WO2002031853A1 - Plasma display panel, its manufacturing method, and dielectric repairing apparatus - Google Patents

Plasma display panel, its manufacturing method, and dielectric repairing apparatus Download PDF

Info

Publication number
WO2002031853A1
WO2002031853A1 PCT/JP2001/008844 JP0108844W WO0231853A1 WO 2002031853 A1 WO2002031853 A1 WO 2002031853A1 JP 0108844 W JP0108844 W JP 0108844W WO 0231853 A1 WO0231853 A1 WO 0231853A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
dielectric
defect
substrate
plasma display
Prior art date
Application number
PCT/JP2001/008844
Other languages
French (fr)
Japanese (ja)
Inventor
Taku Watanabe
Masaki Aoki
Hiroyuki Yonehara
Shinya Fujiwara
Yasuyuki Akata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2002535149A priority Critical patent/JPWO2002031853A1/en
Publication of WO2002031853A1 publication Critical patent/WO2002031853A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/38Dielectric or insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/50Repairing or regenerating used or defective discharge tubes or lamps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Definitions

  • Plasma display panel Method for manufacturing the same, and dielectric repair
  • the present invention relates to a method for manufacturing a plasma display panel used for a display device or the like, and more particularly to a plasma display panel in which a dielectric glass layer is improved.
  • a plasma display panel which has attracted attention as a thin display device, has, for example, a configuration shown in FIG.
  • This plasma display panel consists of front glass substrates
  • a rear glass substrate 120 On the front glass substrate 110, display electrodes 111, 112, a dielectric glass layer 113, and an MgO dielectric protection layer 114 are sequentially formed. On the rear glass substrate 110, an address electrode 121 and an electrode protection layer (dielectric glass layer) 122 are formed, on which a partition wall 123 is further formed. Are formed, and phosphor layers 124 are applied to the side surfaces of the partition walls 123.
  • Discharge gas 130 is sealed between front glass substrate 110 and rear glass substrate 120 at a predetermined pressure.
  • the discharge gas 130 is discharged between the display electrodes 111 and 112 to generate ultraviolet rays, and the ultraviolet rays are applied to the phosphor layer 124 to display an image including a color display. Becomes possible. It should be noted that one of the substrates is actually rotated by 90 degrees, and the electrodes 111, 112 and the electrode 121 are arranged so as to cross each other.
  • a silver electrode or a Cr—Cu—Cr electrode is used for the display electrodes 111 and 112.
  • the dielectric glass layer 113 is formed by applying a low-melting glass paste, drying and firing. It is generally done.
  • the method of forming the dielectric glass layer includes screen printing and a die coating method in which a paste is poured out from a narrow slit and applied.
  • a glass paste for forming a dielectric firing at a temperature about 10 ° C higher than the softening point of glass Softening point firing type or firing at a temperature about 100 ° C higher than the softening point
  • glass paste use a two-layer dielectric glass layer in which a softening point firing type first layer is formed and then a defoaming firing type dielectric glass layer is formed.
  • Forming a dielectric glass layer using only the softening point firing type requires only one type of glass base, so the process is more complicated than forming a two-layer dielectric glass layer as described above. It is simple and low cost can be expected.
  • the present invention has been made in view of the above problems, and has as its first object to provide a plasma display panel having a substantially defect-free dielectric layer and a method for manufacturing the same.
  • the present invention provides an electrode and a dielectric layer And a portion corresponding to a repaired defect in the dielectric layer.
  • the dielectric layer of the plasma display panel has a portion corresponding to the repaired defect, and it is possible to detect bubbles, cracks, and the like existing in the layer created at the time of manufacturing the dielectric layer. Defects such as micro-clocks, which are virtually impossible, have been repaired, and a plasma display panel with a dielectric layer substantially free of defects has been realized. As a result, the dielectric strength is excellent.
  • defects include relatively large defects caused by air bubbles and the like, as well as micro defects such as micro cracks, which are virtually impossible to detect.
  • micro defects such as micro cracks are practically impossible to detect, the present invention which can substantially eliminate them is extremely significant.
  • the defect of the dielectric layer causes dielectric breakdown of the dielectric layer. Since the presence of a defect in the dielectric layer causes physical damage to the dielectric layer, the defect that is normally present in the dielectric layer as in the present invention has been repaired. This is extremely significant.
  • the dielectric layer is made of low melting point glass, and the glass composition of the repaired defect corresponding portion of the dielectric layer is different from the glass composition of the non-defect corresponding portion.
  • the repaired portion corresponding to the defect has a different composition from the glass material of the dielectric layer as a result of the repair, and as a result of the repair, bubbles and microcracks are filled with another material. Which indicates that.
  • the repaired defect portion of the dielectric layer is characterized in that the content of the electrode material is higher than other portions. This is because the electrode material sublimated to the defect portion, adhered to the periphery thereof, and then solidified, thereby closing the defect.
  • the present invention is characterized in that the method includes a step of repairing a defect after forming a dielectric layer on a substrate.
  • a plasma display panel with a restored dielectric layer can be obtained, so that a plasma display panel with excellent withstand voltage can be realized.
  • it has a defect-free dielectric layer that repairs defects such as bubbles, cracks, and cracks that are virtually impossible to detect in the layer created when the dielectric layer was created.
  • a plasma display panel is realized.
  • the present invention provides a step of detecting a defect in a dielectric layer after forming a dielectric layer on a substrate, and at least a step of detecting a defect in the detected dielectric layer. Repairing the defect.
  • a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized.
  • it has a defect-free dielectric layer that repairs defects such as bubbles, cracks, and cracks that are virtually impossible to detect in the layer created when the dielectric layer was created.
  • a plasma display panel is realized.
  • the step of repairing the defect in the dielectric layer is characterized in that the dielectric near the defect in the dielectric layer is melted and then solidified.
  • the melted dielectric enters air bubbles, cracks, micro cracks, etc., and then solidifies to close and repair the defect.
  • the step of repairing the defect in the dielectric layer is characterized in that the defect in the dielectric layer is irradiated with light.
  • the defect in the dielectric layer is irradiated with light.
  • the step of repairing the defect in the dielectric layer is a step of flowing a current through the dielectric layer. That is, by applying a voltage to bubbles, cracks, microcracks, and the like, the dielectric material near the defect is melted, enters the defect, and then solidifies. It is closed and repaired.
  • the present invention provides a step of forming a glass dielectric layer on a substrate, and a step of detecting a defect in the dielectric layer after the formation of the dielectric layer. And applying a glass having a softening point lower than that of the glass forming the dielectric layer to at least the detected defects and firing at a temperature equal to or lower than the firing temperature at which the dielectric layer was formed. And features.
  • a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized.
  • a defect-free dielectric layer that has repaired defects such as bubbles, cracks, and cracks that are virtually impossible to detect in the layer created when the dielectric layer was created thus, a plasma display panel having the above is realized.
  • the present invention provides a method in which a conductive substrate is arranged at a constant distance from a substrate on which a first dielectric layer is formed, and the substrate and the conductive substrate are A step of applying a voltage via a discharge gas therebetween, and a step of forming a second dielectric layer on the first dielectric layer after the step of applying the voltage. .
  • a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized.
  • a defect-free dielectric layer in which defects such as bubbles, cracks, and micro-cracks that are virtually impossible to detect are repaired in the layer created when the dielectric layer was created.
  • a plasma display panel is realized. This is because heating is performed by applying voltage to bubbles, cracks, microcracks, etc., and the dielectric near the defect melts and enters and solidifies, and then the defect is closed and repaired. .
  • the dielectric repair apparatus of the present invention includes a means for irradiating light to a substrate on which a dielectric layer and an electrode are formed.
  • the bubbles, cracks, microcracks, etc. are heated by irradiating light, and the dielectric near the defects is melted, enters the defects and solidifies, and then the defects are closed and repaired.
  • the dielectric repair device of the present invention comprises: a conductive substrate disposed at a predetermined distance from a substrate on which a dielectric layer and an electrode are formed; In this configuration, a voltage is applied between the substrate and the conductive substrate via a discharge gas.
  • heating is performed by applying a voltage to bubbles, cracks, microcracks, and the like, and the dielectric near the defects melts and enters the defects, and is subsequently solidified to close the defects. It is repaired.
  • the voltage applied between the substrate and the conductive substrate is increased to a predetermined voltage, and the voltage is decreased after the voltage is maintained at the predetermined voltage for a certain period of time. This is because if a constant voltage is applied suddenly, the dielectric layer cannot be repaired, but rather the defects may be enlarged and the dielectric layer may be physically destroyed.
  • the voltage applied between the substrate and the conductive substrate is DC, and a current limiting resistor may be connected to the conductive substrate. As a result, it is possible to easily limit the value of the current flowing through the defective portion of the dielectric layer.
  • the current limiting resistance is 1 ⁇ to 1 ⁇ . This is because, assuming that the breakdown voltage of the dielectric layer is about 300 V and the current is about 0.1 mA in order to restore the dielectric layer, the current is about this level.
  • the applied voltage be an alternating current or a rectangular wave. This is because the alternating current increases the electric value at three low voltages, and the rectangular wave is used to facilitate the control of the electric current value by adjusting the frequency of the rectangular wave. is there.
  • the frequency of the applied voltage be in the range of 6011 ⁇ 2 to 1001: 112. .
  • a dielectric repair apparatus of the present invention includes a means for detecting a defect in a dielectric layer made of glass formed on a substrate, and at least a means for detecting a defect in the detected dielectric layer.
  • a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized.
  • a defect-free dielectric layer is provided in which defects such as bubbles, cracks, and cracks that are virtually impossible to detect are present in the layer created when the dielectric layer was created.
  • a plasma display panel is realized.
  • the defect since it has a step of detecting a defect before repairing the dielectric layer, At least a relatively large detectable defect that has a decisive effect on the withstand voltage is detected in advance, and if a defect is detected as a result, the defect is corrected at least. However, if a defect is detected, micro-cracks of a small size that cannot be detected can be corrected by applying a repair process not only to the defective part but also to the entire dielectric layer, which is practical. Provides a defect-free dielectric layer.
  • the dielectric repair device of the present invention provides a substrate on which a first dielectric layer is formed, with a conductive substrate disposed at a constant interval on the substrate, and a substrate provided with the first dielectric layer.
  • the semiconductor device is characterized by having a means for applying a voltage between the conductive substrates via a discharge gas.
  • a plasma display panel in which a defect is repaired by applying a current to a defective portion of the dielectric layer can be obtained, so that a plasma display panel having excellent withstand voltage can be realized.
  • a plasma layer provided with a defect-free dielectric layer in which defects such as bubbles, cracks and micro-cracks that are practically impossible to detect are repaired in the layer created at the time of forming the dielectric layer.
  • a display panel is realized.
  • the above-mentioned dielectric repair apparatus is characterized by further comprising means for heating the temperature to 100 ° C. or less when the voltage is applied.
  • the present invention provides a first substrate having a dielectric layer, a first electrode, and a second electrode, and a second substrate having a third electrode.
  • a display device comprising a first substrate and a second substrate provided at a constant interval, wherein a discharge gas is provided between the first electrode, the second electrode, and the third electrode. Characterized by having a portion corresponding to a defect repaired by applying a voltage through the.
  • the dielectric layer of the display device has a portion corresponding to the repaired defect, and it is practically possible to detect bubbles, cracks, and the like existing in the layer created at the time of manufacturing the dielectric layer.
  • Impossible My Croc A display device having a defect-free dielectric layer in which defects such as defects are repaired has been realized. As a result, the dielectric strength is excellent.
  • the voltage applied between the first electrode and the second electrode and the third electrode is increased to a predetermined voltage, and the voltage is decreased after maintaining the voltage at the predetermined voltage for a certain time. Is desirable. This is because if a constant voltage is applied suddenly, the dielectric layer cannot be repaired, but rather the defects may be enlarged and the dielectric layer may be physically destroyed.
  • the voltage applied between the first and second electrodes and the third electrode is DC, and a current limiting resistor may be connected to the electrodes. .
  • a current limiting resistor may be connected to the electrodes.
  • the current limiting resistor be 1 ⁇ to 1 ⁇ .
  • the applied voltage be an alternating current or a square wave.
  • the reason for this is to increase the current value at a low voltage by using an alternating current, and to make the rectangular wave to facilitate the control of the current value by adjusting the frequency of the rectangular wave.
  • the frequency of the applied voltage be 60 ⁇ to 100 KHz.
  • a plasma display panel of the present invention includes a substrate on which an electrode and a dielectric layer are formed, wherein the dielectric layer includes a first dielectric layer and the dielectric layer. It is characterized by comprising a second dielectric layer that is denser than the body layer.
  • defects such as bubbles, cracks, and micro cracks that are virtually impossible to detect exist in the first dielectric layer. Even if it is, it is denser than this so as to cover it.Because it has a second dielectric layer, it has virtually no defects and a plasma diode with excellent withstand voltage A spray panel is obtained.
  • the second dielectric layer is electrically It can be made of an insulating polymer.
  • the second dielectric layer may be a polymer having a silicon-silicon bond.
  • the second dielectric layer can be made of a silicone containing a siloxane bond or a polymer thereof.
  • a plasma display panel of the present invention has a substrate on which an electrode, a dielectric layer, and a dielectric protection layer are formed. It is characterized by comprising a first dielectric layer and a second dielectric layer which is denser than the first dielectric layer and is provided in the first dielectric layer.
  • the defects are included in the first dielectric layer. Since the second dielectric layer is more dense, defects when formed continuously in the thickness direction of the dielectric layer are divided and the depth thereof is reduced. As a result, the amount of current flowing to the defect at the time of discharge is reduced, and a plasma display panel having excellent withstand voltage is obtained.
  • a method of manufacturing a plasma display panel includes a step of forming an electrode on a substrate, and forming at least a first dielectric layer on the electrode.
  • the plasma display panel obtained by the present invention In this case, even if defects such as air bubbles, cracks, and micro cracks that are practically impossible to detect exist in the first dielectric layer, it is necessary to cover the first dielectric layer. Since the second dielectric layer is more dense, defects can be substantially eliminated, and a plasma display panel having excellent withstand voltage can be obtained.
  • the second dielectric layer can be an electrically insulating polymer.
  • the electrically insulating polymer can be a polymer having a silicon-silicon covalent bond as a main chain.
  • the electrically insulating polymer can be a silicone containing a siloxane bond or a copolymer thereof.
  • a method of manufacturing a plasma display panel includes a step of forming an electrode on a substrate, and forming at least a first dielectric layer on the electrode.
  • the plasma display panel obtained by the present invention defects such as bubbles, cracks, and micro-clocks that are practically impossible to detect exist in the first dielectric layer. Even if the second dielectric layer, which is denser than the second dielectric layer, is provided, the defects formed when the dielectric layer is formed continuously in the thickness direction of the dielectric layer are separated and the depth is reduced. It will be shallower. As a result, the amount of current flowing to the defect at the time of discharge is reduced, and a plasma display panel having excellent withstand voltage is obtained.
  • the second dielectric layer can be an electrically insulating polymer.
  • the electrically insulating polymer can be a polymer having a silicon-silicon covalent bond as a main chain.
  • the electrically insulating polymer is a polymer containing a siloxane bond. It can be silicon or its copolymer.
  • FIG. 1 is a perspective view of a main part of an AC surface discharge type plasma display panel according to a first embodiment of the present invention.
  • FIG. 2 is a vertical sectional view including the line X—X in FIG. 1.
  • FIG. 3 is a vertical sectional view including the line Y-Y of FIG.
  • FIG. 4 is a block diagram showing a drive circuit configuration for driving the PDP.
  • FIG. 5 is a plan view showing the configuration of an apparatus for repairing a defect remaining in the dielectric glass layer (dielectric repair apparatus).
  • Fig. 6 Examples of film defects of the dielectric glass layer.
  • Fig. 6 (a) shows the case of the conventional case, and
  • Fig. 6 (b) shows the case of the embodiment.
  • Fig. 7 is a plan view showing the configuration of a device (dielectric repair device) that repairs defects remaining in the dielectric glass layer by light irradiation.
  • Fig. 8 is a plan view showing the configuration of a device (dielectric repair device) that repairs defects remaining in the dielectric glass layer by coating with glass.
  • FIG. 9 is a plan view showing a configuration of a plasma display panel according to a third embodiment of the present invention.
  • FIG. 10 is a plan view showing a configuration of a plasma display panel according to a third embodiment of the present invention.
  • FIG. 11 is a plan view showing a configuration of a plasma display panel according to a conventional example.
  • PDP plasma display panel
  • FIG. 1 is a perspective view of a main part of an AC surface discharge type PDP according to the present embodiment.
  • FIG. 2 is a vertical cross-sectional view including the X-X line of FIG. 1, and FIG. FIG. Note that although only three cells are shown in these figures for convenience, the PDP is actually composed of a large number of cells that emit red (R), green (G), and blue (B). Has been done.
  • This PDP generates a discharge inside the panel by applying a pulsed voltage to each electrode, and the visible light of each color generated on the rear panel PA2 side with the discharge is applied to the main surface of the front panel PA1.
  • This is an AC surface discharge type PDP that allows light to pass through.
  • the front panel PA 1 has a dielectric glass layer 13 formed on a front glass substrate 11 on which display electrodes 12 are arranged in a strip shape so as to cover the display electrodes 12. Further, a protective layer 14 is formed so as to cover the dielectric glass layer 13.
  • the display electrode 12 is composed of a transparent electrode 12a formed on the surface of the glass substrate 11 and a metal electrode 12b formed on the transparent electrode 12a.
  • the rear panel PA 2 protects the address electrodes 22 on the rear glass substrate 21 on which the address electrodes 22 are arranged in a strip shape so as to cover the address electrodes 22.
  • Electrode protective layer 23 that acts to reflect visible light to the front panel side as well as accumulates charge on the film surface during actual driving. Is formed, and extends in the same direction as the address electrode 22 on the electrode protection layer 23, and a partition wall 24 is erected so as to sandwich the address electrode 22. Further, a phosphor layer 25 is arranged between the partition walls 24.
  • the “dielectric layer” covering each electrode surface is electrically insulative and has a function of accumulating wall charges on its surface.
  • glass is used as described above.
  • the front panel PA 1 is mounted on the surface of the front glass substrate 11 by a known method.
