WO2002031090A1 - Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction - Google Patents

Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction Download PDF

Info

Publication number
WO2002031090A1
WO2002031090A1 PCT/JP2001/008938 JP0108938W WO0231090A1 WO 2002031090 A1 WO2002031090 A1 WO 2002031090A1 JP 0108938 W JP0108938 W JP 0108938W WO 0231090 A1 WO0231090 A1 WO 0231090A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
less
gasoline
volume
fuel cell
Prior art date
Application number
PCT/JP2001/008938
Other languages
English (en)
French (fr)
Inventor
Kenichirou Saitou
Masaki Nagao
Osamu Sadakane
Koji Oyama
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Priority to AU2001294226A priority Critical patent/AU2001294226A1/en
Priority to JP2002534461A priority patent/JPWO2002031090A1/ja
Priority to EP01974791A priority patent/EP1340800A4/en
Priority to US10/398,508 priority patent/US20030213728A1/en
Publication of WO2002031090A1 publication Critical patent/WO2002031090A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a dual-purpose fuel used for both gasoline vehicles and fuel cell systems.
  • the present invention also relates to the dual fuel storage and Z or supply system.
  • hydrogen is advantageous in that it does not require a special reformer, but because it is a gas at room temperature, it has problems with its storage properties and its mountability in vehicles, etc. Equipment is required. There is also a high risk of bow I fire, so care must be taken when handling. Methanol is advantageous in that it can be relatively easily reformed to hydrogen, but its power generation by weight is small and it is toxic, so care must be taken when handling it. In addition, since it is corrosive, special equipment is required for storage and supply.
  • Hydrocarbon fuels have excellent storage properties and are easy to mount on vehicles, so they can be supplied at existing service stations, and have high expectations for infrastructure.
  • the sulfur content and additives contained in the gasoline adversely affect the catalyst used in the reforming reaction of the fuel cell and the electrode of the fuel cell (especially solid polymer type).
  • conventional gasoline could not be used as fuel for a fuel cell.
  • a gasoline car in order to sufficiently exhibit the ability of the fuel cell system, as a fuel for a fuel cell system, it is often power generation amount per weight, it generation per co 2 emissions is large, Good fuel efficiency of the fuel cell system as a whole, reforming catalyst, water gas shift reaction catalyst, carbon monoxide removal catalyst, fuel cell stack, etc. It is required that the product is short-lived and that it has good storage stability and good handling characteristics such as flash point.
  • the amount of heat generated by subtracting the required amount of heat (the amount of heat that balances the endothermic heat generated by preheating and reaction) from the amount of generated power
  • the amount is the amount of power generated by the entire fuel cell system. Therefore, the lower the temperature required to reform the fuel, the smaller the preheat amount, the shorter the system advantage, and the shorter the system startup time.The lower the heat amount per weight required for the fuel preheating. Is also necessary. Insufficient preheating can result in high unreacted hydrocarbons (THC) in the exhaust gas, not only reducing power generation per weight but also causing air pollution. Conversely, the same system is the same? It is advantageous to have a low THC in the exhaust gas and a high conversion rate to hydrogen when operating at high pressure.
  • the existing Service Station II oil depot has fuel storage tanks for each product such as high gasoline, regular gasoline, light oil and kerosene. Therefore, when supplying coal-based hydrogen fuel for fuel cells, existing products are also supplied at the same time. Considering this, it became necessary to add a new dedicated tank at Service Station I Oil Depot, and there was a considerable need for rehabilitation of the infrastructure.
  • an object of the present invention is to provide a dual-purpose fuel suitable for a gasoline vehicle and a fuel cell system satisfying the above-mentioned required properties in a well-balanced manner.
  • Another object of the present invention is to provide a dual fuel storage and Z or supply system. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that a fuel composed of a hydrocarbon-conjugated product having a specific composition and properties is suitable for a gasoline vehicle and a fuel for a fuel cell system. Was found.
  • gasoline vehicle and the fuel combined with the fuel cell system according to the present invention are:
  • the sulfur content is 50 mass ppm or less, the saturation content is 30 volume% or more, the aromatic content is 50 volume% or less, and the olefin content is 35 volume% or less.
  • the fuel composed of the hydrocarbon compound having the specific composition and properties described above further satisfies the following additional requirements.
  • the score based on the method for evaluating drivability at room temperature of CRC is 40 or less.
  • the content of hydrocarbon compounds having 4 carbon atoms is 15% by volume or less, the content of hydrocarbon compounds having 5 carbon atoms is 5% by volume or more, and the content of hydrocarbon compounds having 6 carbon atoms is Is 5% by volume or more, the total content of hydrocarbon compounds having 7 and 8 carbon atoms is 20% by volume or more, and the total content of hydrocarbon compounds having 10 or more carbon atoms is 20% by volume or less .
  • the liquid has a heat capacity of 2.6 kJZkg ° C or less at 1 atmosphere and 15 ° C. You.
  • Latent heat of vaporization is 40 OKJ / kg or less.
  • the oxidation stability is 240 minutes or more.
  • gasoline vehicle and the fuel cell system dual fuel storage and Z or supply system according to the present invention
  • the dual-purpose fuel described in any of (1) to (6) above is stored in a fuel storage device for a gasoline vehicle, and is supplied from the storage device for a gasoline vehicle or a fuel cell system according to demand. I do. .
  • the storage device is an existing high-octane gasoline or regular gasoline storage device.
  • FIG. 1 is a flow chart of a steam reforming type fuel cell system used for evaluating a gasoline vehicle and a fuel which also serves as a fuel cell system according to the present invention.
  • FIG. 2 is a flow chart of a partial oxidation fuel cell system used in the evaluation of a gasoline vehicle and fuel for a fuel cell system according to the present invention.
  • FIG. 2 is a flow chart of a partial oxidation fuel cell system used in the evaluation of a gasoline vehicle and fuel for a fuel cell system according to the present invention.
  • hydrocarbon compounds having a specific composition and properties are as follows.
  • the sulfur content of the gasoline vehicle and the fuel for the fuel cell system according to the present invention is determined by using a fuel such as a reforming catalyst, a water gas shift reaction catalyst, a carbon monoxide removal catalyst, or a fuel cell stack. It is 50 mass ppm or less, preferably 30 mass ppm or less, more preferably 10 mass ppm or less, and more preferably 1 mass ppm or less, since the battery system is less deteriorated and the initial performance can be maintained for a long time. It is even more preferred that the content be 0.1 mass ppm or less.
  • the content of the saturated component, the aromatic component and the olefin component is as follows: the saturated component (V (S)) is 30% by volume or more, and the aromatic component (V ( Ar)) is 50% by volume or less, and the olefin component (V (O)) is 35% by volume or less.
  • V (S) saturated component
  • V ( Ar) aromatic component
  • V (O) olefin component
  • V (S) when used as a fuel for a fuel cell system, it is often the power generation amount per weight, C_ ⁇ that power generation per 2 generation amount is large, the fuel cell that the fuel consumption of the system as a whole is good, discharge Due to the low THC in the gas and the short start-up time of the system, and when used as a fuel for gasoline vehicles, prevention of gasoline coking in the injector, reduction of plug smoldering,
  • the content is at least 30% by volume, preferably at least 40% by volume, more preferably at least 50% by volume. , 60% by volume or more, even more preferably 70% by volume or more, still more preferably 80% by volume or more, and 90% by volume or more. Is particularly preferred, and most preferably 95% by volume or more.
  • V (A r) when used as a fuel for a fuel cell system, it is often the power generation amount per weight, it generation per co 2 generation amount is large, it mileage of the fuel cell system overall is good, Due to the fact that the reforming catalyst is not deteriorated and the initial performance can be maintained for a long time, the THC in the exhaust gas is small, the system startup time is short, etc. 50% by volume or less from the viewpoints of preventing gasoline caulking, reducing the smoldering of the plug, suppressing the ozone generation ability of the exhaust gas, reducing the benzene concentration in the exhaust gas, and preventing the generation of soot.
  • the content be 10% by volume or less, particularly preferably 10% by volume or less, and most preferably 5% by volume or less.
  • the two preferable ranges of the sulfur content and the aromatic content be satisfied, because the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time.
  • V (0) when used as a fuel for a fuel cell system, it is often the power generation amount per weight, C_ ⁇ 2 is large amount of power generated per amount of generated that overall fuel consumption of the fuel cell system is good, Kai Low degradation of the catalyst quality, the ability to maintain the initial performance for a long time, good storage stability, etc., and when used as a fuel for gasoline automobiles, prevention of gasoline coking during injection, and From the viewpoint of reducing the smoldering of the plug, suppressing the ozone generation ability of the exhaust gas, and preventing soot from being generated, the content is 35% by volume or less, preferably 25% by volume or less, and 20% by volume or less. %, More preferably 15% by volume or less, even more preferably 15% by volume or less, and most preferably 10% by volume or less.
  • V (S), V (A r), and V ( ⁇ ) are all values measured by the fluorescent indicator adsorption method of JISK 2536 “Petroleum products-Test methods for hydrocarbon type”. .
  • the ratio of the paraffin component in the saturated component of the fuel when used as a fuel for a fuel cell system, it is often the power generation amount per weight, C_ ⁇ 2 occurs Due to the large amount of power generation per unit volume, etc., the proportion of the paraffin in the saturated component is at least 60% by volume, preferably at least 65% by volume, more preferably at least 70% by volume. More preferably, it is more preferably 75% by volume or more, even more preferably 80% by volume or more, still more preferably 85% by volume or more, and more preferably 90% by volume or more. Is particularly preferred, and most preferably 95% by volume or more.
  • the proportion of branched paraffins in the paraffin component when used as a fuel cell shea fuel stem, many power generation amount per weight, C_ ⁇ 2 emissions per Rino power generation amount is large, the fuel The fuel efficiency of the entire battery system is good, the THC in the exhaust gas is small, and the system startup time is short.
  • the proportion of branched paraffin in the paraffin is 70% by volume or more, preferably 75% by volume or more, and more preferably 80% by volume or more from the viewpoint of improving the octane number. Is most preferred
  • the paraffin content and the amount of branched paraffin described above are values determined by the following gas chromatography method.
  • a methyl silicon capillary column, a helium or nitrogen carrier gas, and a hydrogen ionization detector (FID) are used as the detector.
  • the column length is 25 to 50 m
  • the carrier gas flow is 0.5 to 0.5. 1.5 ml / min, split ratio 1: 50-1: 250, inlet temperature 150-250 ° C, initial column temperature 10-10 ° C, final column temperature 150-250 ° C, detector temperature It is a value measured under the condition of 150 to 250 ° C.
  • the fuel density is such that when used as a fuel for a fuel cell system, the amount of power generation per weight is large, and the fuel efficiency of the entire fuel cell system is good. It is 0.78 g / cm 3 or less because THC in the exhaust gas is small and the system startup time is short.
  • the density means the density measured by JIS K 2249 “Density test method for crude oil and petroleum products and density / mass / volume conversion table”.
  • the fuel for both gasoline vehicles and the fuel cell system of the present invention has an initial distillation point (initial distillation point 0) of 24 ° C to 80 ° C, preferably 24 ° C to 50 ° C. 5 0 volume% distillation temperature (T 5.) Is not more than 60 ° C above 120 ° C, preferably 75 ° C or higher 110 ° C or less, more preferably 78 ° C over 100 ° C.
  • the 90% by volume distillation temperature (T 90 ) is 100 ° C or more and 190 ° C or less, preferably 100 ° C or more and 170 ° C or less.
  • the distillation end point is from 130 ° C to 230 ° C, preferably from 130 ° C to 220 ° C.
  • initial distillation point initial boiling point 0
  • flammability increases, and evaporative gas (THC) is easily generated, which causes problems in handling.
  • evaporative gas THC
  • high-temperature drivability may deteriorate.
  • T 50 50 % by volume distillation temperature
  • THC THC
  • T 90 90 volume% distillation temperature (T 90) and cut the end point, when used as a fuel for a fuel cell system, high power generation amount per weight, a large amount of power generated per C_ ⁇ 2 emissions, the fuel cell system overall fuel consumption is good, not small, THC in the exhaust gas, is defined from the viewpoint of the system boot time is short, when used as a fuel for gasoline automobiles, 90 volume% distillation temperature (T 90) If the end point of distillation is high, operability may deteriorate and exhaust gas may increase. It is also specified in terms of suppressing gasoline dilution of engine oil and generation of sludge.
  • distillation initial boiling point (initial boiling point 0) described above, 50 volume% distillation temperature (T 50), 90 volume% distillation temperature (T 90), the distillation endpoint, JISK 2254 "Petroleum products first distillation test method This is the distillation property measured by
  • the reed vapor pressure (RVP) of the fuel is such that a large amount of power is generated per weight.
  • RVP reed vapor pressure
  • the evaporative gas (evaporation ) Is less than l OkPa and less than l O OkPa, because the amount of) is suppressed and the flash point etc. have good manageability.
