WO2002031471A2 - Dispositif pour determiner et/ou controler la viscosite d'un fluide dans un reservoir - Google Patents

Dispositif pour determiner et/ou controler la viscosite d'un fluide dans un reservoir Download PDF

Info

Publication number
WO2002031471A2
WO2002031471A2 PCT/EP2001/010009 EP0110009W WO0231471A2 WO 2002031471 A2 WO2002031471 A2 WO 2002031471A2 EP 0110009 W EP0110009 W EP 0110009W WO 0231471 A2 WO0231471 A2 WO 0231471A2
Authority
WO
WIPO (PCT)
Prior art keywords
unit
viscosity
frequency
medium
oscillatable
Prior art date
Application number
PCT/EP2001/010009
Other languages
German (de)
English (en)
Other versions
WO2002031471A3 (fr
Inventor
Igor Getman
Sergej Lopatin
Original Assignee
Endress + Hauser Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress + Hauser Gmbh + Co. Kg filed Critical Endress + Hauser Gmbh + Co. Kg
Priority to DE20122541U priority Critical patent/DE20122541U1/de
Priority to EP01978323A priority patent/EP1325301A2/fr
Priority to AU2002210473A priority patent/AU2002210473A1/en
Priority to JP2002534806A priority patent/JP2004511771A/ja
Publication of WO2002031471A2 publication Critical patent/WO2002031471A2/fr
Publication of WO2002031471A3 publication Critical patent/WO2002031471A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/16Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by measuring damping effect upon oscillatory body