  • the display electrode 12 is formed in a strip shape by a chemical vapor deposition method or a photolithographic method, and then a dielectric glass layer 13 is formed using glass so as to cover the display electrode 12. It is formed by forming a protective layer 14 made of magnesium oxide (MgO) on the surface of the dielectric glass layer 13 by an electron beam evaporation method.
  • MgO magnesium oxide
  • an address electrode 22 is formed on the surface of the rear glass substrate 21 by a photolithographic method.
  • This address electrode is composed of only a metal electrode.
  • an electrode protection layer 23 is formed so as to cover the address electrodes 22 in the same manner as in the case of the front panel PA 1.
  • a glass partition wall 24 is provided on the electrode protection layer 23 with a predetermined pitch.
  • a phosphor layer 25 is formed by disposing a red (R) phosphor, a green (G) phosphor, and a blue (B) phosphor in each space sandwiched by the partition walls 24. I do.
  • R red
  • G green
  • B blue
  • the phosphor of each color R, G, B the phosphor generally used for PDP can be used.
  • the following phosphor is used.
  • Completion of PDP by bonding front panel and rear panel Next, position the front panel PA1 and the rear panel PA2 so that the display electrode 12 and the address electrode 22 are orthogonal to each other, and bond both panels. You. Thereafter, a discharge gas (for example, a He—Xe system or a Ne—Xe system inert gas) is sealed in a discharge space 30 partitioned by the partition wall 24 at a predetermined pressure to complete the PDP.
  • a discharge gas for example, a He—Xe system or a Ne—Xe system inert gas
  • the composition of the discharge gas to be filled is the He-Xe system, Ne-Xe system, etc., which have been used in the past. , The content of X e and 5% by volume or more, setting the gas pressure to 0. 6 7 x 1 0 5 ⁇ 1. 0 1 XI 0 5 P a.
  • the PDP having the above configuration is driven using the drive circuit shown in FIG.
  • An address electrode 22 is connected to the address electrode driving section 31, and a scanning electrode of the display electrode 12 is connected to the scanning electrode driving section 32, and to a sustain electrode driving section 33. Is connected to the electrode on the maintenance side of the display electrode 12. Then, such a drive circuit uniformly accumulates wall charges in all cells in the PDP in order to easily cause discharge during the setup period. Next, write / discharge of cells to be lit during the address period is performed. Further, the cells written in the address period are turned on in the sustain period to maintain the lighting, and the cell charges are stopped by erasing the wall charges in the erase period. These multiple operations are repeatedly performed, and an image of one TV field is displayed.
  • the dielectric glass layer is disposed on both the front panel and the rear panel as described above.
  • the structure is the same as that of the dense structure in which defects are repaired.
  • the dielectric glass layer 13 (23) is composed of a first dielectric glass layer 13a (23a) covering the electrode surface and a second dielectric glass layer (23b) covering this surface. ).
  • the first dielectric glass layer 13a (23a) was formed through a defect repairing step after the glass material was melted and solidified. This results in a dense membrane structure with virtually no defects (bubbles, cracks, microcracks).
  • the first dielectric glass layer is formed through the following steps. First, a dielectric material containing the glass material, the binder, and the solvent constituting the first dielectric glass layer is applied to form an electrode (coating process), the solvent is dried, and then the ink is applied. Heat at a temperature at which the contained binder disappears and the glass material melts. After that, the molten glass is solidified by cooling to form the first dielectric glass layer before the defect is repaired (firing step).
  • the coating step is performed by a screen printing method, a die coating method, a spin coating method, a spray coating method, or a blade coating method. To apply ink.
  • the glass to be included in the ink for example, when a glass composed of the components Gl, G2, G3, ..., GN is used, the components Gl, G2, G3, *, GN was weighed at a ratio corresponding to the component ratio, and this was heated and melted in a furnace at, for example, 130 ° C., and then poured into water.
  • the firing step is performed by a softening point firing method in which heating is performed at a temperature about 10 ° C higher than the softening point of the glass. This suppresses the reaction between the dielectric glass and the electrode material during high-temperature heating, and makes it possible to reduce the number of bubbles generated by this reaction.
  • defects remaining in the first dielectric glass layer are detected.
  • the defect is detected by a known image processing method. Briefly explaining this, the first panel of the first dielectric glass layer before the defect repair (the panel in the description of the repair process is the front panel and the rear panel).
  • the surface of the first dielectric glass layer is irradiated with light, and the light and shade information of the image of the first dielectric glass layer is obtained from the reflected light and transmitted light. Then, a defective portion is extracted from the grayscale information.
  • the defect extracted in this way is considered to be such that micro defects are not actually detected in the so-called micro cracks, but other defects (bubbles or large cracks) ) Is reliably detected.
  • the process proceeds to the next repairing step so as to repair at least the detected defective portion.
  • the defect is detected, but the fact that the defect is detected means that there is a high possibility that undetectable defects such as cracks and cracks remain. Therefore, it is needless to say that it is desirable to perform the repair process on the entire first dielectric glass layer.
  • FIG. 5 is a plan view showing a configuration of an apparatus (dielectric repairing apparatus) for repairing a defect remaining in the dielectric glass layer.
  • the dielectric repair device 50 is composed of a panel mounting means 51, a conductive substrate 52, and a discharge gas introducing means 53.
  • the panel mounting means 51 is an insulating spacer disposed on the outer peripheral portion of the surface of the conductive substrate 52.
  • the size of the conductive substrate 52 is It has an area equivalent to that of a metal alloy and is made of aluminum alloy or SUS.
  • the panel Pa is placed on the panel placing means 51 such that the surface of the first dielectric glass layer faces the conductive substrate 52, and the panel and a certain gap Ga are secured. Then, the discharge gas 55 is introduced from the discharge gas introduction means 53 into a space 54 formed between the panel and the conductive substrate 52. In the conductive substrate 52, gas introduction through holes 56 are formed at one or more locations in the thickness direction (one in the figure). Will be introduced.
  • the discharge gas By introducing the discharge gas in this manner, the panel Pa is slightly lifted by the discharge gas 55 to eliminate the deflection caused by the weight of the panel Pa, and the conductive base is formed even in the portion where the deflection is considered to be large at the center of the panel. A plate and a certain gap G a can be secured.
  • the discharge gas 55 one or a mixture of Ne and Ne and one or more of He, Xe, which is a gas used for the discharge, can be used (for example, an amount equivalent to 1.11.5 L). Introduction).
  • the introduction of such a rare gas causes neon light emission, and a defective portion is specified.
  • the gas is a rare gas
  • the discharge voltage is lower than that of air, and the amount of current flowing through the dielectric glass layer by the discharge can be reduced.
  • the introduction of the cleaning gas makes it possible to reduce the discharge starting voltage as compared with the case where no discharge gas is applied, and to reduce the amount of current flowing through the dielectric glass layer by the discharge. it can. As will be described later, it is desirable that the current flowing through the dielectric glass layer be as small as possible as long as the defect can be repaired.
  • a power supply unit 57 is attached to the conductive substrate 52 and the panel Pa via electrodes (display electrodes and address electrodes) formed in advance on the panel, and a voltage is applied to the dielectric through the discharge gas. Is applied.
  • the power supply unit 57 a unit that can arbitrarily change an applied voltage amount, an applied voltage frequency, and a voltage waveform is used.
  • At least a high resistance is inserted in series between the conductive substrate and the power supply or between the dielectric and the power supply.
  • 1 ⁇ to 1 G ⁇ may be used.
  • To reduce V apply a high-frequency voltage. Since the breakdown voltage decreases as the frequency increases, At can be reduced. Specifically, it is desirable to apply a voltage with a frequency of 60 Hz to the actual driving level (several ⁇ ⁇ ⁇ ⁇ ⁇ ), and in particular, a voltage with a frequency of ⁇ ⁇ ⁇ ⁇ ⁇ . desirable.
  • a rectangular (pulse) voltage is applied. If the maintenance time (voltage application time) t is too long, it may lead to destruction. Therefore, it is desirable to be about 1 s to 1 s.
  • the following describes the measured values of I, V, t, p, w, and ⁇ t in the defect repair process by applying a voltage.
  • the defect portion corresponding to the repaired defect By applying a voltage to the first dielectric glass layer as described above, a discharge occurs in the space portion 54, and a current flows through the dielectric glass layer portion surrounding the defect portion to be heated. Result Around the defect The dielectric glass layer forming glass melts and enters the defect, and then solidifies, thereby filling the defect. As a result, the defect is repaired.
  • the portion where the defect was repaired cannot be said to be a defect thereafter, the defect portion that has been repaired in order to clarify the correspondence with the defect is referred to as “the portion corresponding to the repaired defect”.
  • the glass composition at the portion corresponding to the repaired defect in the first dielectric glass layer is different from the glass composition at the portion not corresponding to the defect. This is because the repaired portion has a different composition from the glass material of the first dielectric glass layer as a result of the repair. Indicates that other materials can be supplemented. Specifically, the portion corresponding to the repaired defect in the dielectric glass layer has a higher content of the electrode material than other portions. This is because the electrode material sublimated to the defect portion and adhered to the periphery thereof, and then solidified, thereby closing the defect.
  • FIG. 6 is an example of a film defect of the dielectric glass layer.
  • the defect when the energy applied to the dielectric glass layer is small, the defect is self-repaired, and when the energy is large, the defect is not self-repaired but is destroyed.
  • Figure 6 shows a comparison of the surface of the part where self-repair and the part where self-repair was not performed. If self-healing was not performed, cracks would enter the dielectric and glass substrate due to excessive destructive energy (Fig. 6 (a)). This crack is considered to be the result of excessive heat applied at the time of failure.
  • Fig. 6 (b) it has a part corresponding to the repaired defect, and it is smaller than the case where self-repair did not occur, although cracks entered by the applied energy. there were. This is because the applied energy was small.
  • means for heating the temperature to 100 ° C. or less at the time of applying the voltage may be provided.
  • even smaller defects can be almost completely repaired to eliminate the defects, and the withstand voltage can be further improved.
  • FIG. 7 is a plan view showing the configuration of a device (dielectric repair device) for repairing defects remaining in the dielectric glass layer by light irradiation.
  • the dielectric repair device 70 includes a panel mounting means 71 and a light irradiation means 72.
  • the panel mounting means 71 includes a member for fixing the panel on which the first dielectric glass layer before the defect repair is formed, with the first dielectric glass layer facing upward.
  • a YAG laser or a carbon dioxide laser can be used as the light irradiation means 72.
  • the repair of the defect remaining in the dielectric using the dielectric repair device 70 having such a configuration is performed as follows. That is, by uniformly scanning the entire surface of the first dielectric glass layer with the laser beam or selectively scanning the defect portion, the glass around the defect near the defect melts and enters the defect. After that, solidification fills the defect. As a result, the defect is repaired.
  • the glass composition of the portion corresponding to the repaired defect in the first dielectric glass layer is different from the glass composition of the portion other than the portion corresponding to the defect as described above.
  • the repaired portion corresponding to the defect has a different composition from the glass material of the first dielectric glass layer as a result of the repair, and as a result of the repair, air bubbles and microcracks are different.
  • the material is also supplemented.
  • the portion corresponding to the repaired defect in the dielectric glass layer has a larger content of the electrode material than other portions. This is because the electrode material sublimated to the defect portion, adhered to the periphery thereof, and then solidified to close the defect.
  • FIG. 8 is a plan view showing the configuration of a device (dielectric repair device) for repairing defects remaining in the dielectric glass layer by applying glass.
  • the dielectric restoration device 80 includes a panel mounting means 81, a glass coating means 82, and a firing furnace 83.
  • the panel mounting means 81 includes a member for fixing the panel on which the first dielectric glass layer before the defect repair has been formed, with the first dielectric glass layer facing upward.
  • the glass applying means 82 may be any of a brush-like or nozzle-like thing which can be applied to the entire surface of the first dielectric glass layer, and selectively applies glass to the defective portion. It may be a thin tip to be applied.
  • the glass to be applied is stored in an ink tank (not shown) in a mixed state with a binder and a solvent, and is supplied to an appropriate application portion (not shown) by a pump or the like. .
  • the glass used has a lower softening point than that of the glass constituting the first dielectric glass layer.
  • a material having an increased content of lead oxide is generally used.
  • the entire panel is fired in firing furnace 83 to complete the repair.
  • the glass applied to the defect is melted and solidified to close the defect and the defect is filled with glass.
  • the surface thereof is changed to the second dielectric glass layer 13b (23b).
  • This second dielectric glass layer 13 b (23 b) is to overcoat the first dielectric glass layer 13 a (3 a) in which the defect has already been repaired. This is for making the entire dielectric glass layer denser without defects.
  • a power supply is attached to the panel (after assembly), and a voltage is applied to the dielectric through the discharge gas.
  • a power supply that can change the applied voltage, applied voltage frequency, and voltage waveform arbitrarily.
  • the At which causes the dielectric breakdown
  • the fracture location becomes too large to melt, and conversely, the breakdown energy is controlled. It can be seen that when ⁇ t is reduced, the fracture site resolidifies and self-heals. Then, if At is specified for self-healing, it is clear that I, V, and t should be specified to be small.
  • a high resistance should be at least inserted in series between the conductive substrate and the power supply or between the dielectric and the power supply.
  • a high resistance of 1 M ⁇ to 1 G ⁇ may be used.
  • To reduce V apply a high-frequency voltage. Since the breakdown voltage decreases as the frequency increases, ⁇ t can be reduced. Specifically, 60 Hz ⁇ It is desirable to apply a voltage having a frequency of the actual drive level (several l OOKH z.), And it is particularly desirable to apply a voltage having a frequency of l OOKH z.
  • a rectangular (pulse) voltage is applied. If the maintenance time (voltage application time) t is too long, it may lead to destruction, so it is desirable to be about 1 s to 1 s.
  • the following describes the measured values of I, V, t, p, w, and ⁇ t in the defect repair process by applying a voltage.
  • I ⁇ 0. l mA
  • V 2 5 0 ⁇ 3 0 0 V
  • t 1 msp 1 OOJ / K / g
  • w 4 0 xl 0- 1 8 g
  • ⁇ t 6 0 0 ⁇ 1 0 0 0 K
  • the defect can be repaired more reliably and at a lower current.
  • the dielectric glass layer forming glass around the defect melts and enters the defect, and then solidifies and fills the defect. And. As a result, the defect is repaired.
  • the glass composition of the portion corresponding to the repaired defect in the first dielectric glass layer is different from the glass composition of the portion not corresponding to the defect. This is because, as a result of the repair, the portion corresponding to the defect thus repaired has a different composition from the glass material of the first dielectric glass layer, and as a result of the repair, bubbles and micro cracks are formed. This indicates that the cut portion can be supplemented with other materials. Specifically, the portion corresponding to the repaired defect in the dielectric glass layer has a higher content of the electrode material than other portions. This is due to the fact that the electrode material sublimated to the defect and adhered to its surroundings, then solidified and closed the defect.
  • the configuration of the PDP in this embodiment is the same as that of the above-described embodiment except that the configuration of the dielectric glass and the forming method thereof are different. Therefore, the following description focuses on the differences.
  • FIGS. 9 and 10 are plan views showing a configuration of a PDP according to the third embodiment of the present invention.
  • the dielectric glass layer 43 and the electrode protection layer 53 in the present PDP are formed between the first dielectric glass layer 43a (53a) and the second denser glass layer.
  • the dielectric glass layer 43b (53b) is interposed.
  • the dielectric glass layer 43 and the electrode protection layer 53 in the present PDP are more densely formed on the surface of the first dielectric glass layer 43a (53a).
  • the structure is such that the second dielectric glass layer 43b (53b) is covered.
  • the first dielectric By forming such a structure in which dielectric glasses of different densities are laminated, defects such as air bubbles, cracks, and micro cracks that are practically impossible to detect are eliminated by the first dielectric. Even if it is present in the body glass layer 43a (53a), the second dielectric glass layer 43b (53b), which is denser than this, is covered so as to cover it. As a result, a defect is substantially eliminated, and a plasma display panel having excellent withstand voltage can be obtained.
  • the solvent is applied.
  • the binder is heated at a temperature at which the binder contained in the ink disappears and the glass material melts.
  • the first dielectric glass layer is formed by solidifying the molten glass by cooling (firing step).
  • ink is applied by printing on a substrate surface by a screen printing method, a die coating method, a spin coating method, a spray coating method, or a blade coating method. .
  • Examples of glass to be included in ink include components Gl, G2, and G
  • the components Gl, G2, G3, *, GN are weighed at a ratio corresponding to the component ratio. ° heated and melted in a furnace and C, which have been obtained by introducing into water then specifically, P b 0- B 2 0 3 - S i 0 2 - C a O -based glass, P b O— B 2 0 3 — S i 0 2 —Mg O-based glass, P b O -B 2 O 3 -S i O 2 — B a O-based glass, P b O—B 2 0 3 — S i 0 2 - M g O- A 1 2 0 3 based glass, P b O- B 2 O 3 - S i 0 2 - B a O- A 1 2 0 3 system glass, P b O- B 2 O 3 — S i ⁇ 2 — C
  • the firing process is performed by a softening point firing type method in which the glass is heated at a temperature about 1 ° C. higher than the softening point of the glass.
  • the method of forming the first dielectric glass layer is the same for both the upper layer and the lower layer when the second dielectric glass layer is interposed in the first dielectric glass layer.
  • the first dielectric glass layer 43a (53a) can be formed by a thick film technique using an ordinary glass material generally used conventionally.
  • the second dielectric glass layer 43b (53b) be thinner than the first dielectric glass layer 43a (53a). This means that if a material to which thin film deposition technology can be applied is used, the overall thickness of the dielectric glass layer will change significantly. In other words, the dielectric constant of the dielectric glass layer and the capacitance of the capacitor do not change.
  • a method of forming a SiO 2 film by a vapor deposition method such as a CVD method and a method of forming a polysilicon film (specifically, a polydimethylsilicon film).
  • a vapor deposition method such as a CVD method
  • a polysilicon film specifically, a polydimethylsilicon film.
  • Polysilicon films have the properties of p-type semiconductors, in which delocalized Si-Si bond conjugates and electrons in the main chain become charge carriers by doping an anion. .
  • Si-Si bond conjugates and electrons in the main chain become charge carriers by doping an anion.
  • it changes chemically by the action of oxygen or the like it loses conductivity. This is because the Si—Si bond of the poly- silicon is decomposed to siloxane-bonded silanol. Silanol is unstable and changes to a siloxane bond.
  • Polysilicon which has siloxane bonds, has a molecular structure with siloxane bonds similar to polydimethylsiloxane bonds, etc., and has the same high insulation properties, high chemical stability, and high heat resistance as silicone resins. Shows sex. In this way, even if the polysilicon has some conductivity at the beginning, it is insulated by the action of oxygen and the like. .
  • the second dielectric glass layer 43b (53b) made of a polysilicon film having a siloxane bond formed in this manner further has a temperature of 300 ° C to 400 ° C.
  • a temperature of about C By baking at a temperature of about C, the number of siloxane bonds can be further increased, so that the electrical insulation can be improved.
  • the number of siloxane bonds can be further increased, so that the electrical insulation can be further improved.
  • the present invention has extremely high industrial applicability as a high-quality PDP having substantially no defects remaining in the dielectric glass layer.

