WO2002038936A1 - Rundlaufregelung für dieselmotoren - Google Patents

Rundlaufregelung für dieselmotoren Download PDF

Info

Publication number
WO2002038936A1
WO2002038936A1 PCT/EP2001/012697 EP0112697W WO0238936A1 WO 2002038936 A1 WO2002038936 A1 WO 2002038936A1 EP 0112697 W EP0112697 W EP 0112697W WO 0238936 A1 WO0238936 A1 WO 0238936A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinders
speed curve
cylinder
rotational speed
crankshaft
Prior art date
Application number
PCT/EP2001/012697
Other languages
English (en)
French (fr)
Inventor
Jörg REMELE
Andreas Schneider
Albrecht Debelak
Original Assignee
Mtu Friedrichshafen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Friedrichshafen Gmbh filed Critical Mtu Friedrichshafen Gmbh
Priority to US10/169,611 priority Critical patent/US6820593B2/en
Priority to DE50100412T priority patent/DE50100412D1/de
Priority to EP01993755A priority patent/EP1242738B1/de
Publication of WO2002038936A1 publication Critical patent/WO2002038936A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation

Definitions

  • the invention relates to a method for concentricity control, as is known, for example, from DE 195 48 604 C1.
  • the known method serves to determine differences in the torque contributions of individual cylinders of an internal combustion engine on the basis of the crankshaft speed curve. It is based on the knowledge that the rotational movement of the crankshaft is non-uniform under the effect of gas and mass forces.
  • To determine the speed or torque component of a cylinder individual cylinders are specifically switched off during engine operation. By comparing the speed curve of the engine operated without cylinder deactivation, the torque share of each individual cylinder in the total engine torque can be shown in isolation using the speed signal.
  • the injection quantity variations resulting from manufacturing tolerances are recognized and are to be compensated for by producing the same mean pressures in all cylinders by varying the injection quantity.
  • the fuel supply of a cylinder can be switched off, which then works, for example, as a compressor.
  • the fuel supply to the remaining, normally operating cylinders is changed in a suitable manner. It It should be possible to determine through experimentation and calculation how the torque of the cylinders should be distributed in order to achieve optimal suppression of the vibrations. In this way, determined data are kept available for certain operating cases, according to which the internal combustion engine is controlled.
  • the injection quantities are obviously distributed among the individual cylinders in such a way that the vibrations of the 0.5th to 3rd orders are suppressed, since only they are responsible for noticeable vibrations in practice. However, the vibrations of the different orders obviously cannot always be suppressed equally.
  • the appropriate fuel distribution appears to be related to the size of the vector responsible for the vibrations.
  • a method for the cylinder selective control of a self-igniting internal combustion engine is also known.
  • a measuring device is used to record the crankshaft rotation angle and to determine the instantaneous crankshaft speed.
  • a control unit determines suitable parameters that enable cylinder-selective equality or a defined unequalization of the mean pressures in various operating areas of the internal combustion engine, the effect of component differences in the fuel supply and the combustion system on the combustion process being minimized.
  • the deviations of the individual cylinders can add up so unfavorably that the effect is the same as if a cylinder failed completely.
  • interruptions in operation occur due to faults in the injection system. Damaged intake or exhaust valves can result in loss of compression.
  • Switching off cylinders also represents an operating case that changes the torsional vibration stress.
  • the effect of the operating conditions deviating from normal operation on the excitation behavior of the motor is illustrated by a vector representation of the excitation forces. It is further stated that only the excitatory forces of the 0.5th, 1st and 1.5th order are of interest in intermittent operation.
  • the exciting alternating torque is calculated from the vector sum according to the phase position of the harmonic.
  • interventions on the engine e.g. B. are practically not feasible by changing the ignition pressure.
  • the invention has for its object to represent a concentricity control especially for high-cylinder internal combustion engines.
  • the cylinders are switched off one after the other and the speed recorded over the crank angle.
  • the speed curve of the healthy intact engine that is, when all cylinders are working normally, is recorded.
  • This can be a brand-new engine in normal operation, which has slight differences in the speed components of each cylinder due to tolerances, or an ideal engine, the cylinders of which are equal in terms of their shares in speed acceleration, for example, by using the method according to the invention.
  • ideal means that before the reference values are recorded, for example by varying the injection quantities of individual cylinders, a setting is made in which the fluctuations in the speed contributions of the cylinders are minimized. This setting is retained in normal operation.
  • Curve curve the spectrum of the speed curve R of a work cycle is formed.
  • the Fourier coefficients of the low-frequency vibrations are used, namely preferably the harmonics of the 0.5th to 3rd order, which are processed into a line matrix.
  • Injection quantities Cylinders that lie in the direction of the resulting R are corrected more with a positive or negative sign than orthogonal ones.
  • the mathematical operation that can achieve the corresponding performance is the formation of the scalar product or the vectorial inproduct from the resultant R and the spectral impulse responses T.
  • the required data are held in matrix form.
  • the matrix multiplication of the impulse responses ⁇ with the vector of the spectral speed curve R gives values different from zero and leads to one Correction of the injection quantities if there is a runout deviation in normal operation.
  • the correction values, which are standardized, are fed to a controller and the injection quantities ⁇ Q are determined, which can be positive or negative and accordingly correct the injection quantities determined by the engine controller for each injector of a cylinder.
  • FIGS. 1 to 4. The invention is illustrated by means of the drawings with FIGS. 1 to 4.
  • the figures show:
  • Figure 1 A speed control loop with the elements necessary for torsional vibration analysis in a schematic representation
  • Figure 2 The speed curve of the crankshaft over the angle for a working cycle of the engine
  • Figure 3 A spectral representation of the impulse response T of a cylinder
  • Figure 4 A pointer representation of the speed components of the cylinders in the 0.5th order for a six-cylinder engine, specifically for a healthy engine (Figure 4a), an engine with no injector (Figure 4b) and for an engine with corrected injection quantity ( 4c).
  • Reference numeral 1 denotes a diesel engine
  • the crankshaft not shown, is connected to a measuring wheel 2.
  • the speed curve of the crankshaft can be recorded over the angle.
  • a filter 4 and a filter 5 faults are masked out and the curve shape is averaged by comparing the recorded curve shapes over several work cycles.
  • the speed curve of the crankshaft is continuously recorded over the angle in normal engine operation.
  • the speed signal of a work cycle is shown by way of example in FIG. 2.
  • the radius marked with r corresponds to the current speed at the angle ⁇ .
  • the speed curve shows a deformation that occurs when a cylinder fails.
  • the spectral speed curve is obtained with the resulting vectors R, to R n , the indices corresponding to the harmonics under consideration.
  • the corresponding operation is carried out in the symbolically represented function block 7.
  • Fourier decomposition vectors R are the Fourier coefficients. Preferably only the harmonic vibrations of the 0.5th to 3rd order are considered. With ideal concentricity, no resulting parts of the corresponding harmonics occur or are at least negligible. In reality, however, the resultant vector R is small, since the harmonic components are not evenly distributed over the circumference.
  • This case is shown for an engine with six cylinders as an example for the harmonic of the 0.5th order in FIG. 4a. Each cylinder makes approximately the same contribution to the rotational acceleration, as the vector pointers ⁇ 1 to ⁇ 6 illustrate. In this case, the injection quantities determined on the basis of the predetermined target and actual speeds in the speed controller 9 and by the injection software 10 are not corrected by the injectors 11 assigned to each cylinder.
  • the injection quantity must be corrected individually for each cylinder if, as shown in FIG. 4b, one is due to the low-frequency vibration components
  • Resulting R is not equal to zero. In the corresponding case, it is assumed that a cylinder has failed and a harmonic of the 0.5th order occurs, which has the phase position shown with respect to the cylinders.
  • the pulse proportion of each cylinder in the speed must be known.
  • the corresponding speed-dependent data are kept ready in function block 8.
  • the cylinders are switched off one after the other in a measuring run and the speed is recorded over the crank angle. By comparing the speed curve of the healthy engine, one obtains the difference between the two
  • the vector pointers indicate the amount and phase of the corresponding harmonic.
  • the impulse responses ⁇ are stored in matrix form for the mathematical processing.
  • Correction factors for the injection quantities of the individual injectors are generated by forming the scalar in-product of the resulting vectors R with the impulse responses T. This takes place in the multiplication point 13.
  • the scalar vector product has the effect that only the components of the resultant R lying in the direction of the impulse response vectors make a contribution to the correction factors, that is to say that collinear vectors are strongly corrected and orthogonal vectors are not corrected at all.
  • the correction values are entered in the form of vector arrows for the individual injectors in FIG. 4c.
  • the correction factors are converted by multiplication by a constant factor into injection quantities ⁇ Q for each injector, which can be positive or negative, and accordingly the injection quantity Q determined by the engine controller for each injector of a cylinder is corrected positively or negatively in a summation point 12.
  • the calculation is based on the following equations:
  • T spectral impulse responses
  • K correction factors for the injection quantity By multiplying the scalar quantity K by the unit vector e, the impulse response is obtained K:

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Rundlaufregelung. Insbesondere bei hochzylindrigen Brennkraftmaschinen überlagern sich die Drehzahlanteile der Zylinder in einer Weise, dass bei Betrachtung der Drehzahlkurve keine Rückschlüsse mehr auf die Drehzahlanteile der einzelnen Zylinder möglich sind, was neue Auswertungsmethoden bedingt. Erfindungsgemäß werden die Beitrage der einzelnen Zylinder der Brennkraftmaschine zur Drehbeschleunigung anhand des Drehzahlverlaufs der Kurbelwelle bestimmt, indem die Zylinder nacheinander einzeln abgeschaltet werden. Aus den so gewonnenen Drehzahlverlaufskurven wird ein Impulsantwortspektrum (I) eines Arbeitsspieles zumindest für die Harmonische der 0,5-ten Ordnung gebildet. Im Normalbetrieb wird dann ständig der Drehzahlverlauf der Kurbelwelle über dem Winkel jedes Arbeitspieles aufgenommen. Durch Fouriertransformation werden die Fourierkoeffizienten als Resultierende (R) zumindest der Harmonischen der 0,5-ten Ordnung bestimmt. Korrketurfaktoren für die Einspritzmengen zur Gleichstellung der einzelnen Zylinder bezüglich ihrer Drehzahlanteile werden gewonnen, indem die in Richtung der Impulsantwortvektoren liegenden Komponenten der Resultierenden (R) mit den Impulsantworten (I) multipliziert und durch Addition zusammengefasst werden.