Definitions

  • the invention relates to a device for determining and / or monitoring the viscosity of a medium in a container with an oscillatable unit, a lifting / receiving unit and a control / evaluation unit, the oscillatable unit being arranged in a defined measuring position within the container or wherein an oscillatable unit is attached such that it is immersed in the medium up to a defined immersion depth, and wherein the drive / receiver unit excites the oscillatable unit to oscillate, or wherein the drive / receiver unit vibrates the oscillatable unit receives.
  • vibration detectors for detecting or monitoring the fill level of a medium in a container
  • the vibrating element is usually at least one vibrating rod which is attached to a membrane.
  • the membrane is an electromechanical transducer, for. B. a piezoelectric element excited to vibrate. Due to the vibrations of the membrane, the vibrating element attached to the membrane also carries out vibrations.
  • a very well-known example of a vibration detector is the 'Liquiphant', which is manufactured and sold by the applicant.
  • Vibration detectors designed as level measuring devices take advantage of the effect that the oscillation frequency and the oscillation amplitude depend on the respective degree of coverage of the oscillation element: While the oscillation element can carry out its (resonance) oscillations freely and undamped in air, it experiences a change in frequency and amplitude , an upset as soon as it is partially or completely immersed in the medium. On the basis of a predetermined change in frequency (usually the frequency is measured for filling level detection), it is consequently possible to draw a clear conclusion that the predetermined filling level of the medium in the container has been reached. Level gauges are used primarily as overfill protection or for the purpose of pump idle protection. In addition, the damping of the vibration of the vibrating element is also influenced by the density of the medium. Therefore, with a constant degree of coverage, there is a functional relationship between the frequency change and the density of the medium, so that vibration detectors are ideally suited for determining both the fill level and the density.
  • the vibrations of the membrane are recorded and converted into electrical response signals by means of at least one piezoelectric element.
  • the electrical response signals are then evaluated by evaluation electronics.
  • the evaluation electronics monitor the oscillation frequency and / or the oscillation amplitude of the oscillation element and signal the status 'sensor covered' or 'sensor uncovered' as soon as the measured values fall below or exceed a predetermined reference value.
  • a corresponding message to the operating personnel can be made optically and / or acoustically.
  • a switching operation is triggered; for example, an inlet or outlet valve on the container is opened or closed.
  • the invention has for its object to use a vibration detector for determining and / or monitoring the viscosity of a medium in a container.
  • control / evaluation unit determines the viscosity of the medium on the basis of the frequency-phase curve of the oscillatable unit.
  • the present invention is based on the fact that the damping of an oscillatable unit depends on the viscosity of the medium with which it is in contact.
  • viscosity is the internal friction of a liquid, which is caused by attractive forces between the molecules.
  • the viscosity is highly dependent on the parameters of pressure and temperature.
  • the frequency-phase curves of an oscillatable unit that have been recorded in media with different viscosities differ significantly from one another - as can be clearly seen from the graphs shown in FIG. 1: the lower the viscosity of the medium, the steeper the frequency-phase curve drops. It has proven to be particularly advantageous Determine the viscosity of the medium based on the frequency change that occurs at two different phase values. It is therefore preferred not to perform an absolute measurement, but rather a relative measurement. As will be explained in more detail below, either two phase values are set and the associated frequency change is determined, or a predetermined frequency band is traversed and determined when at least two predetermined phase values are reached. The frequency change and the viscosity of the medium are determined from the frequencies corresponding to the phase values.
  • the viscosity is plotted against the frequency change with different phase shifts.
  • a logarithmic scale was chosen.
  • the advantage of measuring the frequency change instead of the absolute frequency measurement lies in an increased measuring accuracy and - as will be described in detail below - in the automatic elimination of disturbance variables, for example the density.
  • the frequency change for a given phase shift shows a clear dependence on the viscosity. Consequently, it is possible to determine the viscosity by determining the frequency difference for at least two predetermined phase values.
  • a piezo drive is used as the drive / receiver unit.
  • Piezo drives in In connection with the present invention can be used, for. B. from EP 0 985 916 A1.
  • the drive unit excites the oscillatable unit to oscillate in a predetermined oscillation mode, the oscillation mode preferably being the basic mode of the oscillatable unit.
  • control evaluation unit is assigned a memory unit in which data are stored which reflect the functional relationship between the frequency and the phase of the oscillations of the oscillatable unit with different damping ratios or with different viscosities.
  • the data can be characteristic curves, formulas or measured values.
  • the control evaluation unit preferably sets at least two sufficiently different phase values; The control / evaluation unit subsequently determines the frequencies assigned to the phase values or the corresponding frequency change in the vibrations of the oscillatable unit and determines the viscosity of the medium by comparing the previously determined frequency change and the stored data.
  • control evaluation unit selects the range in which the frequencies which are used to determine the viscosity are such that the functional relationship between the phase values and the frequencies is essentially linear.
  • control evaluation unit sets at least two frequencies that are different from one another; the phases associated with the frequencies of the vibrations of the oscillatable unit between the transmission and response signals then determined; In a last step, the control / evaluation unit determines the viscosity of the medium by comparing the determined phase values and the stored phase values.
