WO2002031164A1 - Proteine de farnesyl-pyrophosphate-synthase, acide nucleique et region promoteur de cette proteine - Google Patents

Proteine de farnesyl-pyrophosphate-synthase, acide nucleique et region promoteur de cette proteine Download PDF

Info

Publication number
WO2002031164A1
WO2002031164A1 PCT/JP2001/008816 JP0108816W WO0231164A1 WO 2002031164 A1 WO2002031164 A1 WO 2002031164A1 JP 0108816 W JP0108816 W JP 0108816W WO 0231164 A1 WO0231164 A1 WO 0231164A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
seq
sequence
pyrophosphate synthase
gene
Prior art date
Application number
PCT/JP2001/008816
Other languages
English (en)
French (fr)
Inventor
Yukio Okada
Kazutoshi Ito
Original Assignee
Sapporo Breweries Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sapporo Breweries Limited filed Critical Sapporo Breweries Limited
Priority to EP01974723A priority Critical patent/EP1327686A4/en
Priority to JP2002534531A priority patent/JPWO2002031164A1/ja
Priority to US10/148,188 priority patent/US6933374B2/en
Publication of WO2002031164A1 publication Critical patent/WO2002031164A1/ja
Priority to US10/958,382 priority patent/US7091019B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8225Leaf-specific, e.g. including petioles, stomata
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8233Female-specific, e.g. pistil, ovule
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine

Definitions

  • the present invention relates to a hop farnesyl pyrophosphate (FPP) synthase gene and a promoter region of the gene.
  • FPP hop farnesyl pyrophosphate
  • Plants produce and accumulate a huge variety of low-molecular-weight organic compounds, such as tenorenoids, alkaloids, phenolics, and sapoyun. Initially, these compounds were referred to as secondary metabolites because they were not directly involved in the life support of living organisms, but merely as secondary functions.
  • Farnesinolepyrophosphate synthase is known as an enzyme involved in the cascade of secondary metabolites in plants.
  • Pharnesyl pyrophosphate synthase is an enzyme involved in the metabolism of isoprenide, which is the backbone of various substances such as pigments, fragrances, plant hormones, phytoalexins, and protective substances against pests in plants (Plant Biochemistrv).
  • hops are the main ingredient that gives the refreshing bitterness and aroma of beer, but also in this hop, a large amount of secondary metabolites are secreted in lupulin gland hair contained in cones, and this secondary metabolite is It has been clarified that it greatly contributes to the bitterness and aroma of rice. Furthermore, in recent years, secondary metabolites of this hop have been shown to have pharmacological effects (eg, Biosci. Biotech. Biochem., 61 (1), 158, 1997). Due to this background, various breeds have been improved in hops, focusing on secondary metabolites such as bitterness and essential oil components accumulated in lupulin glands.
  • hops are dioecious plants, and especially male strains have not been studied much because they do not bear cones, which are the raw materials for building, and are not regarded as commercially important. Little has been said about. For this reason, the conventional breeding method based on crossing relies heavily on experience and intuition, and in particular, the brewing quality cannot be predicted at all until cones actually grow. Therefore, in hops, it is strongly desired to isolate the above-mentioned funesyl pyrophosphate synthase gene, and to control secondary metabolites in hops and establish a synthesis method in vitro using a genetic engineering approach. It is rare.
  • the transformation technique is a technique in which a foreign gene is directly introduced into a plant cell by expressing and expressing the foreign gene, but the foreign gene is expressed in a plant cell that controls the expression of the transgene.
  • a functional promoter is linked to a structural gene of interest and a terminator operable in a plant cell, and this is introduced into a plant cell. When you enter, the method you take is adopted.
  • promoters often used at the experimental level include the CaMV 35S promoter, a nopaline synthase gene promoter (Sanders PR et al.), which is capable of expressing a transgene in a relatively large number of plants regardless of tissues. al. Nucleic Acid Res, 15 (1987) 1543-1558).
  • the exogenous gene is expressed in the target tissue because some of the transgene may harm plant growth and the like. It has been strongly desired to isolate such a tissue-specific promoter gene.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and includes a gene involved in the biosynthesis of a secondary metabolite in hops and a promoter gene that functions in a tissue-specific manner in hop lupulin gland hair.
  • the purpose of this study is to elucidate the nucleotide sequence and to enable the transformation of hops by genetic engineering techniques and the synthesis of secondary metabolites of hops in vitro.
  • the present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, have found that the gene for pharmacophorase synthase, which is strongly expressed in hop lubrinic gland hair and is involved in the biosynthesis of secondary metabolites, and its promoter. Gene was discovered, and the present invention was completed
  • proteins 1 to 2 are provided. 1. A protein having the amino acid sequence of SEQ ID NO: 1 in the sequence listing.
  • a protein characterized in that it has an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 of the sequence listing, and has a pharmacophoric acid synthase activity. .
  • nucleic acid according to items 3 to 10.
  • a nucleic acid comprising a part of the nucleotide sequence of SEQ ID NO: 3 in the sequence listing
  • a nucleic acid characterized in that:
  • a nucleic acid comprising a part of the base sequence described in SEQ ID NO: 2 of the Sequence Listing 9.
  • base numbers 1 to 1886 A nucleic acid having a base sequence described below.
  • a nucleic acid characterized in that it hybridizes with a nucleic acid having the nucleotide sequence described in the above 7 to 8 or a complementary nucleic acid under stringent conditions and has a promoter activity.
  • FIG. 1 is a diagram showing a nucleic acid fragment obtained in the process of isolating the phanolenesyl pyrophosphate synthase gene of the present invention.
  • FIG. 2 is a schematic diagram showing the principle of the inverse PCR method used in the present invention.
  • FIG. 3 is a schematic diagram showing the principle of the casett ligation mediated PCR method used in this effort.
  • FIG. 4 is a diagram showing a developed image of thin-layer mouth chromatography in which the activity of pharmacosyl pyrophosphate synthase of the present invention was measured.
  • FIG. 5 shows the expression of the pharmacoprotein synthase gene of the present invention. It is a photograph of Northern analysis.
  • nucleic acid in the present invention refers to, for example, a polynucleotide that can be DNA, RNA, or a derivatized active DNA or RNA, and preferably refers to DNA and / or RNA.
  • examples of the form of the nucleic acid include genomic DNA (genomic DNA), cDNA, and mRNA.
  • hybridizes under stringent conditions means that two nucleic acid fragments are expressed by Sambrook et al. (Sambrook, J.) in “Expression of cloned genes in Escherichia coli (E pressionofclonedgenes in E. coli). coli) ”(Molecular Cloning: A laboratory manu al (1989)) Cold Spring Laboratory Press, New York, USA, 9.47-9.62 and 1 1.45—11.61 Hybridization under the hybridization conditions described in (1).
  • stringent conditions means, for example, that after hybridization at about 45 ° C with 6.0 XSSC, washing is performed at 50 ° C with 2.0 XSSC.
  • the salt concentration in the washing step may be, for example, from about 2.0 XSSC, 50 ° C for low stringency to about 0.1 XSSC, 50 ° C for high stringency. You can select up to.
  • the temperature of the washing step can be increased from room temperature (about 22 ° C) under low stringency conditions to about 65 ° C under high stringency conditions.
  • promoter refers to a base sequence present on DNA, and a signal that plays a role in instructing initiation or termination of RNA synthesis (transcription) or regulation of the frequency thereof. Points to an array.
  • promoter activity in the present invention means that the promoter functions to start, stop and regulate transcription as described above.
  • the protein of the present invention is a hop huanesyl pyrophosphate synthase protein having an amino acid sequence having a 342 amino acid residue shown in SEQ ID NO: 1 in the sequence listing.
  • the protein of the present invention may be a protein having farnesyl pyrophosphate synthase activity, in which one or more amino acids are deleted, substituted or added in the amino acid sequence described in SEQ ID NO: 1 in the sequence listing. It may also be a protein having a modified amino acid sequence.
  • sugar chains are added to many proteins, and the addition of sugar chains can be regulated by changing one or more amino acids. Therefore, in the amino acid sequence of SEQ ID NO: 1 in the sequence listing, the protein in which the addition of the sugar chain is regulated is also included in the protein of the present invention as long as it has the above-mentioned funesyl pyrophosphate synthase activity.
  • the present invention also includes a nucleic acid having a base sequence encoding the above-mentioned bulnesyl pyrophosphate synthase protein. That is, since there are a plurality of base sequences (codons) encoding one to three amino acids, there are many nucleic acids encoding the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing. Therefore, such a nucleic acid is also included in the nucleic acid of the present invention.
  • "encoding a protein” means that when the DNA is double-stranded, one of the complementary double strands includes a DNA having a base sequence encoding the protein.
  • the nucleic acid of the present invention also includes a nucleic acid consisting of a base sequence directly encoding the amino acid sequence of SEQ ID NO: 1 in the sequence listing or a nucleic acid consisting of a complementary base sequence thereof.
  • the nucleic acid of the present invention has the nucleotide sequence of SEQ ID NO: 3 in the sequence listing,
  • cDNA a nucleic acid (cDNA) encoding silpyrophosphate synthase.
  • nucleic acid of the present invention may be a nucleic acid consisting of a part of the base sequence of SEQ ID NO: 3.
  • the nucleic acid of the present invention hybridizes under stringent conditions with a nucleic acid having a nucleotide sequence of 109 bases as set forth in SEQ ID NO: 3, and encodes a protein having a phanesyl pyrophosphate synthase activity. It may be a nucleic acid, and its base sequence is not particularly limited as long as this condition is satisfied. Furthermore, the nucleic acid of the present invention also includes a nucleic acid having a base sequence complementary to the nucleic acid that hybridizes under the stringent conditions.
  • the base sequence of SEQ ID NO: 3 Some of the bases of the nucleic acid have deletion, substitution, insertion, addition, etc., and include nucleic acids encoding proteins having farnesyl pyrophosphate synthase activity.
  • the deletion, substitution, insertion, and addition include not only short deletion, substitution, insertion, and addition of 1 to 10 bases, but also long deletion, substitution, and insertion of 10 to 100 bases. , Including addition.
  • the term “farnesyl pyrophosphate synthase activity” refers to an activity of promoting a reaction for synthesizing farnesinolepyrophosphate by the catalytic action of farnesyl pyrophosphate synthase.
  • the substance serving as a substrate for buarnesyl pyrophosphate synthase is not particularly limited as long as funesyl pyrophosphate is finally synthesized, but, for example, isopentenyl pyrophosphate ⁇ geraleylpyrophosphate is used. No.
  • the geranyl pyrophosphate ⁇ ⁇ farnesyl pyrophosphate is considered to be a precursor of essential oil components such as myrcene, humulene, caryophyllene, and ⁇ arnesene, and thus the base represented by SEQ ID NO: 3 in the above sequence listing.
  • SEQ ID NO: 3 the base represented by SEQ ID NO: 3 in the above sequence listing.
  • the nucleic acid of the present invention also includes a nucleic acid comprising a part of the base sequence described in SEQ ID NO: 3 in the sequence listing.
  • the nucleic acid of the present invention is a nucleic acid having the nucleotide sequence of SEQ ID NO: 2 in the sequence listing. Further, the nucleic acid of the present invention may be a part of the nucleic acid having a base sequence of 4699 bases described in SEQ ID NO: 2, and a base sequence represented by base numbers 1 to 1886 It may be.
  • the nucleic acid having the nucleotide sequence set forth in SEQ ID NO: 2 is genomic DNA of furnesylbiphosphate phosphate synthase, and the base sequence encoding the open methylation of phagenesinolepyrophosphate synthase has the base sequence therein.
  • the number is 1887-18989. Therefore, base numbers 1 to 1886 in the base sequence described in SEQ ID NO: 2 are 5, an untranslated region, and this region includes the promoter region of the pharmacophore synthase gene. Although it is difficult to strictly specify the boundaries between both ends of the promoter region among the base numbers 1 to 1886, a sequence consisting of a part of the base numbers 1 to 1886 may be used as long as it has promoter activity.
  • the nucleic acid of the present invention is a nucleic acid having the base sequence of SEQ ID NO: 2 or a base number of this nucleic acid; It may be a nucleic acid that hybridizes with a nucleic acid having a base sequence represented by 1886 under stringent conditions and has a promoter activity, and the base sequence is not particularly limited as long as this condition is satisfied. Not done. Further, the nucleic acid of the present invention also includes a nucleic acid which hybridizes under the stringent conditions and has a nucleotide sequence complementary to the nucleic acid having promoter activity.
  • the deletion, substitution, insertion and addition include not only short deletion, substitution, insertion and addition of 1 to 10 bases, but also long deletion, substitution, insertion and addition of 10 to 100 bases. .
  • the nucleic acid of the present invention can be isolated through the following steps (1) to (5). In the steps (6) to (7), the isolated gene is converted to funesylpyrrophosphate synthase. It is possible to confirm the activity of the enzyme or the activity of the promoter.
  • Hop genomic DNA can be prepared by a known method, for example, by the method of Wagner, DB, et al. (Proc. Natl. Acad. Sci. USA 84, 2097-2100 (1987)).
  • a partial fragment of the funaresyl pyrophosphate synthase gene was obtained from other known plants, such as Arabidopsis thaliana and corn.
  • a primer can be designed based on the nucleotide sequence of the above and isolated using a known method such as inverse PCR (Casett-ligation mediated PCR).
  • inverse PCR Casett-ligation mediated PCR
  • reverse PCR method as shown in the schematic diagram of Fig. 2, DNA as a sample is digested with a restriction enzyme, and the sample obtained by cyclizing the digestion product of the restriction enzyme before amplification is converted into a type II, and the normal PCR method is used.
  • Specific examples of the inverse PCR method include the method of Liu, YG et al. (Ge noraics 25, 674-681 (1995)).
  • Cassett-ligation mediated PCR is a method used when an unknown base sequence adjacent to a known base sequence is known as shown in the schematic diagram of FIG.
  • a nucleic acid containing such a nucleic acid region is digested with a restriction enzyme to have the restriction enzyme recognition site.
  • a region of an unknown base sequence sandwiched between regions having a known base sequence by linking one nucleic acid to the nucleic acid is amplified by PCR.
  • the reverse PCR and / or Cassett-ligation mediated PCR the entire region and the entire region of the hops phnesyl pyrophosphate synthase gene can be determined.
  • the promoter can be isolated.
  • the nucleotide sequence of the isolated gene can be determined by a known method. For example, it can be performed according to the protocol attached to “ABI PRISM Dye Primer Cycle Sequencing Ready Reaction Kit” manufactured by PE Biosystems.
  • the base sequence determined by the above method can be used for homology with a database (for example, http: // www. Ncbi. Nlm. Nih. Gov / BLAST /). By performing a search, it is possible to know the presence or absence and the degree of homology with known genes obtained from other plant species, and to determine whether the obtained genes are novel genes. It will be possible.
  • total RNA can be prepared by a known method, for example, by the method of Chang, S. et al. (Plant Molecular Biology Report 11, 113-116 (1993)). Can be.
  • the cDNA of the phagenesyl pyrophosphate synthase gene can be obtained simply by a known method.
  • a primer is set based on the genomic DNA base sequence of the pharmacophoric acid synthase gene isolated in (2), and the cDNA synthesized from all RNAs is designated as ⁇ type.
  • RT Isolated by PCR.
  • a specific method in this case for example, a method described in a protocol attached to “Titan One Tube RT-PCR System” manufactured by Roche Diagnostics Inc. or the like can be used.
  • the protein encoded by the farnesyl pyrophosphate synthase gene isolated in (5) is incorporated into the expression vector of the DNA of the farnesyl pyrophosphate synthase gene, and the vector is introduced into E. coli by introducing this vector into E. coli. It can be expressed in the cells of bacteria.
  • the expression of the protein encoded by the pharynesyl pyrophosphate synthase and the purification of the protein can be performed, for example, by the purification described in the protocol attached to “QIAexpress Expression System” (manufactured by Qiagen). it can.
  • the function of the pharmacoprotein expressed and purified in Escherichia coli can be confirmed by known methods. For example, the method of Sylvie A. et al. (Arch. Biochem. Biophys. 321, 493-500, (1995)).