Description

Rundlaufregelung für Dieselmotoren
Die Erfindung betrifft ein Verfahren zur Rundlaufregelung, wie es beispielsweise aus der DE 195 48 604 C1 als bekannt hervorgeht. Das bekannte Verfahren dient dazu, Unterschiede der Momentenbeiträge einzelner Zylinder einer Brennkraftmaschine anhand des Kurbelwellendrehzahlverlaufs zu bestimmen. Dabei wird auf der Erkenntnis aufgebaut, dass die Drehbewegung der Kurbelwelle unter der Wirkung von Gas- und Massenkräften ungleichförmig verläuft. Um den Drehzahl- bzw. Drehmomentenanteil eines Zylinders zu bestimmen, werden während des Motorbetriebs einzelne Zylinder gezielt abgeschaltet. Durch Vergleich mit dem Drehzahlverlauf des ohne Zylinderabschaltung betriebenen Motors lässt sich der Momentenanteil jedes einzelnen Zylinders am Gesamtmotordrehmoment anhand des Drehzahlsignals isoliert darstellen. Die von Fertigungstoleranzen herrührenden Einspritzmengenstreuungen werden erkannt und sollen ausgeglichen werden, indem in allen Zylindern gleiche Mitteldrücke durch Einspritzmengenvariierung hergestellt werden.
Ein ähnliches Verfahren ist in der DE 41 22 139 C2 beschrieben. Auch hier wird davon ausgegangen, dass Drehungleichförmigkeiten auftreten, die darauf beruhen, dass aufgrund von Toleranzen in den Einspritzvorrichtungen in die einzelnen Zylindern der Brennkraftmaschine unterschiedliche Kraftstoff mengen eingespritzt werden. Ansatz ist, dass das Drehmoment bzw. die Drehbeschleunigung direkt proportional zur eingespritzten Kraftstoff menge ist. Um die Drehzahlungleichförmigkeiten zu vermeiden, wird der Anteil eines jeden Verbrennungsvorgangs an der Drehbeschleunigung erfasst. Die Messwerte werden durch Bildung von Mittelwerten miteinander verglichen und auf diese Weise Abweichungen festgestellt. Die Kraftstoffeinspritzmengen der einzelnen Zylinder werden schließlich so verändert, dass die Abweichungen verschwinden. Die Summe der Änderungen der in die einzelnen Zylindern eingespritzten Kraftstoff menge wird so gewählt, dass sie insgesamt Null ergibt.
Bei einer Brennkraftmaschine nach der WO 97/23716 kann die Kraftstoffzufuhr eines Zylinders abgeschaltet werden, der dann beispielsweise als Kompressor arbeitet. Um in dieser Betriebsweise Schwingungen zu vermeiden, ist es vorgesehen, die Kraftstoffzufuhr zu den verbleibenden, normal arbeitenden Zylindern in geeigneter Weise zu verändern. Es soll möglich sein, durch Experimente und Berechnung festzustellen, in welcher Weise das Drehmoment der Zylinder zu verteilen ist, um eine optimale Unterdrückung der Schwingungen zu erreichen. Für bestimmte Betriebsfälle werden auf diese Weise ermittelte Daten bereitgehalten, nach denen die Brennkraftmaschine gesteuert wird. Die Einspritzmengen werden auf die einzelnen Zylinder offensichtlich so aufgeteilt, dass die Schwingungen der 0,5-ten bis 3-ten Ordnungen unterdrückt werden, da nur sie in der Praxis für spürbare Vibrationen verantwortlich sind. Allerdings lassen sich die Schwingungen der verschiedenen Ordnungen offensichtlich nicht immer gleichermaßen unterdrücken. Die geeignete Kraftstoffverteilung steht offenbar im Zusammenhang mit der Größe des Vektors, der für die Schwingungen verantwortlich ist.
Aus der WO 98/07971 geht ebenfalls ein Verfahren zur zylinclerselektiven Steuerung einer selbstzündenden Brennkraftmaschine als bekannt hervor. Dabei dient eine Messvorrichtung zur Erfassung des Kurbelwellendrehwinkels und zur Bestimmung der momentanen Kurbelwellendrehzahl. Aus der Kurbelwellendrehzahl ermittelt ein Steuergerät geeignete Kenngrößen, die in verschiedenen Betriebsbereichen der Brennkraftmaschine eine zylinderselektive Gleichstellung bzw. eine definierte Ungleichstellung der Mitteldrücke ermöglichen, wobei die Auswirkung von Bauteildifferenzen der Kraftstoffzuführung und des Verbrennungssystems auf den Verbrennungsvorgang minimiert werden.
In der Dissertation von Jochen Tonndorf: "Einfluß des Aussetzerbetriebes auf das Drehschwingungsverhalten von Antriebsanlagen mit Kolbenmotoren", genehmigt von der Fakultät für Maschinenbau der Rheinisch-Westfälischen Technischen Hochschule Aachen wird das Drehschwingungsverhalten von Motoren untersucht. Dabei wird konstatiert, dass es Betriebszustände gibt, die sich wesentlich vom Normalbetrieb unterscheiden. So führen toleranzbedingte Fertigungsunterschiede bei Zylinder und Einspritzvorrichtung, aber auch im Verlauf der Betriebszeit durch Verschleiß bedingte Abweichungen zu Unterschieden gegenüber dem Normalbetrieb. Dadurch können angeblich Leistungsabweichungen der einzelnen Zylinder von etwa +/- 10 % hervorgerufen werden, was die Entstehung einer Drehschwingungserregerkraft bewirkt. Insbesondere können sich bei vielzylindrigen Motoren die Abweichungen der einzelnen Zylinder so ungünstig summieren, dass die Auswirkung die gleiche ist, als wenn ein Zylinder völlig ausgefallen ist. Des weiteren kann es durch Störungen im Einspritzsystem zum Aussetzerbetrieb kommen. Beschädigte Ein- oder Auslassventile können zum Verlust der Kompression führen. Auch das Abschalten von Zylindern stellt einen Betriebsfall dar, der die Drehschwingungsbeanspruchung verändert. Die Auswirkung der vom Normalbetrieb abweichenden Betriebszustände auf das Erregungsverhalten des Motors wird durch eine Vektordarstellung der Erregerkräfte verdeutlicht. Im weiteren wird konstatiert, dass im Aussetzerbetrieb nur die erregenden Kräfte der 0,5-ten, 1-ten und 1,5-ten Ordnung von Interesse sind. Das erregende Wechseldrehmoment errechnet sich aus der Vektorsumme entsprechend der Phasenlage der Harmonischen. Der Autor kommt jedoch zu dem Schluss, dass Eingriffe am Motor, z. B. durch Änderung des Zünddrucks praktisch nicht durchführbar sind.