Abstract

A plasma display panel comprising a dielectric layer substantially free of defects, its manufacturing method, and a dielectric repairing apparatus which enables the formation of the substantially defect-free dielectric layer of the plasma display panel. The dielectric repairing apparatus constituted of a panel mounting means (51), a conductive board (52), and a discharge gas introducing means (53) is provided and used to impress voltage on the dielectric layer. Thus, discharge occurs in a space part (54) to make a dielectric glass layer part surrounding a defect part carry current, so that the glass layer part is heated. As a result, the dielectric glass layer forming glass surrounding a vicinity of the defect melts down and craws into the defect. This melt solidifies thereafter to fill the defect. This results in the repair of the defect.

Description

明細書  Specification
プラズマディ スプレイパネル及びその製造方法並びに誘電体修  Plasma display panel, method for manufacturing the same, and dielectric repair
技術分野 Technical field
本発明は、 表示デバイ スなどに用いるプラズマディ スプレイパ ネルの製造方法に関し、 特に誘電体ガラス層の改良を図ったブラ ズマディ スプレイパネルに関する。 背景技術  The present invention relates to a method for manufacturing a plasma display panel used for a display device or the like, and more particularly to a plasma display panel in which a dielectric glass layer is improved. Background art
近年、 薄型に適した表示装置と して注目 されているプラズマデ イ スプレイパネルは、 例えば、 図 1 1 に示す構成を有する。 この プラズマディ スプレイパネルは互いに配置された前面ガラス基板 In recent years, a plasma display panel, which has attracted attention as a thin display device, has, for example, a configuration shown in FIG. This plasma display panel consists of front glass substrates
1 1 0 と背面ガラス基板 1 2 0 とを備えている。 前面ガラス基板 1 1 0の上には、 表示電極 1 1 1、 1 1 2、 誘電体ガラス層 1 1 3、 及び MgO誘電体保護層 1 1 4が順次形成されている。 また、 背面ガラス基板 1 1 0上には、 ァ ド レス電極 1 2 1及び電極保護 層 (誘電体ガラス層) 1 2 2が形成されており、 その上には、 更 に、 隔壁 1 2 3が形成され、 隔壁 1 2 3の側面には蛍光体層 1 2 4が塗付されている。 1 and a rear glass substrate 120. On the front glass substrate 110, display electrodes 111, 112, a dielectric glass layer 113, and an MgO dielectric protection layer 114 are sequentially formed. On the rear glass substrate 110, an address electrode 121 and an electrode protection layer (dielectric glass layer) 122 are formed, on which a partition wall 123 is further formed. Are formed, and phosphor layers 124 are applied to the side surfaces of the partition walls 123.
前面ガラス基板 1 1 0 と背面ガラス基板 1 2 0 との間には放電 ガス 1 3 0が所定の圧力で封入されている。 この放電ガス 1 3 0 を表示電極 1 1 1、 1 1 2の間で放電させて紫外線を発生させ、 その紫外線を蛍光体層 1 2 4に照射するこ とによって、 カラー表 示を含む画像表示が可能となる。 尚、 実際は一方の基板を 9 0度 回転させた構造であり、 電極 1 1 1 、 1 1 2 と電極 1 2 1 とは互 いに交差するように配置されている。  Discharge gas 130 is sealed between front glass substrate 110 and rear glass substrate 120 at a predetermined pressure. The discharge gas 130 is discharged between the display electrodes 111 and 112 to generate ultraviolet rays, and the ultraviolet rays are applied to the phosphor layer 124 to display an image including a color display. Becomes possible. It should be noted that one of the substrates is actually rotated by 90 degrees, and the electrodes 111, 112 and the electrode 121 are arranged so as to cross each other.
前面ガラス基板 1 1 0において、 表示電極 1 1 1、 1 1 2は、 銀電極や Cr—Cu— Cr電極が用いられている。 誘電体ガラス層 1 1 3は低融点ガラスペース ト を塗付、 乾燥、 焼成工程を経て形成 されるのが一般的である。 In the front glass substrate 110, a silver electrode or a Cr—Cu—Cr electrode is used for the display electrodes 111 and 112. The dielectric glass layer 113 is formed by applying a low-melting glass paste, drying and firing. It is generally done.
誘電体ガラス層の形成方法はスク リーン印刷、 細長いス リ ツ ト の間からペース ト を流し出して塗付するダイ コー ト法などがある。 誘電体を形成するガラスペース ト と してはガラスの軟化点よ り も 1 0 °C程度高い温度で焼成する軟化点焼成タイプや軟化点よ り も 1 0 0 °C程度高い温度で焼成する脱泡焼成タイプとがある。 脱泡 焼成タイブのガラスペース トだけで誘電体ガラス層を形成しよう とすると、 ガラスペース トの焼成時にガラス と表示電極が反応し 電極材料がガラスへ拡散して しまうので普通脱泡焼成タイ プのガ ラスペース ト を使う ときは軟化点焼成タイプで 1層目を形成した 上に脱泡焼成タイプの誘電体ガラス層を形成する 2層構造の誘電 体ガラス層を用いる。  The method of forming the dielectric glass layer includes screen printing and a die coating method in which a paste is poured out from a narrow slit and applied. As a glass paste for forming a dielectric, firing at a temperature about 10 ° C higher than the softening point of glass Softening point firing type or firing at a temperature about 100 ° C higher than the softening point There is a defoaming firing type. If the dielectric glass layer is formed using only the glass paste of the defoaming firing type, the glass and the display electrode react during firing of the glass paste, and the electrode material is diffused into the glass. When using glass paste, use a two-layer dielectric glass layer in which a softening point firing type first layer is formed and then a defoaming firing type dielectric glass layer is formed.
軟化点焼成タイ プだけで誘電体ガラス層を形成する とガラスべ ース ト を 1種類のみ使うだけであるので、 前述のよう に 2層構造 の誘電体ガラス層を形成するよ り もプロセスが簡単であり低コス ト化が望める。  Forming a dielectric glass layer using only the softening point firing type requires only one type of glass base, so the process is more complicated than forming a two-layer dielectric glass layer as described above. It is simple and low cost can be expected.
しかし、 軟化点焼成タイ プだけで誘電体ガラス層を形成する と きには誘電体ガラス層の内部に微小な欠陥が発生し、 誘電体の絶 縁耐圧を劣化させるという課題があった。 この微小欠陥は、 光学 顕微鏡程度の倍率では発見するこ とができないほど微小なものも あって、 ま してや、 かかる微小な欠陥をプラズマディ スプレイパ ネルのような大面積のもので特定するこ とは実際上不可能である。 発明の開示  However, when the dielectric glass layer is formed only by the softening point firing type, there is a problem that a minute defect occurs inside the dielectric glass layer and deteriorates the dielectric breakdown voltage of the dielectric. Some of these small defects are so small that they cannot be found at the magnification of an optical microscope, and it is even more difficult to identify such small defects with a large area such as a plasma display panel. It is practically impossible. Disclosure of the invention
本発明は、 上記課題に鑑みてなされたものであって、 実質的に 欠陥レスな誘電体層を備えたプラズマディ スプレイパネル及びそ の製造方法を提供するこ とを第 1 の目的とする。  The present invention has been made in view of the above problems, and has as its first object to provide a plasma display panel having a substantially defect-free dielectric layer and a method for manufacturing the same.
そして、 更に、 プラズマディ スプレイパネルの誘電体層におけ る実質的に欠陥レスなものを作製するこ とが可能な誘電体修復装 置を提供するこどを第 2の目的とする。  Further, it is a second object of the present invention to provide a dielectric repair device capable of manufacturing a substantially defect-free dielectric layer in a dielectric layer of a plasma display panel.
上記第 1 の目的を達成するために、 本発明は、 電極と誘電体層 とが形成された基板を備え、 前記誘電体層に修復された欠陥相当 箇所を有するこ とを特徴とする。 In order to achieve the first object, the present invention provides an electrode and a dielectric layer And a portion corresponding to a repaired defect in the dielectric layer.
このように本発明ではプラズマディ スプレイパネルの誘電体層 が修復された欠陥相当箇所を有しており、 誘電体層作製時に生ま れた層中に存在する気泡、 クラッ クや検出するこ とが事実上不可 能なマイ ク ロ ク ラ ッ クなどの欠陥が修復され実質的に欠陥レスな 誘電体層を備えたプラズマディ スプレイパネルが実現されている。 この結果、 絶縁耐圧に優れたものとなっている。  As described above, according to the present invention, the dielectric layer of the plasma display panel has a portion corresponding to the repaired defect, and it is possible to detect bubbles, cracks, and the like existing in the layer created at the time of manufacturing the dielectric layer. Defects such as micro-clocks, which are virtually impossible, have been repaired, and a plasma display panel with a dielectric layer substantially free of defects has been realized. As a result, the dielectric strength is excellent.
こ こで、 「欠陥」には、 気泡などに起因する比較的大きさの大き い欠陥から、 検出が事実上不可能なマイ クロク ラ ッ クを始めとす る微小な欠陥を含んでいる。 殊にマイ クロク ラ ッ クなどの微小欠 陥は、 検出することが事実上不可能であるこ とから、 これを実質 的に無くすこ とができる本発明は極めて意義深いものである。  Here, “defects” include relatively large defects caused by air bubbles and the like, as well as micro defects such as micro cracks, which are virtually impossible to detect. In particular, since micro defects such as micro cracks are practically impossible to detect, the present invention which can substantially eliminate them is extremely significant.
こ こで、 前記誘電体層の欠陥は、 誘電体層の絶縁破壊を生じさ せるものであることを特徴とする。 このよう に誘電体層に欠陥が 存在すると、 誘電体層に物理的な損傷をもたらすことになるこ と から、 本発明のように誘電体層中に通常存在している欠陥が修復 されているこ とは極めて意義深いものと言える。  Here, the defect of the dielectric layer causes dielectric breakdown of the dielectric layer. Since the presence of a defect in the dielectric layer causes physical damage to the dielectric layer, the defect that is normally present in the dielectric layer as in the present invention has been repaired. This is extremely significant.
こ こで、 前記誘電体層は低融点ガラスからなり、 前記誘電体層 の修復されてた欠陥相当箇所のガラス組成は欠陥相当箇所でない 箇所のガラス組成と異なるこ とを特徴とする。  Here, the dielectric layer is made of low melting point glass, and the glass composition of the repaired defect corresponding portion of the dielectric layer is different from the glass composition of the non-defect corresponding portion.
こ のよ う に修復された欠陥相当箇所は、 修復の結果、 誘電体層 の形成ガラス材料とは組成が異なっており、 修復された結果気泡 やマイ クロクラ ッ ク部分が他の材料で補填されることを示してい る。  The repaired portion corresponding to the defect has a different composition from the glass material of the dielectric layer as a result of the repair, and as a result of the repair, bubbles and microcracks are filled with another material. Which indicates that.
具体的には、 前記誘電体層の修復された欠陥相当箇所は、 その 他の箇所に比べて電極材料の含有量が多いこ とを特徴とする。 こ れは、 電極材料が欠陥部分に昇華しその周囲に付着した後、 凝固 した結果当該欠陥を塞いだこ とに起因する。  Specifically, the repaired defect portion of the dielectric layer is characterized in that the content of the electrode material is higher than other portions. This is because the electrode material sublimated to the defect portion, adhered to the periphery thereof, and then solidified, thereby closing the defect.
上記第一の目的を達成するために、 本発明は、 基板上に誘電体 層を形成した後に欠陥を修復する工程を有するこ とを特徴とする。 このよう に本発明では誘電体層が修復されたプラズマディ スプ レイパネルが得られるので、 絶縁耐圧に優れたプラズマディ スプ レイパネルが実現される。 つま り、 誘電体層作製時に生まれた層 中に存在する気泡、 クラッ クや検出するこ とが事実上不可能なマ イ ク口クラッ クなどの欠陥が修復され欠陥レスな誘電体層を備え たプラズマディ スプレイパネルが実現される。 In order to achieve the first object, the present invention is characterized in that the method includes a step of repairing a defect after forming a dielectric layer on a substrate. As described above, according to the present invention, a plasma display panel with a restored dielectric layer can be obtained, so that a plasma display panel with excellent withstand voltage can be realized. In other words, it has a defect-free dielectric layer that repairs defects such as bubbles, cracks, and cracks that are virtually impossible to detect in the layer created when the dielectric layer was created. A plasma display panel is realized.
また、 本発明は、 上記第 1 の目的を達成するために、 基板上に 誘電体層を形成した後に Ιίί記誘電体屠の欠陥を検出する工程と、 少なく とも前記検出された誘電体層の欠陥を修復する工程とを有 する特徴とする。  Further, in order to achieve the first object, the present invention provides a step of detecting a defect in a dielectric layer after forming a dielectric layer on a substrate, and at least a step of detecting a defect in the detected dielectric layer. Repairing the defect.
このように本発明では誘電体層が修復されたプラズマディ スプ レイパネルが得られるので、 絶縁耐圧に優れたブラズマディ スプ レイパネルが実現される。 つま り、 誘電体層作製時に生まれた層 中に存在する気泡、 クラッ クや検出するこ とが事実上不可能なマ イ ク口クラッ クなどの欠陥が修復され欠陥レスな誘電体層を備え たプラズマディ スプレイパネルが実現される。  As described above, according to the present invention, a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized. In other words, it has a defect-free dielectric layer that repairs defects such as bubbles, cracks, and cracks that are virtually impossible to detect in the layer created when the dielectric layer was created. A plasma display panel is realized.
また、誘電体層修復前に欠陥を検出する工程を有することから、 少なく とも絶縁耐圧に決定的な影響を与える検出可能な比較的サ ィ ズの大きな欠陥を予め検出し、 その結果欠陥が検出されれば、 その欠陥が少なく とも修正される。 ただし、 欠陥が検出されれば、 欠陥箇所のみならず誘電体層全体に修正処理を施すこ とによって 検出不可能なサイズの小さいマイ クロクラッ クも修正されるこ と になり、 実質的には欠陥レスな誘電体層が得られる。  In addition, since there is a process to detect defects before repairing the dielectric layer, at least relatively large detectable defects that have a decisive effect on the dielectric strength are detected in advance, and as a result, the defects are detected. If so, the defect is at least fixed. However, if a defect is detected, micro-cracks of small size that cannot be detected can be corrected by applying a repair process not only to the defective part but also to the entire dielectric layer, and in effect, the defect A dielectric layer is obtained.
ここで、 前記誘電体層の欠陥を修復する工程は、 前記誘電体層 の欠陥近傍の誘電体を溶融した後凝固することを特徴とする。 つ ま り、 気泡、 クラッ ク、 マイ ク ロクラッ ク等に溶融した誘電体が 入りその後凝固することで欠陥が塞がれ修復される。  Here, the step of repairing the defect in the dielectric layer is characterized in that the dielectric near the defect in the dielectric layer is melted and then solidified. In other words, the melted dielectric enters air bubbles, cracks, micro cracks, etc., and then solidifies to close and repair the defect.
ここで、 前記誘電体層の欠陥を修復する工程は、 前記誘電体層 の欠陥に光を照射するこ とを特徴とする。 つま り、 これによ り、 気泡、 クラ ッ ク、 マイ クロクラ ッ ク等に光を照射することによつ て加熱され欠陥近傍の誘電体が溶融し欠陥に入り込みその後凝固 することで欠陥が塞がれ修復される。 Here, the step of repairing the defect in the dielectric layer is characterized in that the defect in the dielectric layer is irradiated with light. In other words, by irradiating light to bubbles, cracks, microcracks, etc., the dielectric material near the defect melts and enters the defect, and then solidifies. This closes and repairs the defect.
こ こで、 前記誘電体層の欠陥を修復する工程は、 前記誘電体層 に電流を流す工程であるこ とを特徴とする。 つま り、 これによ り、 気泡、 クラッ ク、 マイ クロクラ ッ ク等に電圧を印加するこ とによ つて加熱され欠陥近傍の誘電体が溶融し欠陥に入り込みその後凝 固するこ とで欠陥が塞がれ修復される。  Here, the step of repairing the defect in the dielectric layer is a step of flowing a current through the dielectric layer. That is, by applying a voltage to bubbles, cracks, microcracks, and the like, the dielectric material near the defect is melted, enters the defect, and then solidifies. It is closed and repaired.
また、 本発明は、 上記第 1 の目的を達成するために、 基板上に ガラ スからなる誘電体層を形成する工程と、 前記誘電体層形成後 に誘電体層中の欠陥を検出する工程と、 少なく とも前記検出した 欠陥に前記誘電体層を形成するガラスよ り も軟化点の低いガラス を塗付するとともに前記誘電体層を形成した焼成温度以下の温度 で焼成する工程とを有するこ とを特徴とする。  Further, in order to achieve the first object, the present invention provides a step of forming a glass dielectric layer on a substrate, and a step of detecting a defect in the dielectric layer after the formation of the dielectric layer. And applying a glass having a softening point lower than that of the glass forming the dielectric layer to at least the detected defects and firing at a temperature equal to or lower than the firing temperature at which the dielectric layer was formed. And features.
このように本発明では誘電体層が修復されたプラズマディ スプ レイパネルが得られるので、 絶縁耐圧に優れたプラズマディ スプ レイパネルが実現される。 つま り、 誘電体層作製時に生まれた層 中に存在する気泡、 ク ラ ッ クや検出するこ とが事実上不可能なマ イ ク口クラッ クなどの欠陥が修復され欠陥レスな誘電体層を備え たプラズマディ スプレイパネルが実現される。  As described above, according to the present invention, a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized. In other words, a defect-free dielectric layer that has repaired defects such as bubbles, cracks, and cracks that are virtually impossible to detect in the layer created when the dielectric layer was created Thus, a plasma display panel having the above is realized.
また、誘電体層修復前に欠陥を検出する工程を有することから、 少なく とも絶縁耐圧に決定的な影響を与える検出可能な比較的サ ィズの大きな欠陥を予め検出し、 その結果欠陥が検出されれば、 その欠陥が少なく とも修正される。 ただし、 欠陥が検出されれば、 欠陥箇所のみならず誘電体層全体に修正処理を施すこ とによって 検出不可能なサイズの小さいマイ クロクラ ッ ク も修正されるこ と になり、 実質的には欠陥レスな誘電体層が得られる。  In addition, since there is a process to detect defects before the dielectric layer is repaired, at least relatively large detectable defects that have a decisive effect on the withstand voltage are detected in advance, and as a result, the defects are detected. If so, the defect is at least fixed. However, if a defect is detected, micro-cracks of a small size that cannot be detected will be corrected by applying a repair process not only to the defective part but also to the entire dielectric layer, and practically A defect-free dielectric layer is obtained.
また、 本発明は、 上記第 1 の目的を達成するために、 第 1 の誘 電体層を形成した基板と一定の間隔を'設けて導電基板を配置する とともに前記基板と前記導電性基板の間に放電ガスを介して電圧 を印加する工程と、 前記電圧を印加する工程の後に前記第 1 の誘 電体層上に第 2の誘電体層を形成する工程とを有する ことを特徴 とする。 このように本発明では誘電体層が修復されたプラズマディ スプ レイパネルが得られるので、 絶縁耐圧に優れたプラズマディ スプ レイパネルが実現される。 つま り、 誘電体層作製時に生まれた層 中に存在する気泡、 クラ ッ クや検出するこ とが事実上不可能なマ ィ クロクラッ クなどの欠陥が修復され欠陥レスな誘電体層を備え たプラズマディ スプレイパネルが実現される。 これは、 気泡、 ク ラッ ク、 マイ クロクラッ ク等に電圧を印加するこ とによって加熱 され欠陥近傍の誘電体が溶融し入り込みその後凝固するこ とで欠 陥が塞がれ修復されるからである。 In addition, in order to achieve the first object, the present invention provides a method in which a conductive substrate is arranged at a constant distance from a substrate on which a first dielectric layer is formed, and the substrate and the conductive substrate are A step of applying a voltage via a discharge gas therebetween, and a step of forming a second dielectric layer on the first dielectric layer after the step of applying the voltage. . As described above, according to the present invention, a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized. In other words, a defect-free dielectric layer is provided in which defects such as bubbles, cracks, and micro-cracks that are virtually impossible to detect are repaired in the layer created when the dielectric layer was created. A plasma display panel is realized. This is because heating is performed by applying voltage to bubbles, cracks, microcracks, etc., and the dielectric near the defect melts and enters and solidifies, and then the defect is closed and repaired. .