  • Northern hybridization analysis (hereinafter referred to as Northern analysis) In which tissues the isolated pharynesyl pyrophosphate synthase gene is expressed, or the promoter of the isolated pharynesyl pyrophosphate synthase gene is Which tissue is functioning can be analyzed by Northern analysis using the isolated phnesyl pyrophosphate synthase gene as a probe. For example, see "The DIG System User's Guide for Filter Hybridization J Soil, p. 53-55 (1995).
  • nucleotide sequence disclosed in the present invention As a probe for hybridization, it is possible to detect at least the buarnesinolepirophosphate synthase gene expressed in hops.
  • the distribution of gene expression can be identified by controlling gene expression in hop fibrous tissue. It is possible.
  • the hybridization method itself is not particularly limited, and specifically, for example, Northern hybridization is used. Examples include hybridization, Southern hybridization, colony hybridization, dot hybridization, fluorescence insituhvbridization (FISH) insituhybridization (ISH), DNA chip method, and microarray method.
  • FISH fluorescence insituhvbridization
  • ISH insituhybridization
  • DNA chip method DNA chip method
  • microarray method microarray method.
  • nucleotide sequence of the present invention When the nucleotide sequence of the present invention is used as a probe for hybridization, at least 20 nucleotides are required. Of the gene sequences of the present invention, genes having at least 20 consecutive nucleotides are required. Is preferably used. More preferably, those having a base length of 40 or more, particularly preferably 60 or more are used.
  • the probe is preferably labeled so that it can be easily detected.
  • the detectable label can be of any type or moiety that can be detected either visually or using an instrument. Commonly used detectable labels are, for example, radioactive labels such as 32 P, 14 C, 125 I, 3 H, 35 S.
  • Biotin-labeled nucleotides can be incorporated into nucleic acids by nick translation, chemical and enzymatic means, and the like. Biotin-labeled props are detected after hybridization using labeling means such as avidin / streptavidin, fluorescent labeling agents, enzymes, and colloidal gold complexes. Nucleic acids may be labeled by binding to a protein. Alternatively, a nucleic acid cross-linked to a radioactive or fluorescent histone single-stranded binding protein may be used.
  • Detection of the phnesyl pyrophosphate synthase gene can also be performed by using the Polymerase Chain Reaction (PGR) method using any of the disclosed nucleotide sequences as primers.
  • PGR Polymerase Chain Reaction
  • RNA can be extracted from the sample to be assayed and gene expression can be measured semi-quantitatively by RT-PCR. Such methods are performed in a manner known to the parties.
  • the nucleic acid of the present invention When used as a primer for PCR, it must have a length of 10 to 60 bases, and among the nucleic acids of the present invention, a nucleic acid having 10 to 60 consecutive bases is preferable. Those having 15 to 30 bases are more preferably used.
  • the GC content in the primer sequence is preferably 40% to 60%.
  • the primer does not anneal at the 3rd terminus and does not have a secondary structure in the primer.
  • the expression distribution of the huanesyl pyrophosphate synthase gene expressed in hops can be determined. It is possible to detect.
  • the distribution of gene expression can be detected by using a part or all of the nucleotide sequence disclosed in the present invention as a hybridization probe or a PCR primer.
  • the distribution of the gene expression can also be detected using a DNA chip, a microarray, or the like. That is, a part or all of the nucleotide sequence disclosed by the present invention can be directly pasted on a chip or an array.
  • RNA extracted from the cells can be labeled with a fluorescent substance or the like and hybridized, and it is possible to analyze in which cells the gene is highly expressed.
  • the DNA to be attached to the chip or the array may be a reaction product of PCR using a part or all of the nucleotide sequence disclosed by the present invention.
  • nucleotide sequence disclosed in the present invention By using a part or all of the nucleotide sequence disclosed in the present invention, it is possible to clone a gene expressed at least in hops.
  • a part or all of the nucleotide sequence disclosed in the present invention is used as a Northern hybridization probe, a colony hybridization probe or a PCR primer, and the nucleotide sequence disclosed in the present invention is used. It is possible to clone genes that include some, all or all.
  • hop transformation it is possible to obtain information on hops phnesyl pyrophosphate synthase using the protein or nucleic acid of the present invention, perform hop transformation, produce secondary metabolites, etc. .
  • the above-mentioned pharmacophorase synthase is an enzyme involved in the metabolism of isoprenoid, which is the basis of various substances such as pigments, aromas, plant hormones, phytoalexins, and defense substances against insects in plants. is there. Therefore, for example, by utilizing the pharmacophorase synthase gene isolated as described above, the metabolic system of pigments, aromas, plant hormones, phytoalexins, protective substances against pests and the like in plants can be controlled. For the genes that control these traits It is possible to go out.
  • farnesyl pyrophosphate synthase gene isolated by the present invention and using farnesyl pyrophosphate synthase produced by a genetic engineering technique, a secondary metabolite of a plant is produced in a test tube. Becomes possible.
  • funasesyl pyrophosphate synthase may be involved in the metabolic system of xanthohumol (Brauwelt, 36, 1998), which is said to have anticancer activity and its resin component in hops.
  • nucleic acid of the present invention it is possible to control the metabolic system of hop resin component xanthohumol, and it is possible to use it as a genetic marker for a trait related to the resin component and xanthohumol. .
  • hop breeding methods that had to rely on experience and intuition in the past can now be performed by genetic engineering techniques.
  • By introducing the gene into hops it becomes possible to control the composition of secondary metabolites in leupulin gland hair. Therefore, it is possible to improve and maintain the quality of foods using hops (eg, beer and low-malt beer), or to improve the quality and efficiency of drugs using secondary metabolites.
  • a gene to be introduced into a target hop and a terminator that functions in the hop are linked downstream of the promoter.
  • the gene By introducing the gene into the hops, the gene can be specifically expressed in lupulin gland hair.
  • hop genomic DNA was prepared as follows. That is, hop leaves are frozen and ground in liquid nitrogen, and 2% CTAB solution (2% cetyltrimethylammonium bromide, 0.1 M Tris ( ⁇ 9.5), 2 OmM EDTA, 1.4 M NaCl, 5% 3 mercaptoethanol) and incubated at 65 ° C for 30 minutes. The suspension was extracted twice with Clos form Z-isoamyl alcohol (24: 1), and 3Z4 volumes of isopropanol were added to precipitate DNA and RNA. Dissolve the precipitated DNA and RNA in High Salt TE buffer (1 M sodium chloride, 1 OmM Tris (pH 8.0), 1 mM EDTA), add RNase, and incubate at 60 ° C. Only disassembled. Two times the amount of isopropanol was added thereto to precipitate DNA, and the precipitated DNA was further washed with 70% ethanol and dissolved in water to obtain a genomic DNA sample.
  • CTAB solution 2% cetyltrimethylammonium bro
  • Primer 1 SEQ ID NO: 4
  • Primer 2 SEQ ID NO: 5
  • PCR was performed using hop genomic DNA as type III, and fragment 1 in FIG. 1 was obtained.
  • primer 3 SEQ ID NO: 6
  • primer 4 SEQ ID NO: 7
  • primer 5 SEQ ID NO: 8
  • primer 6 SEQ ID NO: 9
  • hop genomic DNA is digested with restriction enzymes Bg1II or HindIII, and DNA digestion is performed using "DNA Ligation Kit Ver. 1" (Takara Shuzo).
  • molecular ligation (Self ligation) was performed, and a part of the reaction solution after the completion of intramolecular ligation was subjected to PCR using Primer 3 and Primer ⁇ 5. .
  • primers 4 and 6 shown in Table 1 to obtain fragment 2 and fragment 3 of FIG.
  • primer 7 SEQ ID NO: 10
  • primer 8 SEQ ID NO: 11
  • primer 9 SEQ ID NO: 12
  • Intramolecular ligation was performed on the hop genomic DNA digested with the restriction enzyme EcoRI, and this was used as a type II primer to perform PCR again using the above primers 7 and 9, obtaining fragment 4 in Fig. 1 and determining the nucleotide sequence. did.
  • Fragment 5 in Fig. 1 is the “TaKaRa LA PCR in vitro Cloning Kit” (Takara Shuzo) )) And isolated according to the attached protocol. That is, the hop genomic DNA was digested with a restriction enzyme EcoRI, and the EcoRI adapter attached to the kit was ligated thereto. Next, PCR was performed using the primer 10 (SEQ ID NO: 13) designed based on the nucleotide sequence of the fragment 3 and the cassette primer C1 attached to the kit. Further, using this PCR reaction as a template, PCR was performed using primer 11 (SEQ ID NO: 14) designed based on the nucleotide sequence of fragment 3 and cassette primer C2 included in the kit to obtain fragment 5. The base sequence was determined.
  • hop genomic DNA was subjected to PCR using primers 12 (SEQ ID NO: 15) and 13 (SEQ ID NO: 16) designed based on the nucleotide sequences of fragment 4 and fragment 5 in FIG. Fragment 6 containing the arnesyl pyrophosphate synthase gene and its promoter was obtained.
  • the PCR was performed for all of the above PCRs using "Expand High-Fidelity PCR System" (Boehringer-Mannheim) according to the attached protocol.
  • Both ends of the hop huanesyl pyrophosphate synthase gene and the fragment 6 containing the promoter obtained in Example 2 were blunt-ended using “TaKaRa BKL Kit” (Takara Shuzo) and subcloned into a pUC vector. .
  • the blunting of both ends of fragment 6 and subcloning of the UC vector were performed according to the protocol attached to the kit.
  • the nucleotide sequence was determined using “ABI PRISM Dye Terminator Cycle Sequencing Ready Reac- tion Kit” (PE Biosystems, ABI 373S) according to the attached protocol.
  • the nucleotide sequence of fragment 6 is shown in SEQ ID NO: 2 in the sequence listing.
  • Hop RNA leaves, stems, lupulin (1) fraction and norepurin (+) fraction were prepared as tissues for extracting total RNA.
  • the lubrin (1) fraction is a fraction mainly collected from the outer bracts of sprouts with almost no lupulin gland hair
  • the lupulin (+) fraction is a tissue other than lupulin gland hairs from sprouts. It is a fraction consisting mainly of lubricated glandular hair, which is removed as much as possible.
  • tissue fractions were freeze-ground in liquid nitrogen, and 2% CTAB solution (2% cetyltrimethylammonium bromide, 0.1 M Tris (pH 9.5), 2 OmM EDTA, 1.4 M NaCl, 5% 3 mercaptoethanol) and kept at 65 ° C for 10 minutes.
  • CTAB solution 2% cetyltrimethylammonium bromide, 0.1 M Tris (pH 9.5), 2 OmM EDTA, 1.4 M NaCl, 5% 3 mercaptoethanol
  • After extracting twice with black form / isoamyl alcohol (24: 1) add 13 volumes of 10M lithium chloride, let stand, centrifuge at 15000 rpm for 10 minutes, and precipitate. Was dissolved in water.
  • a DNase reaction buffer (10 OmM sodium acetate (pH 5.2), 5 mM magnesium chloride), and add DNase.
  • the DNA was degraded by incubating at 37 ° C. A 1/3 volume of 10M lithium chloride was further added to the solution, left to stand, and centrifuged at 1500 rpm for 10 minutes. The precipitate was washed with 70% ethanol, dried, and dissolved again in water to obtain a total RNA sample.
  • the cDNA of the huanesyl pyrophosphate synthase gene was obtained from the information of the farnesyl pyrophosphate synthase gene such as Arabidopsis thaliana whose base sequence is known. Estimating both ends of the coding region of the Kuze gene, designing a primer having a sequence obtained by adding a BamHI recognition sequence to the sequence, and using all the RNAs obtained in Example 4 as type RT as RT-PCR method was isolated. That is, the primer is primer 14 RT-PCR was performed using rTitan One Tube RT-PCR System J (Roche ⁇ Diagnostics Inc.) according to the attached protocol using (SEQ ID NO: 17) and primer 15 (SEQ ID NO: 18).
  • the thus-obtained cDNA of the phagenesylpyrrophosphate synthase gene was subcloned into the pCR2.1 (manufactured by Invitroge Lio) vector to obtain pFPPS101R.
  • the subcloned pharynesyl pyrophosphate synthase gene cDNA described above can be obtained from ABI PRISM Dye Terminator Cycle Sequencing Ready Reaction Kit J (manufactured by PE Biosystems) and DNA Sequencer ABI373S (manufactured by PE Biosystems)
  • the nucleotide sequence of the obtained buarnesyl pyrophosphate synthase gene cDNA is shown in SEQ ID NO: 3 in the Sequence Listing, and the nucleotide sequence was determined by using the cDNA.
  • the amino acid sequence of the protein is shown in SEQ ID NO: 1 in the sequence listing.
  • the 660th base is different from the corresponding genomic DNA sequence (3737th base in SEQ ID NO: 2). This is considered to be a base incorporation error generated in RT-PCR performed when cDNA was isolated. However, since this error is the same as the originally encoded amino acid at the amino acid level, it does not affect the function analysis of the protein described in Example 6.
  • the protein encoded by the isolated farnesyl pyrophosphate synthase gene was used.
  • reaction was carried out at C for 30 minutes. Next, add 30 ⁇ l of a 10-fold concentration reaction buffer attached to alkaline phosphatase (manufactured by Wako Pure Chemical Industries), add 1 ⁇ l (10 units) of anorecaliphosphatase, and add the mixture at 37 ° C. After the reaction, the mixture was further reacted at 25 ° C. To the above reaction solution, 1 ⁇ l (4.5 nmo 1) of farnesol was added as a carrier, hexane 200 / x1 was further added and mixed, and the mixture was centrifuged at 1000 rpm for 1 minute.
  • hexane layer was recovered, hexane 1001 was added again to the remaining aqueous layer, mixed and centrifuged, and the hexane layer was recovered and mixed with the previously recovered hexane layer.
  • the signals from the reaction products are farnesol and gela-ol.
  • Northern hybridization analysis was carried out to confirm in which tissue in the hops the amount of the isolated huanesyl pyrophosphate synthase gene was expressed and in what amount.
  • the plasmid pFPPS101R prepared in Example 5 was digested with a restriction enzyme ⁇ I to obtain a linear form, which was referred to as “ ⁇ ”.
  • the DIG RNA labeling kit (SP6 / T7) J ( Roche's Diagnostics Co., Ltd.) was used to prepare an RNA probe for the phenylnesyl pyrophosphate synthase gene according to the protocol attached to the kit described above.
  • RNA in the leaf, stem, lubrin (1) fraction and lubrin (+) fraction prepared in Example 4 were each subjected to denaturing agarose gel (1.2% agarose, 6.2%). Electrophoresis was performed using 7% formaldehyde, 20 mM MOPS, 5 mM sodium acetate, 1 mM EDTA, pH 7.0). The gel after electrophoresis was shaken three times in distilled water for 40 minutes each to remove formaldehyde in the agarose gel, and then 20XS SC (0.3M sodium citrate, 3M sodium chloride, ⁇ > ⁇ 7.0 ) was used as a buffer to transfer the RNA in the agarose gel to a nylon membrane.
  • 20XS SC 0.3M sodium citrate, 3M sodium chloride, ⁇ > ⁇ 7.0
  • Hybridization was performed at 68 ° C using the nylon membrane onto which RNA was transcribed and the above probe.
  • the hybridization buffer used for the hybridization was 5XSSC, 0.02% SDS, 0.1 o / oN-leuinoresanorecosin, 50% honolem amide. And 2% B locking Re agent (Roche Diagnostics).
  • wash solution (0.1% SDS s 2 XSSC) twice at 68 ° C for 30 minutes, and then with a cleaning solution (0.1% SDS, 0.1 XSSC) for 30 minutes at 68 ° C. was performed twice.
  • the RNA fragment to which the probe was hybridized was detected.
  • the detection described above was performed according to the protocol described in "User Guide for Performing Hybridization Using DIG System"(Roche's Diagnostics Co., Ltd.).
  • Fig. 5 shows the obtained results.
  • the ratio of mRNA derived from the pharmacophorase synthase gene It was confirmed that the glandular hair was the most abundant, followed by the stem and the outer bract, and the least occupied ratio was the leaves. In other words, it was confirmed that the buarnesyl pyrophosphate synthase gene was most strongly expressed in lupulin gland hair, and the promoter of the pharmacokines was the highest in lupulin gland hair.
  • the protein and the gene for pharmacoprotein pyrophosphate synthase can be identified, the genes involved in the biosynthesis of secondary metabolites in hops and the tissue specificity of hop lupulin gland hair are obtained.
  • the nucleotide sequence of the promoter gene that functions functionally becomes clear, and it becomes possible to transform hops by genetic engineering techniques and synthesize secondary metabolites of hops in vitro.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Description