Der Erfindung liegt die Aufgabe zugrunde, eine Rundlaufregelung insbesondere für hochzylindrige Brennkraftmaschinen darzustellen.
Diese Aufgabe wird durch die im Patentanspruch 1 aufgeführten Merkmale gelöst.
Während bei Brennkraftmaschinen mit wenigen Zylindern die auf die einzelnen Zylinder zurückgehenden Drehzahlanteile in der Drehzahlkurve eines Arbeitsspiels eindeutig auszumachen sind, ist dies bei hochzylindrigen Brennkraftmaschinen nicht der Fall. Vielmehr überlagern sich die Drehzahlanteile in einer Weise, dass bei Betrachtung der Drehzahlkurve keine Rückschlüsse auf den verursachenden Zylinder mehr möglich sind, was neue Auswertungsmethoden bedingt. Nichtsdestotrotz ist die erfinderische Methode auch auf niederzylindrige Brennkraftmaschinen anzuwenden, wenn dort auch Beschränkungen aufgrund der geringen Zylinderanzahl bestehen. Für die Rundlaufregelung werden die tieffrequenten Schwingungsanteile betrachtet. Hierzu wird das Impulsantwortspektrum jedes Zylinders durch Rechnung oder Messung festgestellt. Zur Feststellung des Impulsanteils eines Zylinders an der Drehgeschwiridigkeit durch Messung werden die Zylinder nacheinander einzeln abgeschaltet und die Drehzahl über dem Kurbelwinkel aufgezeichnet. Außerdem wird der Drehzahlverlauf des gesunden intakten Motors, das heißt, wenn alle Zylinder normal arbeiten, aufgenommen. Dabei kann es sich um einen fabrikneuen Motor im Normalbetrieb handeln, der aufgrund von Toleranzen geringe Unterschiede in den Drehzahlanteilen jedes Zylinders aufweist, oder um einen idealen Motor, dessen Zylinder beispielsweise durch Anwendung des erfindungsgemäßen Verfahrens hinsichtlich ihrer Anteile an der Drehzahlbeschleunigung gleichgestellt sind. Ideal in diesem Sinne heißt, dass vor Aufnahme der Referenzwerte, z.B. durch Variieren der Einspritzmengen einzelner Zylinder, eine Einstellung vorgenommen wird, in der die Schwankungen der Drehzahlbeiträge der Zylinder minimiert sind. Diese Einstellung wird im Normalbetrieb beibehalten. Es werden dann durch Differenzbildung des Kurvenverlaufs des gesunden Motors und der Kurvenverläufe für einzeln abgeschaltete Zylinder neue Kurven erzeugt, die den Einfluss eines jeden Zylinders am Gesamtdrehzahlverlauf wiedergeben. Diese Antwortkurven werden einer Fourierzerlegung unterzogen. Es werden jedoch nur tieffrequente harmonische Schwingungen, zweckmäßigerweise der 0,5-ten bis
3-ten Ordnung betrachtet und die zugehörigen spektralen Impulsantworten ϊ des Drehzahlverlaufs eines Arbeitsspieles jeden Zylinders aufgenommen. Im normalen Motorbetrieb wird nun ständig der Drehzahlverlauf der Kurbelwelle über dem Winkel aufgezeichnet und in analoger Weise durch Fourierzerlegung des erhaltenen
Kurvenverlaufs das Spektrum des Drehzahlverlaufs R eines Arbeitsspiels gebildet. Zur Darstellung des spektralen Drehzahlverlaufs werden wiederum nur die Fourierkoeffizienten der tieffrequenten Schwingungen benutzt, nämlich vorzugsweise der Harmonischen der 0,5-ten bis 3-ten Ordnung, die zu einer Zeilenmatrix verarbeitet werden. Die spektralen
Impulsantworten ϊ und die aus Fourierkoeffizienten des Drehzahlverlaufs Resultierende R sind für jede Harmonische als Vektorzeiger über dem Kurbelwinkel darstellbar. Ist die Resultierende gleich Null, so ist keine Korrektur der Einspritzmengen erforderlich. Ist jedoch eine Resultierende gegeben, heißt das, dass in einem Zylinder eine
Mindereinspritzung erfolgt, und es muss durch Korrektur der Einspritzmengen der einzelnen Injektoren die Resultierende zu Null gemacht werden. Die Aufteilung der für den gegebenen Lastfall erforderlichen Gesamteinspritzmenge erfolgt in der Weise, dass die in Richtung der Impulsantwortzeiger liegenden Komponenten der Resultierenden mit den Impulsantworten ϊ multipliziert werden. Das Ergebnis sind Korrekturfaktoren für die
Einspritzmengen. Zylinder, die in Richtung der Resultierenden R liegen, werden mit positivem oder negativem Vorzeichen stärker korrigiert als eher orthogonal liegende. Die mathematische Operation, die die entsprechende Leistung vollbringen kann, ist die Bildung des Skalarprodukts oder des vektoriellen Inprodukts aus der Resultierenden R und den spektralen Impulsantworten T. Hierfür werden die erforderlichen Daten in Matrizenform zur Verfügung gehalten. Die Matrixmultiplikation der Impulsantworten ϊ mit dem Vektor des spektralen Drehzahlverlaufs R ergibt von Null verschiedene Werte und führt zu einer Korrektur der Einspritzmengen, wenn eine Rundlaufabweichung im Normalbetrieb gegeben ist. Die Korrekturwerte, die normiert werden, werden einem Regler zugeführt und die Einspritzmengen ΔQ bestimmt, die positiv oder negativ sein können und dementsprechend die vom Motorregler bestimmten Einspritzmengen für jeden Injektor eines Zylinders korrigieren.
Die Erfindung wird dargestellt anhand der Zeichnungen mit Figuren 1 bis 4. Es zeigen:
Figur 1: Einen Drehzahlregelkreis mit den für die Drehschwingungsanalyse notwendigen Elementen in schematischer Darstellung;
Figur 2: Den Drehzahlverlauf der Kurbelwelle über dem Winkel für ein Arbeitsspiel des Motors;
Figur 3: Eine spektrale Darstellung der Impulsantwort T eines Zylinders;