こ こで、 前記電圧を印加する工程において、 前記基板の温度を 1 o o °c以下になるよう に加熱することを特徴とする。 これによ り、 よ り微小な欠陥までもほぼ完全に修復し欠陥を無くすことが 可能となり、 更に、 絶縁耐圧性を向上させるこ とが可能となる。 更に、 上記第 2の目的を達成するために、 本発明の誘電体修復 装置は、 誘電体層と電極とが形成された基板に対して光を照射す る手段を備えている。  Here, in the step of applying the voltage, the substrate is heated so that the temperature of the substrate is 1 ° C. or less. As a result, even smaller defects can be almost completely repaired and eliminated, and the withstand voltage can be further improved. Furthermore, in order to achieve the second object, the dielectric repair apparatus of the present invention includes a means for irradiating light to a substrate on which a dielectric layer and an electrode are formed.
これによ り、 気泡、 クラ ック、 マイ クロクラッ ク等に光を照射 することによって加熱され欠陥近傍の誘電体が溶融し欠陥に入り 込みその後凝固することで欠陥が塞がれ修復される。  As a result, the bubbles, cracks, microcracks, etc. are heated by irradiating light, and the dielectric near the defects is melted, enters the defects and solidifies, and then the defects are closed and repaired.
また、 上記第 2の目的を達成するために、 本発明の誘電体修復 装置は、 誘電体層と電極とが形成された基板に対し一定の間隔を 開けて導電性基板を配置し、 前記基板と導電性基板との間に放電 ガスを介して電圧を印加する構成である。  Further, in order to achieve the second object, the dielectric repair device of the present invention comprises: a conductive substrate disposed at a predetermined distance from a substrate on which a dielectric layer and an electrode are formed; In this configuration, a voltage is applied between the substrate and the conductive substrate via a discharge gas.
これによ り、 気泡、 クラ ッ ク、 マイ クロクラ ッ ク等に電圧を印 加するこ とによって加熱され欠陥近傍の誘電体が溶融し欠陥に入 り込み、 その後凝固するこ とで欠陥が塞がれ修復される。  As a result, heating is performed by applying a voltage to bubbles, cracks, microcracks, and the like, and the dielectric near the defects melts and enters the defects, and is subsequently solidified to close the defects. It is repaired.
こ こで、 前記基板と導電性基板との間に印加させる電圧は所定 電圧まで上昇させ、 所定電圧で一定時間保持した後に電圧値を減 少する構成とすることが望ま しい。 これは、 一定電圧を急に印加 すると誘電体層の修復を行なえず、 かえって、 欠陥が拡大し、 誘 電体層が物理的に破壊されてしまいかねないからである。 こ こで、 前記基板と前記導電性基板との間に印加される電圧は 直流であり、 前記導電性基板には電流制限抵抗が接続する構成と するこ とができる。 これによ り、 誘電体層の欠陥部分に流れる電 流値を制限するこ とが容易に行う こ とができる。 つま り、 過度な 電流が欠陥部分に流れると発熱量が多く なり、 誘電体層が物理的 に破壊して しまいかねないことから、 欠陥部分に流れる電流量を 電流制限抵抗にて制御する構成と し、 誘電体層を物理的に破壊さ せることなく 的確に欠陥を修復することができるよう にした。 Here, it is desirable that the voltage applied between the substrate and the conductive substrate is increased to a predetermined voltage, and the voltage is decreased after the voltage is maintained at the predetermined voltage for a certain period of time. This is because if a constant voltage is applied suddenly, the dielectric layer cannot be repaired, but rather the defects may be enlarged and the dielectric layer may be physically destroyed. Here, the voltage applied between the substrate and the conductive substrate is DC, and a current limiting resistor may be connected to the conductive substrate. As a result, it is possible to easily limit the value of the current flowing through the defective portion of the dielectric layer. In other words, if excessive current flows to the defective part, the amount of heat generated will increase and the dielectric layer may be physically destroyed.Therefore, a configuration in which the amount of current flowing to the defective part is controlled by a current limiting resistor is adopted. In addition, defects can be repaired accurately without physically destroying the dielectric layer.
こ こで、 前記電流制限抵抗は、 1 Μ Ω ~ 1 ϋ Ωであるこ とが望 ま しい。 これは誘電体層の破壊電圧を 3 0 0 V程度であると した とき、 修復させるために電流を 0 . 1 m A程度と仮定すると、 概 この程度となるからである。  Here, it is desirable that the current limiting resistance is 1ΜΩ to 1ϋΩ. This is because, assuming that the breakdown voltage of the dielectric layer is about 300 V and the current is about 0.1 mA in order to restore the dielectric layer, the current is about this level.
ここで、 印加する電圧は交流も しく は矩形波とする ことが望ま しい。 これは、 交流とすることで、 低い 3電圧で電镩値を増すため であり、 矩形波とするのは、 矩形波の周波数を調整するこ とで電 流値の制御を容易にするためである。 Here, it is desirable that the applied voltage be an alternating current or a rectangular wave. This is because the alternating current increases the electric value at three low voltages, and the rectangular wave is used to facilitate the control of the electric current value by adjusting the frequency of the rectangular wave. is there.
こ こで、 印加する電圧の周波数が 6 0 1½〜 1 0 0 1:112 である ことが望ま しい。 .  Here, it is desirable that the frequency of the applied voltage be in the range of 601½ to 1001: 112. .
また、 上記第 2の目的を達成するために、 本発明の誘電体修復 装置は、 基板上に形成されたガラスからなる誘電体層の欠陥を検 出する手段と、 少なく とも前記検出した欠陥に前記誘電体層を形 成するガラスよ り も軟化点の低いガラスを塗付する手段と、 前記 誘電体層を形成した焼成温度以下の温度で焼成する手段とを有す るこ とを特徴とする。  Further, in order to achieve the second object, a dielectric repair apparatus of the present invention includes a means for detecting a defect in a dielectric layer made of glass formed on a substrate, and at least a means for detecting a defect in the detected dielectric layer. A means for applying glass having a softening point lower than that of the glass forming the dielectric layer; and a means for firing at a temperature equal to or lower than the firing temperature at which the dielectric layer was formed. I do.
このように本発明では誘電体層が修復されたプラズマディ スプ レイパネルが得られるので、 絶縁耐圧に優れたプラズマディ スプ レイパネルが実現される。 つま り、 誘電体層作製時に生まれた層 中に存在する気泡、 クラッ クや検出することが事実上不可能なマ イ ク口クラッ クなどの欠陥が修復され欠陥レスな誘電体層を備え たプラズマディ スプレイパネルが実現される。  As described above, according to the present invention, a plasma display panel in which the dielectric layer has been repaired can be obtained, so that a plasma display panel having excellent withstand voltage can be realized. In other words, a defect-free dielectric layer is provided in which defects such as bubbles, cracks, and cracks that are virtually impossible to detect are present in the layer created when the dielectric layer was created. A plasma display panel is realized.
また、誘電体層修復前に欠陥を検出する工程を有することから、 少なく とも絶縁耐圧に決定的な影響を与える検出可能な比較的サ ィ ズの大きな欠陥を予め検出し、 その結果欠陥が検出されれば、 その欠陥が少なく とも修正される。 ただし、 欠陥が検出されれば、 欠陥箇所のみならず誘電体層全体に修正処理を施すこ とによって 検出不可能なサイ ズの小さいマイ ク ロクラ ッ ク も修正されるこ と になり、 実質的には欠陥レスな誘電体層が得られる。 Also, since it has a step of detecting a defect before repairing the dielectric layer, At least a relatively large detectable defect that has a decisive effect on the withstand voltage is detected in advance, and if a defect is detected as a result, the defect is corrected at least. However, if a defect is detected, micro-cracks of a small size that cannot be detected can be corrected by applying a repair process not only to the defective part but also to the entire dielectric layer, which is practical. Provides a defect-free dielectric layer.
また、 上記第 2の目的を達成するために、 本発明の誘電体修復 装置は、 第 1 の誘電体層を形成した基板に一定の間隔を設けて導 電性基板を配置するとともに前記基板と前記導電性基板の間に放 電ガスを介して電圧を印加する手段を有するこ とを特徴とする。  Further, in order to achieve the second object, the dielectric repair device of the present invention provides a substrate on which a first dielectric layer is formed, with a conductive substrate disposed at a constant interval on the substrate, and a substrate provided with the first dielectric layer. The semiconductor device is characterized by having a means for applying a voltage between the conductive substrates via a discharge gas.
このように本発明では誘電体層の欠陥部分に電流を流すこ とに よって欠陥が修復されたプラズマディ スプレイパネルが得られる ので、 絶縁耐圧に優れたプラズマディ スプレイパネルが実現され る。 つま り、 誘電体層作製時に生まれた層中に存在する気泡、 ク ラッ クや検出することが事実上不可能なマイ クロクラックなどの 欠陥が修復され欠陥レスな誘電体層を備えたプラズマディ スプレ ィパネルが実現される。  As described above, according to the present invention, a plasma display panel in which a defect is repaired by applying a current to a defective portion of the dielectric layer can be obtained, so that a plasma display panel having excellent withstand voltage can be realized. In other words, a plasma layer provided with a defect-free dielectric layer in which defects such as bubbles, cracks and micro-cracks that are practically impossible to detect are repaired in the layer created at the time of forming the dielectric layer. A display panel is realized.
こ こで、 上記誘電体修復装置において、 前記電圧印加時に温度 を 1 0 0 °c以下に加熱する手段を更に備えるこ とを特徴とする。 これによ り、 よ り微小な欠陥までもほぼ完全に修復し欠陥を無く すこ とが可能となり、 更に、 絶縁耐圧性を向上させることが可能 となる。  Here, the above-mentioned dielectric repair apparatus is characterized by further comprising means for heating the temperature to 100 ° C. or less when the voltage is applied. As a result, even finer defects can be almost completely repaired to eliminate the defects, and the withstand voltage can be further improved.
また、 上記第 1 の目的を達成するために、 本発明は、 誘電体層 と第 1 の電極と第 2の電極とを有する第 1 の基板と、 第 3の電極 を有する第 2の基板とを有し、 第 1 の基板と第 2の基板とを一定 間隔を設けて構成された表示装置であって、 前記第 1 の電極及び 第 2の電極と第 3の電極との間に放電ガスを介して電圧を印加し て修復された欠陥相当箇所を有することを特徴とする。  To achieve the first object, the present invention provides a first substrate having a dielectric layer, a first electrode, and a second electrode, and a second substrate having a third electrode. A display device comprising a first substrate and a second substrate provided at a constant interval, wherein a discharge gas is provided between the first electrode, the second electrode, and the third electrode. Characterized by having a portion corresponding to a defect repaired by applying a voltage through the.
このように本発明では表示装置の誘電体層が修復された欠陥相 当箇所を有しており、 誘電体層作製時に生まれた層中に存在する 気泡、 クラッ クや検出するこ とが事実上不可能なマイ クロクラッ クなどの欠陥が修復され欠陥レスな誘電体層を備えた表示装置が 実現されている。 この結果、 絶縁耐圧に優れたものとなっている。 As described above, according to the present invention, the dielectric layer of the display device has a portion corresponding to the repaired defect, and it is practically possible to detect bubbles, cracks, and the like existing in the layer created at the time of manufacturing the dielectric layer. Impossible My Croc A display device having a defect-free dielectric layer in which defects such as defects are repaired has been realized. As a result, the dielectric strength is excellent.
こ こで、 前記第 1 の電極及び第 2の電極と前記第 3の電極との 間に印加される電圧は、 所定電圧まで上昇させ、 所定電圧で一定 時間保持した後に電圧値を減少することが望ま しい。 これは、 一 定電圧を急に印加すると誘電体層の修復を行なえず、 かえって、 欠陥が拡大し、 誘電体層が物理的に破壊されて しまいかねないか らである。  Here, the voltage applied between the first electrode and the second electrode and the third electrode is increased to a predetermined voltage, and the voltage is decreased after maintaining the voltage at the predetermined voltage for a certain time. Is desirable. This is because if a constant voltage is applied suddenly, the dielectric layer cannot be repaired, but rather the defects may be enlarged and the dielectric layer may be physically destroyed.
こ こで、 前記第 1 の電極及び第 2の電極と前記第 3の電極との 間に印加される電圧は直流であり、 前記電極には電流制限抵抗が 接続する構成とするこ とができる。 これによ り、 誘電体層の欠陥 部分に流れる電流値を制限するこ とが容易に行う こ とができる。 つま り、 過度な電流が欠陥部分に流れると発熱量が多く なり、 誘 電体層が物理的に破壊して しまいかねないこ とから、 欠陥部分に 流れる電流量を電流制限抵抗にて制御する構成と し、 誘電体層を 物理的に破壊させることなく 的確に欠陥を修復することができる ようにした。  Here, the voltage applied between the first and second electrodes and the third electrode is DC, and a current limiting resistor may be connected to the electrodes. . As a result, it is possible to easily limit the value of the current flowing through the defective portion of the dielectric layer. In other words, if excessive current flows to the defective part, the amount of heat generated increases, and the dielectric layer may be physically damaged.Therefore, the amount of current flowing to the defective part is controlled by the current limiting resistor. With this configuration, defects can be repaired accurately without physically destroying the dielectric layer.
こ こで、 電流制限抵抗は、 1 Μ Ω〜 1 β Ωとする こ とが望ま し い。  Here, it is desirable that the current limiting resistor be 1ΜΩ to 1βΩ.
ここで、 印加する電圧は交流も しく は矩形波とするこ とが望ま し い。 これは、 交流とするこ とで、 低い電圧で電流値を増すためで あり、 矩形波とするのは、 矩形波の周波数を調整するこ とで電流 値の制御を容易にするためである。 Here, it is desirable that the applied voltage be an alternating current or a square wave. The reason for this is to increase the current value at a low voltage by using an alternating current, and to make the rectangular wave to facilitate the control of the current value by adjusting the frequency of the rectangular wave.
こ こで、 印加する電圧の周波数が 6 0 Ηζ〜 1 0 0 K Hz である こ とが望ま しい。  Here, it is desirable that the frequency of the applied voltage be 60Ηζ to 100 KHz.
また、 上記第 1 の目的を達成するために、 本発明のプラズマデ イ スプレイパネルは、電極と誘電体層とが形成された基板を備え、 前記誘電体層は第 1 の誘電体層と当該誘電体層層よ り も緻密な第 2の誘電体層とからなるこ とを特徴とする。  In order to achieve the first object, a plasma display panel of the present invention includes a substrate on which an electrode and a dielectric layer are formed, wherein the dielectric layer includes a first dielectric layer and the dielectric layer. It is characterized by comprising a second dielectric layer that is denser than the body layer.
このよう に本発明では気泡、 クラ ックや検出するこ とが事実上 不可能なマイ クロクラッ クなどの欠陥が第 1 の誘電体層中に存在 していたと しても、 この上を覆う ようにこれよ り も緻密.な第 2の 誘電体層を備えているので、 実質的に欠陥を無く すこ とになり、 絶縁耐圧に優れたプラズマディ スプレイパネルが得られる。 As described above, in the present invention, defects such as bubbles, cracks, and micro cracks that are virtually impossible to detect exist in the first dielectric layer. Even if it is, it is denser than this so as to cover it.Because it has a second dielectric layer, it has virtually no defects and a plasma diode with excellent withstand voltage A spray panel is obtained.
なお、 「緻密」とは、 気泡やクラ ッ ク、 マイ クロクラッ クなどの 数が少なく誘電体形成材料が密に配列しているという意味である, ここで、 前記第 2の誘電体層は電気絶縁性高分子からなるもの とすることができる。  Note that “dense” means that the number of bubbles, cracks, microcracks, and the like is small and the dielectric material is densely arranged. Here, the second dielectric layer is electrically It can be made of an insulating polymer.
こ こで、 前記第 2の誘電体膚は、 珪素一珪素の結合を持つ高分 子であるものとするこ とができる。  Here, the second dielectric layer may be a polymer having a silicon-silicon bond.
こ こで、 前記第 2の誘電体層は、 シロキサン結合を含むポリ シ リ コ ン又は、 その重合体であるものとするこ とができる。  Here, the second dielectric layer can be made of a silicone containing a siloxane bond or a polymer thereof.
また、 上記第 1 の目的を達成するために、 本発明のプラズマデ イ スプレイパネルは、 電極、 誘電体層、 誘電体保護層とが形成さ れた基板を有し、 前記誘電体層は、 第 1 の誘電体層と当該第 1 の 誘電体層よ り も緻密で第 1 の誘電体層中に設けられた第 2の誘電 体層とからなるこ とを特徴とする。  Further, in order to achieve the first object, a plasma display panel of the present invention has a substrate on which an electrode, a dielectric layer, and a dielectric protection layer are formed. It is characterized by comprising a first dielectric layer and a second dielectric layer which is denser than the first dielectric layer and is provided in the first dielectric layer.
このように本発明では気泡、 クラ ックや検出するこ とが事実上 不可能なマイ クロクラッ クなどの欠陥が第 1 の誘電体層中に存在 していたと しても、 この中にこれよ り も緻密な第 2の誘電体層を 備えているので、 誘電体層の厚み方向に連続して形成されたとき の欠陥を分断しその深さを浅くすることなる。 この結果、 放電時 に欠陥に流れる電流量が少なく なり絶縁耐圧に優れたプラズマデ ィ スプレイパネルが得られる。  As described above, according to the present invention, even if defects such as bubbles, cracks, and microcracks that are practically impossible to detect exist in the first dielectric layer, the defects are included in the first dielectric layer. Since the second dielectric layer is more dense, defects when formed continuously in the thickness direction of the dielectric layer are divided and the depth thereof is reduced. As a result, the amount of current flowing to the defect at the time of discharge is reduced, and a plasma display panel having excellent withstand voltage is obtained.
また、 上記第 1 の目的を達成するために、 本発明のプラズマデ ィ スプレイパネルの製造方法は、基板上に電極を形成する工程と、 少なく とも前記電極上に第 1 の誘電体層を形成する工程と、 前記 第 1 の誘電体層の上にこれよ り も緻密な第 2の誘電体層を形成す る工程と、 当該第 2の誘電体層形成後、 基板を酸素雰囲気下で焼 成する工程と、 前記第 2の誘電体層上に誘電体保護層を形成する 工程とを有するこ とを特徴とする。  In order to achieve the first object, a method of manufacturing a plasma display panel according to the present invention includes a step of forming an electrode on a substrate, and forming at least a first dielectric layer on the electrode. A step of forming a denser second dielectric layer on the first dielectric layer; and, after forming the second dielectric layer, sintering the substrate in an oxygen atmosphere. And forming a dielectric protection layer on the second dielectric layer.
このように本発明によ り得られるプラズマディ スプレイパネル では気泡、 クラ ッ クや検出するこ とが事実上不可能なマイ クロク ラ ッ クなどの欠陥が第 1 の誘電体層中に存在していたと しても、 この上を覆う ようにこれよ り も緻密な第 2の誘電体層を備えてい るので、 実質的に欠陥を無くすこ とになり、 絶縁耐圧に優れたプ ラズマディ スプレイパネルが得られる。 Thus, the plasma display panel obtained by the present invention In this case, even if defects such as air bubbles, cracks, and micro cracks that are practically impossible to detect exist in the first dielectric layer, it is necessary to cover the first dielectric layer. Since the second dielectric layer is more dense, defects can be substantially eliminated, and a plasma display panel having excellent withstand voltage can be obtained.
こ こで、 前記第 2の誘電体層は、 電気絶縁性高分子とするこ と ができる。  Here, the second dielectric layer can be an electrically insulating polymer.
こ こで、 前記電気絶縁性高分子は、 珪素一珪素共有結合を主鎖 とする高分子とするこ とができる。  Here, the electrically insulating polymer can be a polymer having a silicon-silicon covalent bond as a main chain.
ここで、 前記電気絶縁性高分子は、 シロキサン結合を含むポリ シ リ コ ン又は、 その共重合体とすることができる。 '  Here, the electrically insulating polymer can be a silicone containing a siloxane bond or a copolymer thereof. '
また、 上記第 1 の目的を達成するために、 本発明のプラズマデ イ スプレイパネルの製造方法は、基板上に電極を形成する工程と、 少なく とも前記電極上に第 1 の誘電体層を形成する工程と、 前記 第 1 の誘電体層の上にこれよ り も緻密な第 2の誘電体層を形成す る工程と、 当該第 2の誘電体層形成後、 基板を酸素雰囲気下で焼 成する工程と、 前記第 2の誘電体層上に第 1 の誘電体層を形成す る工程とを有することを特徴とする。  In order to achieve the first object, a method of manufacturing a plasma display panel according to the present invention includes a step of forming an electrode on a substrate, and forming at least a first dielectric layer on the electrode. A step of forming a denser second dielectric layer on the first dielectric layer; and, after forming the second dielectric layer, sintering the substrate in an oxygen atmosphere. And forming a first dielectric layer on the second dielectric layer.