糸田 »
フアルネシルピロリン酸シンターゼタンパク質、 核酸及ぴそのプロモーター領 域
技術分野
本発明は、 ホップのファルネシルピロリン酸 ( F P P ) シンターゼ遺伝子及ぴ 前記遺伝子のプロモータ一領域に関する。
背景技術
植物は、 その植物体内にテノレぺノイド、 アルカロイ ド、 フエノーリスク、 サポ ユンなどの膨大な種類の低分子有機化合物を生産し蓄積している。 当初、 これら の化合物は、 生物の生命維持に直接関与するものでなく、 単に副次的な機能しか ないと考えられていたことから二次代謝産物と呼ばれていた。
し力 しながら、 近年では、 この二次代謝産物が細胞の分化または外的因子から の防御に関与する物質として機能することが明らかになりつつあるとともに、 嗜 好物、 医薬品、 染料等の広い分野で利用法が見出され、 農学分野のみならず、 幅 広い分野でその有用性に注目が集まっている。
このような二次代謝産物は産業上利用価値が高いことから、 植物細胞内での生 成過程の解明が進められ、 現在ではこれら物質が多数の酵素等が関与した複雑な カスケードを経て生合成されていることが示されてきた。 しカゝしながら、 このよ うな物質を得るには植物から直接抽出する必要があり、 このような場合に一度に 単離できる量が非常に少なく、 その結果コスト高になるため、 遺伝子工学技術や 培養細胞等を用いた試験管内での合成方法の開発が望まれていた。
植物における二次代謝産物の合成カスケ一ドに関与する酵素としてファルネシ ノレピロリン酸シンターゼが知られている。 フアルネシルピロリン酸シンターゼは 植物における色素、 香り、 植物ホルモン、 ファイトァレキシン、 害虫等に対する 防御物質等の様々な物質の基幹となっているイソプレノィドの代謝に関与する酵 素 Cめり (Plant Biochemistrv & Molecular Biology, Hans-ffalter Heldt, Oxfo rd University Press, pp360— 376, 1997)、ィソペンテ二ノレピロリン酸に^メチノレ ァリルピロリン酸を付加してゲラエルピロリン酸へ変換する反応を触媒する他、 前記ゲラ -ルピロリン酸にィソペンテュルピロリン酸を付加してフアルネシルビ 口リン酸へ変換する反応を触媒することが明らかとなっている。
一方、 ホップはビールの爽快な苦味と香りを与える主要な原料であるが、 この ホップにおいても球果に含まれるルプリン腺毛内で二次代謝産物が多く分泌され、 この二次代謝産物がビールの苦味や香りに大きく寄与していることが明らかにな つてきた。 さらに、 近年では、 このホップの二次代謝産物が薬理作用を有してい ることが示されている(例えば、 Biosci. Biotech. Biochem. , 61 (1) , 158, 1997)。 こうした経緯から、 ホップにおいても、 苦味質、 精油成分といったルプリン腺毛 中に蓄積される二次代謝産物に主眼をおいた様々な品種改良が行われている。 しかしながら、 ホップは雌雄異株の植物であり、 特に雄株はビ ルの原料とな る球果を付けず、 商業上重要視されないことからあまり研究がなされておらず、 醸造上有用な遺伝形質についてもほとんど明らかにされていない。 そのため、 従 来の交配による育種法では、 経験と勘に頼る部分が多く、 特に醸造品質について は実際に球果が着生するまで全く予想が付かないというのが現状である。従つて、 ホップにおいても上述のフアルネシルピロリン酸シンターゼ遺伝子を単離し、 遺 伝子工学的手法を用いたアプローチでホップにおける二次代謝産物の制御や試験 管内での合成法の確立が強く望まれている。
一方、 今日では、 形質転換技術や分子選抜技術といった遺伝子工学を用いた育 種法が各種の植物において可能となりつつある。 これらの方法の場合、 経験と勘 に頼る部分が多い伝統的な育種法に比べ、 より客観的で効率的な育種が可能であ る。 すなわち、 形質転換技術は外来遺伝子を植物細胞内に導入、 発現させて付与 したい形質を直接導入させる技術であるが、 外来遺伝子を発現させるには、 遣伝 子の発現を制御する植物細胞内で機能可能なプロモーターに目的とする構造遺伝 子及び植物細胞内で機能可能なターミネータ一を連結し、 これを植物細胞内に導 入するといつた方法が採られる。 これまでに、 実験レベルでよく使われるプロモ 一ターとしては、 比較的多くの植物で組織を問わずに導入遺伝子を発現させるこ とのできる CaMV 35Sプロモータ一ゃノパリン合成酵素遺伝子プロモーター (Sanders P. R. et al. Nucleic Acid Res, 15 (1987) 1543 - 1558)等があった。 し かしながら、 前記のプロモーターを用いて全ての組織に導入遺伝子を発現させた 場合に、 導入遺伝子によっては植物の生育等に害を及ぼすこともあるため、 目的 の組織において外来遺伝子を発現させるような組織特異的プロモーター遺伝子の 単離が強く望まれていた。
発明の開示
本発明は、 上記従来技術の有する課題に鑑みてなされたものであり、 ホップに おいて二次代謝産物の生合成に関与する遺伝子及びホップのルプリン腺毛で組織 特異的に機能するプロモータ 遺伝子の塩基配列を明らかにし、 遺伝子工学的手 法によるホップの形質転換や、 ホップの二次代謝産物の試験管内での合成を可能 とすることを目的とする。
本発明者らは、 上記目的を達成すべく鋭意研究を重ねた結果、 ホップのルブリ ン腺毛に強く発現し、 二次代謝産物の生合成に関与するフアルネシルピロリン酸 シンターゼ遺伝子及びそのプロモーター遺伝子を見出し、 本発明を完成するに至 つた
すなわち、 本発明に従えば、 以下 1〜2に記載のタンパク質が提供される。 1 . 配列表の配列番号 1に記載のアミノ酸配列を有するタンパク質。
2 . 配列表の配列番号 1に記載のァミノ酸配列において 1若しくは複数のァミノ 酸が欠失、 置換若しくは付加されたアミノ酸配列を有し、 かつフアルネシルピロ リン酸シンターゼ活性を有することを特徴とするタンパク質。
また、 本発明に従えば、 3〜1 0に記載の核酸が提供される。
3 . 配列表の配列番号 1に記載のアミノ酸配列を有するタンパク質をコ^ "ドする ことを特徴とする核酸。 4 · 配列表の配列番号 3に記載の塩基配列を有する核酸。
5 . 配列表の配列番号 3に記載の塩基配列の一部からなることを特徴とする核酸
6 . 配列表の配列番号 3に記載の塩基配列を有する核酸と、 若しくは相捕的な核 酸とストリンジェントな条件下でハイプリダイズし、 かつフアルネシルピロリン 酸シンターゼ活性を有するタンパク質をコードすることを特徴とする核酸。
7 . 配列表の配列番号 2に記載の塩基配列を有する核酸。
8 . 配列表の配列番号 2に記載の塩基配列の一部からなることを特徴とする核酸 9 . 配列表の配列番号 2に記載の塩基配列のうち、 塩基番号 1〜 1 8 8 6で表さ れる塩基配列を有することを特徴とする核酸。
1 0 . 前記 7〜 8に記載の塩基配列を有する核酸、 若しくは相補的な核酸とス ト リンジェントな条件下でハイブリダイズし、 かつプロモーター活性を有すること を特徴とする核酸。
そして、 このようなタンパク質又は核酸を用いることにより、 遺伝子工学的手 法によるホップの形質転換や、 ホップの二次代謝産物の試験管内での合成を可能 となる。
図面の簡単な説明
図 1は、 本発明のファノレネシルピロリン酸シンターゼ遺伝子を単離する過程で 得られた核酸断片を示す図である。
図 2は、 本発明において用いられた逆 P C R法の原理を示す模式図である。 図 3は、 本努明において用いられた Casett- ligation mediated PCR法の原理を 示す模式図である。
図 4は、 本発明のフアルネシルピロリン酸シンターゼの活性を測定した薄層ク 口マトグラフィ一の展開像を示す図である。
図 5は、 本発明のフアルネシルピロリン酸シンターゼ遺伝子の発現を確認した ノーザン解析の写真である。
発明を実施するための最良の形態
以下、 場合により図面を参照しつつ、 本発明の好適な実施形態について詳細に 説明する。
本発明における 「核酸」 とは、 例えば、 DNA、 RNA、 または誘導化された 活性な DN A若しくは RN Aでありうるポリヌクレオチドを指し、 好ましくは D NA及び/または RNAをいう。 この場合、 前記核酸の形態としては、 例えば、 ゲノミック DNA (genomic DNA) 、 c DNA、 mRNAが挙げられる。
また、 本発明における 「ストリンジェントな条件下でハイプリダイズする」 と は、 2つの核酸断片が、 サムブルックら (S amb r o o k, J. ) の 「大腸菌 におけるクローン遺伝子の発現 (E p r e s s i o n o f c l o n e d g e n e s i n E . c o l i) 」 (M o l e c u l a r C l o n i n g : A l a b o r a t o r y ma nu a l (1989) ) Co l d S p r i n g h a r b o r L a b o r a t o r y P r e s s, New Yo r k, USA, 9. 47- 9. 62及ぴ 1 1. 45— 11. 61に記載されたハイ ブリダイゼーション条件下で相互にハイブリダイズすることをいう。
より具体的には、 「ストリンジェントな条件」 とは、 例えば、 約 45 °Cにて 6 . 0 X S S Cでハイブリダイゼーションを行った後に、 50°Cにて 2. 0 XSS Cで洗浄することをいう。 ス トリンジエンシーの選択のため、 洗浄工程における 塩濃度を、 例えば低ストリンジエンシーとしての約 2. 0 X S S C、 50°Cから 、 高ストリンジエンシーとしての約 0. 1 XS SC、 50°Cまで選択することが できる。 さらに、 洗浄工程の温度を低ストリンジエンシー条件の室温 (約 22°C ) から高ストリンジエンシー条件の約 65°Cまで増大させることができる。
また、 本発明における 「プロモーター」 とは、 DNA上に存在する塩基配列で あって、 RNA合成 (転写) を開始させたり終了させたりする指令、 またはその 頻度を調節する指令を司る役割を果たすシグナル配列を指す。 また、 本発明における 「プロモ^"ター活性」 とは、 前記プロモーターが前述の ように転写の開始、 終了及ぴその調節を行う働きをすることを指す。
先ず、 本発明のホップブアルネシルピロリン酸シンターゼについて説明する。 本発明のタンパク質は、 配列表の配列番号 1に記載の 3 4 2ァミノ酸残基を有 するアミノ酸配列を有するホップフアルネシルピロリン酸シンターゼタンパク質 である。
また、 本発明のタンパク質は、 ファルネシルピロリン酸シンターゼ活性を有す るタンパク質であれば、 配列表の配列番号 1に記載のァミノ酸配列において 1若 しくは複数のァミノ酸が欠失、 置換若しくは付加されたァミノ酸配列を有するタ ンパク質であってもよい。
さらに、 多くのタンパク質には糖鎖が付加され、 アミノ酸を 1若しくは複数変 換することにより糖鎖の付加を調節することができる。 従って、 配列表の配列番 号 1に記載のアミノ酸配列において、 前記糖鎖の付加を調節されたタンパク質も 上述のフアルネシルピロリン酸シンターゼ活性を有する限り本発明のタンパク質 に包含される。
また、 上記のブアルネシルピロリン酸シンターゼタンパク質をコードする塩基 配列を有する核酸も本発明に含まれる。 すなわち、一^ 3のアミノ酸をコードする 塩基配列 (コドン) は複数存在するため、 配列表の配列番号 1に示されるァミノ 酸配列をコードする核酸は多数存在する。 従って、 このような核酸も本発明の核 酸に包含される。 ここで、 「タンパク質をコードする」 とは、 D N Aが 2本鎖で ある場合には、 相補 2本鎖のいずれか一方がタンパク質をコードする塩基配列を 有するものを含むことを意味するため、 本発明の核酸には配列表の配列番号 1に 記載のアミノ酸配列を直接コードする塩基配列からなる核酸若しくはその相補的 な塩基配列からなる核酸をも包含される。
次に、 本発明にかかるフアルネシルピロリン酸シンターゼ遺伝子について説明 する。 本発明の核酸は配列表の配列番号 3に記載の塩基配列を有し、
シルピロリン酸シンターゼをコードする核酸 (c D NA) である。