Figur 4: Eine Zeigerdarstellung der Drehzahlanteile der Zylinder an der 0,5-ten Ordnung für einen Sechszylinder-Motor und zwar für einen gesunden Motor (Figur 4a), einen Motor mit fehlendem Injektor (Figur 4b) und für einen Motor mit korrigierter Einspritzmenge (4c).
In Figur 1 ist ein Drehzahlregelkreis dargestellt, wie er beispielsweise aus der
DE 195 15 481 A1 als bekannt hervorgeht. Mit Bezugsziffer 1 ein Dieselmotor bezeichnet, dessen nicht dargestellte Kurbelwelle mit einem Messrad 2 verbunden ist. Mit dem Messrad 2 und einem Messwertaufnehmer 3 kann der Drehzahlverlauf der Kurbelwelle über dem Winkel aufgenommen werden. Mit einem Filter 4 und einem Filter 5 werden Störungen ausgeblendet, sowie eine Mittelung des Kurvenverlaufs durchgeführt, indem die aufgenommene Kurvenverläufe über mehrere Arbeitsspiele hinweg abgeglichen werden. Zur Rundlaufregelung wird im normalen Motorbetrieb ständig der Drehzahlverlauf der Kurbelwelle über dem Winkel aufgezeichnet. Das Drehzahlsignal eines Arbeitsspieles ist beispielhaft in Figur 2 dargestellt. Der mit r gekennzeichnete Radius entspricht der momentanen Drehzahl beim Winkel φ. Der Drehzahlverlauf zeigt eine Deformation, wie sie beim Ausfall eines Zylinders auftritt. Durch Fourierzerlegung der Drehzahlverlaufskurve wird der spektrale Drehzahlverlauf erhalten mit den resultierenden Vektoren R, bis Rn, wobei die Indizes den betrachteten Oberwellen entsprechen. Die entsprechende Operation wird in dem symbolisch dargestellten Funktionsblock 7 ausgeführt. Die durch
Fourierzerlegung erhaltenen Vektoren R sind die Fourierkoeffizienten. Vorzugsweise werden nur die harmonischen Schwingungen der 0,5-ten bis 3-ten Ordnung betrachtet. Bei idealem Rundlauf treten keine resultierenden Anteile der entsprechenden Harmonischen auf oder sind zumindest vernachlässigbar. Real ergibt sich allerdings ein kleiner resultierender Vektor R, da die Oberwellenanteile am Umfang nicht gleichmäßig verteilt sind. Dieser Fall ist für einen Motor mit sechs Zylindern beispielhaft für die Harmonische der 0,5-ten Ordnung in Figur 4a dargestellt. Jeder Zylinder leistet näherungsweise den gleichen Beitrag zur Drehbeschleunigung, wie die Vektorzeiger Ϊ 1 bis Ϊ6 verdeutlichen. In diesem Fall erfolgt keine Korrektur der aufgrund der vorgegebenen Soll- und Istdrehzahlen im Drehzahlregler 9 und von der Einspritzsoftware 10 ermittelten Einspritzmengen durch die jedem Zylinder zugeordneten Injektoren 1 1.
Die Einspritzmenge muss jedoch zylinderindividuell korrigiert werden, wenn, wie in Figur 4b dargestellt, eine auf die tieffrequenten Schwingungsanteile zurückgehende
Resultierende R ungleich Null ist. Im entsprechenden Fall ist angenommen, dass ein Zylinder ausgefallen ist und eine Harmonische 0,5-ter Ordnung auftritt, die die dargestellte Phasenlage in Bezug auf die Zylinder hat.
Um zur Herstellung des Rundlaufs geeignete Korrekturfaktoren für die Einspritzmengen der Injektoren berechnen zu können, muss der Impulsanteil jedes Zylinders an der Drehzahl bekannt sein. Die entsprechenden drehzahlabhängigen Daten werden im Funktionsblock 8 bereit gehalten. Zur Feststellung des Impulsanteils eines Zylinders an der Drehgeschwindigkeit werden die Zylinder in einem Messlauf nacheinander einzeln abgeschaltet und die Drehzahl über dem Kurbelwinkel aufgezeichnet. Durch Vergleich mit dem Drehzahlverlauf des gesunden Motors erhält man aus der Differenz der beiden
Kurvenverläufe neue Kurvenverläufe, die die Impulsantworten T des Motors auf die Abschaltung der Zylinder darstellen. Die Impulsantworten I werden einer
Fouriertransformation unterzogen, wobei man die spektralen Impulsantworten T erhält. Es werden nur die auf die tieffrequenten harmonischen Schwingungen der 0,5-ten bis 3-ten Ordnung zurückgehenden Anteile betrachtet. Die spektrale Impulsantwort T =
Figure imgf000009_0001
,o ) e'nes Zylinders ist in Figur 3 dargestellt. Die Vektorzeiger verdeutlichen Betrag und Phase der entsprechenden Harmonischen. Die Impulsantworten ϊ werden für die mathematische Verarbeitung in Matrixform abgelegt. Durch Bildung des skalaren Inprodukts der resultierenden Vektoren R mit den Impulsantworten T werden Korrekturfaktoren für die Einspritzmengen der einzelnen Injektoren erzeugt. Dies erfolgt in der Multiplikationsstelle 13. Das skalare Vektorprodukt bewirkt, dass nur die in Richtung der Impulsantwortvektoren liegenden Komponenten der Resultierenden R einen Beitrag zu den Korrekturfaktoren liefern, das heißt, dass kollineare Vektoren stark korrigiert werden und orthogonale Vektoren gar nicht korrigiert werden. In Figur 4c sind die Korrekturwerte in Form von Vektorpfeilen für die einzelnen Injektoren eingetragen. Die Korrekturfaktoren werden durch Multiplikation mit einem konstanten Faktor in Einspritzmengen ΔQ für jeden Injektor umgerechnet, die positiv oder negativ sein können und dementsprechend die vom Motorregler bestimmte Einspritzmenge Q für jeden Injektor eines Zylinders in einer Summationsstelle 12 positiv oder negativ korrigiert. Die Berechnung erfolgt nach folgenden Gleichungen:
Bildung des Skalarprodukts: RT * Ϊ =K oder:
fϊ 1 o,s, 12o,5, 13o,s, 14o,5,... Ϊ 1 ι , Ϊ2ι , Ϊ3ι , Ϊ4ι,... (R0j5 R1;0 R1 S R2)0 2,5 •••) = (K1 K2 K3...) 1 11,5, 12ι,5, 13ι,5, 1 ι,5,...
Figure imgf000009_0002
R = Spektrum des Drehzahlverlaufs eines Arbeitsspiels (Transponierte)
T = Spektrale Impulsantworten
K = Korrekturfaktoren für die Einspritzmenge Durch Multiplikation der skalaren Größe K mit dem Einheitsvektor e, der Impulsantwort wird K erhalten:
K = K*e,