  • control evaluation unit is assigned a signal generator which controls the drive unit in such a way that the oscillatable unit oscillates successively with different oscillation frequencies, the oscillation frequencies being within a selected frequency band (- frequency sweep) ,
  • the control / evaluation unit operates the oscillatable unit in a first operating mode as a limit switch and in a second operating mode as a viscosity sensor.
  • the respective operating mode is specified by a program contained in the control unit.
  • An input / output unit is preferably provided, via which settings are made on the device or via which information regarding the measured values which the device delivers is provided.
  • At least one bus line is provided for data exchange between the oscillatable unit and a remote control point.
  • the data exchange itself can be carried out using any transmission standard, e.g. B. Profibus PA, Fieldbus Foundation.
  • FIG. 5 shows a block diagram of the excitation circuit used in FIG. 4,
  • FIG. 7 shows a block diagram of a second embodiment of the device according to the invention.
  • Fig. 1 shows the representation of three frequency-phase curves of an oscillatable unit 2 in media with different damping coefficients ⁇ .
  • the turning point of the three curves lies at the resonance frequency fr, which is essentially determined by the rigidity of the membrane and the mass of the vibrating element.
  • fr the resonance frequency
  • the phase ⁇ between the drive signal and the response signal of the oscillatable unit 2 is 90 ° in the event of resonance.
  • damping coefficient ⁇ 1 damping coefficient
  • ⁇ 2 the phase change from 0 ° to 180 ° is more or less smooth.
  • the frequency-phase curves show a linear course within a certain frequency or phase range, the slope being dependent on the attenuation by the medium.
  • the influence of the density p is visualized on the basis of the frequency-phase curves of an oscillatable unit 2 shown in FIG. 3 in media with different densities p: Different densities p lead to a parallel shift of the frequency-phase curve along the frequency axis f , The higher the density p, the lower the oscillation frequency with the same phase value ⁇ . The shape of the curves themselves is almost identical in all cases. Since, according to the invention, no absolute values, but rather relative values (frequency changes or phase changes) are used for the evaluation of the viscosity ⁇ , the effect that a changing density p has on the measured values is automatically eliminated.
  • FIG. 4 shows a block diagram of a first embodiment of the device 1 according to the invention.
  • two predetermined phases ⁇ 1, ⁇ 2 are successively set between the drive signal and the response signal.
  • the two phase values ⁇ 1, ⁇ 2 are set via the excitation circuit 9, which will be described in detail below.
  • This first method of viscosity determination is very similar to the 'method as a predetermined filling level can be determined by a vibration detector to achieve.
  • an oscillatable unit 2 is a universal sensor for level, density and / or viscosity measurement.
  • the fill level is usually determined by monitoring the resonance frequency fr.
  • the oscillatable unit 2 is excited to vibrate via the piezoelectric excitation / reception unit, which in the case shown consists of a disk-shaped piezoelectric element 5, a drive electrode 6 and two reception electrodes 7.
  • the piezoelectric element 5 takes on the function of an interface between the mechanical parts, i.e. the membrane 4 and the vibrating elements 3, and the electronic parts, drive electrode 6 and receiving electrodes 7, of the vibratable unit 2: on the one hand, the piezoelectric element 5 sets an electric drive signal mechanical vibrations around; on the other hand, it converts mechanical vibrations into an electrical response signal.
  • a so-called stack drive can also be used instead of a disk-shaped piezoelectric element 5, a so-called stack drive can also be used.
  • FIG. 5 shows a block diagram of the excitation circuit 9 used in FIG. 4.
  • the excitation circuit 9 has several functions: it picks up the received signal Rx at the receiving electrodes 7.
  • the response signal Rx is passed through the bandpass filter 13.
  • the bandpass filter 13 preferably has a very small bandwidth, so that only the desired frequencies or the desired frequency are or are present at the output of the bandpass filter 13.
  • the filtered response signal Rx is then fed to the amplifier 14 and amplified.
  • two constant phase values ⁇ 1, ⁇ 2 are set in the phase shifter 15.
  • the response signal is fed back to the drive electrode 6 as the drive signal Tx and excites the oscillatable unit 2 to oscillate with the respectively set phase value ⁇ 1; ⁇ 2 on.
  • the response signal Rx passes from the excitation circuit 9 to the microprocessor 10, which for each phase value ⁇ 1; ⁇ 2 the corresponding frequency f1; f2 determined.
  • the determined viscosity ⁇ of the medium can be brought to the operator's knowledge, for example, via the input / display unit 12. Of course, it is also possible to use the determined viscosity value to control actuators.
  • the frequency f is changed within predetermined frequency bands; the oscillatable unit 2 is thus driven with different frequencies (- frequency sweep). Different phase values are assigned to the different frequencies.
  • the continuous traversal of certain frequency ranges is shown graphically in FIG. 6.
  • FIG. 7 shows a block diagram of this second embodiment of the device 1 according to the invention.
  • the oscillatable unit 2 is excited by a signal generator 19 with drive signals Tx of a predetermined frequency and preferably a predetermined amplitude.
  • the drive signals Tx are fed to a signal adaptation unit 18, which processes the signals in such a way that they can be read by the receiving unit 21.
  • the receiving unit 21 thus receives the response signals Rx of the oscillatable unit 2; a phase meter 22 determines the corresponding phase shift between the drive signal and the response signal.
  • the control unit 20 is responsible for the entire process for determining the frequency change df: it carries out the phase comparison, controls the frequency of the signal generator 19 and finally calculates the corresponding frequency change df. Based on the determined frequency change df, the viscosity ⁇ of the medium is subsequently determined in the converter 23. Stored table values, characteristic curves or formulas are used for this. LIST OF REFERENCE NUMBERS