また、 本発明の核酸は、 前記配列番号 3に記載の塩基配列の一部からなる核酸 であってもよい。
さらに、 本発明の核酸は、 前記配列番号 3に記載の 1 0 2 9塩基数の塩基配列 を有する核酸とストリンジェントな条件下でハイプリダイズし、 かつフアルネシ ルピロリン酸シンターゼ活性を有するタンパク質をコードする核酸であってもよ く、 この条件を満たす限りにおいてはその塩基配列は特に制限されない。 さらに 、 本発明の核酸には前記ストリンジェントな条件下でハイプリダイズする核酸に 相捕的な塩基配列を有する核酸も包含され、 具体的には、 例えば、 前記配列番号 3に記載の塩基配列を有する核酸の塩基のいくつかに欠失、 置換、 揷入、 付加等 があり、 かつファルネシルピロリン酸シンターゼ活性を有するタンパク質をコー ドする核酸が挙げられる。 ここで、 欠失、 置換、 挿入、 付加とは、 1〜1 0塩基 の短い欠失、 置換、 揷入、 付加のみならず、 1 0〜1 0 0塩基の長い欠失、 置換 、 揷入、 付加も含む。 また、 フアルネシルピロリン酸シンターゼ活性とは、 ファ ルネシルピロリン酸シンターゼの触媒作用によってフアルネシノレピロリン酸を合 成する反応を進行させる活性をいう。 この場合、 ブアルネシルピロリン酸シンタ 一ゼの基質となる物質は最終的にフアルネシルピロリン酸が合成される物質であ れば特に制限されないが、 例えば、 イソペンテニルピロリン酸ゃゲラエルピロリ ン酸が挙げられる。
ホップにおいては前記のゲラニルピロリン酸ゃフアルネシルピロリン酸はミル セン、 フムレン、 カリオフィレン及ぴフアルネッセン等の精油成分の前駆体と考 えられることから、 上記の配列表の配列番号 3に記載の塩基配列を有する核酸を を検出することにより、 ホップの精油成分の代謝系の制御や精油成分に関する形 質の遺伝子マーカーとして利用することができる。 前記の核酸の検出には配列表 の配列番号 3に記載の塩基配列の全ては必要でなく、 例えば、 その一部を P C R 法により増幅し塩基配列の決定または RF LP (R e s t r i c t i o n F r a g m e n t L e n g t h P o l ymo r p h i sm) 等のよつな 伝子解 析手段を用いて検出を行えばよい。 従って、 本発明の核酸には、 配列表の配列番 号 3に記載の塩基配列の一部からなる核酸も包含される。
次に、 本発明にかかるブアルネシルピロリン酸シンターゼ遺伝子のプロモータ 一領域について説明する。
本発明の核酸は配列表の配列番号 2に記載の塩基配列を有する核酸である。 ま た、 本発明の核酸は、 前記配列番号 2に記載の 46 9 9塩基数の塩基配列を有す る核酸の一部であってもよく、 塩基番号 1〜1 886で表される塩基配列であつ てもよい。
前記配列番号 2に記載の塩基配列を有する核酸は、 フ了ルネシルビ口リン酸シ ンターゼのゲノミック DNAであり、 ファ^^ネシノレピロリン酸シンターゼの開 台 メチォ -ンをコードする塩基配列はその中の塩基番号 1 8 87〜188 9である 。 従って、 前記配列番号 2に記載の塩基配列中の塩基番号 1〜 1886は 5, 非 翻訳領域であり、 この領域にフアルネシルピロリン酸シンターゼ遺伝子のプロモ —ター領域が含まれる。 前記塩基番号 1〜1 886のうちプロモーター領域の両 末端の境界を厳密に特定することは困難であるが、 プロモーター活性を有する限 り前記塩基番号 1~1 886中の一部からなる配列も本努明の核酸に包含される また、 本発明の核酸は、 前記配列番号 2に記載の塩基配列を有する核酸または この核酸のうち塩基番号;!〜 1 886で表される塩基配列を有する核酸とストリ ンジ ントな条件下でハイプリダイズし、 かつプロモーター活性を有する核酸で あってもよく、 この条件を満足する限りにおいてはその塩基配列は特に制限され ない。 さらに、 本発明の核酸には前記ストリンジェントな条件下でハイブリダイ ズし、 かつプロモータ 活性を有する核酸に相補的な塩基配列を有する核酸も包 含され、 具体的には、 例えば、 前記配列番号 2に記載の塩基配列を有する核酸に おいて 1または複数の欠失、 置換、 挿入、 付加等があり、 かつプロモーター活性 を有する核酸が挙げられる。 ここで、 欠失、 置換、 挿入、 付加とは、 1〜10塩 基の短い欠失、 置換、 挿入、 付加のみならず、 10〜100塩基の長い欠失、 置 換、 挿入、 付加も含む。
次に、 本努明の核酸を単離し、 その遺伝子産物の機能を解析する好適な方法に ついて説明する。
本発明の核酸は、 以下の (1) 〜 (5) のステップを経て単離することができ 、 (6) 〜 (7) のステップにおいて、 単離された遺伝子がフアルネシルピロリ ン酸シンタ一ゼ活性を示すこと、 またはプロモーター活性を有することを確認す ることが可能である。
1. ホップのフアルネシルピロリン酸シンターゼ遺伝子及ぴそのプロモーターの 単離
(1) ホップゲノミック DNAの調製
ホップゲノミック D N Aの調製は公知の方法で行うことができ、 例えば Wagner , D.B.らの方法 (Proc. Natl. Acad. Sci. USA 84, 2097-2100(1987)) で行うこ とができる。
(2) ブアルネシルピロリン酸シンターゼ遺伝子及ぴそのプロモーターの単離 フアルネシルピロリン酸シンターゼ遺伝子の部分断片は、 シロイヌナズナ、 ト ゥモロコシ等の既知となっている他の植物のフアルネシルピロリン酸シンターゼ の塩基配列に基づいてプライマーを設計し、 逆 PCR法 (Inverse PCR) や Casse tt - ligation mediated PCRといった公知の方法を用いて単離することができる。 逆 PC R法は、 図 2の模式図に示したように、 試料となる DN Aを制限酵素で消 化し、 増幅前に前記制限酵素消化産物を環状化した試料を錄型とし、 通常 PCR 法に用いるプライマーとは反対の向きに合成したプライマーとを用いて P C R法 を行う方法であり、 特定の塩基配列に隣接する上流や下流領域を増幅させること が可能である。 逆 PC R法の具体例としては、 例えば、 Liu, Y. G.らの方法 (Ge noraics 25, 674-681 (1995) ) が挙げられる。 また、 Cassett- ligation mediated PCRとは、図 3の模式図に示したように、既知の塩基配列に隣接した未知の塩基配 列を知りたレ、場合に用いられる方法である (例えば、 「TaKaRa LA PCR in vitro Cloning Kitj (宝酒造社製) に添付のプロトコールに記載の方法) 。 具体的には 、 先ず、 このような核酸領域を含む核酸を制限酵素により消化し、 前記制限酵素 認識部位を有しかつプライマーを設定できうる既知の塩基配列を有するアダプタ 一核酸を前記の核酸に連結することにより塩基配列が既知である領域に挟まれた 未知の塩基配列の領域を P C R法により増幅し、 増幅産物の塩基配列を決定すれ ばよレ、。このような逆 P C R法及び/または Cassett- ligation mediated PCRを繰 り返すことにより、 ホップのフアルネシルピロリン酸シンターゼ遺伝子の全領域 及ぴそのプロモーターを単離することができる。
( 3 ) 塩基配列の決定
単離された遺伝子の塩基配列は公知の方法で決定することができる。 例えば、 P Eバイオシステムズ社製の 「ABI PRISM Dye Primer Cycle Sequencing Ready Reaction Kit」 に添付のプロトコール等に従って行うことができる。 また、 前記 の 方 法 で 決 定 さ れ た 塩 基配 列 を デ ー タ ベ ー ス ( 例 え ば http: //www. ncbi. nlm. nih. gov/BLAST/等) を用いて相同性検索を行うことにより 他の植物種から得られた既知遺伝子との相同性の有無やその程度を知ることが可 能となり、 得られた遺伝子が新規遺伝子であるか否かの判断を行うことが可能と なる。
( 4 ) 各組織画分における全 R N Aの調製
全 R N Aの調製は任意の組織画分を調製した後、公知の方法で行うことができ、 例えば、 Chang, S.らの方法(Plant Molecular Biology Report 11, 113 - 116 (1993) ) で行うことができる。
( 5 ) ファノレネシルピロリン酸シンターゼ遺伝子 c D NAの単離
フアルネシルピロリン酸シンターゼ遺伝子の c D N Aは公知の方法を用いて単 離することができ、例えば、 (2 )で単離したフアルネシルピロリン酸シンターゼ 遺伝子のゲノミック D N Aの塩基配列に基づいてプライマーを設定し、 全 R NA から合成された c D NAを錶型として R T— P C R法により単離すればよい。 こ の場合の具体的な方法は、例えば、 ロシュ■ダイァグノステイタス社製の 「Titan One Tube RT-PCR System] に添付のプロトコール等に記載の方法を用いることが できる。
( 6 ) 単離したフアルネシルピロリン酸シンターゼ遺伝子にコードされたタンパ ク質の機能解析
( 5 ) で単離したファルネシルピロリン酸シンターゼ遺伝子にコードされたタ ンパク質は、 フアルネシルピロリン酸シンターゼ遺伝子の c D NAを発現べクタ 一に組み込み、 このベクターを大腸菌に導入することにより大腸菌の菌体内で発 現させることができる。 前記のようなフアルネシルピロリン酸シンターゼにコ一 ドされたタンパク質の発現及び前記タンパク質の精製は、 例えば 「QIAexpress Expression System」 (キアゲン社製) に添付のプロトコールに記載の方法で精製 することができる。 また、 この大腸菌で発現、 精製したフアルネシルピロリン酸 シンターゼタンパク質の機能は公知の方法で確認することができ、例えば、 Sylvie A.らの方法(Arch. Biochem. Biophys. 321, 493-500, (1995) )で確認することがで きる。
( 7 ) ノーザンハイプリダイゼーシヨン解析 (以下、 ノーザン解析という) 単離したフアルネシルピロリン酸シンターゼ遺伝子がどの組織で発現している 力 または、 単離したフアルネシルピロリン酸シンターゼ遺伝子のプロモーター がどの組織で機能しているかは、 単離したフアルネシルピロリン酸シンタ一ゼ遺 伝子をプローブとしてノーザン解析により解析することができ、例えば「The DIG System User's Guide for Filter HybridizationJ ベージンガーマンノヽ ムネ土、 p. 53-55 (1995)に記載された方法に基づいて行うことができる。
次に、 本発明の核酸によって可能となる実施形態の一例について説明する。 (1) ハイプリダイゼーシヨンに用いるプローブ
本発明において開示された塩基配列の一部、 または全部をハイプリダイゼ^ "シ ョンのプローブとして使用することによって少なくともホップにおいて発現して いるブアルネシノレピロリン酸シンターゼ遺伝子を検出することが可能である。 ま た、 本発明において開示された塩基配列の一部、 または全部をハイブリダィゼー シヨンのプロープとして使用してホップ糸且織における遺伝子発現を調ぺることで、 遺伝子発現の分布を同定することも可能である。
本発明において開示された塩基配列の一部、 または全部をハイプリダイゼーシ ョンのプローブとして使用する場合、 ハイプリダイゼーション法自身については 特に限定されないが、 具体的には、 例えば、 ノザンハイプリダイゼーシヨン、 サ ザンハイプリダイゼーシヨン、 コロニーハイブリダイゼーション、 ドットハイブ リグイゼーション、 F l u o r e s c e n c e i n s i t u h v b r i d i z a t i o n (F I SH) i n s i t u h y b r i d i z a t i o n (I S H)、 DNAチップ法、 マイクロアレイ法、 などが挙げられる。
本発明の塩基配列をハイブリダィゼーシヨン用プローブとして使用する場合は、 少なくとも 20個の塩基長が必要であり、 本発明の遺伝子配列のうち、 20個以 上の連続した塩基長がある遺伝子が好ましく用いられる。 より好ましくは 40個 以上、 特に好ましくは、 60個以上の塩基長を有するものが用いられる。
当業者には、 核酸プローブ技法は周知であり、 個々の長さの本発明によるプロ ープと目的とするポリヌクレオチドとの適当なハイブリダイズ条件は容易に決定 される。 種々の長さを含むプローブに対し至適なハイプリダイズ条件を得るため のこのような操作は当業者では周知であり、例えばサンブルックら、 「分子クロー ニング:実験手法 (Mo l e c u l a r C l o n i n g : A L a b o r a t o r y Ma n u a 1 )、 第 2版、 コーノレドスプリングハーバー (1 9 8 9)」 が参照される。
ここで、 前記プローブは、 容易に検出されるように標識されているものが好ま しい。 検出可能な標識は、 目視によって、 または機器を用いるかのいずれかによ つて検出され得るいかなる種類、 部分であってもよい。 通常使用される検出可能 な標識は、 例えば、 32P、 14C、 125 I、 3H、 35 S等の放射性標識である。 ビ ォチン標識ヌクレオチドは、 ニックトランスレーション、 化学的及び酵素的手段 等によって、 核酸に組み込むことができる。 ビォチン標識されたプロ プは、 ァ ビジン/ストレプトアビジン、 蛍光標識剤、 酵素、 金コロイド複合体等の標識手 段を使用したハイプリダイゼーションの後検出される。 核酸はタンパク質と結合 させることによって標識されてもよい。 また、 放射性又は蛍光ヒストン一本鎖結 合タンパク質に架橋された核酸を使用してもよい。
(2) P CR法に用いるプライマー
フアルネシルピロリン酸シンターゼ遺伝子の検出は、 開示された塩基配列の任 意の酉 3歹 ¾をプライマーとし、 P o l yme r a s e Ch a i n Re a c t i o n (PGR) 法を用いることによつても可能である。 例えば、 検定したいサン プルから RNAを抽出し RT— PCR法により遺伝子発現を半定量的に測定する ことが可能である。 このような方法は当事者にとって周知の方法によって行われ る。
本発明の核酸を PCR用プライマーとして使用する場合は、 10個から 60個 の塩基の長さが必要であり、 本発明の核酸のうち、 10個から 60個の連続した 塩基を持つ核酸が好ましく用いられ、 より好ましくは 15個から 30個の塩基を もつものが用いられる。 また一般的には、 前記プライマー配列中の GC含量が 4 0%から 60%が好ましい。 さらに、 増幅に用いる 2つのプライマー間の Tm値 に差がないことが好ましい。 またプライマ一の 3, 末端でァニールせず、 プライ マー内で 2次構造をとらないことが好ましい。
(3) 核酸のスクリーニング
本発明において開示された塩基配列の一部、 または全部を使用することによつ てホップで発現しているフアルネシルピロリン酸シンターゼ遺伝子の発現分布を 検出することが可能である。例えば、本発明において開示された塩基配列の一部、 または全部をハイプリダイゼーションのプロープ、 または P C Rのプライマーと して使用することによって、 遺伝子発現の分布を検出することが可能である。 また D NAチップ、 マイクロアレイ等を用いても当該遺伝子発現の分布を検出 することが可能である。 すなわち本発明により開示された塩基配列の一部、 又は 全部を直接チップ、 アレイ上に張り付けことが出来る。 そこに細胞から抽出した R NAを蛍光物質などでラベルし、 ハイプリダイズさせ、 その遺伝子がどの様な 細胞で高発現しているかを解析することが可能である。 またチップ、 アレイ上に 張り付ける D NAは本発明により開示された塩基配列の一部、 又は全部を用いた P C Rの反応産物であっても良い。
( 4 ) D NAのクローユング
本発明において開示された塩基配列の一部、 又は全部を使用することによって 少なくともホップにおいて発現している遣伝子をクローニングすることが可能で ある。 例えば、 本発明において開示された塩基配列の一部、 又は全部をノザンハ イブリダィゼーシヨンのプローブ、 コロニーハイプリダイゼーシヨンのプローブ 又は P C Rのプライマーとして使用し、 本発明において開示された塩基配列の一 部、 -又は全部を含む遺伝子をクローニングすることが可能である。
以上説明した実施形態以外にも、 本発明のタンパク質又は核酸を用いてホップ フアルネシルピロリン酸シンターゼに関する情報を得たり、 ホップの形質転換、 二次代謝産物の生産等を行うことが可能となる。
すなわち、 上述のフアルネシルピロリン酸シンターゼは、 植物における色素、 香り、 植物ホルモン、 ファイ トァレキシン、 害虫等に対する防御物質等の様々な 物質の基になっているイソプレノ 'イドの代謝に関与する酵素である。 従って、 例 えば上記のようにして単離されたフアルネシルピロリン酸シンターゼ遺伝子を利 用することにより、 植物における色素、 香り、 植物ホルモン、 フアイトァレキシ ン、 害虫等に対する防御物質等の代謝系の制御やこれらの形質を司る遺伝子の検 出が可能となる。
また、 本発明で単離されたフアルネシルピロリン酸シンターゼ遺伝子を用いて 遺伝子工学的手法により製造されたファルネシルピロリン酸シンターゼを用いる ことにより、 試験管内で植物の二次代謝産物の生産を行うことが可能となる。 さらに、 ホップにおいてその樹脂成分及ぴ抗癌作用を有するといわれるキサン トフモール(Brauwelt, 36, 1998)の代謝系においてもフアルネシルピロリン酸シ ンターゼが関与している可能性も考えられるため、 本発明の核酸を用いることに より、 ホップの樹脂成分ゃキサントフモールの代謝系の制御が可能となるばかり 力 \ 前記樹脂成分及びキサントフモールに関する形質の遺伝子マーカーとして利 用することが可能となる。
従って、 従来では経験と勘に頼らざるを得なかったホップの育種方法を遺伝子 工学的手法により行うことが可能となり、 例えば、 植物における形質転換技術を 利用して本発明のフアルネシルピロリン酸シンターゼ遺伝子をホップに導入する ことにより、 ルプリン腺毛における二次代謝産物の組成等を制御することが可能 となる。 従って、 ホップを利用した食品 (例えばビールや発泡酒) における品質 の向上や維持、 若しくは二次代謝産物を利用した医薬品の品質の向上や効率化が 可能となる。
さらに、 本発明にかかるファノレネシルピロリン酸シンターゼ遺伝子のプロモー ター領域を含む核酸を利用することにより、 前記プロモーターの下流に対象とす るホップに導入したい遺伝子及びホップで機能するターミネータ一を連結し、 前 記ホップに導入することにより、 前記の遺伝子をルプリン腺毛で特異的に発現さ せることが可能となる。
【実施例】
以下、 実施例に基づいて本発明をより具体的に説明するが、 本発明は以下の実 施例に限定されるものではない。
実施例 1 (ホップゲノミック DN Aの調製)
ホップゲノミック DNAの調製は以下のようにして行った。 すなわち、 ホップ の葉を液体窒素中で凍結粉碎し、 2 % C T A B溶液 ( 2 %セチルトリメチルァン モニゥムプロミド、 0. 1Mトリス (ρΗ9. 5) 、 2 OmM EDTA、 1. 4M Na C l、 5%3メルカプトエタノール) に懸濁して 65 °Cで 30分間保 温した。 前記懸濁液をクロ口ホルム Zイソアミルアルコール (24 : 1) で 2回 抽出後、 3Z4倍量のィソプロパノールを加えて DNA及び RNAを析出させた 。 析出した DNA及ぴ RNAを H i g h S a l t TE緩衝液 ( 1 M塩化ナト リウム、 1 OmMトリス (pH8. 0) 、 1 mM EDTA) に溶解し、 RNa s eを加えて 60°Cで保温し RNAのみを分解した。 これに 2倍量のイソプロパ ノールを加えて DNAを析出させ、 析出した DNAをさらに 70%エタノールで 洗浄後、 水に溶解し、 ゲノミック DNAサンプルとした。
実施例 2
(ファノレネシルピロリン酸シンターゼ遺伝子及びそのプロモーターの単離) 塩基配列が既知であるシロイヌナズナ、 トウモロコシ、 グァユールゴムノキ、 パラゴムノキ、 シロバナノレピルス及ぴコショゥのフアルネシルピロリン酸シンタ ーゼのアミノ酸配列のうち、 各植物間で共通となっている配列に基づいてプライ マー 1 (配列番号 4) 及びプライマー 2 (配列番号 5) を合成した。 これらのプ ライマーを用いてホップゲノミック DNAを铸型として P CRを行い、 図 1の断 片 1を得た。
次に、 得られた増幅断片の塩基配列を決定した。 ここで得られた塩基配列から 表 1に示すプライマー 3 (配列番号 6) 、 プライマー 4 (配列番号 7) 、 プライ マー 5 (配列番号 8) 及びプライマー 6 (配列番号 9) を設計し、 逆 PC R法を 用いて図 1の断片 2及び断片 3を得た。 ノ ノづ ー タ ι」¾^ グリ
1 4
ο
O
O Ό ο-J一しし i丄 l(j(jJAul LiAAAL jUA(j (j—3
4 7 5 -I丄 ACAAAG1 G1 1 AAAAGGG 1 A 1 C CC-
5 8 5 -AGGrGGAATl CCAAACAGCCTCGGG-3
6 9 5— 1丄丄 GA i LAしし ACM 1丄 GMGGAGAG— 3
( 丄 (J 0 -UAUAl丄 tjJIAAlしし A(Jし Alし iLrし一 3
8 1 1 5'-CACAGAGAAATTGAACTTGGTC-3'
9 1 2 5' - CACTTCCTTTGACCTGTTTG - 3'
1 0 1 3 5'- AAGCTCGTGGAGTAACCCTC-3'
1 1 1 4 5'-GCGTGTTTGCGGATTACGAG-3'
1 2 1 5 5 -TGAGAAGGATTTTGGCAGCC-3'
1 3 1 6 5'-GAATTCTTATGATTAACCAAAAAC-3'
1 4 1 7 5 -GGGGATCCATGAGTGGTTTAAGGTCAAAAT-3'
1 5 1 8 5'-CGGGATCCTTACTTCTGCCTCTTGTAGATC-3' 具体的には、 ホップゲノミック D N Aを制限酵素 B g 1 I Iまたは H i n d I I Iで消化し、 「DNA Ligation Kit Ver. 1」 (宝酒造社製) を用いて添付された プロトコ一ノレに従い、 分子內ラィゲーシヨ ン (Self ligation) を行い、 分子内ラ ィゲーションが終了した反応液の一部を鍩型として、 プライマー 3及ぴプライマ ^ 5を用いて P C Rを行った。 次に前記 P C Rが終了した反応液の一部を踌型と して、 表 1に示すプライマー 4及びプライマー 6を用いて P C Rをおこない、 図 1の断片 2及び断片 3を得た。
同様にして、 図 1の断片 2の塩基配列からプライマー 7 (配列番号 1 0 ) 、 プ ライマー 8 (配列番号 1 1 ) 、 プライマー 9 (配列番号 1 2 ) を設計した。 制限 酵素 E c o R Iで消化したホップゲノミック D N Aについて分子内ライゲーショ ンを行い、 これを錡型として上記プライマー 7及びプライマー 9を用いて再度 P C Rを行い、 図 1の断片 4を得、 塩基配列を決定した。
また、 図 1の断片 5は 「TaKaRa LA PCR in vitro Cloning Kit」 (宝酒造社製 ) による Casett-ligation mediated PCR法を用い、 添付のプロトコ一ノレに従って 単離した。 すなわち、 ホップゲノミック DNAを制限酵素 E c oR Iで消化し、 これにキットに付属している E c o R Iアダプターを結合した。 次に、 断片 3の 塩基配列を基に設計したブライマ一 10 (配列番号 13 ) と前記キットに付属の カセットプライマー C 1を用いて PCRを行った。 更に、 この PCR反応 ί夜を鎵 型として、 断片 3の塩基配列を基に設計したプライマー 1 1 (配列番号 14) と キットに付属のカセットプライマー C 2を用いて PCRを行い、 断片 5を得、 そ の塩基配列を決定した。
最後にホップゲノミック DNAを錄型として、 図 1の断片 4及び断片 5の塩基 配列を基に設計したプライマー 12 (配列番号 15) 及びプライマー 13 (配列 番号 16) を用いて PCRを行い、 ホップフアルネシルピロリン酸シンターゼ遺 伝子及ぴそのプロモーターを含む断片 6を得た。 上記のいずれの PC Rにも 「Ex pand High- Fidelity PCR System] (ベーリンガ一マンハイム社製)を用いて添付 されたプロトコ一ノレに従って行った。
実施例 3
(ホップファルネシルピロリン酸シンターゼ遺伝子及ぴプロモーターの塩基配列 の決定)
実施例 2において得られたホップフアルネシルピロリン酸シンターゼ遺伝子及 ぴそのプロモーターを含む断片 6の両末端を 「TaKaRa BKL Kit」 (宝酒造社製) を用いて平滑化し、 pUCベクターにサブクローユングした。 断片 6の両末端の 平滑化と; UCベクタ一^■のサブクローユングは前記キットに添付のプロトコ一 ルに従って行った。
塩基配列の決定は 「ABI PRISM Dye Terminator Cycle Sequencing Ready Reac tion Kit」 (PEバイオシステム社製、 AB I 373 S型) を用い、 添付のプロ トコールに従って行った。 断片 6の塩基配列を配列表の配列番号 2に示す。
実施例 4 (各組識画分及び全 R N Aの調製)
全 RNAを抽出する組織として、 ホップの葉、 茎、 ルプリン (一) 画分及びノレ プリン (+ ) 画分を調製した。 ここで、 ルブリン (一) 画分とはルプリン腺毛の ほとんど存在しない球芽の外苞を主として回収した画分であり、 ルプリン (+ ) 画分とは球芽からルプリン腺毛以外の組織を極力除いた主としてルブリン腺毛か らなる画分である。 これらの組織画分を液体窒素中で凍結粉砕し、 2%CTAB 溶液 (2%セチルトリメチルアンモニゥムプロミド、 0. 1Mトリス (pH9. 5) 、 2 OmM EDTA、 1. 4M Na C l、 5 % 3メルカプトエタノーノレ ) に懸濁して、 65°Cで 10分間保温した。 クロ口ホルム/イソァミルアルコー ル (24 : 1) で 2回抽出後、 1 3倍量の 10M塩化リチウムを加え、 一晚放 置し、 1 5000 r pmで 10分間遠心分離した後、 沈殿を水に溶解した。 ここ で、 全 RNAを実施例 5において使用する場合には、 前記の水に代えて DN a s e反応バッファー (10 OmM酢酸ナトリウム (pH5. 2) 、 5mM塩化マグ ネシゥム) に溶解し、 DNa s eを加えて 37 °Cで保温して D N Aを分解した。 前記溶液に更に 1/3倍量の 10M塩化リチウムを加え、 ー晚放置し、 1500 0 r pmで 10分間遠心分離した。 沈殿を 70 %エタノールで洗浄後乾燥し、 再 度水に溶解して全 RNAサンプルとした。
実施例 5
(フアルネシルピロリン酸シンタ一ゼ遺伝子の c DNAの単離及びその塩基配列 の決定)
フアルネシルピロリン酸シンターゼ遺伝子の c DNAは、 塩基配列が既知であ るシロイヌナズナ等のファルネシルピロリン酸シンターゼ遺伝子の情報から実施 例 3において決定された配列番号 2に記載のホップフアルネシルピロリン酸シン クーゼ遺伝子のコーディング領域両末端を推定し、 その配列に B a mH I認識配 列を付加した配列を有するプライマ一を設計し、 実施例 4で得た全 RN Aを錶型 として RT—PCR法により単離した。 すなわち、 プライマーはプライマー 14 (配列番号 17) 及びプライマー 15 (配列番号 18) を用い、 RT— PCRは rTitan One Tube RT- PCR SystemJ (ロシュ ■ダイァグノステイタス社製) を用 い、 添付のプロトコールに従って行った。 こうして得られたフアルネシルピロリ ン酸シンターゼ遺伝子の c DNAは p CR 2. 1 ( I n v i t r o g e ιι社製) ベクターにサブクローユングし、 p F P P S 101 Rとした。 前記サブクローェ ングされたフアルネシルピロリン酸シンターゼ遺伝子 c DNAは 「ABI PRISM Dy e Terminator Cycle Sequencing Ready Reaction KitJ (PEノ ィオシスァム社 製) 及ぴ DNAシークェンサ一 AB I 373 S型 (P Eバイオシステム社製) を 用い、 添付のプロトコールに従って塩基配列の決定を行った。 得られたブアルネ シルピロリン酸シンターゼ遺伝子 c D N Aの塩基配列を配列表の配列番号 3に示 す。 また、 この c DNAにコ ドされているタンパク質のアミノ酸配列を、 配列 表の配列番号 1に示す。
配列表の配列番号 3に記載の塩基配列のうち、 660番目の塩基が対応するゲ ノミック D N Aの配列 (配列番号 2の 3737番目の塩基) (塩基配列の確 は 複数回行った) と異なるが、 これは c DNAを単離する際に行った RT— P CR において生じた塩基の取り込みエラーと考えられる。 しカゝし、 このエラーはアミ ノ酸レベルでは本来コードされるアミノ酸と同一となるため、 実施例 6で述べる タンパク質の機能解析には影響を及ぼさない。
実施例 6
(単離したファルネシルピロリン酸シンターゼ遺伝子にコードされたタンパク質 の機能解析)
単離したファルネシルピロリン酸シンターゼ遺伝子にコードされたタンパク質 力 実際にフアルネシルピロリン酸シンターゼ活性を有するか否かを確認する為 、 実施例 5において単離したフアルネシルピロリン酸シンターゼ遺伝子の c DN Aを制限酵素 B a mH Iで処理した DNAを 「QIAexpress Expression SystemJ
(キアゲン社製) に付属の発現ベクター] QE 30の B amH I部位に組み込ん だ後、 大腸菌に導入してファルネシルピロリン酸シンターゼ遺伝子を前記大腸菌 内で発現させ、 その発現産物を精製した。 前記大腸菌内でのフアルネシ ピロリ ン酸シンターゼ遣伝子の発現及ぴ発現産物の精製は 「QIAexpress Expression Sy stemj (キアゲン社製) に添付のプロトコールに従って行った。
次に、 得られた発現産物がフアルネシルピロリン酸シンターゼ活性を有するか 否力、を S y 1 V i e A. らの方法 (Arch. Biochem. Biophys. 321, 493- 500,( 1995)) に従って確認した。 すなわち、酵素反応液 1 0 0 1 ( 5 OmM T r i s _HC l、 2 mMジチォエリス]; トール、 I mM塩化マグネシウム、 1 0 0 Mジメチルァリルピロリン酸) に精製したフアルネシルピロリン酸シンターゼ遺 伝子の発現産物 2 1 ( 2 8 μ g) と14 C一イソペンテュルピロリン酸 2. 5 μ 1 (0. 0 δ β θ i ) を加え、 3 0。Cで 3 0分間反応させた。 次に、 アルカリフ ォスファターゼ (和光純薬社製) に付属の 1 0倍濃度反応緩衝液を 3 0 μ 1加え 、 ァノレカリフォスファターゼ 1 μ 1 ( 1 0 u n i t s ) を加えて 3 7°Cで 3時間 反応後、 さらに 2 5°Cでー晚反応した。 前記反応液にフアルネソール 1 μ 1 (4 . 5 nm o 1 ) をキャリア一として加え、 さらにへキサン 2 0 0 /x 1を加えて混 合し、 1 0 0 0 0 r p mで 1分間遠心分離してからへキサン層を回収し、 残った 水層に再びへキサン 1 0 0 1を加えて混合、 遠心分離し、 へキサン層を回収し て先に回収したへキサン層と混合した。 このへキサン抽出液に窒素ガスを吹き付 けて 1 /i lまで濃縮し、 メタノール 1 0 μ 1を加えて混合した後、 1 /ζ 1を薄層 クロマ卜フレー卜 (HPTLC-aluminiura sheets silica gel 60 F254 pre-coated, メルク社製)にスポットし、ベンゼン:酢酸ェチル = 9 : 1の展開溶媒で展開した 。 なお、 スタンダードとして、 フ了ルネソ一ルとゲラエオールを同時にスポット した。 展開が終了した薄層クロマトプレートを乾燥後、 よう素を噴霧してフアル ネソールとゲラニオールの位置を確認した後、 X線フィルムにて一 8 0°Cで 7日 間露出を行った。 得られた結果を図 4に示す。
図 4に示した通り、 反応産物によるシグナルがファルネソールとゲラ-オール の位置に検出された。 すなわち単離したフアルネシ ピロリン酸シンターゼ遺伝 子にコードされるタンパク質がファルネシルピロリン酸シンターゼ活性を有する ことが確認された。
実施例 7
(ノーザンハイプリダイゼーション解析)
単離したフアルネシルピロリン酸シンターゼ遺伝子がホップの中のどの組織で またどの程度の量が発現しているかを確認する為、 ノーザンハイプリダイゼーシ ヨン军析を行った。
まず、 実施例 5において作製したプラスミド p F P P S 10 1 Rを制限酵素 Κ ρ η Iで消化して直鎖状としたものを铸型として 「D I G RNAラベリングキ ット (SP 6/T7) J (ロシュ 'ダイァグノステイタス社製) を用いてフアル ネシルピロリン酸シンターゼ遺伝子の RNAプローブを作製した。 作製方法は前 記キットに添付のプロトコールに従って行った。
次に、 実施例 4で調製した葉、 茎、 ルブリン (一) 画分及びルブリン (+ ) 画 分の全 RNAについて各 15 /2 1ずつを変性ァガロースゲル ( 1. 2%ァガロ一 ス、 6. 7%ホルムアルデヒド、 20mM MOPS、 5 mM酢酸ナトリウム、 1 mM EDTA、 pH7. 0) を用いて電気泳動を行った。 電気泳動が終了し たゲルを蒸留水中で 40分ずつ 3回振盪して前記ァガロースゲル中のホルムアル デヒドを抜いた後、 20XS SC (0. 3Mクェン酸ナトリウム、 3M塩化ナト リウム、 ϊ>Η7. 0) を緩衝液として前記ァガロースゲル中の RNAをナイロン メンブレンに転写した。 RNAが転写されたナイロンメンプレン及び上記のプロ ーブを用いて 68 °Cでー晚、 ハイプリダイゼーシヨンを行った。 なお、 ハイプリ ダイゼーションに用いられたハイブリダィゼーションバッファーの ,袓成は、 5 X S SC、 0. 02%SDS、 0. 1 o/oN—らゥロイノレサノレコシン、 50%ホノレム アミ ド、 2%B l o c k i n g Re a g e n t (ロシュ■ダイァグノステイク ス社製) である。 ハイプリダイゼーシヨン終了後、 洗净液 (0. 1 % S D S s 2 X S S C ) を用いて 6 8 °Cで 3 0分間の洗浄処理を 2回行い、 さらに、 洗浄液 ( 0 . 1 % S D S、 0 . 1 X S S C ) を用いて 6 8 °Cで 3 0分間の洗浄処理を 2回 行った。 洗浄後、 プローブがハイプリダイズした R N A断片の検出を行った。 前 記の検出は 「D I Gシステムを用いてハイプリダイゼーシヨンを行うためのユー ザ一ガイド」 (ロシュ 'ダイァグノステイクス社製) に記載のプロトコ一ルに従 つて行った。 得られた結果を図 5に示す。
図 5の結果から、 葉、 茎、 ルブリン (一) 画分及ぴルプリン (+ ) 画分のいず れの組織画分においても、 フアルネシルピロリン酸シンターゼ遺伝子をコードし ている配列表の配列番号 2に記載の塩基配列を有する核酸のサイズに近い 1 . 1 k bの位置にシグナルが見られることから、 ホップのファルネシルピロリン酸シ ンターゼ遺伝子はいずれの組織画分においても発現していることが確認された。 しかしながら、 シグナルの強度がルプリン (+ ) 画分 >ルプリン (一) 画分 >茎 >葉の順であることから、 フアルネシルピロリン酸シンターゼ遺伝子由来の: mR NAが各組織において占める割合はルブリン腺毛で最も多く、 次いで茎と外苞、 最も占める割合が少ないのが葉であることが確認された。 すなわち、 ブアルネシ ルピロリン酸シンターゼ遺伝子はルプリン腺毛において最も強く発現し、 また、 フアルネシルピロリン酸シンターゼ遺伝子のプロモーターはルプリン腺毛で最も プロモータ一活性が高いことが確認された。
産業上の利用の可能性
以上説明したように、 本発明に従えば、 フアルネシルピロリン酸シンターゼタ ンパク質及ぴ遺伝子を同定できるので、 ホップにおいて二次代謝産物の生合成に 関与する遺伝子及びホップのルプリン腺毛で組織特異的に機能するプロモーター 遺伝子の塩基配列が明らかとなり、遺伝子工学的手法によるホップの形質転換や、 ホップの二次代謝産物を試験管内で合成することが可能となる。

Claims

請求の範囲
1 . 配列表の配列番号 1に記載のァミノ酸配列を有するタンパク質。
2 . 配列表の配列番号 1に記載のァミノ酸配列において 1若しくは複数のァミ ノ酸が欠失、 置換若しくは付加されたアミノ酸配列を有し、 かつフアルネシルビ 口リン酸シンターゼ活性を有することを特徴とするタンパク質。
3 . 配列表の配列番号 1に記載のァミノ酸配列を有するタンパク質をコードす ることを特徴とする核酸。
4 . 配列表の配列番号 3に記載の塩基配列を有する核酸。
5 . 配列表の配列番号 3に記載の塩基配列の一部からなることを特徴とする核 酸。
6 . 請求項 4又は 5に記載の核酸と、 若しくは相補的な核酸とストリンジェン トな条件下でハイプリダイズし、 かつフアルネシルピロリン酸シンターゼ活性を 有するタンパク質をコードすることを特徴とする核酸。
7 . 配列表の配列番号 2に記載の塩基配列を有する核酸。
8 . 配列表の配列番号 2に記載の塩基配列の一部からなることを特徴とする核 酸。
9 . 配列表の E列番号 2に記載の塩基配列のうち、 塩基番号 1〜 1 8 8 6で表 される塩基配列を有することを特徴とする核酸。
1 0 . 請求項 7〜9のいずれか一項に記載の核酸と、 若しくは相補的な核酸と ストリンジェントな条件下でハイプリダイズし、 かつプロモーター活性を有する ことを特徴とする核酸。
PCT/JP2001/008816 2000-10-06 2001-10-05 Proteine de farnesyl-pyrophosphate-synthase, acide nucleique et region promoteur de cette proteine WO2002031164A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01974723A EP1327686A4 (en) 2000-10-06 2001-10-05 FARNESYLPYROPHOSPHATE SYNTHASE PROTEIN, NUCLEIC ACID AND ITS PROMOTIVE REGION
JP2002534531A JPWO2002031164A1 (ja) 2000-10-06 2001-10-05 ファルネシルピロリン酸シンターゼタンパク質、核酸及びそのプロモーター領域
US10/148,188 US6933374B2 (en) 2000-10-06 2001-10-05 Farnesyl pyrophosphate synthase protein, nucleic acid and promoter region thereof
US10/958,382 US7091019B2 (en) 2000-10-06 2004-10-06 Farnesyl pyrophosphate synthase proteins, nucleic acids and promoter regions therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000308054 2000-10-06
JP2000-308054 2000-10-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10148188 A-371-Of-International 2001-10-05
US10/958,382 Division US7091019B2 (en) 2000-10-06 2004-10-06 Farnesyl pyrophosphate synthase proteins, nucleic acids and promoter regions therefor

Publications (1)

Publication Number Publication Date
WO2002031164A1 true WO2002031164A1 (fr) 2002-04-18

Family

ID=18788445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008816 WO2002031164A1 (fr) 2000-10-06 2001-10-05 Proteine de farnesyl-pyrophosphate-synthase, acide nucleique et region promoteur de cette proteine

Country Status (6)

Country Link
US (2) US6933374B2 (ja)
EP (1) EP1327686A4 (ja)
JP (1) JPWO2002031164A1 (ja)
CN (1) CN100372939C (ja)
CZ (1) CZ20022366A3 (ja)
WO (1) WO2002031164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876689A (zh) * 2012-07-11 2013-01-16 浙江大学 茶树fps基因及其应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9289267B2 (en) * 2005-06-14 2016-03-22 Siemens Medical Solutions Usa, Inc. Method and apparatus for minimally invasive surgery using endoscopes
WO2009114939A1 (en) 2008-03-17 2009-09-24 National Research Council Of Canada Aromatic prenyltransferase from hop
CN103243065B (zh) * 2013-05-30 2014-12-03 武汉大学 一种生产法尼烯的菌株及其应用
CN110658292B (zh) * 2018-06-29 2021-03-26 华中科技大学 一种基于异戊烯化反应检测香叶酯焦磷酸含量的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443978A (en) * 1993-03-11 1995-08-22 Agridyne Technologies, Inc. Chrysanthemyl diphosphate synthase, corresponding genes and use in pyrethrin synthesis
EP2175025A1 (en) * 1998-04-14 2010-04-14 Kyowa Hakko Bio Co., Ltd. Process for producing isoprenoid compounds by using microorganisms
TWI250210B (en) * 1998-05-06 2006-03-01 Dsm Ip Assets Bv An isolated DNA sequence coding for an enzyme involved in the mevalonate pathway or the pathway from isopentenyl pyrophosphate to farnesyl pyrophosphate
EP0955363A3 (en) 1998-05-06 2004-01-28 F. Hoffmann-La Roche Ag Dna sequences encoding enzymes involved in production of isoprenoids
AR021636A1 (es) * 1998-12-17 2002-07-31 Rubicon Forests Holdings Ltd Materiales y metodos para la modificacion del contenido, la composicion y el metabolismo de los isoprenoides
EP1033405A3 (en) * 1999-02-25 2001-08-01 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
ATE417932T1 (de) * 1999-06-22 2009-01-15 Korea Kumho Petrochem Co Ltd Farnesylpyrophosphat-synthase (fps) aus setzlingen der sonnenblume (helianthus annus)
CA2394414A1 (en) 1999-12-16 2001-06-21 Basf Plant Science Gmbh Moss genes from physcomitrella patens encoding proteins involved in the synthesis of tocopherols carotenoids

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ADIWILAGA ET AL.: "Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (hevea brasiliensis)", PLANT MOL. BIOL., vol. 30, no. 5, 1996, pages 935 - 946, XP002907975 *
ATTUCCI S. ET AL.: "Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression and purification of the expressed protein", ARCH. BIOCHEM. BIOPHYS., vol. 321, no. 2, 1995, pages 493 - 500, XP002907974 *
MATSUSHITA Y. ET AL.: "Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from artemisia annua.", GENE, vol. 172, no. 2, 1996, pages 207 - 209, XP004042738 *
OKADA Y. ET AL.: "Molecular cloning and expression of farnesyl pyrophosphate synthase gene responsible for essential oil biosynthesis in hop(Humulus) lupulus", JOURNAL OF PLANT PHYSIOLOGY, vol. 158, no. 9, September 2001 (2001-09-01), pages 1183 - 1188, XP002907978 *
PAN Z. ET AL.: "Cloning, characterization and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles", ARCH. BIOCHEM. BIOPHYS., vol. 332, no. 1, 1996, pages 196 - 204, XP002907976 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102876689A (zh) * 2012-07-11 2013-01-16 浙江大学 茶树fps基因及其应用
CN102876689B (zh) * 2012-07-11 2014-06-18 浙江大学 茶树fps基因及其应用

Also Published As

Publication number Publication date
EP1327686A1 (en) 2003-07-16
US20050076405A1 (en) 2005-04-07
US6933374B2 (en) 2005-08-23
CN100372939C (zh) 2008-03-05
EP1327686A4 (en) 2005-01-19
JPWO2002031164A1 (ja) 2004-02-19
US7091019B2 (en) 2006-08-15
CZ20022366A3 (cs) 2003-04-16
US20030148489A1 (en) 2003-08-07
CN1394233A (zh) 2003-01-29

Similar Documents

Publication Publication Date Title
CN107164347B (zh) 控制水稻茎秆粗度、分蘖数、穗粒数、千粒重和产量的理想株型基因npt1及其应用
CN109477087A (zh) 通过应用混合分裂方法筛选生物群体内突变体的方法
de Azevedo Souza et al. Genome‐wide analysis of a land plant‐specific acyl: coenzymeA synthetase (ACS) gene family in Arabidopsis, poplar, rice and Physcomitrella
US20230272411A1 (en) Heat-shock related gene zmhsf11 and application of zmhsf11 in regulating heat-resistence of plant
CN111909941B (zh) 一种百合转录因子基因LrWRKY-L1及应用
CN110846323A (zh) 小麦TaARF12基因及其应用
US9163254B2 (en) Recombinant DNA molecule encoding 5′ UTR capable of preventing inhibition of translation under environmental stresses
Li et al. The truncated AaActin1 promoter is a candidate tool for metabolic engineering of artemisinin biosynthesis in Artemisia annua L.
Lerbs-Mache Regulation of rDNA transcription in plastids of higher plants
JP4998809B2 (ja) 植物の鉄欠乏耐性を向上させるポリペプチドおよびその利用
AU762297B2 (en) Isolated and purified nucleic acids comprising a gene specifically expressed in hop glands
WO2002031164A1 (fr) Proteine de farnesyl-pyrophosphate-synthase, acide nucleique et region promoteur de cette proteine
CN116064905A (zh) 用于检测大丽轮枝菌的引物组合、试剂盒及应用
Mishra et al. The multifaceted roles of R2R3 transcription factor HlMYB7 in the regulation of flavonoid and bitter acids biosynthesis, development and biotic stress tolerance in hop (Humulus lupulus L.)
JP5001602B2 (ja) デオキシムギネ酸合成酵素およびその利用
Mishra et al. The multifaceted roles of R2R3 transcription factor Hl MYB7 in the regulation of flavonoid and bitter acids pathways, development and biotic stress in hop (Humulus lupulus L.)
CN112010956B (zh) 小麦孕穗期根深相关基因TaVSR1-B及其编码蛋白与应用
CN117660474B (zh) 梨转录因子PbrMYB65与PbrACO2基因启动子互作在调控果实柠檬酸异构化中的应用
US20140196171A1 (en) Plant promoters induced by hydrological shortage and use thereof
CN107417778B (zh) 抗病转TaOMT-A基因小麦的培育方法及相关生物材料与应用
JP2008142038A (ja) 植物の種子休眠を制御するSdr4遺伝子およびその利用
Miyagawa et al. Difference in responsiveness of expressions of starch synthesis-related genes to CRCT among rice cultivars
Qin et al. A brief summary of major advances in cotton functional genomics and molecular breeding studies in China
CN118308407A (zh) 基因glr5在调控水稻粒形中的应用
CN116622746A (zh) 烟草cbl相互作用的丝氨酸/苏氨酸蛋白激酶23基因及应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 534531

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: PV2002-2366

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 018035388

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001974723

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10148188

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: PV2002-2366

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 2001974723

Country of ref document: EP