このように本発明によ り得られるプラズマディ スプレイパネル では気泡、 クラッ クや検出することが事実上不可能なマイ ク ロク ラ ッ クなどの欠陥が第 1 の誘電体層中に存在していたと しても、 この中にこれよ り も緻密な第 2の誘電体層を備えているので、 誘 電体層の厚み方向に連続して形成されたときの欠陥を分断しその 深さを浅くするこ となる。 この結果、 放電時に欠陥に流れる電流 量が少なく なり絶縁耐圧に優れたプラズマディ スプレイパネルが 得られる。  As described above, in the plasma display panel obtained by the present invention, defects such as bubbles, cracks, and micro-clocks that are practically impossible to detect exist in the first dielectric layer. Even if the second dielectric layer, which is denser than the second dielectric layer, is provided, the defects formed when the dielectric layer is formed continuously in the thickness direction of the dielectric layer are separated and the depth is reduced. It will be shallower. As a result, the amount of current flowing to the defect at the time of discharge is reduced, and a plasma display panel having excellent withstand voltage is obtained.
こ こで、 前記第 2の誘電体層は、 電気絶縁性高分子とすること ができる。  Here, the second dielectric layer can be an electrically insulating polymer.
こ こで、 前記電気絶縁性高分子は、 珪素一珪素共有結合を主鎖 とする高分子とすることができる。  Here, the electrically insulating polymer can be a polymer having a silicon-silicon covalent bond as a main chain.
こ こで、 前記電気絶縁性高分子は、 シロキサン結合を含むポリ シリ コン又は、 その共重合体とする こ とができる。 図面の簡単な説明 Here, the electrically insulating polymer is a polymer containing a siloxane bond. It can be silicon or its copolymer. BRIEF DESCRIPTION OF THE FIGURES
図 1 ; 本発明に係る第 1 の実施の形態の交流面放電型プラズマ ディ スプレイパネルの要部斜視図である。  FIG. 1 is a perspective view of a main part of an AC surface discharge type plasma display panel according to a first embodiment of the present invention.
図 2 ; 図 1 の X— X線を含む垂直断面図である。  FIG. 2 is a vertical sectional view including the line X—X in FIG. 1.
図 3 ; 図 1 の Y— Y線を含む垂直断面図である。  FIG. 3 is a vertical sectional view including the line Y-Y of FIG.
図 4 ; P D Pを駆動させるための駆動回路構成を示すプロ ッ ク 図である。  FIG. 4 is a block diagram showing a drive circuit configuration for driving the PDP.
図 5 ; 誘電体ガラス層に残る欠陥を修復する装置 (誘電体修復 装置) の構成を示す平面図である。  FIG. 5 is a plan view showing the configuration of an apparatus for repairing a defect remaining in the dielectric glass layer (dielectric repair apparatus).
図 6 ; 誘電体ガラス層の膜欠陥の例で、 図 ( a ) は従来の場合、 図 ( b ) は実施例に係るものを示す。  Fig. 6: Examples of film defects of the dielectric glass layer. Fig. 6 (a) shows the case of the conventional case, and Fig. 6 (b) shows the case of the embodiment.
図 7 ; 誘電体ガラス層に残る欠陥を光照射によ って修復す.る装 置 (誘電体修復装置) の構成を示す平面図である。  Fig. 7 is a plan view showing the configuration of a device (dielectric repair device) that repairs defects remaining in the dielectric glass layer by light irradiation.
図 8 ; 誘電体ガラス層に残る欠陥をガラス塗付によ り修復する 装置 (誘電体修復装置) の構成を示す平面図である。  Fig. 8 is a plan view showing the configuration of a device (dielectric repair device) that repairs defects remaining in the dielectric glass layer by coating with glass.
図 9 ; 本発明に係る第 3の実施の形態のプラズマディ スプレイ パネルの構成を示す平面図である。  FIG. 9 is a plan view showing a configuration of a plasma display panel according to a third embodiment of the present invention.
図 1 0 ; 本発明に係る第 3の実施の形態のプラズマディ スプレ ィパネルの構成を示す平面図である。  FIG. 10 is a plan view showing a configuration of a plasma display panel according to a third embodiment of the present invention.
図 1 1 ; 従来例に係るプラズマディ スプレイパネルの構成を示 す平面図である。 発明を実施するための最良の形態  FIG. 11 is a plan view showing a configuration of a plasma display panel according to a conventional example. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態に係るプラズマディ スプレイパネル (以下 「P D P」 という。) の構成及びその製造方法について図面を参照 しながら説明する。 なお、 以下の実施形態は、 本発明の一例でり、 同様の作用 · 効果を奏するものであれば本発明の技術的思想の範 疇に含まれる こ とは言うまでもない。  The configuration of a plasma display panel (hereinafter, referred to as “PDP”) and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings. The following embodiments are merely examples of the present invention, and needless to say, those having similar functions and effects are included in the scope of the technical idea of the present invention.
[実施の形態 1 ] 図 1 は、 本実施形態に係る交流面放電型 P D Pの要部斜視図で あり、 図 2は、 図 1 の X— X線を含む垂直断面図、 図 3は、 図 1 の Y— Y線を含む垂直断面図である。 なお、 これらの図では便宜 上セルが 3つだけ示されているが、 実際には赤 (R ) , 緑 (G ) , 青 (B ) の各色を発光するセルが多数配列されて P D Pが構成さ れている。 [Embodiment 1] FIG. 1 is a perspective view of a main part of an AC surface discharge type PDP according to the present embodiment. FIG. 2 is a vertical cross-sectional view including the X-X line of FIG. 1, and FIG. FIG. Note that although only three cells are shown in these figures for convenience, the PDP is actually composed of a large number of cells that emit red (R), green (G), and blue (B). Has been done.
この P D Pは、 各電極にパルス状の電圧を印加するこ とで放電 をパネル内部で生じさせ、 放電に伴って背面パネル P A 2側で発 生した各色の可視光を前面パネル P A 1 の主表面から透過させる 交流面放電型の P D Pである。  This PDP generates a discharge inside the panel by applying a pulsed voltage to each electrode, and the visible light of each color generated on the rear panel PA2 side with the discharge is applied to the main surface of the front panel PA1. This is an AC surface discharge type PDP that allows light to pass through.
前面パネル P A 1 は、 表示電極 1 2がス ト ライ プ状に並設され た前面ガラス基板 1 1 上に、 当該表示電極 1 2を覆う よう に誘電 体ガラス層 1 3が形成されており、 更に、 この誘電体ガラス層 1 3を覆う よう に保護層 1 4が形成されたものである。 表示電極 1 2は、 ガラス基板 1 1表面に形成された透明電極 1 2 a と、 この 透明電極 1 2 a上に形成された金属電極 1 2 b とからなる。  The front panel PA 1 has a dielectric glass layer 13 formed on a front glass substrate 11 on which display electrodes 12 are arranged in a strip shape so as to cover the display electrodes 12. Further, a protective layer 14 is formed so as to cover the dielectric glass layer 13. The display electrode 12 is composed of a transparent electrode 12a formed on the surface of the glass substrate 11 and a metal electrode 12b formed on the transparent electrode 12a.
一方、 背面パネル P A 2は、 ア ド レス電極 2 2がス ト ライ プ状 に並設された背面ガラス基板 2 1 上に、 当該ア ド レス電極 2 2を 覆う よう にア ド レス電極を保護するとともに可視光を前面パネル 側に反射する作用を担う電極保護層 2 3 (なお、 実駆動時にはこ の膜表面にも電荷が蓄積されるこ とから別な機能に着目すると誘 電体ガラス層である。) が形成されており、 この電極保護層 2 3上 にァ ド レス電極 2 2 と同じ方向に向けて伸び、 ァ ド レス電極 2 2 を挟むように隔壁 2 4が立設され、 更に、 当該隔壁 2 4間に蛍光 体層 2 5が配されたものである。  On the other hand, the rear panel PA 2 protects the address electrodes 22 on the rear glass substrate 21 on which the address electrodes 22 are arranged in a strip shape so as to cover the address electrodes 22. Electrode protective layer 23 that acts to reflect visible light to the front panel side as well as accumulates charge on the film surface during actual driving. Is formed, and extends in the same direction as the address electrode 22 on the electrode protection layer 23, and a partition wall 24 is erected so as to sandwich the address electrode 22. Further, a phosphor layer 25 is arranged between the partition walls 24.
こ こで、 各電極表面を覆う「誘電体層」は、 電気絶縁性であり、 その表面に壁電荷を蓄積する機能を有するものであり、 一般的に は上記のよう にガラスが用いられる。  Here, the “dielectric layer” covering each electrode surface is electrically insulative and has a function of accumulating wall charges on its surface. Generally, glass is used as described above.
次に、 上記構成の P D Pの製造方法について概説する。  Next, an outline of a method of manufacturing the PDP having the above configuration will be described.
前面パネル P A 1 の作製 :  Preparation of front panel P A 1:
前面パネル P A 1 は、 前面ガラス基板 1 1 の表面上に、 公知の 化学蒸着法 · フ ォ ト リ ソグラフ法によ り表示電極 1 2をス ト ライ プ状に形成し、 次に、 この表示電極 1 2を覆う よう にガラスを用 いて誘電体ガラス層 1 3を形成し、 更に誘電体ガラス層 1 3の表 面上に酸化マグネシウム (Mg O) からなる保護層 1 4を電子ビ ーム蒸着法にて形成するこ とによって作製する。 The front panel PA 1 is mounted on the surface of the front glass substrate 11 by a known method. The display electrode 12 is formed in a strip shape by a chemical vapor deposition method or a photolithographic method, and then a dielectric glass layer 13 is formed using glass so as to cover the display electrode 12. It is formed by forming a protective layer 14 made of magnesium oxide (MgO) on the surface of the dielectric glass layer 13 by an electron beam evaporation method.
背面パネル P A 2の作製 :  Preparation of rear panel P A 2:
まず、 背面ガラス基板 2 1の表面に、 フ ォ ト リ ソグラフ法によ り、 ア ド レス電極 22を形成する。 なお、 このア ド レス電極は、 金属電極のみからなる。  First, an address electrode 22 is formed on the surface of the rear glass substrate 21 by a photolithographic method. This address electrode is composed of only a metal electrode.
そして、 このァ ド レス電極 22を覆うように前面パネル PA 1 の場合と同様の方法で電極保護層 23を形成する。  Then, an electrode protection layer 23 is formed so as to cover the address electrodes 22 in the same manner as in the case of the front panel PA 1.
次に、 電極保護層 23の上に、 ガラス製の隔壁 24を所定のピ ツチで設置する。  Next, a glass partition wall 24 is provided on the electrode protection layer 23 with a predetermined pitch.
そ して、 隔壁 24に挟まれた各空間内に、 赤色 (R) 蛍光体, 緑色 (G) 蛍光体, 青色 (B) 蛍光体を配設するこ とによって、 蛍光体層 2 5を形成する。 各色 R, G, Bの蛍光体と しては、 一 般的に PD Pに用いられている蛍光体を用いるこ とができるが、 ここでは次の蛍光体を用いる。  Then, a phosphor layer 25 is formed by disposing a red (R) phosphor, a green (G) phosphor, and a blue (B) phosphor in each space sandwiched by the partition walls 24. I do. As the phosphor of each color R, G, B, the phosphor generally used for PDP can be used. Here, the following phosphor is used.
赤色蛍光体 (YXG d (卜 x)) B 03: E u Red phosphor (Y X G d (Bok x)) B 0 3: E u
緑色蛍光体 Z n 2S i O4: M n Green phosphor Z n 2 S i O 4: M n
青色蛍光体 B a M g A 110O 17 : E u 2+ Blue phosphor B a M g A 1 10 O 17 : E u 2+
或は Or
Figure imgf000016_0001
Figure imgf000016_0001
前面パネル及び背面パネルの張り合わせによる P D Pの完成 : 次に、 前面パネル P A 1 と背面パネル P A 2とを表示電極 1 2 とア ド レス電極 22とが直交する状態に位置合わせして両パネル を張り合わせる。 その後、 隔壁 24に仕切られた放電空間 30内 に放電ガス (例えば、 H e— X e系、 N e— X e系の不活性ガス) を所定の圧力で封入することによって P D Pは完成する。  Completion of PDP by bonding front panel and rear panel: Next, position the front panel PA1 and the rear panel PA2 so that the display electrode 12 and the address electrode 22 are orthogonal to each other, and bond both panels. You. Thereafter, a discharge gas (for example, a He—Xe system or a Ne—Xe system inert gas) is sealed in a discharge space 30 partitioned by the partition wall 24 at a predetermined pressure to complete the PDP.
封入する放電ガスの組成は、 従来から用いられている H e— X e系、 Ne— Xe系等であるが、 セルの発光輝度の向 ±を図るため に、 X eの含有量を 5体積%以上と し、 封入圧力を 0. 6 7 x 1 05~ 1. 0 1 X I 05P aに設定する。 The composition of the discharge gas to be filled is the He-Xe system, Ne-Xe system, etc., which have been used in the past. , The content of X e and 5% by volume or more, setting the gas pressure to 0. 6 7 x 1 0 5 ~ 1. 0 1 XI 0 5 P a.
上記構成の P D Pは、 図 4に示す駆動回路を用いて駆動される。 ア ド レス電極駆動部 3 1 には、 ア ド レス電極 2 2が接続され、 走 查電極駆動部 3 2には、 表示電極 1 2の走査側の電極が、 維持電 極駆動部 3 3には、 表示電極 1 2の維持側の電極が接続されてい る。 そして、 このような駆動回路によってセッ ト アツ プ期間で放 電が生じやすくするために P D P内の全セルに均一的に壁電荷を 蓄積させる。 次に、 ア ド レス期間で点灯させるセルの書き込み放 電を行う。 更に、 サスティ ン期間で前記ア ド レス期間で書き込ま れたセルを点灯させその点灯を維持させ、 ィ レース期間で壁電荷 を消去させる こ とによってセルの点灯を停止させる。これらの複 数の動作が繰り返し行われて 1 TVフ ィ ール ドの画像が表示され る。  The PDP having the above configuration is driven using the drive circuit shown in FIG. An address electrode 22 is connected to the address electrode driving section 31, and a scanning electrode of the display electrode 12 is connected to the scanning electrode driving section 32, and to a sustain electrode driving section 33. Is connected to the electrode on the maintenance side of the display electrode 12. Then, such a drive circuit uniformly accumulates wall charges in all cells in the PDP in order to easily cause discharge during the setup period. Next, write / discharge of cells to be lit during the address period is performed. Further, the cells written in the address period are turned on in the sustain period to maintain the lighting, and the cell charges are stopped by erasing the wall charges in the erase period. These multiple operations are repeatedly performed, and an image of one TV field is displayed.
*誘電体ガラス層の構造及び形成方法について * About the structure and forming method of the dielectric glass layer
初めに、 誘電体ガラス層は上記のように前面パネル及び背面パ ネルの双方に配されるが、 欠陥修復されている緻密な構造体であ る点及びその形成方法は両者で共通である。  First, the dielectric glass layer is disposed on both the front panel and the rear panel as described above. However, the structure is the same as that of the dense structure in which defects are repaired.
(構造について)  (About structure)
前記誘電体ガラス層 1 3 ( 2 3 ) は、 電極表面を覆う第 1 の誘 電体ガラス層 1 3a ( 2 3 a) 及びこ の表面を覆う第 2の誘電体ガ ラス層 ( 2 3 b ) とからなる。  The dielectric glass layer 13 (23) is composed of a first dielectric glass layer 13a (23a) covering the electrode surface and a second dielectric glass layer (23b) covering this surface. ).
(第 1 の誘電体ガラス層の形成について)  (About the formation of the first dielectric glass layer)
第 1 の誘電体ガラス層 1 3 a ( 2 3 a) は、 ガラス材料が溶融凝 固された後、 欠陥修復工程を経て形成されたものである。 このた め、 欠陥 (気泡、 クラッ ク、 マイ ク ロクラ ッ ク) が実質的にない 緻密な膜構造となつている。  The first dielectric glass layer 13a (23a) was formed through a defect repairing step after the glass material was melted and solidified. This results in a dense membrane structure with virtually no defects (bubbles, cracks, microcracks).
以下に この第 1 の誘電体ガラス層 1 3 a ( 2 3 a ) の形成方法 について具体的に説明する。  Hereinafter, a method for forming the first dielectric glass layer 13a (23a) will be specifically described.
つま り、 第 1 の誘電体ガラス層は、 以下の工程を経て形成され る。 まず、 第 1 の誘電体ガラス層を構成するガラス材料及びパイ ン ダ並びに溶剤を含んでなる誘電体ィ ンク を電極形成塗付した後 (塗付工程)、溶剤を乾燥させてからィ ンク に含まれたパイ ンダが 消失するとともにガラス材料が溶融する温度にて加熱する。 その 後冷却するこ とによって溶融ガラスを凝固させるこ とによって欠 陥修復前の第 1 の誘電体ガラス層が形成される (焼成工程)。 That is, the first dielectric glass layer is formed through the following steps. First, a dielectric material containing the glass material, the binder, and the solvent constituting the first dielectric glass layer is applied to form an electrode (coating process), the solvent is dried, and then the ink is applied. Heat at a temperature at which the contained binder disappears and the glass material melts. After that, the molten glass is solidified by cooling to form the first dielectric glass layer before the defect is repaired (firing step).
前記塗付工程は、 ス ク リ ーン印刷法、 ダイ コー ト法、 ス ピンコ ー ト法、 スプレーコー ト法、 或いはブレー ドコー ト法によ って電 極が形成された基板の表面に印刷するこ とによってイ ンクを塗付 する。  The coating step is performed by a screen printing method, a die coating method, a spin coating method, a spray coating method, or a blade coating method. To apply ink.
イ ンクに含ませるガラスと しては、 例えば、 成分 G l、 G2、 G 3、 · · · 、 GNからなるガラスを使用する場合には、 成分 Gl、 G 2、 G3、 * · · 、 GNを成分比に相当する比率で秤量し、 これを例 えば 1 3 0 0 °Cの炉中で加熱溶融し、 その後これを水中に投入し て得られたもので、 具体的には、 P b 0— B 203— S i 02- C a 0系ガラス、 P b O— B2O3— S i 02— M g O系ガラス、 P b O — B2O3— S i 02_ B a O系ガラス、 P b O— B203— S i O2— M g〇 _A l 23系ガラス、 P b O— B2O3_ S i 02— B a O— A 1203 系ガラス、 P b O— B203— S i 02- C a O - A 12O3 系ガラス、 B i 2O3— Z n O— B 203— S i02— C a O系ガラス、 Z n O— B2O3— S iO2— A l 2O3— C a O系ガラス、 P2O5— Z n O - A 1 2O3— C a O系ガラス、 N b2O5— Z n O— B2O3_ S i O2— C a O系ガラス単体又はこれらの混合物を用いる こ とが できる。 なお、 この他にも一般的に P D Pの誘電体に用いられる ガラスも同様に して用いるこ とが可能である。 背面パネルに設け る誘電体ガラス層には、 酸化チタ ン等を混合し、 光反射率を高め、 前面パネルでの光透過量を増すようにするこ ともできる。 As the glass to be included in the ink, for example, when a glass composed of the components Gl, G2, G3, ..., GN is used, the components Gl, G2, G3, *, GN Was weighed at a ratio corresponding to the component ratio, and this was heated and melted in a furnace at, for example, 130 ° C., and then poured into water. 0— B 2 0 3 — S i 0 2 -C a 0 glass, P b O— B 2 O 3 — S i 0 2 — Mg O glass, P b O — B 2 O 3 — S i 0 2 _ B a O glass, P b O— B 2 0 3 — S i O 2 — M g M _A l 23 glass, P b O— B 2 O 3 _ S i 0 2 — B a O - A 1 2 0 3 based glass, P b O- B 2 0 3 - S i 0 2 - C a O - A 1 2 O 3 based glass, B i 2 O 3 - Z n O- B 2 0 3 - S i0 2 — C a O-based glass, Z n O — B 2 O 3 — S iO 2 — Al 2 O 3 — C a O-based glass, P 2 O 5 — Z n O-A 1 2 O 3 — C a O-based glass, N b 2 O 5 —Zn O—B 2 O 3 _S i O 2 —C a O-based glass A single substance or a mixture thereof can be used. In addition, glass generally used for the dielectric of the PDP can be used in the same manner. The dielectric glass layer provided on the back panel may be mixed with titanium oxide or the like to increase the light reflectance and increase the amount of light transmitted through the front panel.
焼成工程は、 ガラスの軟化点よ り も 1 0 °c程度高い温度で加熱 する軟化点焼成の方法で行う。 これによ り、 高温加熱時の誘電体 ガラスと電極材料との反応が抑制され、 この反応によ り生じる気 泡数を減少させるこ とが可能となる。 次に、 第 1 の誘電体ガラ ス層中に残る欠陥を検出する。 こ こで、 欠陥が無ければ、 次の欠陥修復工程を経る必要がない。 具体的に 欠陥の検出は、 公知の画像処理法によって行う。 これを簡単に説 明すると、 欠陥修復前の第 1 の誘電体ガラス層を形成したパネル (なお、 修復工程における記載においてパネルとは、 前面パネル 及び背面パネルのこ とである。)の第 1 の誘電体ガラス層表面に光 を照射しその反射光及び透過光から第 1 の誘電体ガラス層の画像 の濃淡情報を取得する。 そして、 この濃淡情報から欠陥部を抽出 する。 The firing step is performed by a softening point firing method in which heating is performed at a temperature about 10 ° C higher than the softening point of the glass. This suppresses the reaction between the dielectric glass and the electrode material during high-temperature heating, and makes it possible to reduce the number of bubbles generated by this reaction. Next, defects remaining in the first dielectric glass layer are detected. Here, if there is no defect, there is no need to go through the next defect repair process. Specifically, the defect is detected by a known image processing method. Briefly explaining this, the first panel of the first dielectric glass layer before the defect repair (the panel in the description of the repair process is the front panel and the rear panel). The surface of the first dielectric glass layer is irradiated with light, and the light and shade information of the image of the first dielectric glass layer is obtained from the reflected light and transmitted light. Then, a defective portion is extracted from the grayscale information.
このように して抽出された欠陥部は、 いわゆるマイ クロクラ ッ ク と呼ばれるクラッ クの中でも微小な欠陥は実際的には検出され ないと考えられるが、 その他の欠陥 (気泡とかサイズの大きいク ラック) は確実に検出される。  The defect extracted in this way is considered to be such that micro defects are not actually detected in the so-called micro cracks, but other defects (bubbles or large cracks) ) Is reliably detected.