  • 201 ⁇ ? & More than 90? a is preferably less than 50 kPa, and more preferably less than 75 kPa.
  • Reid vapor pressure means the vapor pressure (Reid vapor pressure (RV ⁇ )) measured by JIS K 2258 “Crude oil and fuel oil vapor pressure test method (Reed method)”.
  • the research octane number (RON) of the fuel is 89.0 or more from the viewpoint of improving the anti-knocking property when used as a gasoline vehicle fuel.
  • the octane number of the research method (RON) means the octane number of the research method measured by JISK 2280 “Octane number and cetane number test method”.
  • 3 ⁇ 4 ⁇ as a fuel for a gasoline vehicle has an I-plane score of 40 at room temperature (25 ° C) drivability based on the drivability test method of CRC. It is preferably at most 30, and more preferably at most 30.
  • the drivability evaluation method of the CRC is an evaluation of the drivability when the vehicle is driven in accordance with the driving pattern conforming to the CRC method described in “CRC Report No. 483”.
  • the evaluation content is based on the demerit evaluation score given by the degree of the phenomenon shown in Table 2 that occurred in the evaluation items shown in Table 1 and the coefficient corresponding to the evaluation content shown in Table 3, and is calculated as "Evaluation score” X "Coefficient” Is calculated, and finally, all items are aggregated and evaluated. The higher the rating, the more problems there are for gasoline use.
  • the content of the hydrocarbon compound having 4 carbon atoms, 5 carbon atoms, and 6 carbon atoms used in the present invention is not particularly limited, but the following is preferred.
  • the content of hydrocarbon compounds with 4 carbon atoms indicates the content of hydrocarbon compounds with 4 carbon atoms based on the total amount of fuel, and the amount of evaporative gas (evaporation) should be kept low. From the viewpoint of good handling properties such as flash point, it is necessary that the content be 15% by volume or less, and 10% by volume or less;
  • the content of the hydrocarbon compounds having 5 carbon atoms indicates the content of hydrocarbon compounds having a carbon number of 5 relative to the fuel total amount, often power per weight, C_ ⁇ 2 It is necessary to be at least 5% by volume, preferably at least 10% by volume, and more preferably at least 15% by volume, because of the large amount of power generation per generation and the good fuel efficiency of the entire fuel cell system. %, More preferably at least 20% by volume.
  • the content of the hydrocarbon compound having 6 carbon atoms indicates the content of the hydrocarbon disulfide compound having 6 carbon atoms based on the total amount of the fuel.
  • Ikoto such as the entire fuel cell system is required to be 5 volume% or more, preferably a this is 1 0% by volume or more, 1 5 %, More preferably at least 20% by volume, even more preferably at least 20% by volume.
  • the total amount of the hydrocarbon compound having 7 and 8 carbon atoms (V (C7 + C8)) is determined based on the total amount of the fuel by the hydrocarbon compound having 7 and 8 carbon atoms. indicates the content of the compound, it is often the power generation amount per weight, it generation per C 0 2 generation amount is large, since the overall fuel consumption of the fuel cell system is good or the like, in 2 0 vol% It is preferable that the content be 25% by volume or more, more preferably 35% by volume or more, and even more preferably 40% by volume or more.
  • the content of 1 0 or more hydrocarbon compounds carbon there is no particular restriction as to the content of 1 0 or more hydrocarbon compounds carbon, that the power generation per co 2 generation amount is large, it overall fuel consumption of the fuel cell system is good, It is preferable that the content of hydrocarbon compounds having 10 or more carbon atoms (VC10 +) based on the total fuel amount be 20% by volume or less, since the reforming catalyst is less deteriorated and the initial performance can be maintained for a long time. It is more preferably 15% by volume, and even more preferably 10% by volume or less.
  • V (C4), V (C5), V (C6), V (C7 + C8), and V (C10 +) described above are values determined by a gas chromatography method described below.
  • a methyl silicon capillary column is used for the column
  • helium or nitrogen is used for the carrier gas
  • a hydrogen ionization detector (FID) is used for the detector.
  • the column length is 25 to 50 m
  • the carrier gas flow rate is 0. 5 ⁇ 1.5ml / min
  • Split ratio 1 50 ⁇ 1: 250
  • the heat capacity of the fuel Although there is no particular limitation on the fuel cell, it is preferable that the liquid has a heat capacity of 2. ek J / kg or less at 1 MJ £ ⁇ 15 because the fuel efficiency of the entire fuel cell system is good.
  • the latent heat of vaporization is preferably equal to or less than 400 KJ Zkg because the fuel efficiency of the entire fuel cell system is good.
  • the oxidation stability of the fuel is not limited at all, but is preferably 240 minutes or more from the viewpoint of storage stability.
  • the oxidation stability is the oxidation stability measured by JIS K 2287 “Gasoline oxidation stability test method (induction period method)”.
  • desulfurized full-range naphtha obtained by desulfurizing a naphtha fraction obtained by atmospheric distillation of crude oil
  • desulfurized light naphtha that is a light component obtained by further distilling S-sulfur full-range naphtha
  • desulfurized full-range naphtha are further distilled.
  • Light reformed gasoline which is a refined gasoline that has been further processed by distillation from desulfurized heavy naphtha, which is a processed heavy component, and reformed gasoline that has been reformed from desulfurized heavy naphtha, is further processed.
  • Medium heavy reformed gasoline which is a medium heavy fraction that has been subjected to distillation processing
  • heavy reformed gasoline which is a heavy fraction that has been further subjected to a distillation treatment of reformed gasoline that has been reformed from desulfurized heavy naphtha.
  • the above fuel can also be produced by mixing one or two or more of the above-mentioned base materials and then desulfurizing them by hydrogenation or adsorption or the like.
  • the sulfur content is further removed from the cracked gasoline using hydrodesulfurization equipment, or the sulfur content in the feedstock of a fluid catalytic cracking unit (FCC) that produces gasoline is required. Perform processing such as reducing the amount.
  • FCC fluid catalytic cracking unit
  • the octane number decreases due to the concurrent hydrogenation reaction of olefins in a general hydrodesulfurization method used in a refinery. It is preferable to use a method of reducing the octane number as small as possible, such as a gazette, US Pat. No. 5,352,354, and US Pat. No. 6,135,988.
  • desulfurized light naphtha desulfurized full-range naphtha
  • isomerized gasoline alkylate
  • Desulfurized light by desulfurizing light fractions of chelate, desulfurized butane / butene, low sulfur alkylate, sulfolane raffinate, light cracked gasoline, light reformed gasoline, medium and heavy reformed gasoline, and gasoline Cracked gasoline, GT L naphtha, LPG, LPG desulfurized LPG, MTBE, etc.
  • the dual-use fuel of the present invention includes a coloring agent for identification, an antioxidant for improving an oxidation stabilizer, a metal deactivator, a corrosion inhibitor for corrosion prevention, and for maintaining cleanliness of a fuel line.
  • Additives such as a detergent and a lubricity improver for improving lubricity may be added to the mixture.
  • the colorant is preferably at most 10 ppm, more preferably at most 5 ppm, since the deterioration of the three-way catalyst is small and the initial performance can be maintained for a long time.
  • the antioxidant is preferably at most 300 ppm, more preferably at most 200 ppm, even more preferably at most 100 Oppm, and most preferably at most 100 Oppm.
  • the metal deactivator is preferably 5 Oppm or less, more preferably 3 Oppm or less, even more preferably 10 ppm or less, and most preferably 5 ppm or less.
  • the corrosion inhibitor is preferably 5 Oppm or less, more preferably 3 Oppm or less, and more preferably 1 Oppm or less, since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time. Even more preferably, it is most preferably 5 ppm or less. Similar reasons According to the present invention, it is preferably 300 ppm or less, more preferably 200 ppm or less, and most preferably 100 ppm.
  • the lubricating oil improver is preferably at most 300 ppm, more preferably at most 200 ppm, most preferably at most 100 ppm.
  • the fuel of the present invention is used as a fuel for both gasoline vehicles and fuel cell systems.
  • the vehicle type is not limited at all for the vehicle used in the present invention.
  • the fuel cell system according to the present invention includes a fuel reformer, a carbon monoxide purifying device, a fuel cell, and the like, and the fuel of the present invention is suitably used for any fuel cell system.
  • the fuel reformer is for reforming the fuel to obtain hydrogen, which is the fuel of the fuel cell.
  • a reformer specifically, for example,
  • a partial oxidation reformer that obtains a product containing hydrogen as its main component by mixing calo-heat vaporized fuel with air and reacting it in a catalyst such as copper, nickel, platinum, ruthenium or without a catalyst.
  • the heated fuel is mixed with steam and air, and the partial oxidation reforming of (2) is performed in the former stage of the catalyst layer such as copper, nickel, platinum, ruthenium, etc.
  • Partial oxidation / steam reforming type reformer that obtains a product containing hydrogen as a main component by performing steam type reforming of (1) using the heat generation of the chemical reaction.
  • the carbon monoxide purifier is a device that removes carbon monoxide contained in the gas generated by the above reformer and becomes a catalyst poison of the fuel cell.
  • fuel cells include polymer electrolyte fuel cells (PEFC), Examples include a phosphoric acid fuel cell (PAFC), a molten carbonate fuel cell (MCFC), and a solid oxide fuel cell (SOFC).
  • PEFC polymer electrolyte fuel cells
  • PAFC phosphoric acid fuel cell
  • MCFC molten carbonate fuel cell
  • SOFC solid oxide fuel cell
  • Examples of the fuel cell system include a stationary fuel cell system whose main purpose is power generation and a fuel cell system whose main purpose is a vehicle power source (a so-called fuel cell vehicle).
  • the fuel cell system that can supply dual-purpose fuel this time is either a fuel cell vehicle or a stationary fuel cell system. It is particularly effective when installed in a service station or the like as a stationary fuel cell system. .
  • Fuel can be supplied to both gasoline-powered vehicles and fuel cell systems by placing dual-purpose fuel in conventional gasoline tanks without installing fuel tanks dedicated to stationary fuel cell systems at the service station.
  • Table 4 shows the properties and the like of the base materials used for each fuel in the examples and comparative examples.
  • RVP kPa 339.0 53.0 15.9 30.0 843.2 Lisa-thiooctane value 95.0 118.0 130.0 110.0
  • Table 5 shows the properties and the like of each fuel used in Examples and Comparative Examples.
  • Fuel cell system evaluation test For each of these fuels, a fuel cell system evaluation test and a gasoline vehicle fuel evaluation test were conducted. Fuel cell system evaluation test
  • the fuel and water were vaporized by electric heating and charged to a reformer, which was filled with a noble metal catalyst and maintained at a specified temperature with an electric heater, to generate reformed gas rich in hydrogen.
  • the temperature of the reformer was set to the lowest temperature at which reforming was completely performed in the initial stage of the test (the lowest temperature at which THC was not contained in the reformed gas).
  • the reformed gas is led to a carbon monoxide treatment device (water gas shift reaction) together with water vapor to convert carbon monoxide in the reformed gas into carbon dioxide, and the generated gas is guided to a polymer electrolyte fuel cell to generate electricity.
  • a carbon monoxide treatment device water gas shift reaction
  • FIG. 1 shows a flowchart of the steam reforming type fuel cell system used for the evaluation.
  • the fuel was vaporized by electric heating, filled with a precious metal catalyst together with preheated air, and led to a reformer maintained at 110 ° C with an electric heater, generating a reformed gas rich in hydrogen. .
  • the reformed gas is guided to a carbon monoxide treatment device (7j gas shift reaction) together with steam to convert the carbon monoxide in the reformed gas into carbon dioxide, and then the generated gas is converted to a polymer electrolyte fuel cell. Guided power generation was performed.
  • Figure 2 shows a flowchart of the partial oxidation fuel cell system used for the evaluation.
  • H 2 CO in the reformed gas generated from the reformer immediately after the start of the surface test, was measured for C 0 2, TH C amount.
  • C_ ⁇ was measured for C 0 2, TH C amount.
  • the amount of power generation, fuel consumption, and the amount of CO 2 emitted from the fuel cell in the fuel cell were measured.
  • the amount of heat (preheat) required to guide each fuel to the specified reformer was calculated from the heat capacity and latent heat of vaporization. From these measured and calculated values and the calorific value of the fuel, the performance degradation rate of the reforming catalyst is calculated.
  • the amount of power generated 100 hours after the start of the test Z The amount of power generated immediately after the start of the test), the thermal efficiency (the amount of power generated immediately after the start of the test Z, the calorific value of the fuel), and the preheat amount ratio (the amount of preheat Z, the amount of power generated) were calculated.
  • Table 6 shows the evaluation points.
  • the use of gasoline-powered vehicles and fuel cell system fuels composed of hydrocarbon compounds of a specific composition and properties in fuel cells makes it possible to obtain high-output electrical energy with a low performance degradation ratio.
  • the fuel satisfies various performances for fuel cells.
  • the dual-purpose fuel is stored in the existing fuel storage device for gasoline-powered vehicles, and is supplied from the storage device for gasoline-powered vehicles or for fuel cell systems according to demand, so that a fuel tank dedicated to the fuel cell system can be provided. It is possible to supply fuel to both gasoline-powered vehicles and fuel cell systems by placing dual-purpose fuel in conventional gasoline tanks without installing them in service stations.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Description