Claims

P A T E N T A N S P R Ü C H E
1. Verfahren zur Rundlaufregelung der Kurbelwelle einer Brennkraftmaschine, wobei die Beiträge der einzelnen Zylinder der Brennkraftmaschine zur Drehbeschleunigung anhand des Drehzahlverlaufs der Kurbelwelle bestimmt werden, und wobei die
Einspritzmengen der den Zylindern zugeordneten Injektoren zur Einstellung definierter Drehzahlbeiträge zum Drehzahlverlauf variiert werden, dadurch gekennzeichnet, dass aufgrund errechneter oder gemessener Drehzahlverlaufskurven der Kurbelwelle für jeden Zylinder ein Impulsantwortspektrum ϊ eines Arbeitsspieles zumindest für die Harmonische der 0,5-ten Ordnung gebildet wird, dass im Normalbetrieb jeweils der
Drehzahlverlauf der Kurbelwelle über dem Winkel eines Arbeitspieles aufgenommen wird und durch Fouriertransformation die Fourierkoeffizienten als Resultierende R zumindest der Harmonischen der 0,5-ten Ordnung bestimmt werden, und dass im weiteren Korrekturfaktoren für die Einspritzmengen der einzelnen Zylinder gewonnen werden, indem die in Richtung der Impulsantwortvektoren liegenden Komponenten der
Resultierenden R mit den Impulsantworten T multipliziert werden und durch Addition zusammengefasst werden.
2. Verfahren zur Rundlaufregelung nach Anspruch 1, dadurch gekennzeichnet, dass das Impulsantwortspektrum T aus der Differenz der Drehzahlkurve des gesunden Motors und der Drehzahlkurve des Motors mit jeweils einem abgeschalteten Zylinder für jeden Zylinder durch Fouriertransformation der Differenzdrehzahlkurve gewonnen wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, aus den Impulsantworten ϊ und den Fourierkoeffizienten R das Skalarprodukt gebildet wird, dessen Glieder nach Multiplikation mit dem Einheitsvektor die Korrekturfaktoren für die Einspritzmengen jedes Zylinders in Betrag und Richtung darstellen.
4. Verfahren nach Anspruch 1,2 oder 3, dadurch gekennzeichnet, dass die tieffrequenten Anteile mehrerer Oberwellen aus den Kurvenverläufen durch
Fouriertransformation ermittelt werden und daraus Korrekturfaktoren für die Einspritzmengen jedes Zylinders dargestellt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Oberwellen der 0,5- ten bis 3-ten Ordnung betrachtet werden.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Fourierkoeffizienten der 0,5-ten und 1-ten Ordnung benutzt werden.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zusätzlich die Oberwellen der 1,5-ten Ordnung berücksichtigt werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die
Koeffizienten der Fouriertransformationen in Form von Matrizen in einem Bordrechner abgelegt und abgearbeitet werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Einstellung der Einspritzmengen der einzelnen Zylinder des gesunden Motors korrigiert wird, bis die Beiträge der Zylinder, zumindest was tieffrequente Harmonische anbetrifft, zur Drehbeschleunigung weitgehend gleich gestellt sind, und dass gegenüber diesem Drehzahlverlauf die Beiträge der einzelnen Zylinder zum Drehzahlverlauf ermittelt werden.
PCT/EP2001/012697 2000-11-07 2001-11-02 Rundlaufregelung für dieselmotoren WO2002038936A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/169,611 US6820593B2 (en) 2000-11-07 2001-11-02 Regulation of true running for diesel engines
DE50100412T DE50100412D1 (de) 2000-11-07 2001-11-02 Rundlaufregelung für dieselmotoren
EP01993755A EP1242738B1 (de) 2000-11-07 2001-11-02 Rundlaufregelung für dieselmotoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10055192.0 2000-11-07
DE10055192A DE10055192C2 (de) 2000-11-07 2000-11-07 Rundlaufregelung für Dieselmotoren

Publications (1)

Publication Number Publication Date
WO2002038936A1 true WO2002038936A1 (de) 2002-05-16

Family

ID=7662466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/012697 WO2002038936A1 (de) 2000-11-07 2001-11-02 Rundlaufregelung für dieselmotoren

Country Status (4)

Country Link
US (1) US6820593B2 (de)
EP (1) EP1242738B1 (de)
DE (2) DE10055192C2 (de)
WO (1) WO2002038936A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843172A1 (fr) * 2002-08-01 2004-02-06 Bosch Gmbh Robert Procede de mise en oeuvre d'un moteur a combustion interne notamment de vehicule et appareil de commande et de regulation pour l'execution du procede
WO2004016930A1 (de) * 2002-07-31 2004-02-26 Conti Temic Microelectronic Gmbh Regelung der betriebsweise einer brennkraftmaschine
WO2004065775A1 (de) * 2003-01-24 2004-08-05 Siemens Aktiengesellschaft Verfahren zur berechnung von druckschwankungen in einem kraftstoffversorgungssystem einer mit kraftstoff-direkteinspritzung arbeitenden brennkraftmaschine und zur steuerung derer einspritzventile
FR2866928A1 (fr) * 2004-03-01 2005-09-02 Bosch Gmbh Robert Dispositif et procede de regulation d'un moteur a combustion interne
DE102006056860A1 (de) * 2006-12-01 2008-06-05 Conti Temic Microelectronic Gmbh Verfahren und Vorrichtung zur Steuerung der Betriebsweise einer Brennkraftmaschine
WO2010022834A1 (en) * 2008-08-28 2010-03-04 Gm Global Technology Operations, Inc. A method for correcting the cylinder unbalacing in an internal combustion engine
EP2843219A4 (de) * 2012-04-24 2016-07-13 Toyota Motor Co Ltd Steuerungsvorrichtung für einen verbrennungsmotor
CN107532529A (zh) * 2015-04-16 2018-01-02 法国大陆汽车公司 用于检测内燃发动机的反向旋转的方法和装置
CN112761802A (zh) * 2021-02-23 2021-05-07 上海柴油机股份有限公司 柴油机的突卸调速方法

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522658C2 (sv) 2002-06-28 2004-02-24 Scania Cv Abp Metod för att identifiera ett fel förknippat med en särskild cylinder i en flercylindrig förbränningsmotor och datorprogram för genomförande av metoden
US7231994B2 (en) 2003-11-24 2007-06-19 Daimlerchrysler Corporation Hybrid vehicle with integral generator for auxiliary loads
US7292933B2 (en) 2004-11-15 2007-11-06 Lotus Engineering, Inc. Engine misfire detection
US7027910B1 (en) * 2005-01-13 2006-04-11 General Motors Corporation Individual cylinder controller for four-cylinder engine
DE102005047829B3 (de) * 2005-10-05 2007-05-03 Universität Kassel Zylindergleichstellung bei Hubkolbenmotoren durch Ausregeln der harmonischen Anteile der Kurbelwellendrehzahl
FI121150B (fi) * 2005-11-30 2010-07-30 Waertsilae Finland Oy Mäntäpolttomoottorisysteemin laitteisto ja menetelmä tunnistamaan epäyhtenäinen sylinteriteho-osuus
DE102008021495B4 (de) * 2008-04-29 2019-09-19 Conti Temic Microelectronic Gmbh Verfahren zum Abgleichen eines Einspritzsystems einer Brennkraftmaschine
FI122489B (fi) * 2008-05-26 2012-02-15 Waertsilae Finland Oy Menetelmä ja järjestelmä dieselmoottorin sylintereiden tasapainottamiseksi
DE102008052245A1 (de) * 2008-10-18 2010-04-22 Conti Temic Microelectronic Gmbh Verfahren zum Ermitteln einer kurbelwellentorsionsoptimalen Betriebsweise einer Brennkraftmaschine
DE102008054215A1 (de) 2008-10-31 2010-05-06 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Vertrimmungsbestimmung einer Brennkraftmaschine mit zumindest zwei Brennkammern
DE102009008742A1 (de) 2009-02-12 2010-08-19 Bayerische Motoren Werke Aktiengesellschaft Reihensechszylinder-Brennkraftmaschine
DE102011005289B3 (de) * 2011-03-09 2012-08-16 Continental Automotive Gmbh Verfahren zur Auswertung eines Messsignals
US8626372B2 (en) 2011-09-15 2014-01-07 General Electric Company Systems and methods for diagnosing an engine
US9606022B2 (en) 2012-08-31 2017-03-28 General Electric Company Systems and methods for diagnosing engine components and auxiliary equipment associated with an engine
DE102012020489B4 (de) 2012-10-10 2014-04-30 Mtu Friedrichshafen Gmbh Verfahren zur Angleichung eines Einspritzverhaltens von Injektoren in einem Verbrennungsmotor, Motorsteuergerät und System zur Angleichung eines Einspritzverhaltens
DE102012020488B3 (de) 2012-10-10 2014-03-20 Mtu Friedrichshafen Gmbh Verfahren zur Momentenregelung eines Verbrennungsmotors und Verbrennungsmotor
DE102012020490B3 (de) * 2012-10-10 2014-03-13 Mtu Friedrichshafen Gmbh Verfahren zur Ausfallerkennung von Injektoren in einem Verbrennungsmotor, Motorsteuergerät und System zur Durchführung eines Verfahrens
DE102013222556A1 (de) * 2013-11-06 2015-05-07 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Erkennung von defekten Einspritzdüsen eines Verbrennungsmotors
US9624851B2 (en) * 2014-02-12 2017-04-18 GM Global Technology Operations LLC Method of operating a vehicle powertrain having a gas phase fuelable engine
US9605612B2 (en) * 2015-06-15 2017-03-28 GM Global Technology Operations LLC System and method for determining the speed of an engine when one or more cylinders of the engine are deactivated
EP3165750A1 (de) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit kraftstoffinjektordiagnose
EP3165747A1 (de) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit einspritzmengensteuerung
EP3165745A1 (de) 2015-11-04 2017-05-10 GE Jenbacher GmbH & Co. OG Brennkraftmaschine mit einspritzmengensteuerung
US10597038B2 (en) * 2016-09-16 2020-03-24 Nissan Motor Co., Ltd. Control method and control device for engine
WO2019069211A1 (en) * 2017-10-04 2019-04-11 The Board Of Trustees Of Western Michigan University TORQUE SENSOR FOR MOTORS
IT201800001107A1 (it) * 2018-01-16 2019-07-16 Ferrari Spa Sistema di identificazione e di soppressione di uno squilibrio di erogazione di coppia di un motore a combustione interna dotato di due o piu' cilindri
DE102018209253B4 (de) * 2018-06-11 2020-06-18 Bayerische Motoren Werke Aktiengesellschaft Fourier-Diagnose eines Ladungswechselverhaltens eines Verbrennungsmotors
JP7261189B2 (ja) * 2020-01-31 2023-04-19 日立Astemo株式会社 内燃機関制御装置及び内燃機関制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122139A1 (de) * 1991-07-04 1993-01-07 Bosch Gmbh Robert Verfahren zur zylindergleichstellung bezueglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
WO1997023716A1 (en) * 1995-12-22 1997-07-03 Ab Volvo Method for reducing vibration in a vehicle and a device for accomplishment of the method
US6021758A (en) * 1997-11-26 2000-02-08 Cummins Engine Company, Inc. Method and apparatus for engine cylinder balancing using sensed engine speed
WO2000036287A1 (en) * 1998-12-14 2000-06-22 Caterpillar Inc. Electronically controlled fuel injector trimming

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548604C1 (de) * 1995-09-14 1997-02-20 Mtu Friedrichshafen Gmbh Verfahren zur zylinderindividuellen Bestimmung relativer Unterschiede ungleichförmiger Zylindermomente bei einer Kolbenbrennkraftmaschine und Anwendung des Verfahrens
US6082187A (en) * 1998-12-18 2000-07-04 Caterpillar Inc. Method for detecting a power loss condition of a reciprocating internal combustion engine
DE19633066C2 (de) * 1996-08-16 1998-09-03 Telefunken Microelectron Verfahren zur zylinderselektiven Steuerung einer selbstzündenden Brennkraftmaschine
DE19859074A1 (de) * 1998-12-21 2000-06-29 Bosch Gmbh Robert Verfahren zur Regelung der Laufruhe eines Verbrennungsmotors
US6668812B2 (en) * 2001-01-08 2003-12-30 General Motors Corporation Individual cylinder controller for three-cylinder engine
US6546912B2 (en) * 2001-03-02 2003-04-15 Cummins Engine Company, Inc. On-line individual fuel injector diagnostics from instantaneous engine speed measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4122139A1 (de) * 1991-07-04 1993-01-07 Bosch Gmbh Robert Verfahren zur zylindergleichstellung bezueglich der kraftstoff-einspritzmengen bei einer brennkraftmaschine
WO1997023716A1 (en) * 1995-12-22 1997-07-03 Ab Volvo Method for reducing vibration in a vehicle and a device for accomplishment of the method
US6021758A (en) * 1997-11-26 2000-02-08 Cummins Engine Company, Inc. Method and apparatus for engine cylinder balancing using sensed engine speed
WO2000036287A1 (en) * 1998-12-14 2000-06-22 Caterpillar Inc. Electronically controlled fuel injector trimming