このよ う に欠陥を検出 した後、 少なく と も検出した欠陥部を修 復するように次の修復工程に移行する。 こ こで、 上記のように欠 陥には、 上記手法によっても検出不可能と思われる欠陥があるこ とから、 検出されたものだけを修復したのでは、 このような検出 不可能 欠陥が修復されないままに残るこ とになり、 絶縁耐圧の 低下を招来しかねない。 従って、 少なく とも検出した欠陥を修復 するこ とは勿論であるが、 欠陥が検出されたという こ とはマイ ク 口ク ラ ッ ク等の検出不可能な欠陥も残っている可能性が高いこ と から第 1 の誘電体ガラス層全体に渡って修復処理を施すこ とが望 ま しいのは言う までもない。  After detecting such a defect, the process proceeds to the next repairing step so as to repair at least the detected defective portion. Here, as described above, there are defects that are considered undetectable even by the above method, so repairing only the detected ones will not repair such undetectable defects It may remain as it is, which may lead to a decrease in withstand voltage. Therefore, it is a matter of course that at least the detected defect is repaired, but the fact that the defect is detected means that there is a high possibility that undetectable defects such as cracks and cracks remain. Therefore, it is needless to say that it is desirable to perform the repair process on the entire first dielectric glass layer.
次に欠陥修復工程における処理について具体的に説明する。 水電圧印加による欠陥修復  Next, the processing in the defect repairing step will be specifically described. Defect repair by applying water voltage
図 5は、 誘電体ガラス層に残る欠陥を修復する装置 (誘電体修 復装置) の構成を示す平面図である。 この図に示すように誘電体 修復装置 5 0は、 パネル載置手段 5 1 と、 導電性基板 5 2 と、 放 電ガス導入手段 5 3 とから構成されている。  FIG. 5 is a plan view showing a configuration of an apparatus (dielectric repairing apparatus) for repairing a defect remaining in the dielectric glass layer. As shown in this figure, the dielectric repair device 50 is composed of a panel mounting means 51, a conductive substrate 52, and a discharge gas introducing means 53.
パネル載置手段 5 1 は、 導電性基板 5 2の表面外周部に配置さ れた絶縁性スぺーサである。 導電性基板 5 2はその大きさがパネ ルと同等の面積を有したもので、 アルミ 合金や S U Sなどで作製 される。 The panel mounting means 51 is an insulating spacer disposed on the outer peripheral portion of the surface of the conductive substrate 52. The size of the conductive substrate 52 is It has an area equivalent to that of a metal alloy and is made of aluminum alloy or SUS.
パネル P aは第 1 の誘電体ガラス層表面が導電性基板 5 2 と面 するようにパネル載置手段 5 1 上に置かれパネルと一定のギヤ ッ プ G aが確保される。 そして、 放電ガス導入手段 5 3からパネル と導電性基板 5 2 との間に形成された空間部 5 4に放電ガス 5 5 を導入する。 なお、 導電性基板 5 2 には厚み方向に一箇所若しく は複数箇所にガス導入貫通孔 5 6が形成され (図では一つ)、 こ こ から放電ガスが任意の量で空間部 5 4に導入される。 このよう に 放電ガスを導入することによって、 パネル P aが放電ガス 5 5 に よってわずかだけ浮き上がりパネル P aの自重による撓みを解消 してパネル中央部分で撓みが大きいと思われる部分でも導電性基 板と一定のギヤ ップ G a を確保できる。  The panel Pa is placed on the panel placing means 51 such that the surface of the first dielectric glass layer faces the conductive substrate 52, and the panel and a certain gap Ga are secured. Then, the discharge gas 55 is introduced from the discharge gas introduction means 53 into a space 54 formed between the panel and the conductive substrate 52. In the conductive substrate 52, gas introduction through holes 56 are formed at one or more locations in the thickness direction (one in the figure). Will be introduced. By introducing the discharge gas in this manner, the panel Pa is slightly lifted by the discharge gas 55 to eliminate the deflection caused by the weight of the panel Pa, and the conductive base is formed even in the portion where the deflection is considered to be large at the center of the panel. A plate and a certain gap G a can be secured.
放電ガス 5 5は、 N e、 N e とそのぺニングガスである H e、 X eなどを 1種類若しく は数種類混合したガスが使用可能である (例えば、 1 一 1 . 5 L 分の量導入)。 このおような希ガス導入 でネオン発光を生じさせ、 欠陥箇所が特定される。 また、 希ガス であるこ とによ り、 空気よ り も放電電圧を下げ放電によって誘電 体ガラス層に流れる電流量を低減させるこ とができる。 更に、 ぺ ニングガスを導入するこ とによ り、 放電開始電圧をそれを加えな い場合と比べて低減させるこ とができ、 放電によって誘電体ガラ ス層に流れる電流量を低減させるこ とができる。 なお、 後述する ように誘電体ガラス層に流れる電流は、 欠陥を修復することがで きる範囲内であればできるだけ少ない方が望ま しい。  As the discharge gas 55, one or a mixture of Ne and Ne and one or more of He, Xe, which is a gas used for the discharge, can be used (for example, an amount equivalent to 1.11.5 L). Introduction). The introduction of such a rare gas causes neon light emission, and a defective portion is specified. In addition, since the gas is a rare gas, the discharge voltage is lower than that of air, and the amount of current flowing through the dielectric glass layer by the discharge can be reduced. Furthermore, the introduction of the cleaning gas makes it possible to reduce the discharge starting voltage as compared with the case where no discharge gas is applied, and to reduce the amount of current flowing through the dielectric glass layer by the discharge. it can. As will be described later, it is desirable that the current flowing through the dielectric glass layer be as small as possible as long as the defect can be repaired.
次いで、 導電性基板 5 2 とパネル P a に電源部 5 7 をパネルに 予め形成されてある電極 (表示電極やア ド レス電極) を介して取 り付け、 放電ガスを介して誘電体に電圧を印加する。 電源部 5 7 は、 印加電圧量、 印加電圧周波数、 電圧波形を任意に変えるこ と ができるものを利用する。  Next, a power supply unit 57 is attached to the conductive substrate 52 and the panel Pa via electrodes (display electrodes and address electrodes) formed in advance on the panel, and a voltage is applied to the dielectric through the discharge gas. Is applied. As the power supply unit 57, a unit that can arbitrarily change an applied voltage amount, an applied voltage frequency, and a voltage waveform is used.
こ こで、 絶縁破壊時 (誘電体ガラ ス層が物理的に破壊する時) のエネルギーは、 破壊時の電流 I と、 電圧 Vと、 印加時間 t に対 して、 式 ; Q l = I xV x tで与え られる。 Here, the energy at the time of dielectric breakdown (when the dielectric glass layer is physically destroyed) depends on the current I at the time of breakdown, the voltage V, and the application time t. Then, the equation is given by Ql = IxVxt.
誘電体に与えられる熱量は、 比熱 /0、 熱を受ける部分の質量 w、 温度上昇 Δ t と して式 ; Q 2 = p xwx A tである。  The amount of heat given to the dielectric is given by the following equation: specific heat / 0, mass w of the heat-receiving part, and temperature rise Δt; Q 2 = pxwx At.
そして、 絶縁破壊時は、 Q 1 =Q 2であるので、 I xV x t = p xw x A tが成立し、 従って、 Δ ΐ = ( I X V t ) / ( p x w) が導かれる。  Then, at the time of dielectric breakdown, since Q1 = Q2, IxVxt = pxwxAt is satisfied, and therefore, Δΐ = (IXVt) / (pxw) is derived.
こ こで、 誘電体ガラス層に加わるエネルギー量の観点から絶縁 破壊について考察すると、 絶縁破壊となる Δ tが大き く なると破 壊箇所が溶融し過ぎて大き く なり、 逆に破壊エネルギーを制御し て Δ tを小さ くすると、 破壊箇所は再凝固して自己修復するこ と が分かる。 そして、 自己修復させるため Δ tを規定するとすれば、 I、 V、 tの値を小さ く規定すれば良いこ とが分かる。  Considering the dielectric breakdown from the viewpoint of the amount of energy applied to the dielectric glass layer, if Δt, which causes the dielectric breakdown, increases, the broken part becomes too large to melt, and conversely, the breakdown energy is controlled. It can be seen that when Δt is reduced, the fracture site resolidifies and self-heals. Then, if Δt is specified for self-healing, it can be seen that the values of I, V, and t need to be specified small.
I を小さ く するためには、 高抵抗を少なく とも導電性基板と電 源若しく は誘電体と電源との間に直列に揷入する。 高抵抗と して は 1 ΜΩ〜 1 G Ωを用いれば良い。 Vを小さ くするためには、 高 周波の電圧を印加する。 高周波数になるほど破壊電圧は下がるこ とから A tを小さ く するこ とができる。 具体的には、 60 H z ~ 実駆動レベル (数 Ι Ο Ο ΚΗ ζ) の周波数の電圧を印加するこ と が望ま しく 、 特に、 Ι Ο Ο ΚΗ ζの周波数の電圧を印加するこ と が望ましい。  In order to reduce I, at least a high resistance is inserted in series between the conductive substrate and the power supply or between the dielectric and the power supply. As the high resistance, 1ΜΩ to 1 GΩ may be used. To reduce V, apply a high-frequency voltage. Since the breakdown voltage decreases as the frequency increases, At can be reduced. Specifically, it is desirable to apply a voltage with a frequency of 60 Hz to the actual driving level (several Ι Ο ΚΗ ΚΗ ζ), and in particular, a voltage with a frequency of Ι Ο Ο ΚΗ ζ. desirable.
tを小さ くするためには、 矩形 (パルス) 状の電圧を印加する。 そして、 維持時間 (電圧印加時間) tはあま り長すぎると破壊に 到るこ とがあるこ とから、 1 s ~ l s程度が望ま しい。  To reduce t, a rectangular (pulse) voltage is applied. If the maintenance time (voltage application time) t is too long, it may lead to destruction. Therefore, it is desirable to be about 1 s to 1 s.
以下に、 電圧を印加するこ とによる欠陥修復工程における I、 V、 t、 p、 w、 Δ tの実測値について記載する。  The following describes the measured values of I, V, t, p, w, and Δt in the defect repair process by applying a voltage.
I =〜 0. 1 m A、 V = 25 0 ~ 300 V、 t = 1 m s io =〜 1 0 0 J /K//g、 w= 40 x l 0_1 8 g、 Δ t = 6 0 0〜 1 000 K I = ~ 0. 1 m A, V = 25 0 ~ 300 V, t = 1 ms io = ~ 1 0 0 J / K / / g, w = 40 xl 0_ 1 8 g, Δ t = 6 0 0~ 1 000 K
第 1の誘電体ガラス層に上記のように電圧を印加するこ とによ つて、 空間部 54で放電が生じるこ とによって欠陥部を囲む誘電 体ガラス層部分に電流が流れて加熱され、 その結果欠陥近傍周囲 の誘電体ガラス層形成ガラスが溶融して欠陥に入り込み、 その後 凝固するこ とによって欠陥に充填されることになる。 この結果、 欠陥が修復される。 こ こで、 欠陥が修復された箇所はその後欠陥 とは言えないことから、 欠陥との対応付けを明確にするために修 復された欠陥箇所を「修復された欠'陥相当箇所」という。 By applying a voltage to the first dielectric glass layer as described above, a discharge occurs in the space portion 54, and a current flows through the dielectric glass layer portion surrounding the defect portion to be heated. Result Around the defect The dielectric glass layer forming glass melts and enters the defect, and then solidifies, thereby filling the defect. As a result, the defect is repaired. Here, since the portion where the defect was repaired cannot be said to be a defect thereafter, the defect portion that has been repaired in order to clarify the correspondence with the defect is referred to as “the portion corresponding to the repaired defect”.
こ のよ う に第 1 の誘電体ガラス層の修復された欠陥相当箇所の ガラス組成は欠陥相当箇所でない箇所のガラス組成と異なる こと になる。 これは、 このよう に修復された欠陥相当箇所は、 修復の 結果、 第 1 の誘電体ガラス層の形成ガラス材料とは組成が異なつ ており、 修復きれた結果気泡やマイ クロク ラ ッ ク部分が他の材料 でも補填されるこ とを示している。 具体的には、 前記誘電体ガラ ス層の修復された欠陥相当箇所は、 その他の箇所に比べて電極材 料の含有量が多く なる。 これは、 電極材料が欠陥部分に昇華しそ の周囲に付着した後、 凝固した結果当該欠陥を塞いだこ と に起因 する。  As described above, the glass composition at the portion corresponding to the repaired defect in the first dielectric glass layer is different from the glass composition at the portion not corresponding to the defect. This is because the repaired portion has a different composition from the glass material of the first dielectric glass layer as a result of the repair. Indicates that other materials can be supplemented. Specifically, the portion corresponding to the repaired defect in the dielectric glass layer has a higher content of the electrode material than other portions. This is because the electrode material sublimated to the defect portion and adhered to the periphery thereof, and then solidified, thereby closing the defect.
図 6は誘電体ガラス層の膜欠陥の例である。上記手法において、 誘電体ガラス層に印加するエネルギーが小さい場合に欠陥の自己 修復となり、 エネルギーが大きい場合には欠陥の自己修復となら ず破壊に至る。 自己修復した箇所と 自己修復しなかった箇所の表 面を比較すると図 6のよう になる。 自己修復しなかった場合は過 剰な破壊エネルギーによ り誘電体とガラス基板にクラ ックが入つ ている (図 6 ( a ) )。 このクラ ッ クは、 破壊時に過剰な熱が加わ つた結果発生したものと考えられる。 一方、 自己修復した場合は、 図 6 ( b ) のように、 修復された欠陥相当箇所を持ち、 そして、 印加されたエネルギーによってクラッ クは入るものの自己修復し なかった場合と比べて小さいものであった。 これは、 印加される エネルギーが小さかったこ とに起因する。  FIG. 6 is an example of a film defect of the dielectric glass layer. In the above method, when the energy applied to the dielectric glass layer is small, the defect is self-repaired, and when the energy is large, the defect is not self-repaired but is destroyed. Figure 6 shows a comparison of the surface of the part where self-repair and the part where self-repair was not performed. If self-healing was not performed, cracks would enter the dielectric and glass substrate due to excessive destructive energy (Fig. 6 (a)). This crack is considered to be the result of excessive heat applied at the time of failure. On the other hand, in the case of self-repair, as shown in Fig. 6 (b), it has a part corresponding to the repaired defect, and it is smaller than the case where self-repair did not occur, although cracks entered by the applied energy. there were. This is because the applied energy was small.
こ こで、 上記誘電体修復装置において、 前記電圧印加時に温度 を 1 0 0 °c以下に加熱する手段を設けるこ と もできる。 これによ り、 よ り微小な欠陥までもほぼ完全に修復し欠陥を無くすこ とが 可能となり、 更に、 絶縁耐圧性を向上させることが可能となる。  Here, in the above-described dielectric repair apparatus, means for heating the temperature to 100 ° C. or less at the time of applying the voltage may be provided. As a result, even smaller defects can be almost completely repaired to eliminate the defects, and the withstand voltage can be further improved.
2ひ 水光照射による欠陥修復 Two Defect repair by water light irradiation
次に、 第 1 の誘電体ガラス層表面に光を照射するこ とによ り欠 陥を修復する方法について説明する。  Next, a method of repairing the defect by irradiating the surface of the first dielectric glass layer with light will be described.
図 7は、 誘電体ガラス層に残る欠陥を光照射によって修復する 装置 (誘電体修復装置) の構成を示す平面図である。 この図に示 すように誘電体修復装置 7 0は、 パネル載置手段 7 1 と、 光照射 手段 7 2 とからなる。  FIG. 7 is a plan view showing the configuration of a device (dielectric repair device) for repairing defects remaining in the dielectric glass layer by light irradiation. As shown in this figure, the dielectric repair device 70 includes a panel mounting means 71 and a light irradiation means 72.
パネル載置手段 7 1 は、 欠陥修復前の第 1 の誘電体ガラス層が 形成されたパネルを第 1 の誘電体ガラス層を上面にして固定する 部材を備える。  The panel mounting means 71 includes a member for fixing the panel on which the first dielectric glass layer before the defect repair is formed, with the first dielectric glass layer facing upward.
光照射手段 7 2 には、 Y A G レーザや炭酸ガス レーザを用いる ことができる。  As the light irradiation means 72, a YAG laser or a carbon dioxide laser can be used.
このような構成の,誘電体修復装置 7 0を用いての誘電体に残る 欠陥の修復は以下のようにして行われる。 つま り、 レーザ光を第 1 の誘電体ガラス層表面全面を一様に走査又は欠陥部分を選択的 に走査するこ とで、 欠陥近傍周囲の誘電体ガラス層形成ガラスが 溶融して欠陥に入り込み、 その後凝固するこ とによって欠陥に充 填されるこ とになる。 この結果、 欠陥が修復される。  The repair of the defect remaining in the dielectric using the dielectric repair device 70 having such a configuration is performed as follows. That is, by uniformly scanning the entire surface of the first dielectric glass layer with the laser beam or selectively scanning the defect portion, the glass around the defect near the defect melts and enters the defect. After that, solidification fills the defect. As a result, the defect is repaired.
このように第 1 の誘電体ガラス層の修復された欠陥相当箇所の ガラス組成は上記同様に欠陥相当箇所でない箇所のガラス組成と 異なることになる。 これは、 このように修復された欠陥相当箇所 は、 修復の結果、 第 1 の誘電体ガラス層の形成ガラス材料とは組 成が異なっており、 修復された結果気泡やマイ クロクラッ ク部分 が他の材料でも補填されることを示している。 具体的には、 前記 誘電体ガラス層の修復された欠陥相当箇所は、 その他の箇所に比 ベて電極材料の含有量が多く なる。 これは、 電極材料が欠陥部分 に昇華しその周囲に付着した後、 凝固した結果当該欠陥を塞いだ こ とに起因する。  Thus, the glass composition of the portion corresponding to the repaired defect in the first dielectric glass layer is different from the glass composition of the portion other than the portion corresponding to the defect as described above. This is because the repaired portion corresponding to the defect has a different composition from the glass material of the first dielectric glass layer as a result of the repair, and as a result of the repair, air bubbles and microcracks are different. It is shown that the material is also supplemented. Specifically, the portion corresponding to the repaired defect in the dielectric glass layer has a larger content of the electrode material than other portions. This is because the electrode material sublimated to the defect portion, adhered to the periphery thereof, and then solidified to close the defect.
水ガラス塗付による欠陥修復 · 次に、 第 1 の誘電体ガラス層にガラスを塗付するこ とにより欠 陥を修復する方法について説明する。 図 8は、 誘電体ガラス層に残る欠陥をガラス塗付によ り修復す る装置 (誘電体修復装置) の構成を示す平面図である。 この図に 示すように誘電体修復装置 8 0は、 パネル載置手段 8 1 と、 ガラ ス塗付手段 8 2 と、 焼成炉 8 3 とからなる。 Repairing defects by applying water glass · Next, a method of repairing defects by applying glass to the first dielectric glass layer will be described. FIG. 8 is a plan view showing the configuration of a device (dielectric repair device) for repairing defects remaining in the dielectric glass layer by applying glass. As shown in this figure, the dielectric restoration device 80 includes a panel mounting means 81, a glass coating means 82, and a firing furnace 83.
パネル載置手段 8 1 は、 欠陥修復前の第 1 の誘電体ガラス層が 形成されたパネルを第 1 の誘電体ガラス層を上面にして固定する 部材を備える。  The panel mounting means 81 includes a member for fixing the panel on which the first dielectric glass layer before the defect repair has been formed, with the first dielectric glass layer facing upward.
ガラス塗付手段 8 2は、 第 1 の誘電体ガラス層表面全面に塗付 することができるはけ状のものやノズル状のもの等の何れでも構 わなく 、 欠陥部に選択的にガラスを塗付する先端の細いものであ つても構わない。 こ こで、 塗付するガラスはパイ ンダ及ぴ溶剤と 混合状態にて図示しないィ ンク タ ンク に貯蔵され、 図示しない適 宜塗付部分にポンプ等によつて供給される構成となっている。 ガ ラスは、 第 1 の誘電体ガラス層を構成するガラスよ り も軟化点が 低いものを用いるとともに、  The glass applying means 82 may be any of a brush-like or nozzle-like thing which can be applied to the entire surface of the first dielectric glass layer, and selectively applies glass to the defective portion. It may be a thin tip to be applied. Here, the glass to be applied is stored in an ink tank (not shown) in a mixed state with a binder and a solvent, and is supplied to an appropriate application portion (not shown) by a pump or the like. . The glass used has a lower softening point than that of the glass constituting the first dielectric glass layer.
第 1 の誘電体ガラス層の焼成温度以下の温度にて焼成を行なうの が望ま しい。 第 1 の誘電体ガラス層の再溶融を防止するためであ る。 なお、 軟化点を下げるには一般に酸化鉛の含量を増やしたも のを用いる。 It is desirable to perform firing at a temperature equal to or lower than the firing temperature of the first dielectric glass layer. This is to prevent re-melting of the first dielectric glass layer. In addition, in order to lower the softening point, a material having an increased content of lead oxide is generally used.
ガラスを欠陥部に塗付した後、 パネル全体を焼成炉 8 3にて焼 成し修復が完了される。  After the glass is applied to the defect, the entire panel is fired in firing furnace 83 to complete the repair.
この結果、 欠陥に塗付したガラスが溶融 · 凝固して欠陥を塞ぎ 欠陥にガラスが充填されることになる。  As a result, the glass applied to the defect is melted and solidified to close the defect and the defect is filled with glass.