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Control Of Non-Electrical Variables (AREA)

Abstract

L'invention concerne un dispositif pour déterminer et/ou contrôler la viscosité d'un fluide dans un réservoir. Ce dispositif comprend une unité pouvant osciller (2), une unité d'entraînement / de réception (4, 5, 6) et une unité de régulation / évaluation (8). L'unité pouvant osciller (2) est placée dans une position de mesure définie à l'intérieur du réservoir, ou une unité pouvant osciller (2) est installée de telle sorte qu'elle plonge dans le fluide jusqu'à une profondeur d'immersion définie, et l'unité d'entraînement / de réception (4, 5) génère les oscillations de l'unité pouvant osciller (2) ou l'unité d'entraînement / de réception (4, 6) reçoit les oscillations de l'unité pouvant osciller (2). L'objectif de l'invention est d'implanter un détecteur de vibrations permettant de déterminer et/ou de contrôler la viscosité (θ) d'un fluide dans un réservoir. A cet effet, l'unité de régulation / évaluation (8) détermine la viscosité (θ) du fluide à l'aide de la courbe fréquence / phase (? = g(f)) de l'unité pouvant osciller (2).
PCT/EP2001/010009 2000-10-10 2001-08-30 Dispositif pour determiner et/ou controler la viscosite d'un fluide dans un reservoir WO2002031471A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE20122541U DE20122541U1 (de) 2001-08-30 2001-08-30 Vorrichtung zur Bestimmung und/oder Überwachung der Viskosität eines Mediums in einem Behälter
EP01978323A EP1325301A2 (fr) 2000-10-10 2001-08-30 Dispositif pour determiner et/ou controler la viscosite d'un fluide dans un reservoir
AU2002210473A AU2002210473A1 (en) 2000-10-10 2001-08-30 Device for determining and/or monitoring the viscosity of a medium in a container
JP2002534806A JP2004511771A (ja) 2000-10-10 2001-08-30 容器内の媒体の粘度を測定及び/又は監視する装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000150299 DE10050299A1 (de) 2000-10-10 2000-10-10 Vorrichtung zur Bestimmung und/oder Überwachung der Viskosität eines Mediums in einem Behälter
DE10050299.7 2000-10-10

Publications (2)

Publication Number Publication Date
WO2002031471A2 true WO2002031471A2 (fr) 2002-04-18
WO2002031471A3 WO2002031471A3 (fr) 2002-10-10

Family

ID=7659376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/010009 WO2002031471A2 (fr) 2000-10-10 2001-08-30 Dispositif pour determiner et/ou controler la viscosite d'un fluide dans un reservoir

Country Status (6)

Country Link
EP (1) EP1325301A2 (fr)
JP (1) JP2004511771A (fr)
CN (1) CN1468370A (fr)
AU (1) AU2002210473A1 (fr)
DE (1) DE10050299A1 (fr)
WO (1) WO2002031471A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237931A1 (de) * 2002-08-14 2004-02-26 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Überwachung eines vorbestimmten Füllstands eines Messmediums in einem Behälter
WO2014095418A1 (fr) 2012-12-21 2014-06-26 Endress+Hauser Gmbh+Co. Kg Procédé de détermination et/ou de surveillance d'au moins un paramètre dans la technique d'automatisation
DE102013106172A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Gmbh + Co. Kg Verfahren zur Kalibration oder zum Abgleich einer beliebigen schwingfähigen Einheit