明 細 書 ガソリン自動車及び燃料電池システム兼用燃料、 並びにその貯蔵及び Zまたは 供給システム
技術分野
本発明は、 ガソリン自動車及び燃料電池システムの両者に用いられる兼用燃料 に関する。 また、 本発明は、 該兼用燃料の貯蔵及び Zまたは供給システムに関す る。 背景技術
近年、 将来の地球環境に対する危機感の高まりから、 地球にやさしいエネルギ —供給システムの開発が求められている。 特に、 地球温暖化防止のための c o 2 低減、 TH C (排出ガス中の未反応の炭化水素) 、 NO x、 PM (排出ガス中の 粒子状物質:すす、 燃料 ·潤滑油の高沸点 ·高分子の未燃成分) 等有害物質の低 減を、 高度に達成することが要求されている。 そのシステムの具体例としては、 従来のォットー ·ディ一ゼルシステムに代わる自動車動力システム、 あるいは火 力に代わる発電システムが挙げられる。
そこで、 理想に近いエネルギー効率を持ち、 基本的には H20と C〇2しか排出 しない燃料電池が、 社会の要望に応えるにもつとも有望なシステムと期待されて いる。 そして、 このようなシステムの達成のためには、 機器の技術開発だけでは なぐ それに最適な燃料の開発が必要不可欠である。 ά¾
従来、 燃料電池システム用の燃料としては、 7Κ素、 メタノール、 :¾化水素系燃 料が考えられている。
燃料電池システム用の燃料として、 水素は、 特別の改質装置を必要としない点 で有利であるが、常温で気体のため、貯蔵性及び車両等への搭載性に問題があり、 供給に特別な設備が必要である。 また弓 I火の危険性も高く取り扱いに注意が必要 である。 メタノールは、 水素への改質が比較的容易である点で有利であるが、 重量あた りの発電量が小さく、 有毒のため取り扱いにも注意が必要である。 また、 腐食性 があるため、 貯蔵 ·供給に特殊な設備が必要である。
炭化水素系燃料は、 貯蔵性及び車両等への搭載性が優れ、 特に既存のサービス ステーションでの供給が可能で、 インフラ面での期待が大きい。 しかし、 従来の ガソリンでは、 含まれる硫黄分、 添加剤などが、 燃料電池の改質反応に用いられ る触媒や燃料電池 (特に固体高分子型) の電極に悪影響を及ぼすことが指摘され ており、 従来のガソリンを燃料電池用の燃料とすることはできなかった。
このように、 ガソリン自動車及び燃料電池システムの両者に用いられる兼用燃 料は未だ開発されていない。 ガソリン自動車用であって、 燃料電池システムの能 力を充分に発揮させるためには、 燃料電池システム用燃料として、 重量当りの発 電量が多いこと、 c o2発生量当たりの発電量が大きいこと、 燃料電池システム 全体としての燃費が良いこと、 改質触媒、 水性ガスシフト反応触媒、 一酸化炭素 除去触媒、 燃料電池スタック等、 燃料電池システムの劣化が小さく初期性能が長 時間維持できること、 システムの起動時間が短いこと、 貯蔵安定性や引火点など 取り扱レ 生が良好なことなどが求められる。
なお、 燃料電池システムでは、 燃料およぴ 質器を所定の温度に保つことが必 要なため、 発電量からそれに必要な熱量 (予熱及び反応に伴う吸発熱をバランス させる熱量) を差し引いた発電量が、 燃料電池システム全体の発電量となる。 し たがって、 燃料を改質させるために必要な温度が低い方が予熱量が小さく有利に なり、 システムの起動時間も短く有利になり、 また燃料の予熱に必要な重量当り の熱量が小さいことも必要である。 予熱が十分でない場合、 排出ガス中に未反応 の炭化水素 (TH C) が多くなり、 重量当りの発電量を低下させるだけでなく、 大気汚染の原因となる可能性がある。 逆に言えば、 同一システムを同一? で稼 働させた場合に、 排出ガス中の TH Cが少なく、 水素への変換率が高い方が有利 である。
一方、 既存のサービスステ一ションゃ油槽所では、 燃料貯蔵夕ンクをハイォク ガソリン、 レギュラーガソリン、 軽油、 灯油等の製品ごとに有している。 そのた め、 燃料電池用の炭ィ匕水素系燃料を供給する場合、 既存の製品も同時に供給する ことを考慮すると、 サ一ビスステ一ションゃ油槽所にて新たに専用タンクを増設 する必要が生じ、 少なからずィンフラ面での再整備の必要性があった。
本発明は、 このような状況を鑑み、 上記したような要求性状をバランス良く満 たしたガソリン自動車用及び燃料電池システムに適した兼用燃料を提供すること を目的とする。 また、 本発明は、 該兼用燃料の貯蔵及び Zまたは供給システムを 提供することを目的とする。 発明の開示
本発明者らは、 上記課題を解決するため鋭意研究を重ねた結果、 特定の組成及 び性状の炭化水素ィ匕合物からなる燃料が、 ガソリン自動車及び燃料電池システム 兼用燃料に適していることを見出した。
すなわち、 本発明に係るガソリン自動車及び燃料電池システム兼用燃料は、
(1) 硫黄分含有量が 50質量 ppm以下であり、 飽和分が 30容量%以上であ り、 芳香族分が 50容量%以下であり、 ォレフィン分が 35容量%以下であり、 飽和分中のパラフィン分の割合が 60容量%以上であり、 パラフィン分中の分岐 型パラフィンの割合が 70容量%以上であり、 密度が 0. 78g/cm3以下で あり、 蒸留初留点が 24 °C以上 80 °C以下、 50容量%留出温度が 60°C以上 1 20°C以下、 90容量%留出温度が 100°C以上 190°C以下、 蒸留終点が 13 0で以上 230 °C以下の蒸留性状であり、 リード蒸気圧が 10 k P a以上 100 kPa未満であり、 リサーチ法ォクタン価が 89. 0以上の炭化水素からなる。 上記特定の組成、 及び性状の炭化水素化合物からなる燃料は、 更に、 以下のよ うな付加的要件を満たすものがより好ましい。
(2) CRCの常温での運転性評価方法に基づく評価点数が 40以下である。
(3) 炭素数 4の炭化水素化合物の含有量が 15容量%以下であり、 炭素数 5の 炭化水素化合物の含有量が 5容量%以上であり、 炭素数 6の炭化水素化合物の含 有量が 5容量%以上であり、 炭素数 7と炭素数 8の炭化水素化合物の合計含有量 が 20容量%以上であり、 炭素数 10以上の炭化水素化合物の合計含有量が 20 容量%以下である。
(4) 液体で、 1気圧、 15 °Cにおける熱容量が、 2. 6kJZkg°C以下であ る。
(5) 蒸発潜熱が、 40 OKJ/kg以下である。
(6) 酸化安定度が、 240分以上である。
また、 本発明に係るガソリン自動車及び燃料電池システム兼用燃料の貯蔵及び Zまたは供給システムは、
(7) 上記 (1)〜 (6) 何れかに記載の兼用燃料をガソリン自動車用燃料の貯 蔵装置に貯蔵し、 需要に応じて前記貯蔵装置よりガソリン自動車用または燃料電 池システム用として供給する。 .
更に、 以下のような付加的要件を満たすことができる。
(8) 前記貯蔵装置が既存のハイオクガソリンまたはレギュラーガソリンのいず れかの貯蔵装置である。 図面の簡単な説明
図 1は、 本発明のガソリン自動車及び燃料電池システム兼用燃料の評価に用い た水蒸気改質型燃料電池システムのフローチャートである。
図 2は、 本発明のガソリン自動車及び燃料電池システム兼用燃料の評価に用い た部分酸化型燃料電池システムのフローチヤ一トである。 以下、 本発明の内容をさらに詳細に説明する。
本発明において、 特定の組成及び性状の炭化水素化合物とは次のようなもので ある。
本発明のガソリン自動車及び燃料電池システム兼用燃料の硫黄分含有量は、 燃 料電池システム用燃料として使用した場合、改質触媒、水性ガスシフト反応触媒、 一酸化炭素除去触媒、 燃料電池スタック等、 燃料電池システムの劣化が小さく初 期性能が長時間維持できることから 50質量 p pm以下であり、 30質量 p pm 以下であることが好ましく、 10質量 ppm以下であることがより好ましく、 1 質量 ppm以下であることがさらにより好ましく、 0. 1質量 ppm以下である ことが最も好ましい。
ここで、 硫黄分とは、 1質量 ppm以上の場合、 J I S K 2541 「原油 及び石油製品—硫黄分試験方法」 により測定される硫黄分を、 1質量 p p m未満 の場合、 A S TM D 4 0 4 5 - 9 6「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric ColorimetryJにより 測定される硫黄分を意味している。
本発明のガソリン自動車及び燃料電池システム兼用燃料において、 飽和分、 芳 香族分及びォレフィン分の各含有量は、 飽和分 (V (S ) ) は 3 0容量%以上、 芳香族分 (V (A r ) ) は 5 0容量%以下、 ォレフィン分 (V (O) ) は 3 5容 量%以下である。 以下、 これらを個別に説明する。
V ( S ) は、 燃料電池システム用燃料として使用した場合、 重量当りの発電量 が多いこと、 C〇2発生量当たりの発電量が大きいこと、 燃料電池システム全体 としての燃費が良いこと、 排出ガス中の TH Cが少ないこと、 システムの起動時 間が短いことなどから、 また、 ガソリン自動車用燃料として使用した場合、 イン ジェクタ内でのガソリンのコ一キング防止、 およびプラグのくすぶりの低減、 排 出ガスのオゾン生成能を抑制する、すすを発生させない等の観点から、 3 0容量% 以上であり、 4 0容量%以上であることが好ましく、 5 0容量%以上であること がより好ましく、 6 0容量%以上であることがさらにより好ましく、 7 0容量% 以上であることがさらにより一層好ましく、 8 0容量%以上であることが尚更好 ましく、 9 0容量%以上であることが特に好ましく、 9 5容量%以上であること が最も好ましい。