(第 2の誘電体ガラス層の形成について)  (About the formation of the second dielectric glass layer)
上記のよう に して欠陥の実質上存在しない第 1 の誘電体ガラス 層 1 3 a ( 2 3 a ) を形成した後に、 その表面を第 2の誘電体ガ ラス層 1 3 b ( 2 3 b ) にて被覆する。  After forming the first dielectric glass layer 13a (23a) substantially free of defects as described above, the surface thereof is changed to the second dielectric glass layer 13b (23b). ).
この第 2の誘電体ガラス層 1 3 b ( 2 3 b ) は、 既に欠陥が修 復されている第 1 の誘電体ガラス層 1 3 a ( 3 a ) 上にいわば 上塗り被覆するためのもので、 誘電体ガラス層全体を欠陥のない よ り緻密なものとするためのものである。 [実施の形態 2 ] This second dielectric glass layer 13 b (23 b) is to overcoat the first dielectric glass layer 13 a (3 a) in which the defect has already been repaired. This is for making the entire dielectric glass layer denser without defects. [Embodiment 2]
上記実施形態の記載欄では、 パネル組立前に誘電体ガラス層に 残った欠陥を修復する方法について説明したが、 こ こでは、 パネ ル各部を従来と同様の一般的な方法によって形成した後、 パネル を組み立て、 その後に、 誘電ガラス層に残っている欠陥を修復す る処理を施す点に特徴がある。 具体的には、 前記導電性基板と同 じ機能をァ ド レス電極が果し、 表示電極とァ ド レス電極間に上記 同様に電圧を印加するようにしてある。  In the description section of the above embodiment, a method of repairing a defect remaining in the dielectric glass layer before assembling the panel has been described.Here, after forming each part of the panel by the same general method as before, The feature is that the panel is assembled, and then a process is performed to repair defects remaining in the dielectric glass layer. Specifically, an address electrode performs the same function as the conductive substrate, and a voltage is applied between the display electrode and the address electrode in the same manner as described above.
まず、 パネル (組み立て後のもの) に電源部を取り付け、 放電 ガスを介して誘電体に電圧を印加する。 電源部は、 印加電圧量、 印加電圧周波数、 電圧波形を任意に変えるこ とができるものを利 用する。  First, a power supply is attached to the panel (after assembly), and a voltage is applied to the dielectric through the discharge gas. Use a power supply that can change the applied voltage, applied voltage frequency, and voltage waveform arbitrarily.
絶縁破壊時 (誘電体ガラス層が物理的に破壊する時) のェネル ギ一は、 破壊時の電流 I と、 電圧 Vと、 印加時間 t に対して、 式 ; Q l = I x V x t で与えられる。  The energy at the time of dielectric breakdown (when the dielectric glass layer is physically destroyed) is given by the following formula; Ql = I x V xt for the current I at the time of breakdown, the voltage V, and the application time t. Given.
誘電体に与えられる熱量は、 比熱 p、 熱を受ける部分の質量 w、 温度上昇 Δ t と して式 ; Q 2 = p X w x A t である。  The amount of heat given to the dielectric is given by the following formula: specific heat p, mass w of the heat-receiving part, and temperature rise Δt; Q 2 = pXwxAt.
絶縁破壊時は、 Q 1 = Q 2であるので、 I x V x t = p x w x △ t が成立し、 従って、 A t - ( I X V X t ) / ( p x w) が導 かれる。  At the time of dielectric breakdown, since Q 1 = Q 2, I x V xt = p x w x Δt holds, and therefore, At-(I X V X t) / (p x w) is derived.
こ こで、 誘電体ガラス層に加わるエネルギー量と絶縁破壊につ いて考察する と、 絶縁破壊となる A t が大き く て破壊箇所が溶融 し過ぎて大き く なり、 逆に破壊エネルギーを制御して Δ t を小さ くすると、 破壊箇所は再凝固して自己修復するこ とが分かる。 そ して、 自己修復させるため A t を規定するとすれば、 I、 V、 t の値を小さ く 規定すれば良いこ とが分かる。  Here, considering the amount of energy applied to the dielectric glass layer and the dielectric breakdown, the At, which causes the dielectric breakdown, is large, and the fracture location becomes too large to melt, and conversely, the breakdown energy is controlled. It can be seen that when Δt is reduced, the fracture site resolidifies and self-heals. Then, if At is specified for self-healing, it is clear that I, V, and t should be specified to be small.
I を小さ く するためには、 高抵抗を少なく と も導電性基板と電 源若しく は誘電体と電源との間に直列に揷入する。 高抵抗と して は 1 M Ω〜 1 G Ωを用いれば良い。 Vを小さ くするためには、 高 周波の電圧を印加する。 高周波数になるほど破壊電圧は下がるこ とから Δ t を小さ くするこ とができる。 具体的には、 6 0 H z〜 実駆動レベル (数 l O O K H z.) の周波数の電圧を印加すること が望ま しく 、 特に、 l O O K H zの周波数の電圧を印加するこ と が望ま しい。 In order to reduce I, a high resistance should be at least inserted in series between the conductive substrate and the power supply or between the dielectric and the power supply. A high resistance of 1 MΩ to 1 GΩ may be used. To reduce V, apply a high-frequency voltage. Since the breakdown voltage decreases as the frequency increases, Δt can be reduced. Specifically, 60 Hz ~ It is desirable to apply a voltage having a frequency of the actual drive level (several l OOKH z.), And it is particularly desirable to apply a voltage having a frequency of l OOKH z.
t を小さ く するためには、 矩形 (パルス) 状の電圧を印加する。 維持時間 (電圧印加時間) t はあま り長すぎると破壊に到ること があることから、 1 s〜 l s程度が望ま しい。  To make t smaller, a rectangular (pulse) voltage is applied. If the maintenance time (voltage application time) t is too long, it may lead to destruction, so it is desirable to be about 1 s to 1 s.
以下に、 電圧を印加するこ とによる欠陥修復工程における I 、 V、 t、 p、 w、 Δ t の実測値について記載する。  The following describes the measured values of I, V, t, p, w, and Δt in the defect repair process by applying a voltage.
I =〜 0. l mA、 V = 2 5 0〜 3 0 0 V、 t = 1 m s p 1 O O J /K/ g , w= 4 0 x l 0— 1 8 g、 Δ t = 6 0 0 ~ 1 0 0 0 K I = ~ 0. l mA, V = 2 5 0~ 3 0 0 V, t = 1 msp 1 OOJ / K / g, w = 4 0 xl 0- 1 8 g, Δ t = 6 0 0 ~ 1 0 0 0 K
なお、 電圧印加時に誘電体ガラス層部分を 1 0 0 °c程度に加熱 することによって欠陥修復をよ り確実にしかも低電流で行う こ と ができる。  By heating the dielectric glass layer to about 100 ° C. at the time of applying a voltage, the defect can be repaired more reliably and at a lower current.
第 1 の誘電体ガラス層に上記のように電圧を印加することによ つて、 欠陥近傍周囲の誘電体ガラス層形成ガラスが溶融して欠陥 に入り込み、 その後凝固することによって欠陥に充填されるこ と になる。 この結果、 欠陥が修復される。  By applying a voltage to the first dielectric glass layer as described above, the dielectric glass layer forming glass around the defect melts and enters the defect, and then solidifies and fills the defect. And. As a result, the defect is repaired.
このよう に第 1 の誘電体ガラス層の修復されてた欠陥相当箇所 のガラス組成は欠陥相当箇所でない箇所のガラス組成と異なるこ とになる。 .これは、 このよう に修復された欠陥相当箇所は、 修復 の結果、 第 1 の誘電体ガラス層の形成ガラス材料とは組成が異な つており、 修復された結果気泡やマイ ク ロ ク ラ ッ ク部分が他の材 料でも補填されるこ とを示している。 具体的には、 前記誘電体ガ ラス層の修復された欠陥相当箇所は、 その他の箇所に比べて電極 材料の含有量が多く なる。 これは、 電極材料が欠陥部分に昇華し その周囲に付着した後、 凝固した結果当該欠陥を塞いだことに起 因する。  As described above, the glass composition of the portion corresponding to the repaired defect in the first dielectric glass layer is different from the glass composition of the portion not corresponding to the defect. This is because, as a result of the repair, the portion corresponding to the defect thus repaired has a different composition from the glass material of the first dielectric glass layer, and as a result of the repair, bubbles and micro cracks are formed. This indicates that the cut portion can be supplemented with other materials. Specifically, the portion corresponding to the repaired defect in the dielectric glass layer has a higher content of the electrode material than other portions. This is due to the fact that the electrode material sublimated to the defect and adhered to its surroundings, then solidified and closed the defect.
[実施の形態 3 ]  [Embodiment 3]
本実施形態における P D Pの構成は、 誘電体ガラスの構成及び その形成方法が異なる以外その他の点は上述した実施形態と同様 であるので、 以下、 相違点について焦点を当てて説明する。 The configuration of the PDP in this embodiment is the same as that of the above-described embodiment except that the configuration of the dielectric glass and the forming method thereof are different. Therefore, the following description focuses on the differences.
図 9、 図 1 0は、 本発明に係る第 3の実施の形態の P D Pの構 成を示す平面図である。  FIGS. 9 and 10 are plan views showing a configuration of a PDP according to the third embodiment of the present invention.
図 9に示すよう に、 本 P D Pにおける誘電体ガラス層 4 3及び 電極保護層 5 3は、 第 1 の誘電体ガラス層 4 3 a ( 5 3 a ) 間に これよ り も緻密な第 2の誘電体ガラス層 4 3 b ( 5 3 b) が介揷 された構成となっている。  As shown in FIG. 9, the dielectric glass layer 43 and the electrode protection layer 53 in the present PDP are formed between the first dielectric glass layer 43a (53a) and the second denser glass layer. The dielectric glass layer 43b (53b) is interposed.
或いは、 図 1 0に示すよう に、 本 P D Pにおける誘電体ガラス 層 4 3及び電極保護層 5 3は、 第 1 の誘電体ガラス層 4 3 a ( 5 3 a )表面上にこれよ り も緻密な第 2の誘電体ガラス層 4 3 b ( 5 3 b ) が被覆された構成となっている。  Alternatively, as shown in FIG. 10, the dielectric glass layer 43 and the electrode protection layer 53 in the present PDP are more densely formed on the surface of the first dielectric glass layer 43a (53a). The structure is such that the second dielectric glass layer 43b (53b) is covered.
このような緻密度の度合いの異なる誘電体ガラス曆を積層した 構造体とするこ とによって、 気泡、 クラッ クや検出することが事 実上不可能なマイ クロクラッ クなどの欠陥が第 1 の誘電体ガラス 層 4 3 a ( 5 3 a ) 中に存在していたと しても、 この上を覆う よ う にこれよ り も緻密な第 2の誘電体ガラス層 4 3 b ( 5 3 b ) を 備えることとなるので、 実質的に欠陥を無くすこ とになり、 絶縁 耐圧に優れたプラズマディ スプレイパネルが得られる。  By forming such a structure in which dielectric glasses of different densities are laminated, defects such as air bubbles, cracks, and micro cracks that are practically impossible to detect are eliminated by the first dielectric. Even if it is present in the body glass layer 43a (53a), the second dielectric glass layer 43b (53b), which is denser than this, is covered so as to cover it. As a result, a defect is substantially eliminated, and a plasma display panel having excellent withstand voltage can be obtained.
*誘電体ガラス層 4 3 ( 5 3 ) の形成方法について  * About the method of forming the dielectric glass layer 4 3 (5 3)
以下に第 1 の誘電体ガラス層 4 3 a ( 5 3 ) の形成方法につ いて具体的に説明する。  Hereinafter, a method of forming the first dielectric glass layer 43a (53) will be specifically described.
まず、 第 1 の誘電体ガラス層 4 3 a ( 5 3 a ) を構成するガラ ス材料及びパィ ンダ並びに溶剤を含んでなる誘電体ィ ンクを電極 形成塗付した後 (塗付工程)、 溶剤を乾燥させてからイ ンク に含ま れたバイ ンダが消失するとともにガラス材料が溶融する温度にて 加熱する。 その後冷却することによって溶融ガラスを凝固させる こ とによって第 1 の誘電体ガラス層が形成される (焼成工程)。 前記塗付工程は、 ス ク リ ーン印刷法、 ダイ コー ト法、 ス ピンコ ー ト法、 スプレーコー ト法、 或いはブレー ドコー ト法によって基 板表面に印刷することによってイ ンクを塗付する。  First, after a glass material and a binder constituting the first dielectric glass layer 43a (53a) and a dielectric ink containing a solvent are applied to form an electrode (application step), the solvent is applied. After drying, the binder is heated at a temperature at which the binder contained in the ink disappears and the glass material melts. Thereafter, the first dielectric glass layer is formed by solidifying the molten glass by cooling (firing step). In the applying step, ink is applied by printing on a substrate surface by a screen printing method, a die coating method, a spin coating method, a spray coating method, or a blade coating method. .
イ ンクに含ませるガラスと しては、 例えば、 成分 Gl、 G2、 G 3、 · · · 、 GNからなるガラスを使用する場合には、 成分 G l、 G 2、 G3、 * · · 、 GNを成分比に相当する比率で秤量し、 これを例 えば 1 3 0 0 °Cの炉中で加熱溶融し、 その後これを水中に投入し て得られたもので、 具体的には、 P b 0— B 203— S i 02— C a O系ガラス、 P b O— B 203— S i 02—M g O系ガラス、 P b O - B 2O3- S i O2— B a O系ガラス、 P b O— B203— S i 02— M g O— A 1203系ガラス、 P b O— B2O3— S i 02— B a O— A 1 203 系ガラ ス、 P b O— B2O3— S i 〇2— C a〇一 A l 23 系ガラス、 B i 2O3— Z n〇一 B2O3— S iO2— C a O系ガラ ス、 Z n O— B 203— S i 02— A 1203— C a O系ガラス、 P2O5— Z n O - A 123— C a〇系ガラス、 N b2O5— Z n O— B2O3— S i O 2- C a〇系ガラス単体又はこれらの混合物を用いるこ とが できる。 なお、 この他にも一般的に P D Pの誘電体に用いられる ガラスも同様にして用いる ことが可能である。 背面パネルに設け る誘電体ガラス層には、 酸化チタ ン等を混合し、 光反射率を高め、 前面パネルでの光透過量を増すようにするこ ともできる。 Examples of glass to be included in ink include components Gl, G2, and G When using glass consisting of 3, GN, GN, the components Gl, G2, G3, *, GN are weighed at a ratio corresponding to the component ratio. ° heated and melted in a furnace and C, which have been obtained by introducing into water then specifically, P b 0- B 2 0 3 - S i 0 2 - C a O -based glass, P b O— B 2 0 3 — S i 0 2 —Mg O-based glass, P b O -B 2 O 3 -S i O 2 — B a O-based glass, P b O—B 2 0 3 — S i 0 2 - M g O- A 1 2 0 3 based glass, P b O- B 2 O 3 - S i 0 2 - B a O- A 1 2 0 3 system glass, P b O- B 2 O 3 — S i 〇 2 — C a〇1 A l 23 glass, B i 2 O 3 — Z n〇 1 B 2 O 3 — S iO 2 — C a O glass, Z n O— B 2 0 3 - S i 0 2 - A 1 2 0 3 - C a O -based glass, P 2 O 5 - Z n O - A 1 2 〇 3 - C A_〇 glass, n b 2 O 5 - Z n O — B 2 O 3 — Sio 2 -Ca〇-based glass alone or a mixture thereof can be used. In addition, glass generally used for the dielectric of the PDP can be used in the same manner. The dielectric glass layer provided on the back panel may be mixed with titanium oxide or the like to increase the light reflectance and increase the amount of light transmitted through the front panel.
焼成工程は、 ガラスの軟化点よ り も 1 o°c程度高い温度で加熱 する軟化点焼成タイ プの方法で行う。 これによ り、 高温加熱時の 誘電体ガラスと電極材料との反応が抑制され、 この反応によ り生 じる気泡数を減少させるこ とが可能となる。  The firing process is performed by a softening point firing type method in which the glass is heated at a temperature about 1 ° C. higher than the softening point of the glass. As a result, the reaction between the dielectric glass and the electrode material during high-temperature heating is suppressed, and the number of bubbles generated by this reaction can be reduced.
上記の第 1 の誘電体ガラ ス層を形成する方法は、 第 2の誘電体 ガラス層を第 1 の誘電体ガラス層中に介揷する場合における上層 及び下層ともに同様である。  The method of forming the first dielectric glass layer is the same for both the upper layer and the lower layer when the second dielectric glass layer is interposed in the first dielectric glass layer.
次に、 第 2の誘電体ガラス層 4 3 b ( 5 3 b ) の形成方法につ いて説明する。  Next, a method of forming the second dielectric glass layer 43b (53b) will be described.
上記のように第 1 の誘電体ガラス層 4 3 a ( 5 3 a ) は通常の 従来から一般的に使用されるガラス材料で厚膜技術を用いて形成 することができる。 一方、 第 2の誘電体ガラス層 4 3 b (5 3 b) は第 1 の誘電体ガラス層 4 3 a ( 5 3 a ) と比べて薄膜とするこ とが望ま しい。 これは、 薄膜の成膜技術を適用するこ とができる 材料を用いれれば誘電体ガラス層全体の膜厚をあま り変えること とならず、 ひいては誘電体ガラス層の誘電率やコ ンデンサと して の容量を変えることにならないからである。 As described above, the first dielectric glass layer 43a (53a) can be formed by a thick film technique using an ordinary glass material generally used conventionally. On the other hand, it is desirable that the second dielectric glass layer 43b (53b) be thinner than the first dielectric glass layer 43a (53a). This means that if a material to which thin film deposition technology can be applied is used, the overall thickness of the dielectric glass layer will change significantly. In other words, the dielectric constant of the dielectric glass layer and the capacitance of the capacitor do not change.
このような要請に応える技術と しては、 S i 0 2膜を C V D法等 の蒸着法によ って成膜する方法や、 予めポリ シ リ コ ンの膜 (具体 的には、 ポリ ジメチルシ リ レンの薄膜など) をキ ャ ステ ィ ング法、 噴霧塗付法、 イ ンクジヱ ッ ト法などによ り成膜した後、 これを電 気絶縁性の S i 0 2膜に変換させる手法などがある。 Technologies that respond to such demands include a method of forming a SiO 2 film by a vapor deposition method such as a CVD method, and a method of forming a polysilicon film (specifically, a polydimethylsilicon film). Li, such as Ren of thin film) a key catcher stearyl I packaging method, with the spray coating method, Lee Nkujiwe Tsu after RiNarumaku due to such method, a like technique to convert this to electrical insulating properties of the S i 0 2 film There is.
後者の技術についてこ こで詳しく説明する。 ポリ シ リ コ ンの膜 は、 主鎖中の非局在化した S i 一 S i 結合の共役び電子がァニォ ンの ド一プによって電荷担体となり p型の半導体と しての性質を 持つ。 こ こ に、 酸素などの作用で化学変化すると、 導電性を失う。 これは、 ポリ シリ コ ンの S i — S i 結合が分解してシロキサン結 合ゃシラノールに変るからである。 なお、 シラノールは不安定で シロキサン結合に変化する。  The latter technique is described in detail here. Polysilicon films have the properties of p-type semiconductors, in which delocalized Si-Si bond conjugates and electrons in the main chain become charge carriers by doping an anion. . Here, if it changes chemically by the action of oxygen or the like, it loses conductivity. This is because the Si—Si bond of the poly- silicon is decomposed to siloxane-bonded silanol. Silanol is unstable and changes to a siloxane bond.
シロキサン結合を持つに到ったポリ シ リ コ ンはポリ ジメチルシ ロキサン結合等と同様のシロキサン結合を有する分子構造で、 シ リ コ ン樹脂と同様の高絶縁性、 高化学的安定性、 高耐熱性を示す。 このようにポリ シリ コ ンは初期に多少導電性があっても酸素など の作用で絶縁化する。 .  Polysilicon, which has siloxane bonds, has a molecular structure with siloxane bonds similar to polydimethylsiloxane bonds, etc., and has the same high insulation properties, high chemical stability, and high heat resistance as silicone resins. Shows sex. In this way, even if the polysilicon has some conductivity at the beginning, it is insulated by the action of oxygen and the like. .
このように して形成したシロキサン結合を持ったポリ シ リ コ ン 膜から.なる第 2の誘電体ガラス層 4 3 b ( 5 3 b ) は、 更に、 3 0 0 °C〜 4 0 0 °C程度の温度で焼成するこ とによって、 更に、 シ ロキサン結合数を増やすこ とができるので、 電気絶縁性を向上さ せるこ とができる。  The second dielectric glass layer 43b (53b) made of a polysilicon film having a siloxane bond formed in this manner further has a temperature of 300 ° C to 400 ° C. By baking at a temperature of about C, the number of siloxane bonds can be further increased, so that the electrical insulation can be improved.
' そして、 この焼成時雰囲気の酸素の含量を増すほど、 シロキサ ン結合数をよ り増やすこ とができるので、 電気絶縁性を更に向上 させるこ とができる。 'And, as the oxygen content in the atmosphere at the time of firing increases, the number of siloxane bonds can be further increased, so that the electrical insulation can be further improved.
なお、 上記した方法は、 第 1 の誘電体ガラス層中に介揷させる 場合及ぴ第 1 の誘電体ガラス層表面を被覆する場合双方において 共通である。  Note that the above-described method is common to both cases of interposing in the first dielectric glass layer and covering the surface of the first dielectric glass layer.
ちなみに、 上記製法で作製した、 パネルにおいて、 表示電極と ア ド レス電極間に 1 0〜 20 s、 高さ 400 Vのパルス電圧を 印加して絶縁破壊の様子を観察したところ絶縁破壊したものは皆 無であった。 産業上の利用可能性 By the way, in the panel manufactured by the above manufacturing method, the display electrode and When a pulse voltage of 10 to 20 s and a height of 400 V was applied between the address electrodes and the state of the dielectric breakdown was observed, no dielectric breakdown was found. Industrial applicability
本発明は、誘電体ガラス層に残る欠陥が実質無い高品位な P D P と して極めて産業上の利用可能性が高い。  INDUSTRIAL APPLICABILITY The present invention has extremely high industrial applicability as a high-quality PDP having substantially no defects remaining in the dielectric glass layer.