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308087A1 (de) * 2003-02-24 2004-09-09 Endress + Hauser Gmbh + Co. Kg Schutz vor den Effekten von Kondensatbrücken
DE102004018507A1 (de) * 2004-04-14 2005-11-03 Endress + Hauser Gmbh + Co. Kg Piezo-elektrisches Element
US7272525B2 (en) 2004-04-21 2007-09-18 Visyx Technologies, Inc. Portable fluid sensing device and method
DE102005015546A1 (de) * 2005-04-04 2006-10-05 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung mindestens einer Prozessgröße
DE102005062001A1 (de) * 2005-12-22 2007-06-28 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zur Bestimmung mindestens einer Messgröße eines Mediums
DE102006034105A1 (de) * 2006-07-20 2008-01-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102007035770B4 (de) * 2007-07-27 2011-04-14 Continental Automotive Gmbh Vorrichtung zur Bestimmung der Viskosität und/oder Dichte einer Flüssigkeit
DE102007043811A1 (de) 2007-09-13 2009-03-19 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und/oder Überwachung der Viskosität und entsprechende Vorrichtung
DE102008032887A1 (de) * 2008-07-14 2010-01-21 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße und Verfahren zur Prüfung einer Vorrichtung
DE102008050326A1 (de) 2008-10-07 2010-04-08 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102008050445A1 (de) 2008-10-08 2010-04-15 Endress + Hauser Gmbh + Co. Kg Vorrichtung zum Bestimmen und/oder Überwachung einer Prozessgröße eines Mediums
DE102008043764A1 (de) 2008-11-14 2010-05-20 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
DE102008054945A1 (de) 2008-12-19 2010-06-24 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße
EP2464951B1 (fr) 2009-08-14 2019-05-29 Endress+Hauser SE+Co. KG Capteur à variables multiples pour la détermination et/ou la surveillance du niveau de remplissage et de la densité et/ou de la viscosité d'un liquide dans un réservoir
DE102010028303A1 (de) 2010-04-28 2011-12-01 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums
DE102010064394A1 (de) 2010-12-30 2012-07-05 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zum Ausrichten eines Messgerätes
US10184870B2 (en) * 2013-04-03 2019-01-22 Micro Motion, Inc. Vibratory sensor and method
KR20160002956A (ko) * 2013-04-23 2016-01-08 마이크로 모우션, 인코포레이티드 진동 센서에 대한 드라이브 신호를 생성하는 방법
MX347377B (es) * 2013-04-26 2017-04-25 Micro Motion Inc Sensor vribatorio y metodo para variar la vibracion en un sensor vibratorio.
DE102015101891A1 (de) 2015-02-10 2016-08-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße eines Mediums
DE102015102834A1 (de) 2015-02-27 2016-09-01 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor
DE102015103071B3 (de) * 2015-03-03 2015-11-12 Endress + Hauser Gmbh + Co. Kg Vibronischer Sensor mit einem Stellelement
DE102015104536A1 (de) 2015-03-25 2016-09-29 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102015104533A1 (de) 2015-03-25 2016-09-29 Endress + Hauser Gmbh + Co. Kg Elektromagnetische Antriebs-/Empfangseinheit für ein Feldgerät der Automatisierungstechnik
DE102015108845A1 (de) 2015-06-03 2016-12-08 Endress + Hauser Gmbh + Co. Kg Beschichtung für ein Messgerät der Prozesstechnik
DE102015112421A1 (de) 2015-07-29 2017-02-02 Endress + Hauser Gmbh + Co. Kg Phasenregeleinheit für vibronischen Sensor
DE102015112543A1 (de) 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102015122124A1 (de) 2015-12-17 2017-06-22 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor und Messanordnung zum Überwachen eines fließfähigen Mediums
DE102016112309A1 (de) 2016-07-05 2018-01-11 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102016112308A1 (de) 2016-07-05 2018-01-11 Endress + Hauser Gmbh + Co. Kg Elektromagnetische Antriebs-/Empfangseinheit für ein Feldgerät der Automatisierungstechnik
DE102016112743A1 (de) 2016-07-12 2018-01-18 Endress+Hauser Gmbh+Co. Kg Vibronischer Sensor
DE102016117194A1 (de) 2016-09-13 2018-03-15 Endress + Hauser Gmbh + Co. Kg Kompensation einer Phasenverschiebung zumindest einer Komponente einer Elektronik eines vibronischen Sensors
DE102016120326A1 (de) 2016-10-25 2018-04-26 Endress+Hauser SE+Co. KG Verfahren zur Zustandsüberwachung eines elektromechanischen Resonators
DE102016124365A1 (de) 2016-12-14 2018-06-14 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102016124740A1 (de) 2016-12-19 2018-06-21 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Störsignal Kompensation
DE102016125243A1 (de) 2016-12-21 2018-06-21 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102017102550A1 (de) 2017-02-09 2018-08-09 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102017103001A1 (de) 2017-02-15 2018-08-16 Endress+Hauser SE+Co. KG Verbesserte Klebeverbindung durch Mikrostrukturierung einer Oberfläche
DE102017111392A1 (de) 2017-05-24 2018-11-29 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Störsignal Kompensation
DE102017114315A1 (de) 2017-06-28 2019-01-03 Endress+Hauser SE+Co. KG Temperaturbestimmung mit einem vibronischen Sensor
DE102017115147A1 (de) 2017-07-06 2019-01-10 Endress+Hauser SE+Co. KG Zustandsüberwachung einer Spule in einem Sensor
DE102017130527A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Vibronischer Sensor
DE102017130530A1 (de) 2017-12-19 2019-06-19 Endress+Hauser SE+Co. KG Verfahren zur Zustandsüberwachung eines vibronischen Sensors
DE102018127526A1 (de) 2018-11-05 2020-05-07 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102018128734A1 (de) 2018-11-15 2020-05-20 Endress+Hauser SE+Co. KG Vibronischer Sensor mit Temperaturkompensation
DE102019109487A1 (de) 2019-04-10 2020-10-15 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019110821A1 (de) 2019-04-26 2020-10-29 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019112866A1 (de) 2019-05-16 2020-11-19 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102019114174A1 (de) 2019-05-27 2020-12-03 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116152A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116150A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019116151A1 (de) 2019-06-13 2020-12-17 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102019131485A1 (de) 2019-11-21 2021-05-27 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102020104066A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor
DE102020104065A1 (de) 2020-02-17 2021-08-19 Endress+Hauser SE+Co. KG Vibronischer Sensor mit reduzierter Anfälligkeit für Gasblasenbildung
DE102020105214A1 (de) 2020-02-27 2021-09-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020116278A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102020116299A1 (de) 2020-06-19 2021-12-23 Endress+Hauser SE+Co. KG Symmetrierung eines vibronischen Sensors
CN111982752B (zh) * 2020-08-19 2022-08-23 深圳大学 一种使用智能设备识别液体的方法和系统
DE102020127077A1 (de) 2020-10-14 2022-04-14 Endress+Hauser SE+Co. KG Verfahren zum Betreiben eines vibronischen Sensors
DE202021103688U1 (de) 2021-07-08 2021-09-06 Endress+Hauser SE+Co. KG Zustandsüberwachung eines vibronischen Sensors
DE102021122534A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021122533A1 (de) 2021-08-31 2023-03-02 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126092A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Vibronischer Multisensor
DE102021126093A1 (de) 2021-10-07 2023-04-13 Endress+Hauser SE+Co. KG Entkopplungseinheit für einen vibronischen Sensor
DE102021129416A1 (de) 2021-11-11 2023-05-11 Endress+Hauser SE+Co. KG Zustandsüberwachung für einen vibronischen Sensor
DE102022115592A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115591A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor
DE102022115594A1 (de) 2022-06-22 2023-12-28 Endress+Hauser SE+Co. KG Modularer vibronischer Multisensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005599A (en) * 1975-08-05 1977-02-01 International Telephone And Telegraph Corporation Fluid property detection system
US4154093A (en) * 1977-04-12 1979-05-15 Imperial Chemical Industries Limited Measurement of viscoelastic properties
DE4419684A1 (de) * 1994-06-06 1995-12-07 Erik Von Der Dipl Phys Burg Verfahren zur Bestimmung visko-elastischer und entsprechender rheologischer Eigenschaften von Flüssigkeiten und flüssigkeitsähnlichen Substanzen mit festkörperähnlichen Anteilen, das auch für geringe Probenvolumina geeignet ist
US5837885A (en) * 1994-03-07 1998-11-17 Goodbread; Joseph Method and device for measuring the characteristics of an oscillating system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5372650A (en) * 1976-12-09 1978-06-28 Kkf Corp Sensing apparatus
FR2462701A1 (fr) * 1979-07-27 1981-02-13 Commissariat Energie Atomique Perfectionnements aux viscosimetres a vibrations du type epingle
GB2114745B (en) * 1982-02-12 1985-03-06 Bestobell Electromagnetically driven tuning fork for determining fluid properties
GB8705757D0 (en) * 1987-03-11 1987-04-15 Schlumberger Electronics Uk Fluid transducer
DE3872609D1 (de) * 1987-06-12 1992-08-13 Joerg Dual Viskosimeter.
US4996656A (en) * 1988-09-02 1991-02-26 Innovative Solutions & Support, Incorporated Densitometer with remotely disposed control electronics
GB9225983D0 (en) * 1992-12-12 1993-02-10 Hydramotion Ltd Transducer for the measurement of attributes of flowable media
US6044694A (en) * 1996-08-28 2000-04-04 Videojet Systems International, Inc. Resonator sensors employing piezoelectric benders for fluid property sensing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005599A (en) * 1975-08-05 1977-02-01 International Telephone And Telegraph Corporation Fluid property detection system
US4154093A (en) * 1977-04-12 1979-05-15 Imperial Chemical Industries Limited Measurement of viscoelastic properties
US5837885A (en) * 1994-03-07 1998-11-17 Goodbread; Joseph Method and device for measuring the characteristics of an oscillating system
DE4419684A1 (de) * 1994-06-06 1995-12-07 Erik Von Der Dipl Phys Burg Verfahren zur Bestimmung visko-elastischer und entsprechender rheologischer Eigenschaften von Flüssigkeiten und flüssigkeitsähnlichen Substanzen mit festkörperähnlichen Anteilen, das auch für geringe Probenvolumina geeignet ist