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004016930A1 (de) * 2002-07-31 2004-02-26 Conti Temic Microelectronic Gmbh Regelung der betriebsweise einer brennkraftmaschine
US7219003B2 (en) 2002-07-31 2007-05-15 Conti Temic Microelectronic Gmbh Regulating the mode of operation of an internal combustion engine
FR2843172A1 (fr) * 2002-08-01 2004-02-06 Bosch Gmbh Robert Procede de mise en oeuvre d'un moteur a combustion interne notamment de vehicule et appareil de commande et de regulation pour l'execution du procede
WO2004065775A1 (de) * 2003-01-24 2004-08-05 Siemens Aktiengesellschaft Verfahren zur berechnung von druckschwankungen in einem kraftstoffversorgungssystem einer mit kraftstoff-direkteinspritzung arbeitenden brennkraftmaschine und zur steuerung derer einspritzventile
FR2866928A1 (fr) * 2004-03-01 2005-09-02 Bosch Gmbh Robert Dispositif et procede de regulation d'un moteur a combustion interne
US8200415B2 (en) 2006-12-01 2012-06-12 Conti Temic Microelectronic Gmbh Method and device for controlling the operating mode of an internal combustion engine
DE102006056860A1 (de) * 2006-12-01 2008-06-05 Conti Temic Microelectronic Gmbh Verfahren und Vorrichtung zur Steuerung der Betriebsweise einer Brennkraftmaschine
WO2010022834A1 (en) * 2008-08-28 2010-03-04 Gm Global Technology Operations, Inc. A method for correcting the cylinder unbalacing in an internal combustion engine
CN102137996A (zh) * 2008-08-28 2011-07-27 通用汽车环球科技运作有限责任公司 修正内燃机内汽缸不平衡的方法
EP2843219A4 (de) * 2012-04-24 2016-07-13 Toyota Motor Co Ltd Steuerungsvorrichtung für einen verbrennungsmotor
CN107532529A (zh) * 2015-04-16 2018-01-02 法国大陆汽车公司 用于检测内燃发动机的反向旋转的方法和装置
US10371072B2 (en) 2015-04-16 2019-08-06 Continental Automotive France Method and device for detecting reverse rotation of an internal combustion engine
CN107532529B (zh) * 2015-04-16 2019-11-26 法国大陆汽车公司 用于检测内燃发动机的反向旋转的方法和装置
CN112761802A (zh) * 2021-02-23 2021-05-07 上海柴油机股份有限公司 柴油机的突卸调速方法
CN112761802B (zh) * 2021-02-23 2023-02-17 上海新动力汽车科技股份有限公司 柴油机的突卸调速方法

Also Published As

Publication number Publication date
EP1242738B1 (de) 2003-07-23
EP1242738A1 (de) 2002-09-25
DE10055192C2 (de) 2002-11-21
DE10055192A1 (de) 2002-05-29
DE50100412D1 (de) 2003-08-28
US6820593B2 (en) 2004-11-23
US20030089338A1 (en) 2003-05-15

Similar Documents

Publication Publication Date Title
EP1242738B1 (de) Rundlaufregelung für dieselmotoren
DE102020104290B4 (de) Fehlzündungs-Erfassungsvorrichtung für einen Verbrennungsmotor, Fehlzündungs-Erfassungssystem für einen Verbrennungsmotor, Datenanalysevorrichtung, Controller für einen Verbrennungsmotor, Verfahren zum Erfassen einer Fehlzündung eines Verbrennungsmotors und Empfangsausführungsvorrichtung
EP3374617B1 (de) Verfahren zur kombinierten identifizierung einer kolbenhub-phasendifferenz, einer einlassventilhub-phasendifferenz und einer auslassventilhub-phasendifferenz eines verbrennungsmotors
DE3918772C2 (de)
DE102011114109B4 (de) Verfahren zum Ermitteln eines indizierten mittleren effektiven Drucks (IMEP) basierend auf einer Kurbelwellenposition
DE102016117342B4 (de) Vorrichtung zum Detektieren einer Fehlzündung
DE19527218A1 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
DE102012113143A1 (de) System und verfahren zur steuerung einer ölpumpe
DE102008054690A1 (de) Verfahren und Vorrichtung zur Kalibrierung von Teileinspritzungen in einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE3805587C2 (de)
DE10006341C2 (de) Regelsystem für eine Brennkraftmaschine
DE102004048330B4 (de) Verfahren zur Diagnose für eine Motorsteuerung und entsprechende Motorsteuerung
DE3833122A1 (de) Vorrichtung zur ueberwachung des luft/kraftstoff-verhaeltnisses in einer brennkraftmaschine mit innerer verbrennung
DE112018004908B4 (de) Fehlzündungsdetektor für einen Verbrennungsmotor
DE3403260C2 (de)
DE102008054215A1 (de) Verfahren zur Vertrimmungsbestimmung einer Brennkraftmaschine mit zumindest zwei Brennkammern
EP3729041B1 (de) Verfahren zum betreiben eines prüfstands
DE102008052245A1 (de) Verfahren zum Ermitteln einer kurbelwellentorsionsoptimalen Betriebsweise einer Brennkraftmaschine
DE102011077698B4 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
DE4405340B4 (de) Verfahren und Vorrichtung zur Einstellung der Drehzahl einer Antriebseinheit eines Fahrzeugs im Leerlauf
EP2748449A1 (de) Verfahren zum betreiben einer brennkraftmaschine
AT520521A4 (de) Verfahren zum Betreiben eines Prüfstands
WO2012104122A1 (de) Verfahren und vorrichtung zur modellierung eines momentenwirkungsgrades eines verbrennungsmotors für eine kraftstoffmehrfacheinspritzung in einem verbrennungstakt
DE19951581A1 (de) Verfahren und Vorrichtung zur Gleichstellung wenigstens zweier Zylinderbänke einer Brennkraftmaschine
EP1574835B1 (de) Verfahren und Steuergerät zum Bereinigen eines Drehzahlsignals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001993755

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001993755

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10169611

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001993755

Country of ref document: EP