Claims

請求の範囲 The scope of the claims
1 . 電極と誘電体層とが形成された基板を備え、 前記誘電体層に 修復された欠陥相当箇所を有するこ とを特徴とするプラズマディ スプ レイ ノ、。ネル。  1. A plasma display comprising a substrate having electrodes and a dielectric layer formed thereon, wherein the dielectric layer has a portion corresponding to a repaired defect. Flannel.
2 . 前記誘電体層の欠陥は、 誘電体層の絶縁破壊を生じさせるも のであるこ とを特徴とする請求の範囲第 1項に記載のプラズマデ ィ スプレイノ、。ネル。 2. The plasma display device according to claim 1, wherein the defect in the dielectric layer causes dielectric breakdown of the dielectric layer. Flannel.
3 . 前記誘電体層はガラスからなり、 前記誘電体層の修復された 欠陥相当箇所のガラス組成は欠陥相当箇所でない箇所のガラス組 成と異なるこ とを特徴とする請求の範囲第 1項に記載のプラズマ ディ スプレイパネル。 3. The method according to claim 1, wherein the dielectric layer is made of glass, and a glass composition of a portion corresponding to the repaired defect in the dielectric layer is different from a glass composition of a portion not corresponding to the defect. The plasma display panel as described.
4 . 前記誘電体層の修復された欠陥相当箇所は、 その他の箇所に 比べて電極材料の含有量が多いことを特徴とする請求の範囲第 1 項に記載のプラズマディ スプレイパネル。 4. The plasma display panel according to claim 1, wherein a portion corresponding to the repaired defect in the dielectric layer has a higher content of an electrode material than other portions.
5 . 基板上に誘電体層を形成した後に欠陥を修復する工程を有す ることを特徴とするプラズマディ スプレイパネルの製造方法。 5. A method for manufacturing a plasma display panel, comprising a step of repairing a defect after forming a dielectric layer on a substrate.
6 . 基板上に誘電体層を形成した後に前記誘電体層の欠陥を検出 する工程と、 少なく とも前記検出された誘電体層の欠陥を修復す る工程とを有する特徴とするプラズマディ スプレイパネルの製造 方法。 6. A plasma display panel comprising a step of detecting a defect in the dielectric layer after forming the dielectric layer on the substrate, and at least a step of repairing the detected defect in the dielectric layer. Manufacturing method.
7 . 前記誘電体層の欠陥を修復する工程は、 前記誘電体層の欠陥 近傍の誘電体を溶融した後凝固するごとを特徴とする請求の範囲 第 5項又は 6項に記讖のプラズマディ スプレイパネルの製造方法。 7. The method according to claim 5, wherein the step of repairing the defect in the dielectric layer comprises melting and solidifying the dielectric near the defect in the dielectric layer. Spray panel manufacturing method.
8 . 前記誘電体層の欠陥を修復する工程は、 前記誘電体層の欠陥 に光を照射するこ とを特徴とする請求の範囲第 5項又は 6項に記 載に記載のプラズマディ スプレイパネルの製造方法。 8. The step of repairing the defect in the dielectric layer includes the step of repairing the defect in the dielectric layer. 7. The method for producing a plasma display panel according to claim 5, wherein light is applied to the panel.
9 . 前記誘電体層の欠陥を修復する工程は、 前記誘電体層に電流 を流す工程であるこ とを特徴とする請求の範囲第 5項又は 6項に 記載のプラズマディ スプレイパネルの製造方法。 9. The method for manufacturing a plasma display panel according to claim 5, wherein the step of repairing the defect in the dielectric layer is a step of flowing a current to the dielectric layer.
1 0 . 基板上にガラスからなる誘電体層を形成する工程と、 前記 誘電体層形成後に誘電体層中の欠陥を検出する工程と、 少なく と も前記検出した欠陥に前記誘電体層を形成するガラス よ り も軟化 点の低いガラスを塗付するとともに前記誘電体層を形成した焼成 温度以下の温度で焼成する工程とを有するこ とを特徴とするブラ ズマディ スプレイ パネルの製造方法。 10. A step of forming a dielectric layer made of glass on a substrate; a step of detecting a defect in the dielectric layer after the formation of the dielectric layer; and forming the dielectric layer at least on the detected defect. Applying a glass having a softening point lower than that of the glass to be fired, and firing at a temperature equal to or lower than the firing temperature at which the dielectric layer was formed.
1 1 . 第 1 の誘電体層を形成した基板と一定の間隔を設けて導電 性基板を配置するとともに前記基板と前記導電性基板の間に放電 ガスを介して電圧を印加する工程と、 前記電圧を印加する工程の 後に前記第 1 の誘電体層上に第 2の誘電体層を形成する工程とを 有するこ とを特徴とするプラズマディ スプレイパネルの製造方法。 11. A step of arranging a conductive substrate at a predetermined interval from the substrate on which the first dielectric layer is formed and applying a voltage between the substrate and the conductive substrate via a discharge gas; Forming a second dielectric layer on the first dielectric layer after the step of applying a voltage.
1 2 . 前記電圧を印加する工程において、 前記基板の温度を 1 0 0 °C以下になるように加熱する請求の範囲第 1 1 項記載のプラズ マディ スプレイパネルの製造方法。 12. The method of manufacturing a plasma display panel according to claim 11, wherein in the step of applying the voltage, the substrate is heated so that the temperature of the substrate is 100 ° C. or lower.
1 3 . 誘電体層と電極とが形成された基板に対して光を照射する 手段を備えた誘電体修復装置。 1 3. A dielectric restoration device including a means for irradiating light to a substrate on which a dielectric layer and electrodes are formed.
1 4 . 誘電体層と電極とが形成された基板に対し一定の間隔を開 けて導電性基板を配置し、 前記基板と導電性基板との間に放電ガ スを介して電圧を印加する構成と した誘電体修復装置。 14. A conductive substrate is arranged at a certain distance from the substrate on which the dielectric layer and the electrodes are formed, and a voltage is applied between the substrate and the conductive substrate via a discharge gas. Dielectric restoration device configured.
1 5. 前記基板と導電性基板との間に印加させる電圧は所定電圧 まで上昇させ、 所定電圧で一定時間保持した後に電圧値を減少す る構成と した請求の範囲第 1 4項に記載の誘電体修復装置。 15. The method according to claim 14, wherein a voltage applied between the substrate and the conductive substrate is increased to a predetermined voltage, and the voltage value is decreased after maintaining the voltage at the predetermined voltage for a predetermined time. Dielectric restoration device.
1 6. 前記基板と前記導電性基板との間に印加される電圧は直流 であり、 前記導電性基板には電流制限抵抗が接続する構成と した こ とを特徴とする請求の範囲第 1 4項に記載の誘電体修復装置。 1 6. A voltage applied between the substrate and the conductive substrate is a direct current, and a current limiting resistor is connected to the conductive substrate. Item 14. The dielectric repair device according to Item 1.
1 7. 前記電流制限抵抗は、 1 ΜΩ〜 1 ΘΩである .こ とを特徴と する請求の範囲第 1 6項に記載の誘電体修復装置。 17. The dielectric repair apparatus according to claim 16, wherein the current limiting resistance is 1Μ to 1ΘΩ.
1 8. 印加する電圧は交流も しく は矩形波であるこ とを特徴とす る請求の範囲第 1 4項に記載の誘電体修復装置。 15. The dielectric repair apparatus according to claim 14, wherein the applied voltage is an alternating current or a rectangular wave.
1 9. 印加する電圧の周波数が 6 0 Ηζ~ 1 0 0 KHz である こ と を特徴とする請求の範囲第 1 8項に記載の誘電体修復装置。 19. The dielectric repair apparatus according to claim 18, wherein the frequency of the applied voltage is 60 あ る to 100 KHz.
2 0. 基板上に形成されたガラスからなる誘電体層の欠陥を検出 する手段と、 少なく とも前記検出した欠陥に前記誘電体層を形成 するガラスより も軟化点の低いガラスを塗付する手段と、 前記誘 電体層を形成した焼成温度以下の温度で焼成する手段とを有する ことを特徴とする誘電体修復装置。 20. Means for detecting a defect in the dielectric layer made of glass formed on the substrate, and means for applying at least the detected defect to glass having a softening point lower than that of the glass forming the dielectric layer And a means for firing at a temperature equal to or lower than the firing temperature at which the dielectric layer was formed.
2 1. 第 1 の誘電体層を形成した基板に一定の間隔を設けて導電 性基板を配置するとともに前記基板と前記導電性基板の間に放電 ガスを介して電圧を印加する手段とを有することを特徴とする誘 電体修復装置。 2 1. There is a means for disposing a conductive substrate at a predetermined interval on the substrate on which the first dielectric layer is formed, and for applying a voltage between the substrate and the conductive substrate via a discharge gas. A dielectric restoration device characterized by the following.
2 2. 前記電圧印加時に温度を 1 0 0 °C以下に加熱する手段を更 に備えるこ とを特徴とする請求の範囲第 2 1項に記載の誘電体修 22. The dielectric repair device according to claim 21, further comprising means for heating the temperature to 100 ° C. or less at the time of applying the voltage.
2 3. 誘電体層と第 1 の電極と第 2の電極とを有する第 1 の基板 と、 第 3の電極 2 3. A first substrate having a dielectric layer, a first electrode and a second electrode, and a third electrode
を有する第 2の基板とを有し、 第 1 の基板と第 2の基板とを一定 間隔を設けて構成された表示装置であって、 A display device comprising: a second substrate having: a first substrate and a second substrate provided at regular intervals; and
前記第 1 の電極及び第 2の電極と第 3の電極との間に放電ガス を介して電圧を印加するこ とで修復された欠陥相当箇所を有する こ とを特徴とする表示装置。  A display device having a portion corresponding to a defect repaired by applying a voltage between the first electrode, the second electrode, and the third electrode via a discharge gas.
2 4. 前記第 1 の電極及び第 2の電極と前記第 3の電極との間に 印加される電圧は、 所定電圧まで上昇させ、 所定電圧で一定時間 保持した後に電圧値を減少する構成と したこ とを特徴とする請求 の範囲第 2 3項に記載の表示装置。 2 4. The voltage applied between the first electrode and the second electrode and the third electrode is increased to a predetermined voltage, and is maintained at the predetermined voltage for a predetermined time, and then the voltage value is reduced. The display device according to claim 23, wherein:
2 5. 前記第 1 の電極及び第 2の電極と前記第 3の電極との間に 印加される電圧は直流であり、 前記電極には電流制限抵抗が接続 する構成と したことを特徴とする請求の範囲第 2 3項に記載の表 示装置。 2 5. A voltage applied between the first and second electrodes and the third electrode is a direct current, and a current limiting resistor is connected to the electrodes. The display device according to claim 23.
2 6. 電流制限抵抗は、 1 MQ〜 1 GQであるこ とを特徴とする 請求の範囲第 2 5項に記載の表示装置。 26. The display device according to claim 25, wherein the current limiting resistor is 1 MQ to 1 GQ.
2 7. 印加する電圧は交流も しく は矩形波であるこ とを特徴とす る請求の範囲第 2 3項に記載の表示装置。 24. The display device according to claim 23, wherein the applied voltage is an alternating current or a rectangular wave.
2 8. 印加する電圧の周波数は 6 0Hz〜 1 O OKHzであるこ と を特徴とする請求の範囲第 2 7項に記載の表示装置。 28. The display device according to claim 27, wherein the frequency of the applied voltage is 60 Hz to 1 OKHz.
2 9. 電極と誘電体層とが形成された基板を備え、 前記誘電体層 は第 1 の誘電体層と当該誘電体層層よ り も緻密な第 2の誘電体層 とからなるこ とを特徴とするプラズマディ スプレイパネル。 2 9. A substrate having an electrode and a dielectric layer formed thereon, wherein the dielectric layer comprises a first dielectric layer and a second dielectric layer denser than the dielectric layer Plasma display panel characterized by the following.
3 0 . 前記第 2の誘電体層は電気絶縁性高分子からなるこ とを特 徴とする請求の範囲第 2 9項に記載のプラズマディ スプレイパネ ル。 30. The plasma display panel according to claim 29, wherein said second dielectric layer is made of an electrically insulating polymer.
3 1 . 前記第 2の誘電体層は、 珪素一珪素の結合を持つ高分子で あるこ とを特徴とする請求の範囲第 3 0項に記載のプラズマディ スプ レイパネル。 31. The plasma display panel according to claim 30, wherein the second dielectric layer is a polymer having a silicon-silicon bond.
3 2 . 前記第 2の誘電体層は、 シロキサン結合を含むポリ シリ コ ン又は、 その共重合体であることを特徴とする請求の範囲第 3 0 項又は 3 1項に記載のプラズマディ スプレイパネル 32. The plasma display according to claim 30 or 31, wherein the second dielectric layer is made of a poly-silicon containing a siloxane bond or a copolymer thereof. Panel
3 3 . 電極、 誘電体層、 誘電体保護層とが形成された基板を有し、 前記誘電体層は、 第 1 の誘電体層と当該第 1 の誘電体層よ り も緻 密で第 1 の誘電体層中に設けられた第 2の誘電体層とからなるこ とを特徴とするプラズマディ スプレイパネル。 33. A substrate having an electrode, a dielectric layer, and a dielectric protection layer formed thereon, wherein the dielectric layer is more dense and more dense than the first dielectric layer and the first dielectric layer. A plasma display panel comprising a first dielectric layer and a second dielectric layer provided in the first dielectric layer.
3 4 . 基板上に電極を形成する工程と、 少なく とも前記電極上に 第 1 の誘電体層を形成する工程と、 前記第 1 の誘電体層の上にこ れよ り も緻密な第 2の誘電体層を形成する工程と、 当該第 2の誘 電体層形成後、 基板を酸素雰囲気下で焼成する工程と、 前記第 2 の誘電体層上に誘電体保護層を形成する工程とを有するこ とを特 徴とするプラズマディ スプレイパネルの製造方法。 34. A step of forming an electrode on the substrate, a step of forming at least a first dielectric layer on the electrode, and a step of forming a second denser layer on the first dielectric layer. Forming a second dielectric layer, baking the substrate in an oxygen atmosphere after forming the second dielectric layer, and forming a dielectric protection layer on the second dielectric layer. A method for manufacturing a plasma display panel, characterized by having:
3 5 . 前記第 2 の誘電体層は、 電気絶縁性高分子であるこ とを特 徴とする請求の範囲第 3 4項に記載のプラズマディ スプレイパネ ルの製造方法。 35. The method for manufacturing a plasma display panel according to claim 34, wherein the second dielectric layer is an electrically insulating polymer.
3 6 . 前記電気絶縁性高分子は、 珪素一珪素共有結合を主鎖とす る高分子である ことを特徴とする請求の範囲第 3 5項に記載のプ ラズマディ スプレイパネルの製造方法。 36. The process according to claim 35, wherein the electrically insulating polymer is a polymer having a silicon-silicon covalent bond as a main chain. A method for manufacturing a Razuma display panel.
3 7 . 前記電気絶縁性高分子は、 シロキサン結合を含むポリ シリ コ ン又は、 その共重合体であるこ とを特徴とする請求の範囲第 3 5項又は 3 6項に記載のプラズマディ スプレイパネルの製造方法。 37. The plasma display panel according to claim 35, wherein the electrically insulating polymer is a silicone containing a siloxane bond or a copolymer thereof. Manufacturing method.
3 8 . 基板上に電極を形成する工程と、 少なく と も前記電極上に 第 1 の誘電体層を形成する工程と、 前記第 1 の誘電体層の上にこ れよ り も緻密な第 2の誘電体層を形成する工程と、 当該第 2の誘 電体層形成後、 基板を酸素雰囲気下で焼成する工程と、 前記第 2 ' の誘電体層上に第 1 の誘電体層を形成する工程とを有するこ とを 特徴とするプラズマディ スプレイパネルの製造方法。 38. A step of forming an electrode on the substrate, at least a step of forming a first dielectric layer on the electrode, and a step of forming a finer dielectric layer on the first dielectric layer. Forming a second dielectric layer, baking the substrate in an oxygen atmosphere after forming the second dielectric layer, and forming a first dielectric layer on the second 'dielectric layer. Forming a plasma display panel.
3 9 . 前記第 2の誘電体層は、 電気絶縁性高分子であることを特 徴とする請求の範囲第 3 8項に記載のプラズマディ スプレイパネ ルの製造方法。 39. The method for producing a plasma display panel according to claim 38, wherein the second dielectric layer is an electrically insulating polymer.
4 0 . 前記電気絶縁性高分子は、 珪素一珪素共'有結合を主鎖とす る高分子であることを特徴とする請求の範囲第 3 9項に記載のプ ラズマディ スプレイパネルの製造方法。 40. The method for producing a plasma display panel according to claim 39, wherein the electrically insulating polymer is a polymer having a silicon-silicon co-bond as a main chain. .
4 1 . 前記電気絶縁性高分子は、 シロキサン結合を含むポリ シリ コン又は、 その共重合体であるこ とを特徴とする請求の範囲第 3 9項又は 4 0項に記載のプラズマディ スプレイパネルの製造方法。 41. The plasma display panel according to claim 39, wherein the electrically insulating polymer is a poly-silicon containing a siloxane bond or a copolymer thereof. Production method.
PCT/JP2001/008844 2000-10-10 2001-10-09 Plasma display panel, its manufacturing method, and dielectric repairing apparatus WO2002031853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002535149A JPWO2002031853A1 (en) 2000-10-10 2001-10-09 Plasma display panel, method of manufacturing the same, and dielectric repair device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-308759 2000-10-10
JP2000308759 2000-10-10
JP2000-308760 2000-10-10
JP2000308760 2000-10-10

Publications (1)

Publication Number Publication Date
WO2002031853A1 true WO2002031853A1 (en) 2002-04-18

Family

ID=26601759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008844 WO2002031853A1 (en) 2000-10-10 2001-10-09 Plasma display panel, its manufacturing method, and dielectric repairing apparatus

Country Status (2)

Country Link
JP (1) JPWO2002031853A1 (en)
WO (1) WO2002031853A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264528B2 (en) 2002-07-23 2007-09-04 Hitachi, Ltd. Substrate assembly for gas discharge panel, process for manufacturing the same, and gas discharge panel
JP2010135084A (en) * 2008-12-02 2010-06-17 Panasonic Corp Plasma display panel, and manufacturing method thereof
JP2010267522A (en) * 2009-05-15 2010-11-25 Panasonic Corp Plasma display panel and method of manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293260A (en) * 1995-04-20 1996-11-05 Dainippon Printing Co Ltd Plasma display panel and its manufacture
JPH10269938A (en) * 1997-03-21 1998-10-09 Suzuki Sogyo Co Ltd Material substrate for display panel
JPH10297128A (en) * 1997-04-28 1998-11-10 Mitsubishi Electric Corp Method for correcting defect in print pattern and method for manufacturing plasma display panel
JP2000082405A (en) * 1998-09-02 2000-03-21 Toray Ind Inc Discharge type display, discharge type display board and its manufacture
JP2000260332A (en) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd Gas discharge panel and its manufacture
JP2000294141A (en) * 1999-04-08 2000-10-20 Hitachi Ltd Manufacture of plasma display device and plasma display device
JP2001266753A (en) * 2000-03-24 2001-09-28 Matsushita Electric Ind Co Ltd Plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293260A (en) * 1995-04-20 1996-11-05 Dainippon Printing Co Ltd Plasma display panel and its manufacture
JPH10269938A (en) * 1997-03-21 1998-10-09 Suzuki Sogyo Co Ltd Material substrate for display panel
JPH10297128A (en) * 1997-04-28 1998-11-10 Mitsubishi Electric Corp Method for correcting defect in print pattern and method for manufacturing plasma display panel
JP2000082405A (en) * 1998-09-02 2000-03-21 Toray Ind Inc Discharge type display, discharge type display board and its manufacture
JP2000260332A (en) * 1999-03-10 2000-09-22 Matsushita Electric Ind Co Ltd Gas discharge panel and its manufacture
JP2000294141A (en) * 1999-04-08 2000-10-20 Hitachi Ltd Manufacture of plasma display device and plasma display device
JP2001266753A (en) * 2000-03-24 2001-09-28 Matsushita Electric Ind Co Ltd Plasma display panel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264528B2 (en) 2002-07-23 2007-09-04 Hitachi, Ltd. Substrate assembly for gas discharge panel, process for manufacturing the same, and gas discharge panel
US7327082B2 (en) 2002-07-23 2008-02-05 Hitachi, Ltd. Substrate assembly for gas discharge panel having dielectric layer comprising laminate of organic dielectric layer and inorganic dielectric layer, and gas discharge panel
JP2010135084A (en) * 2008-12-02 2010-06-17 Panasonic Corp Plasma display panel, and manufacturing method thereof
JP4663776B2 (en) * 2008-12-02 2011-04-06 パナソニック株式会社 Plasma display panel and manufacturing method thereof
US8330368B2 (en) 2008-12-02 2012-12-11 Panasonic Corporation Plasma display panel and manufacturing method thereof
JP2010267522A (en) * 2009-05-15 2010-11-25 Panasonic Corp Plasma display panel and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2002031853A1 (en) 2004-02-26

Similar Documents

Publication Publication Date Title
KR100662132B1 (en) Embossed plasma display back panel
JP3845643B2 (en) EL laminated dielectric layer structure, method for generating the dielectric layer structure, laser pattern drawing method, and display panel
TW476051B (en) Process for the manufacture of components on glass substrates that have to be sealed, such as flat display screens of the plasma-panel type
KR100377066B1 (en) Plasma display and method of making same
JP3222429B2 (en) Back panel for plasma display device, ceramic green tape, and method of manufacturing the same
WO2002101697A1 (en) Flat neon sign device using flat electrode and lower plate structure
JPH05217510A (en) Plasma display panel
WO2002031853A1 (en) Plasma display panel, its manufacturing method, and dielectric repairing apparatus
JP2008251318A (en) Plasma display panel
CN102449683A (en) Plasma display device
KR20010111846A (en) Method for the low temperature vacuum in-line frit sealing of flat panel display device using an auxiliary heat line
JP3612208B2 (en) Substrates for plasma display devices
JP3681025B2 (en) Thick film pattern forming method and plasma display panel
KR100210689B1 (en) Manufacture methode of PDP
JP2002358895A (en) Plasma display panel and its manufacturing method
JP2002507046A (en) Method for manufacturing a double-sided ceramic substrate using a titanium support substrate
JP2004063241A (en) Manufacturing method of plasma display panel
JP3965974B2 (en) Plasma display panel and manufacturing method thereof
CN105304435B (en) Plasma display panel back plate
TW320815B (en)
JP4029501B2 (en) Method for manufacturing substrate for plasma display
JP2004071248A (en) Plasma display and its manufacturing method
JPH0353429A (en) Manufacture of plasma display panel
JPH0661020A (en) Resistor array board and various devices usine same
JPH04262340A (en) Plasma display panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase