einem der Ansprüche 3 bis 8, dadurch gekennzeich- net, dass der mittlere, der Krafteinleitung dienende Schenkel (5) relativ zu den seitlichen Schenkeln (8) vorgespannt ist.
8. Sensor nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die seitlichen Schenkel (8) durch Kleben und/oder Klemmen im Gehäuseteil (13) fixiert sind.
9. Sensor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Messfühler (2) durch mindestens einen Schlitz (4) auf der von den Befestigungen (9,10,12) abgewandten Seite gegen mechanische Fehlbelastungen abgeschirmt ist, wobei auf dieser Seite die mechanischen Verbindungen zum Messfühler (2) auf die elektrische Kontaktierung über die Wirebond-Drähte reduziert sind.
10. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Messfühler (2) ein mikromechanisch hergestellter Resonator ist.
11. Sensor nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Messfühler (2) aus piezoelektrischen Elementen, magnetostriktiven Elementen, piezoresistiven Widerständen oder magnetoresistiven Widerständen besteht .
12. Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abstand (a) der Krafteinleitung einerseits zur Bohrung (10) für die zentrale Befestigung (9,10) und andererseits zu den Fixierungsbereichen (12) auf den seitlichen Befestigungen mindestens annähernd gleich gross ist, und dass ferner die diesen Abstand (a) bestimmenden Bauelemente (11,13,23) aus gleichem Material bestehen.
PCT/CH2001/000650 2000-11-15 2001-11-07 Resonator chip sensor für druck, kraft mit mechanisch entkoppelten teilbereichen (schlitze) sowie weicher membran WO2002040956A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/416,369 US20040011144A1 (en) 2000-11-15 2001-11-07 Resonator chip sensor for pressure and force with mechanically separate partial regions (slots) and a soft membrane
EP01980096A EP1334341A1 (de) 2000-11-15 2001-11-07 Resonator chip sensor für druck, kraft mit mechanisch entkoppelten teilbereichen ( schlitze ) sowie weicher membran
JP2002542836A JP2004513378A (ja) 2000-11-15 2001-11-07 圧力及び/又は力を測定するセンサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH2223/00 2000-11-15
CH22232000 2000-11-15

Publications (1)

Publication Number Publication Date
WO2002040956A1 true WO2002040956A1 (de) 2002-05-23

Family

ID=4568080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000650 WO2002040956A1 (de) 2000-11-15 2001-11-07 Resonator chip sensor für druck, kraft mit mechanisch entkoppelten teilbereichen (schlitze) sowie weicher membran

Country Status (4)

Country Link
US (1) US20040011144A1 (de)
EP (1) EP1334341A1 (de)
JP (1) JP2004513378A (de)
WO (1) WO2002040956A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060070464A1 (en) * 2004-09-30 2006-04-06 Walker Robert R On-board scale sensor with mechanical amplification and improved output signal apparatus and method
WO2010072232A1 (en) * 2008-12-22 2010-07-01 Ab Skf Sensorized bearing unit
JP6228790B2 (ja) * 2013-09-18 2017-11-08 アルプス電気株式会社 圧力検知装置およびこれを使用した吸気圧測定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH424312A (de) * 1964-08-15 1966-11-15 Kistler Instrumente Ag Beschleunigungskompensierter piezoelektrischer Messwandler
EP0430445A2 (de) * 1989-11-02 1991-06-05 Matsushita Electric Industrial Co., Ltd. Piezoelektrischer Druckwandler
US5574220A (en) * 1994-08-10 1996-11-12 Sagem Sa Vibrating beam force-frequency transducer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3204454A (en) * 1962-02-21 1965-09-07 Asea Ab Means for measuring the tension in a strip or sheet shaped material
US4522066A (en) * 1982-05-13 1985-06-11 Kistler-Morse Corporation Temperature-compensated extensometer
DE3232817C1 (de) * 1982-09-03 1988-09-08 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Biegefeder
DE19626081A1 (de) * 1996-06-28 1998-01-02 Siemens Ag Halbleiter-Bauelement
DE19840829B4 (de) * 1998-09-07 2005-10-20 Siemens Ag Verfahren zum Befestigen eines mikromechanischen Sensors in einem Gehäuse und Sensoranordnung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH424312A (de) * 1964-08-15 1966-11-15 Kistler Instrumente Ag Beschleunigungskompensierter piezoelektrischer Messwandler
EP0430445A2 (de) * 1989-11-02 1991-06-05 Matsushita Electric Industrial Co., Ltd. Piezoelektrischer Druckwandler
US5574220A (en) * 1994-08-10 1996-11-12 Sagem Sa Vibrating beam force-frequency transducer

Also Published As

Publication number Publication date
US20040011144A1 (en) 2004-01-22
JP2004513378A (ja) 2004-04-30
EP1334341A1 (de) 2003-08-13

Similar Documents

Publication Publication Date Title
DE102005010338B4 (de) Kraftsensoranordnung mit magnetostriktiven Magnetowiderstandssensoren und Verfahren zur Ermittlung einer auf den Träger einer Kraftsensoranordnung wirkenden Kraft
DE102004006201B4 (de) Drucksensor mit Siliziumchip auf einer Stahlmembran
DE102008040525B4 (de) Mikromechanisches Sensorelement
DE3232817C1 (de) Biegefeder
WO1998031998A1 (de) Halbleiter-drucksensor
DE4137624A1 (de) Silizium-chip zur verwendung in einem kraftsensor
DE602004009204T2 (de) Wandler zur Winkelgeschwindigkeitsmessung
DE19601078C2 (de) Druckkraftsensor
DE2349463B2 (de) Halbleiter-Druckfühler
WO2016120093A2 (de) Sensoranordnung zur indirekten erfassung eines drehmoments einer rotierbar gelagerten welle
EP1060401B1 (de) Magnetfeldsensor
AT520304B1 (de) Drucksensor
DE60309681T2 (de) Ausdehnungsmesssonde
WO2002040956A1 (de) Resonator chip sensor für druck, kraft mit mechanisch entkoppelten teilbereichen (schlitze) sowie weicher membran
DE19620459B4 (de) Halbleiter-Beschleunigungsmesser und Verfahren zur Bewertung der Eigenschaften eines Halbleiter-Beschleunigungsmessers
EP1434978B1 (de) Mikromechanisches bauelement (auf drucksensormembran ) mit balgartiger struktur für temperaturbewegungen
DE102004023063A1 (de) Mikromechanische piezoresistive Drucksensorenvorrichtung
DE19529178C2 (de) Halbleiterbeschleunigungssensor
EP3001167A1 (de) Sensoranordnung und verfahren zur herstellung einer sensoranordnung
DE3740688A1 (de) Mikromechanischer beschleunigungssensor mit hoher achsenselektivitaet
DE3009742C2 (de)
DE10006534B4 (de) Verfahren und Sensorelement zur Verformungsmessung
DE10354281B4 (de) Sensor
DE10036495C2 (de) Kraftmessvorrichtung in Form eines Biegebalkensensors
WO2000026608A2 (de) Verformungsmesser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10416369

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002542836

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001980096

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001980096

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001980096

Country of ref document: EP