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1325301A2 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237931A1 (de) * 2002-08-14 2004-02-26 Endress + Hauser Gmbh + Co. Kg Vorrichtung zur Überwachung eines vorbestimmten Füllstands eines Messmediums in einem Behälter
WO2014095418A1 (fr) 2012-12-21 2014-06-26 Endress+Hauser Gmbh+Co. Kg Procédé de détermination et/ou de surveillance d'au moins un paramètre dans la technique d'automatisation
DE102012113045A1 (de) 2012-12-21 2014-06-26 Endress + Hauser Gmbh + Co. Kg Verfahren zur Bestimmung und oder Überwachung von zumindest einem Parameter in der Automatisierungstechnik
US9971855B2 (en) 2012-12-21 2018-05-15 Endress + Hauser Gmbh + Co. Kg Method for determining and or monitoring at least one parameter in automation technology
DE102012113045B4 (de) 2012-12-21 2023-03-23 Endress+Hauser SE+Co. KG Verfahren zur Bestimmung und oder Überwachung von zumindest einem Parameter in der Automatisierungstechnik
DE102013106172A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Gmbh + Co. Kg Verfahren zur Kalibration oder zum Abgleich einer beliebigen schwingfähigen Einheit
US10078005B2 (en) 2013-06-13 2018-09-18 Endress + Hauser Gmbh + Co. Kg Method for calibration or adjustment of any oscillatable unit

Also Published As

Publication number Publication date
DE10050299A1 (de) 2002-04-11
WO2002031471A3 (fr) 2002-10-10
JP2004511771A (ja) 2004-04-15
CN1468370A (zh) 2004-01-14
AU2002210473A1 (en) 2002-04-22
EP1325301A2 (fr) 2003-07-09

Similar Documents

Publication Publication Date Title
WO2002031471A2 (fr) Dispositif pour determiner et/ou controler la viscosite d'un fluide dans un reservoir
EP1529202B1 (fr) Dispositif pour surveiller un etat de remplissage predefini d'un milieu a mesurer dans un recipient
DE102016112743A1 (de) Vibronischer Sensor
EP2564174B1 (fr) Dispositif permettant de determiner et/ou surveiller une grandeur physique relative a un milieu
US6711942B2 (en) Apparatus for determining and/or monitoring the viscosity of a medium in a container
EP3983761B1 (fr) Multicapteur vibronique
EP3877732A1 (fr) Multicapteur vibronique
EP3472578B1 (fr) Capteur vibronique et procédé de fonctionnement d'un capteur vibronique
EP3983760A1 (fr) Multicapteur vibronique
WO2008009522A1 (fr) Dispositif pour déterminer et/ou surveiller une variable de processus d'un milieu
WO2002042724A1 (fr) Procede et dispositif permettant de constater et / ou de surveiller le niveau d'un milieu dans une cuve ou de determiner la densite d'un milieu dans une cuve
EP1266194A1 (fr) Procede et dispositif de detection et/ou de controle du niveau d'un fluide dans un conteneur
EP3983762A1 (fr) Multicapteur vibronique
WO2018145858A1 (fr) Surveillance de l'état d'un capteur vibronique
DE102012101667A1 (de) Vibronisches Messgerät
DE102020105214A1 (de) Vibronischer Multisensor
EP2798319A1 (fr) Dispositif de détermination et/ou de surveillance d'au moins une grandeur de processus
EP2798317A1 (fr) Dispositif de détermination et/ou de surveillance d'une valeur limite d'une grandeur de procédé
EP3513152B1 (fr) Compensation d'un changement de phase d'au moins un composant électronique d'un capteur vibronique
DE20122541U1 (de) Vorrichtung zur Bestimmung und/oder Überwachung der Viskosität eines Mediums in einem Behälter
WO2023247153A1 (fr) Multicapteur vibronique modulaire
DE102020116281A1 (de) Vibronischer Sensor
WO2018108401A1 (fr) Capteur vibronique avec compensation de température

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001978323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018171265

Country of ref document: CN

Ref document number: 2002534806

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2001978323

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001978323

Country of ref document: EP