V (A r ) は、 燃料電池システム用燃料として使用した場合、 重量当りの発電 量が多いこと、 co2発生量当たりの発電量が大きいこと、 燃料電池システム全 体としての燃費が良いこと、 改質触媒の劣化が小さく初期性能が長時間維持でき ること、 排出ガス中の TH Cが少ないこと、 システムの起動時間が短いことなど から、 また、 ガソリン自動車用燃料として使用した場合、 インジェクタ内でのガ ソリンのコーキング防止、 およびプラグのくすぶりの低減、 排出ガスのオゾン生 成能を抑制する、 排出ガス中のベンゼン濃度を低減させる、 すすを発生させない 等の観点から、 5 0容量%以下であり、 4 5容量%以下であることが好ましく、 4 0容量%以下であることがより好ましく、 3 5容量%以下であることがさらに より好ましく、 3 0容量%以下であることがさらにより一層好ましぐ 2 0容量% 以下であることが尚更好ましく、 1 0容量%以下であることが特に好ましく、 5 容量%以下であることが最も好ましい。
本発明のガソリン自動車及び燃料電池システム兼用燃料においては、 硫黄分と 芳香族分の好ましい範囲が二つながらに満足することが、 改質触媒の劣化が小さ く初期性能を長く維持できることから、 最も好ましい。
V (0) は、 燃料電池システム用燃料として使用した場合、 重量当りの発電量 が多いこと、 C〇2発生量当たりの発電量が大きいこと、 燃料電池システム全体 としての燃費が良いこと、 改質触媒の劣化が小さく初期性能が長時間維持できる こと、 貯蔵安定性が良好なことなどから、 また、 ガソリン自動車用燃料として使 用した場合、 インジェク夕内でのガソリンのコ一キング防止、 およびプラグのく すぶりの低減、 排出ガスのオゾン生成能を抑制する、 すすを発生させない等の観 点から、 3 5容量%以下であり、 2 5容量%以下であることが好ましく、 2 0容 量%以下であることがより好ましく、 1 5容量%以下であることがさらにより好 ましく、 1 0容量%以下であることが最も好ましい。
上記の V (S) 、 V (A r ) 、 及び V (〇) は、全て J I S K 2 5 3 6 「石 油製品—炭化水素タイプ試験方法」 の蛍光指示薬吸着法により測定される値であ る。
また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 の飽和分中のパラフィン分の割合について、 燃料電池システム用燃料として使用 した場合、 重量当りの発電量が多いこと、 C〇2発生量当たりの発電量が大きい ことなどから、 飽和分中のパラフィン分の割合が 6 0容量%以上であり、 6 5容 量%以上であることが好ましく、 7 0容量%以上であることがより好ましく、 7 5容量%以上であることがさらにより好ましく、 8 0容量%以上であることがさ らにより一層好ましく、 8 5容量%以上であることが尚更好ましく、 9 0容量% 以上であることが特に好ましく、 9 5容量%以上であることが最も好ましい。 また、 上記パラフィン分中の分岐型パラフィンの割合については、 燃料電池シ ステム用燃料として使用した場合、 重量当りの発電量が多く、 C〇2発生量当た りの発電量が大きいこと、 燃料電池システム全体としての燃費が良いこと、 排出 ガス中の THCが、少ないこと、 システムの起動時間が短いことなどから、 また、 ガソリン自動車用燃料として使用した場合、 オクタン価を向上させる観点から、 パラフィン分中の分岐型パラフィンの割合が 70容量%以上であり、 75容量% 以上であることが好ましく、 80容量%以上であることが最も好ましい
上記のパラフィン分および分岐型パラフィンの量は、 以下に示すガスクロマト グラフィ一法により定量された値である。 すなわち、 カラムにはメチルシリコン のキヤビラリ一カラム、 キャリアガスにはヘリウムまたは窒素を、 検出器には水 素イオン化検出器 (F ID) を用い、 カラム長 25〜50m、 キャリアガス流量 0. 5〜1. 5ミリリットル/ mi n、 分割比 1 : 50〜1 : 250、 注入口温 度 150〜250°C、 初期カラム温度一 10〜10°C、 終期カラム温度 150〜 250°C, 検出器温 150〜250°Cの条件で測定した値である。
また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 の密度については、 燃料電池システム用燃料として使用した場合、 重量当りの発 電量が多く、 燃料電池システム全体としての燃費が良いこと、 排出ガス中の TH Cが少ないこと、 システムの起動時間が短いことなどの点から、 0. 78g/c m3以下である。
ここで、 密度とは、 J I S K 2249 「原油及び石油製品の密度試験方法 並びに密度 ·質量 ·容量換算表」 により測定される密度を意味する。
本発明のガソリン自動車用及び燃料電池システム兼用燃料は、 蒸留初留点 (初 留点 0 ) が 24 °C以上 80 °C以下であり、 24 °C以上 50 °C以下が好ましい。 5 0容量%留出温度(T 5。)が 60 °C以上 120 °C以下であり、 75 °C以上 110 °C 以下が好ましく、 78 °C以上 100 °C以下がより好ましい。 90容量%留出温度 (T90) が 100°C以上 190°C以下であり、 100°C以上 170°C以下が好ま しい。 蒸留終点が、 130°C以上 230°C以下であり、 130°C以上 220 以下 が好ましい。
蒸留初留点 (初留点 0) が低いと、 燃料電池システム用燃料として使用した場 合、 引火性が高くなり、 また蒸発ガス (THC) が発生し易くなり、 取扱性に問 題があり、 また、 ガソリン自動車用燃料として使用した場合、 高温運転性が悪化 する可能性がある。
50容量%留出温度 (T50) についても同様であり、 上記規定値より低いと、 燃料電池システム用燃料として使用した場合、 引火性が高くなり、 また蒸発ガス
(THC) が発生し易くなり、 取扱性に問題があり、 また、 ガソリン自動車用燃 料として使用した場合、 運転性に不具合を生じる可能性がある。
一方、 90容量%留出温度 (T90) 及び 留終点は、 燃料電池システム用燃料 として使用した場合、 重量当りの発電量が多い、 C〇2発生量当たりの発電量が 大きい、 燃料電池システム全体としての燃費が良い、 排出ガス中の THCが少な い、 システムの起動時間が短いなどの点から規定され、 ガソリン自動車用燃料と して使用した場合、 90容量%留出温度 (T90) 及び蒸留終点が高いと、 運転性 の悪化、 排出ガスの増加の可能性がある。 また、 エンジンオイルのガソリン希釈 およびスラッジの発生を抑制する点からも規定される。
なお、 上記した蒸留初留点 (初留点 0) 、 50容量%留出温度 (Τ50) 、 90 容量%留出温度 (Τ90) 、 蒸留終点は、 J I S K 2254 「石油製品一蒸留 試験方法」 によって測定される蒸留性状である。
また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 のリード蒸気圧 (RVP) については、 燃料電池システム用燃料として使用した 場合、 重量当りの発電量が多いこと、 燃料電池システム全体としての燃費が良い こと、 の点から、 また、 ガソリン自動車用燃料として使用した場合、 蒸気圧には 特に制限はないが、インジェク夕内でのコーキングの不具合が生じることがなく、 蒸発ガス (エバポミッション) の量が抑えられること、 引火点等の取极性が良い ことから、 l OkPa以上、 l O OkPa未満である。 201^?&以上90 ? a未満が好ましく、 50kPa以上 75kP a未満がより好ましい。
ここで、 リード蒸気圧 (RVP) とは、 J I S K 2258 「原油及び燃料 油蒸気圧試験方法 (リード法) 」 により測定される蒸気圧 (リード蒸気圧 (RV Ρ) を意味する。
また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 のリサーチ法オクタン価 (RON) については、 ガソリン自動車用燃料として使 用した場合、 アンチノッキング性を高める点から、 89. 0以上である。 ここで、 リサーチ法オクタン価 (RON) とは、 J I S K 2280 「オクタン価及び セタン価試験方法」 により測定されるリサーチ法ォク夕ン価を意味する。 また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 ガソ リン車用燃料としての |¾Βについては、 CRCの運転性藤方法に基づく常温( 2 5 °C) 運転性の I 面点数が 40以下であることが好ましく、 30以下であること がより好ましい。
ここで、 CRCの運転性評価方法とは、 「CRC Repo r t No. 48 3」 に記載された CRC法に準拠した走行パターンに従って運転した際の運転性 を評価したものである。 評価内容は、 表 1に示す評価項目で発生した表 2に示す 現象の程度によって与えられるデメリット評価点数と、 表 3に示す評価内容に対 応する係数とから、 「評価点数」 X 「係数」 を計算し、 最後に全項目について集 計し、 評価する。 評価点数が高くなるほど、 ガソリンとして使用するには問題が 多くなる。
評価項目と項目内容説明
Figure imgf000011_0001
表 2 デメリット評価点数
現象の程度 評価点 トレース :テストドライバ-でないと判別できない程度 1
モデレ一ト :平均的ドライバ-が判別できる程度 2
ヘビー : どのト'ライパ -でも指摘する程度 4 表 3
不具合時の係数
Figure imgf000012_0001
本発明で用いられる炭素数 4、 炭素数 5、 及び炭素数 6の炭化水素化合物の含 有量については何ら制限はないが、 次のようなものが好ましい。
炭素数 4の炭化水素化合物の含有量(V (C4) ) は、燃料全量を基準とした炭素 数 4の炭化水素化合物の含有量を示し、 蒸発ガス (エバポミッション) の量を低 く抑えることができ、 引火点等の取扱性が良い点から、 1 5容量%以下であるこ とが必要であり、 1 0容量%以下であること;^好ましい。
炭素数 5の炭化水素化合物の含有量 (V (C 5 ) ) は、 燃料全量を基準とした炭 素数 5の炭化水素化合物の含有量を示し、 重量当たりの発電量が多いこと、 C〇 2発生量当たりの発電量が大きいこと、 燃料電池システム全体としての燃費が良 いこと等から、 5容量%以上であることが必要であり、 1 0容量%以上であるこ とが好ましく、 1 5容量%以上であることがより好ましく、 2 0容量%以上であ ることがさらにより好ましい。
炭素数 6の炭化水素化合物の含有量 (V (C 6 ) ) は、 燃料全量を基準とした炭 素数 6の炭化水素ィ匕合物の含有量を示し、 重量当たりの発電量が多いこと、 C O
0 2発生量当たりの発電量が大きいこと、 燃料電池システム全体としての燃費が良 いこと等から、 5容量%以上であることが必要であり、 1 0容量%以上であるこ とが好ましく、 1 5容量%以上であることがより好ましく、 2 0容量%以上であ ることがさらにより好ましい。
また、 本発明においては、 炭素数 7および炭素数 8の炭化水素化合物の合 有量 (V(C7+C8) ) は、 燃料全量を基準とした炭素数 7および炭素数 8の炭化水素 ィ匕合物の含有量を示し、 重量当たりの発電量が多いこと、 C 02発生量当たりの 発電量が大きいこと、 燃料電池システム全体としての燃費が良いこと等から、 2 0容量%以上であることが必要であり、 2 5容量%以上であることが好ましく、 3 5容量%以上であることがより好ましく、 4 0容量%以上であることがさらに より好ましい。
また、 本発明においては、 炭素数 1 0以上の炭化水素化合物の含有量について 特に制限はないが、 co2発生量当たりの発電量が大きいこと、 燃料電池システ ム全体としての燃費が良いこと、 改質触媒の劣化が小さく初期性能が長時間持続 できることなどから、 燃料全量を基準として炭素数 1 0以上の炭化水素化合物の 含有量 (V C10+)) が 2 0容量%以下であることが好ましく、 1 5容量%でぁるこ とがより好ましく、 1 0容量以下であることがさらにより好ましい。
なお、 上記した V (C4) 、 V(C5)、 V(C6)、 V(C7+C8)、 V (C10+) は、 以下に示す ガスクロマトグラフィー法により定量される値である。 すなわち、 カラムにはメ チルシリコンのキヤピラリーカラム、 キャリアガスにはヘリウムまたは窒素を、 検出器には水素イオン化検出器 (F I D) を用い、 カラム長 2 5〜5 0 m、 キヤ リアガス流量 0. 5〜1 . 5ミリリットル/ m i n、 分割比 1 : 5 0〜1 : 2 5 0、 注入口温度 1 5 0〜 2 5 0 ° (、 初期カラム温度一 1 0〜 1 0 ° (:、 終期カラム 温度 1 5 0〜2 5 0 °C、 検出器温 1 5 0〜2 5 0 °Cの条件で測定した値である。 また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 の熱容量については何ら制限はないが、 燃料電池システム全体としての燃費が良 いことから、 液体で、 1 MJ£^ 1 5 における熱容量が、 2. e k J/k g 以 下が好ましい。
また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 の蒸発潜熱については何ら制限はないが、 燃料電池システム全体としての燃費が 良いことから、 蒸発潜熱が、 4 0 0 K J Zk g以下が好ましい。
これら熱容量及び蒸発潜熱は、 上記したガスクロマトグラフィ一法により定量 された各成分毎の含有量と、 「Technical Data Book-Petroleum ItefiningJの rVol.l,Chap.l General Data, Table 1C1Jに記載されている各成分ごとの単鍾 量当たりの数値を基に計算で求める。
また、 本発明のガソリン自動車及び燃料電池システム兼用燃料において、 燃料 の酸化安定度については何ら制限はないが、 貯蔵安定性の点から、 2 4 0分以上 が好ましい。 ここで、 酸化安定度は J I S K 2 2 8 7 「ガソリン酸化安定度 試験方法 (誘導期間法) 」 によって測定した酸化安定度である。
本発明のガソリン自動車及び燃料電池システム兼用燃料の製造方法については、 特に制限はない。 具体的には例えば、 原油を常圧蒸留して得られるナフサ留分を 脱硫処理した脱硫フルレンジナフサ、 S兑硫フルレンジナフサを更に蒸留処理した 軽質分である脱硫軽質ナフサ、 脱硫フルレンジナフサを更に蒸留処理した重質分 である脱硫重質ナフサ、 脱硫重質ナフサを改質した改質ガソリンを更に蒸留処理 した軽質分である軽質改質ガソリン、 脱硫重質ナフサを改質した改質ガソリンを 更に蒸留処理した中重質分である中重質改質ガソリン、 脱硫重質ナフサを改質し た改質ガソリンを更に蒸留処理した重質分である重質改質ガソリン、 中重質改質 ガソリンをスルフォラン装置にかけて芳香族分を抽出した残りの留分であるスル フォランフィネート、 重油留分を流動接触分解装置にて処理して得られる分解ガ ソリン、 ガソリンを蒸留処理した軽質分である軽質分解ガソリン、 ブタン · ブテン留分をアルキレ一ション装置にかけて得られるガソリン留分であるアルキ レート、 アルキレートを脱硫処理した脱硫アルキレ一ト、 脱硫されたブタン 'ブ テン留分による低硫黄アルキレ一ト、 脱硫重質ナフサを異性化装置にかけて得ら れるガソリン留分である異性化ガソリン、 天然ガス、 石炭等を C Oと Η2に分解 後、 合成 ·分解 ·異性化する等して得られる合成燃料のナフサ分である GT Lナ フサ、 L P G、 L P Gを脱硫処理した脱硫 L P G、 MTB E、 等の基材を 1種ま たは 2種以上を用いて製造される。 また、 上記の基材を 1種または 2種以上を混 合した後に、水素化あるいは吸着等によつて脱硫することによつても製造できる。 上記の燃料において、 硫鈴有量をさらに減少させたい場合、 例えば、 5 0質 量 p pm以下の燃料としたい場合で、 上記方法で得られる燃料の硫 有量をさ らに減少させる必要がある場合、 特に分解ガソリンの場合には、 分解ガソリンか らさらに水素化脱硫装置等を用いて硫黄分を取り除く、 もしくは、 ガソリン を製造する流動接触分解装置 (F C C) の原料油中硫黄分を必要量だけ低下させ る等の処理を行う。 水素化脱硫装置による脱硫の場合、 製油所で用いられる一般 的な水素化脱硫方法では、 ォレフィン分の水素化反応の併発によりオクタン価の 低下があるので、特開平 7— 1 5 7 7 7 4号公報、米国特許第 5 3 5 2 3 5 4号、 米国特許第 6 0 1 3 5 9 8号のようなオクタン価低下の極力少ない方法を用いる のが好ましい。
これらの中でも、 本発明のガソリン自動車及び燃料電池システム兼用燃料の製 造基材として好ましいものとしては、 脱硫軽質ナフサ、 脱硫フルレンジナフサ、 異性化ガソリン、アルキレート、アルキレ一トを脱硫処理した脱硫アルキレート、 脱硫されたブタン ·ブテン留分による低硫黄アルキレート、 スルフォランラフィ ネー卜、 軽質分解ガソリン、 軽質改質ガソリン、 中重質改質ガソリン、 ガソ リンの軽質留分を脱硫処理した脱硫軽質分解ガソリン、 GT Lナフサ、 L P G、 L P Gを脱硫処理した脱硫 L P G、 MTB E等が挙げられる。
本発明の兼用燃料には、 識別のために着色剤、 酸化安定剤向上のために酸化防 止剤、 金属不活性化剤、 腐食防止のための腐食防止剤、 燃料ラインの清浄性維持 のために清浄剤、 潤滑性向上のための潤滑性向上剤等の添加剤を添加することも できる。しかし、 3質触媒の劣化が小さく初期性能が長時間維持できることから、 着色剤は 1 0 p pm以下が好ましく、 5 p pm以下がより好ましい。 同様の理由 により、 酸化防止剤は 3 0 0 p p m以下が好ましく、 2 0 0 p p m以下がより好 ましく、 1 0 O p pm以下が更により好ましく、 1 O p pm以下が最も好ましレ > 同様の理由により、 金属不活性剤は 5 O p pm以下が好ましく、 3 O p pm以下 がより好ましく、 1 0 p pm以下が更により好ましく、 5 p pm以下が最も好ま しい。 また、 同様に改質触媒の劣ィ匕が小さく初期性能を長時間維持できることか ら、 腐食防止剤は 5 O p pm以下が好ましく、 3 O p pm以下がより好ましく、 1 O p pm以下が更により好ましく、 5 p pm以下が最も好ましい。 同様の理由 により、 清、 は 3 0 0 p p m以下が好ましく、 2 0 0 p p m以下がより好まし く、 1 0 0 p pmが最も好ましい。 同様の理由により、 潤滑油向上剤は 3 0 0 p pm以下が好ましく、 2 0 0 p pm以下がより好ましく、 1 0 0 p pm以下が最 も好ましい。
本発明の燃料は、 ガソリン自動車及び燃料電池システム兼用燃料として用いら れる。 本発明でいう自動車用としては車種は何ら制限されない。 また、 本発明で いう燃料電池システムには、 燃料の改質器、 一酸化炭素浄化装置、 燃料電池等が 含まれるが、 本発明の燃料は如何なる燃料電池システムにも好適に用いられる。 燃料の改質器は、 燃料を改質して燃料電池の燃料である水素を得るためのもの である。 改質器としては、 具体的には、 例えば、
( 1 ) 加熱気化した燃料と水蒸気を混合し、 銅、 ニッケル、 白金、 ルテニウム等 の触媒中で加熱反応させることにより、 水素を主成分とする生成物を得る水蒸気
( 2 ) カロ熱気化した燃料を空気と混合し、 銅、 ニッケル、 白金、 ルテニウム等の 触媒中または無触媒で反応させることにより、 水素を主成分とする生成物を得る 部分酸化型改質器、
( 3 ) 加熱気ィ匕した燃料を水蒸気及び空気と混合し、 銅、 ニッケル、 白金、 ルテ ニゥム等の触媒層前段にて、 (2 ) の部分酸化型改質を行ない、 後段にて部分酸 化反応の熱発生を利用して、 ( 1 ) の水蒸気型改質を行なうことにより、 水素を 主成分とする生成物を得る部分酸化 ·水蒸気改質型改質器、 等が挙げられる。 一酸ィ匕炭素浄化装置とは、 上記の改質装置で生成されたガスに含まれ、 燃料電 池の触媒毒となる一酸ィヒ炭素の除去を行なうものであり、 具体的には、
( 1 ) 改質ガスと加熱気化した水蒸気を混合し、 銅、 ニッケル、 白金、 ルテニゥ ム等の触媒中で反応させることにより、 一酸化炭素と水蒸気より二酸化炭素と水 素を生成物として得る水性ガスシフト反応器、
( 2 ) 改質ガスを圧縮空気と混合し、 白金、 ルテニウム等の触媒中で反応させる ことにより、 一酸化炭素を二酸化炭素に変換する選択酸化反応器等が挙げられ、 これらを単独または組み合わせて使用される。
燃料電池としては、 具体的には、例えば、 固体高分子型燃料電池(P E F C)、 リン酸型燃料電池 (P AF C) 、 溶融炭酸塩型燃料電池 (MC F C) 、 固体酸化 物型燃料電池 (S O F C) 等が挙げられる。
燃料電池システムとしては、 発電を主目的とした定置式燃料電池システムゃ自 動車用動力源を主目的とした燃料電池システム (いわゆる燃料電池車) などが挙 げられる。
定置式の場合、 燃料電池システムにて発生する熱を有効に禾 U用するコジエネレ ーションシステム等も考えられ、 工場等用向けの大型なものから家庭用向けの小 型なものまで幅広く検討されている。
今回の兼用燃料の供給できる燃料電池システムとしては、 燃料電池車、 定置式 燃料電池システムを問わない。 定置式燃料電池システムとしてはサービスステー シヨン等に設置した場合、 特に有効である。 .
定置式燃料電池システム専用の燃料タンクをサービスステ一ションに設置する ことなく、 従来のガソリンタンクに兼用燃料を入れることで、 ガソリン自動車、 燃料電池システム両方に燃料が供給できる。 発明を実施するための最良の形態
実施例および比較例の各燃料に用いた基材の性状等を表 4に示す。
5 表 4
Figure imgf000018_0001
6 表 4 ( 続 き )
Figure imgf000019_0001
表 4 ( 続 き )
Figure imgf000020_0001
8 表 4 ( 続 き )
Figure imgf000021_0001
表 4 ( 続 き ) - 脱硫 LPG MTBE エタ ル メタノール DME 八 ノ
LPG留分 ンメチルエー丁 を脱荒した ル
¾の
良 _eppm U. I u.画 Π υ. I U.l
,火1 ノ 糸刮口
yo.u
-f^ yo U.l
o u.u
^表救7 暑 (½ U.U
U.U
^暑 U.U
U.U
飽和分 容量% yy.o
不飽和分 容量% U.O
芳香族分 容量% U.U
飽和分中のパラフィン 容量% l UU
ノ ラフィン中の分枝ハ°ラフィン 容量% fi
酸素質量割合 質量% n u. nu ゥ
蒸留
初留点 °c u .U
10%点 °C
30%点 °C
50%点 °C
70%点 °C
90%点 。C
終点 °C
熱容量 (液体) kJ/kg-°C 2.369 2.075 2.339 2.456 2.510 熱容量 (気体) kJ/kg-°C 1.628 1.477 1.381 1.343 1.389 蒸発潜熱 kJ/kg 379.6 319.7 855.6 1096.8 467.8
RVP kPa 339.0 53.0 15.9 30.0 843.2 リサ-チオクタン価 95.0 118.0 130.0 110.0
酸化安定度 分
? g/cm3 0.5776 0.7456 0.7963 0.7961 0.6709 発熱量 kJ/kg 45689 35171 26824 19916 28840 実施例および比較例に用いた各燃料の性状等を表 5に示す。
表 5
Figure imgf000023_0001
表 5 ( 続 き )
Figure imgf000024_0001
これら各燃料について、 燃料電池システム評価試験、 ガソリン自動車用燃料評 価試験を行なった。 燃料電池システム評価試験
( 1 ) 水蒸気改質型
燃料と水を電気加熱により気化させ、 貴金属系触媒を充填し電気ヒ一ターで所 定の温度に維持した改質器に導き、 水素分に富む改質ガスを発生させた。
改質器の温度は、 試験の初期段階において改質が完全に行なわれる最低の温度 (改質ガスに TH Cが含まれない最低温度) とした。
改質ガスを水蒸気と共に一酸化炭素処理装置 (水性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸化炭素に変換した後、 生成したガスを固体高分子 型燃料電池に導き発電を行なつた。
評価に用いた水蒸気改質型の燃料電池システムのフローチャートを図 1に示す。
( 2 ) 部分酸化型
燃料を電気加熱により気化させ、 予熱した空気と共に貴金属系触媒を充填し電 気ヒ一ターで 1 1 0 0 °Cに維持した改質器に導き、 水素分に富む改質ガスを発生 させた。
改質ガスを水蒸気と共に一酸化炭素処理装置 (7j性ガスシフト反応) に導き、 改質ガス中の一酸化炭素を二酸ィ匕炭素に変換した後、 生成したガスを固体高分子 型燃料電池に導き発電を行なった。
評価に用いた部分酸化型の燃料電池システムのフローチヤ一トを図 2に示す。
( 3 ) 評価方法
面試験開始直後に改質器から発生する改質ガス中の H2、 C O、 C 02、 TH C量について測定を行った。 同じぐ 評価試験開始直後に一酸化炭素処理装置か ら発生する改質ガス中の H2、 C〇、 C 02、 TH C量について測定を行った。 評価試験開始直後および開始 1 0 0時間後の燃料電池における発電量、 燃料消 費量、 並びに燃料電池から排出される C O 2量について測定を行なつた。
各燃料を所定の改質器 にまで導くために要する熱量(予熱量)は、熱容量、 蒸発潜熱から計算した。 また、 これら測定値 ·計算値および燃料発熱量から、 改質触媒の性能劣化割合
(試験開始 100時間後の発電量 Z試験開始直後の発電量) 、 熱効率 (試験開始 直後の発電量 Z燃料発熱量) 、 予熱量割合 (予熱量 Z発電量) を計算した。 ガソリン自動車用燃料としての mi試験
「CRC Re o r t No. 483」 に記載された CRC法に準拠した走 行パターンに従って運転した際の運転性を評価した。 諮面内容は、 表 1に示す評 価項目で発生した表 2に示す現象の程度によって与えられるデメリット評価点数 と、 表 3に示す 面内容に対応する係数とから、 「評価点数」 X 「係数」 を計算 し、 最後に全項目について集計し、 評価した。
各測定値 ·計算値 .評価点を表 6に示す。
表 6
Figure imgf000027_0001
2)電気エネルギー,
3)燃料を所定の改質器温度に導くために必要な熱量
4)予熱量 Z電気エネルギー
産業上の利用性
上記の通り、 特定の組成及び性状の炭化水素化合物からなるガソリン自動車及 び燃料電池システム兼用燃料を燃料電池に用いることにより、 性能劣化割合の少 ない電気エネルギーを高出力で得ることができる他、 燃料電池用として各種性能 を満足する燃料であることが分る。 また、 兼用燃料を既存のガソリン自動車用燃 料の貯蔵装置に貯蔵し、 需要に応じて前記貯蔵装置よりガソリン自動車用または 燃料電池システム用として供給することで、 燃料電池システム専用の燃料夕ンク をサービスステ一ション等に設置することなぐ 従来のガソリンタンクに兼用燃 料を入れることで、ガソリン自動車、燃料電池システム両方に燃料が供給できる。

Claims

請 求 の 範 囲
1 . 硫黄分含有量が 5 0質量 p pm以下であり、 飽和分が 3 0容量%以上で あり、 芳香族分が 5 0容量%以下であり、 ォレフィン分が 3 5容量%以下で あり、 飽和分中のパラフィン分の割合が 6 0容量%以上であり、 パラフィン 分中の分岐型パラフィンの割合が 7 0容量%以上であり、 密度が 0 . 7 8 g / c m3以下であり、 蒸留初留点が 2 4 °C以上 8 0 °C以下、 5 0容量%留出温 度が 6 0 °C以上 1 2 0 °C以下、 9 0容量%留出温度が 1 0 0 °C以上 1 9 0 °C 以下、 蒸留終点が 1 3 0 °C以上 2 3 0 °C以下の蒸留性状であり、 リード蒸気 圧が 1 0 k P a以上 1 0 0 k P a未満であり、 リサーチ法オクタン価が 8 9.
0以上の炭化水素からなることを特徴とするガソリン自動車及び燃料電池シ ステム兼用燃料。
2. C R Cの常温での運転性評価方法に基づく評価点数が 4 0以下であるこ とを特徴とする請求項 1に記載のガソリン自動車及び燃料電池システム兼用 燃料。
3. 炭素数 4の炭化水素化合物の含有量が 1 5容量%以下であり、 炭素数 5 の炭化水素化合物の含有量が 5容量%以上であり、 炭素数 6の炭化水素ィ匕合 物の含有量が 5容量%以上であり、 炭素数 7と炭素数 8の炭化水素化合物の 合計含有量が 2 0容量%以上であり、 炭素数 1 0以上の炭化水素化合物の合 tf^有量が 2 0容量%以下であることを特徴とする請求項 1または 2に記載 のガソリン自動車及び燃料電池システム兼用燃料。
4. 液体で、 1気圧、 1 5 における熱容量が、 2. 6 k J Zk g°C以下で あることを特徴とする請求項 1〜 3何れか 1項に記載のガソリン自動車及び燃料 電池システム兼用燃料。
5. 蒸発潜熱が、 4 0 O K J /k g以下であることを特徴とする請求項 1〜 4の何れか 1項に記載のガソリン自動車及び燃料電池システム兼用燃料。
6. 酸化安定度が、 2 4 0分以上であることを特徴とする請求項 1〜 5の何 れか 1項に記載のガソリン自動車及び燃料電池システム兼用燃料。
7. 請求項 1〜 6の何れか 1項に記載の兼用燃料をガソリン自動車用燃料の 貯蔵装置に貯蔵し、 需要に応じて前記貯蔵装置よりガソリン自動車用または燃料 電池システム用として供給することを特徴とする前記兼用燃料の貯蔵及び Zまた は供給システム。
8. 前記貯蔵装置が既存のハイオクガソリンまたはレギュラーガソリンのい ずれかの貯蔵装置であることを特徴とする請求項 7に記載の兼用燃料の貯蔵及び /または供給システム。
PCT/JP2001/008938 2000-10-11 2001-10-11 Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction WO2002031090A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001294226A AU2001294226A1 (en) 2000-10-11 2001-10-11 Dual purpose fuel for gasoline-driven automobile and fuel cell system, and system for storage and/or supply thereof
JP2002534461A JPWO2002031090A1 (ja) 2000-10-11 2001-10-11 ガソリン自動車及び燃料電池システム兼用燃料、並びにその貯蔵及び/または供給システム
EP01974791A EP1340800A4 (en) 2000-10-11 2001-10-11 DOUBLE-PURPOSE FUEL OR FUEL FOR PETROL ENGINE AND FUEL CELL SYSTEM AND SYSTEM FOR STORING AND / OR DELIVERY THEREOF
US10/398,508 US20030213728A1 (en) 2000-10-11 2001-10-11 Dual purpose fuel for gasoline driven automobile and fuel cell system, and system for storage and/or supply thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-310315 2000-10-11
JP2000310315 2000-10-11

Publications (1)

Publication Number Publication Date
WO2002031090A1 true WO2002031090A1 (fr) 2002-04-18

Family

ID=18790298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008938 WO2002031090A1 (fr) 2000-10-11 2001-10-11 Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction

Country Status (5)

Country Link
US (1) US20030213728A1 (ja)
EP (1) EP1340800A4 (ja)
JP (1) JPWO2002031090A1 (ja)
AU (1) AU2001294226A1 (ja)
WO (1) WO2002031090A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113476A1 (en) * 2003-06-18 2004-12-29 Shell Internationale Research Maatschappij B.V. Gasoline composition
WO2005044959A1 (ja) * 2003-11-07 2005-05-19 Japan Energy Corporation 無鉛ガソリン組成物及びその製造方法
JP2005527082A (ja) * 2002-05-23 2005-09-08 シェブロン・オロナイト・カンパニー・エルエルシー 燃料電池システムの燃料改質装置内の堆積物抑制方法
JP2007016090A (ja) * 2005-07-06 2007-01-25 Japan Energy Corp クリーンガソリン組成物及びその製造方法
JP2010229338A (ja) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd 無鉛ガソリン
JP2010229336A (ja) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd 無鉛ガソリン
JP2017101260A (ja) * 2017-03-06 2017-06-08 東燃ゼネラル石油株式会社 燃料油
JP2021119244A (ja) * 2017-06-07 2021-08-12 コスモ石油株式会社 基材の配合比率の提供方法
US11499107B2 (en) 2018-07-02 2022-11-15 Shell Usa, Inc. Liquid fuel compositions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090035622A1 (en) * 2007-07-31 2009-02-05 Battelle Memorial Institute Systems and methods for reducing organic sulfur components in hydrocarbon fuels
US7988747B2 (en) * 2007-10-31 2011-08-02 Chevron U.S.A. Inc. Production of low sulphur alkylate gasoline fuel
JP5178253B2 (ja) * 2008-03-13 2013-04-10 Jx日鉱日石エネルギー株式会社 予混合圧縮自己着火式エンジン用燃料
EP3741723A1 (en) 2011-09-02 2020-11-25 Battelle Memorial Institute Sweep membrane separator and and fuel processing systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130115A (en) * 1988-01-22 1992-07-14 Nippon Oil Co., Ltd. Process for hydrogen production from kerosene
JPH0971788A (ja) * 1995-09-07 1997-03-18 Cosmo Sogo Kenkyusho:Kk 無鉛高性能ガソリン
JPH11311136A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド自動車およびその駆動装置
WO2001077259A1 (fr) * 2000-04-10 2001-10-18 Nippon Oil Corporation Combustible destine a un dispositif de pile a combustible

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB479345A (en) * 1936-07-29 1938-01-31 Anglo Iranian Oil Co Ltd Improvements relating to the production of motor fuel
GB520564A (en) * 1938-03-11 1940-04-26 Standard Oil Dev Co An improved manufacture of motor fuel
FR2162277B1 (ja) * 1971-12-08 1974-04-05 Shell France
US6884272B2 (en) * 2000-04-10 2005-04-26 Nippon Oil Corporation Fuel for fuel cell system
AU4474401A (en) * 2000-04-10 2001-10-23 Nippon Mitsubishi Oil Corporation Fuel for use in fuel cell
WO2001077262A1 (fr) * 2000-04-10 2001-10-18 Nippon Oil Corporation Combustible s'utilisant dans un système de pile à combustible
US6837909B2 (en) * 2000-04-10 2005-01-04 Nippon Oil Corporation Fuel for use in a fuel cell system
JP4598893B2 (ja) * 2000-04-10 2010-12-15 Jx日鉱日石エネルギー株式会社 燃料電池システム用燃料
JP4598891B2 (ja) * 2000-04-10 2010-12-15 Jx日鉱日石エネルギー株式会社 燃料電池システム用燃料
US6746495B2 (en) * 2000-10-24 2004-06-08 Exxonmobil Research And Engineering Company Method for controlling deposit formation in gasoline direct injection engine by use of a fuel having particular compositional characteristics
US6610197B2 (en) * 2000-11-02 2003-08-26 Exxonmobil Research And Engineering Company Low-sulfur fuel and process of making
US6884531B2 (en) * 2001-05-21 2005-04-26 Saudi Arabian Oil Company Liquid hydrocarbon based fuels for fuel cell on-board reformers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130115A (en) * 1988-01-22 1992-07-14 Nippon Oil Co., Ltd. Process for hydrogen production from kerosene
JPH0971788A (ja) * 1995-09-07 1997-03-18 Cosmo Sogo Kenkyusho:Kk 無鉛高性能ガソリン
JPH11311136A (ja) * 1998-04-28 1999-11-09 Hitachi Ltd ハイブリッド自動車およびその駆動装置
WO2001077259A1 (fr) * 2000-04-10 2001-10-18 Nippon Oil Corporation Combustible destine a un dispositif de pile a combustible

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1340800A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005527082A (ja) * 2002-05-23 2005-09-08 シェブロン・オロナイト・カンパニー・エルエルシー 燃料電池システムの燃料改質装置内の堆積物抑制方法
CN100357405C (zh) * 2003-06-18 2007-12-26 国际壳牌研究有限公司 汽油组合物
WO2004113476A1 (en) * 2003-06-18 2004-12-29 Shell Internationale Research Maatschappij B.V. Gasoline composition
US7597724B2 (en) 2003-06-18 2009-10-06 Shell Oil Company Gasoline composition
KR101114742B1 (ko) * 2003-11-07 2012-02-29 제이엑스 닛코닛세키에너지주식회사 무연 가솔린 조성물 및 그의 제조 방법
JP2008156663A (ja) * 2003-11-07 2008-07-10 Japan Energy Corp 無鉛ガソリン組成物及びその製造方法
WO2005044959A1 (ja) * 2003-11-07 2005-05-19 Japan Energy Corporation 無鉛ガソリン組成物及びその製造方法
JP4932257B2 (ja) * 2003-11-07 2012-05-16 Jx日鉱日石エネルギー株式会社 無鉛ガソリン組成物及びその製造方法
JP2007016090A (ja) * 2005-07-06 2007-01-25 Japan Energy Corp クリーンガソリン組成物及びその製造方法
JP2010229338A (ja) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd 無鉛ガソリン
JP2010229336A (ja) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd 無鉛ガソリン
JP2017101260A (ja) * 2017-03-06 2017-06-08 東燃ゼネラル石油株式会社 燃料油
JP2021119244A (ja) * 2017-06-07 2021-08-12 コスモ石油株式会社 基材の配合比率の提供方法
JP7312211B2 (ja) 2017-06-07 2023-07-20 コスモ石油株式会社 基材の配合比率の提供方法
US11499107B2 (en) 2018-07-02 2022-11-15 Shell Usa, Inc. Liquid fuel compositions

Also Published As

Publication number Publication date
EP1340800A1 (en) 2003-09-03
EP1340800A4 (en) 2004-10-06
AU2001294226A1 (en) 2002-04-22
JPWO2002031090A1 (ja) 2004-02-19
US20030213728A1 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
WO2002031090A1 (fr) Combustible a double fonction pour automobile a essence et systeme de pile a combustible, et systeme de stockage et/ ou de distribution de combustible a double fonction
JP4598894B2 (ja) 燃料電池システム用燃料
US6958117B2 (en) Fuel for use in a fuel cell system
EP1273651A1 (en) Fuel for use in fuel cell system
JP4598893B2 (ja) 燃料電池システム用燃料
US6837909B2 (en) Fuel for use in a fuel cell system
JP2002080868A (ja) 燃料電池システム用燃料
US6884272B2 (en) Fuel for fuel cell system
JP4598891B2 (ja) 燃料電池システム用燃料
JPWO2002046334A1 (ja) 混合ガソリン、並びにその貯蔵及び/または供給システム
JPWO2001077260A1 (ja) 燃料電池システム用燃料
JP2002275481A (ja) 炭化水素系燃料組成物
US7141084B2 (en) Fuel for fuel cell system
JP4598897B2 (ja) 燃料電池システム用燃料
JP2002083626A (ja) 燃料電池システム用燃料
US20060133992A1 (en) Hydrocarbon fuel processor and fuel useable therein
JP4598896B2 (ja) 燃料電池システム用燃料
JP2002083625A (ja) 燃料電池システム用燃料
JP2004027083A (ja) 水素製造用燃料

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002534461

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10398508

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001974791

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001974791

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001974791

Country of ref document: EP