WO2002029212A1 - Abgasanlage einer brennkraftmaschine mit katalysator - Google Patents

Abgasanlage einer brennkraftmaschine mit katalysator Download PDF

Info

Publication number
WO2002029212A1
WO2002029212A1 PCT/EP2001/009897 EP0109897W WO0229212A1 WO 2002029212 A1 WO2002029212 A1 WO 2002029212A1 EP 0109897 W EP0109897 W EP 0109897W WO 0229212 A1 WO0229212 A1 WO 0229212A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust system
cooling section
supply line
gas supply
Prior art date
Application number
PCT/EP2001/009897
Other languages
English (en)
French (fr)
Inventor
Michael Zillmer
Ekkehard Pott
Karsten Michels
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to EP01969658A priority Critical patent/EP1327058A1/de
Priority to JP2002532767A priority patent/JP2004510906A/ja
Priority to US10/398,127 priority patent/US6854267B2/en
Publication of WO2002029212A1 publication Critical patent/WO2002029212A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2046Periodically cooling catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/05Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of air, e.g. by mixing exhaust with air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • F01N2260/022Exhaust treating devices having provisions not otherwise provided for for cooling the device using air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust system of an internal combustion engine, in particular a motor vehicle, with a catalytic converter, in particular a NOx storage catalytic converter, a cooling section being provided in front of the catalytic converter, according to the preamble of claim 1.
  • NOx storage catalytic converters are increasingly being used for converting nitrogen oxides in gasoline engines with direct fuel injection. Since sufficiently high conversion rates can only be achieved in relatively narrow exhaust gas temperature windows, it is necessary to match the engine operation and the catalytic converter system so that the exhaust gas temperatures at the entry into the storage catalytic converter are as far as possible within the temperature window for a large operating range.
  • DE 199 05 345 A1 discloses an exhaust gas aftertreatment device for a motor vehicle for treating the exhaust gas flow of an internal combustion engine with a three-way catalytic converter and a downstream NOx trap. The exhaust gas is conducted between the three-way catalytic converter and the NOx trap via sensitive parallel paths with a temperature change path that has a continuous flow.
  • the present invention is therefore based on the object of providing an exhaust gas system of the type mentioned above, in which the upper temperature limit is prevented as far as possible for the entire lean operating range of the internal combustion engine with little effort.
  • This object is achieved according to the invention by an exhaust system of the type mentioned above with the features characterized in claim 1.
  • Advantageous embodiments of the invention are specified in the dependent claims.
  • the cooling section is of a multi-flow design in a suitable form and / or is provided with additional coolants, as a result of which, in all the respective operating phases of the internal combustion engine with different exhaust gas mass flows, there is a thermal energy output from the exhaust gas based on the thermal energy contained in the exhaust gas (relative thermal energy output) elevated.
  • the additional coolants comprise ribs which are arranged on the outside of the cooling section, are distributed uniformly over the circumference and project outwards.
  • the additional coolants comprise at least one exhaust gas supply line designed as a heat exchanger, which has an ovality that changes in the longitudinal direction.
  • a further increase in surface area and improved turbulence formation is achieved in that the additional coolants comprise at least one exhaust gas supply line which is corrugated in the longitudinal direction.
  • the additional coolants comprise at least one exhaust gas supply line with inwardly extending impressions, both an increase in the surface area of the heat transfer surface and a turbulence formation of the exhaust gas flow flowing through is achieved.
  • the additional coolants comprise at least one exhaust gas supply line with internal beads, which are optionally inclined in the flow direction.
  • the additional coolants comprise at least one exhaust gas supply line having an n-square, rectangular, triangular, semicircular or semi-oval cross section.
  • a further increase in the heat dissipation from the exhaust gas is achieved in that the additional coolants have at least one coating arranged in the region of the cooling section, which promotes heat dissipation and / or the additional coolants comprise a device for supplying the cooling section with an outside air flow.
  • 1 is a graphical representation of a relative heat dissipation and a temperature drop as a function of an exhaust gas mass flow or a vehicle speed
  • 3a shows a further graphical representation of a relative heat dissipation and a temperature drop as a function of an exhaust gas mass flow
  • 3b is a table of values for the graph of FIG. 3a
  • FIGS. 4, 6, 8, 10 and 12. 1 shows qualitatively in curve (a) the temperature drop occurring over a conventional exhaust system as a function of the exhaust gas mass flow or the vehicle speed. This shows a typical course for the temperature reduction (dashed), which initially increases from low to medium exhaust gas mass flows and then decreases again to high exhaust gas mass flows.
  • the cooling effect of the exhaust system is now optimally matched to the operating behavior of the vehicle with a direct-injection gasoline engine.
  • the illustrated, multi-flow cooling section 112 (FIG. 1) comprises a plurality of exhaust gas supply lines 114. Exhaust gas flows in at 116 and exhaust gas flows out at 118.
  • the area with the greatest cooling effect occurs when the exhaust gas temperature upstream of the catalytic converter 113, which is designed, for example, as a NOx storage catalytic converter, has just reached the upper temperature limit for lean operation.
  • the exhaust gas temperatures are typically in a range from approx. 400 ° C to 550 ° C, which corresponds to a speed range of approx. 60 km / h to 160 km / h depending on the engine-transmission-vehicle combination (constant travel in the plane ).
  • the heat dissipated via the tube walls is also plotted in relation to the total heat contained in the exhaust gas (relative heat dissipation) (solid lines 122). It is characteristic that this decreases with increasing exhaust gas mass flow (increasing driving speed) for all variants.
  • FIG. 3a and 3b measured values of a preferred embodiment of an exhaust system according to the invention are shown graphically and in tabular form.
  • the exhaust gas temperature drop that occurs over the cooling section 112 as a function of the exhaust gas mass flow (vehicle speed) is plotted in FIG. 3a.
  • the maximum exhaust gas temperature reduction is achieved in front of the NOx storage catalytic converter 113 in the desired speed range.
  • the determined course of the relative heat dissipation is also plotted.
  • FIGS. 4 to 13 Various possibilities for additional coolants are shown in FIGS. 4 to 13.
  • the exhaust gas supply line 12 designed as a heat exchanger 14 according to FIGS. 4 and 5 is provided with ribs 33 which are arranged on the outside, are uniformly distributed over the circumference and project outwards.
  • the ribs 33 serve to increase the surface area of the heat transfer surface of the exhaust gas supply line 12 and thus to improve heat transfer to the surroundings.
  • FIGS. 6, 7 show an exhaust gas supply line 12 designed as a heat exchanger 14, which has an ovality that changes in the longitudinal direction. This leads both to an increase in surface area and to turbulence formation of the exhaust gas stream flowing through the exhaust gas supply line 12.
  • Figures 8, 9 one in Wavy exhaust gas supply line 12 shown in the longitudinal direction.
  • FIGS. 10, 11 show an increase in surface area and turbulence formation of the exhaust gas flow in the exhaust gas feed line 12 which is circumferentially provided with indentations 34 which extend inwards, as a result of which both an increase in the surface area of the heat transfer surface and turbulence formation of the exhaust gas stream flowing through is obtained.
  • Figures 12, 13 show an exhaust gas supply line 12 which is provided with beads 35 on the inside, the beads 35 also being able to be inclined in the direction of flow. The beads 35 serve to create turbulence in the exhaust gas flow in the exhaust gas supply line 12 and at the same time enable the surface area of the heat transfer surface of the exhaust gas supply line 12 to be enlarged.
  • the exhaust gas supply lines 12 designed as heat exchangers 14 for increasing the turbulence in cross section can also be designed as n-angular, rectangular, triangular, semicircular or semi-oval tubes.
  • the turbulence generation in the exhaust gas supply lines 12 designed as a heat exchanger 14 serves in particular to increase the heat transfer from the hot exhaust gas to the outer wall of the corresponding exhaust gas supply line 12.
  • turbulence formation of the exhaust gas in the exhaust gas supply line 12 results in a temperature stratification which forms with increasing line length, that is to say the Formation of an external cold exhaust gas flow and an internal hot exhaust gas flow is prevented.
  • the exhaust gas supply lines designed as heat exchangers 14 can be provided with a coating which promotes heat dissipation and / or their optionally structured outer surface can be acted upon by an outside air flow which promotes heat dissipation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Die Erfindung betrifft Abgasanlage (110) einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einem Katalysator (113), insbesondere einem NOx-Speicherkatalysator, wobei vor dem Katalysator (113) eine Kühlstrecke (112) vorgesehen ist. Hierbei umfasst die Kühlstrecke (112) mehrere separate Abgasleitungen (114) und/oder sind an dieser zusätzliche Kühlmittel (33; 34; 36) derart vorgesehen, dass sich in allen jeweiligen Betriebsphasen der Brennkraftmaschine mit unterschiedlichen Abgasmassenströmen eine Wärmeenergieabgabe aus dem Abgas bezogen auf die im Abgas enthaltene Wärmeenergie (relative Wärmeenergieabgabe) derart erhöht, dass sich für mittlere Werte des Abgasmassenstroms eine maximale Temperaturabsenkung einstellt.

Description

Abgasanlage einer Brennkraftmaschine mit Katalysator
Die Erfindung betrifft eine Abgasanlage einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einem Katalysator, insbesondere einem NOx-Speicherkatalysator, wobei vor dem Katalysator eine Kühlstrecke vorgesehen ist, gemäß dem Oberbegriff des Anspruchs 1.
Für Ottomotoren mit direkter Kraftstoffeinspritzung werden zur Stickoxidkonvertierung zunehmend NOx-Speicherkatalysatoren eingesetzt. Da damit ausreichend hohe Konvertierungsraten nur in relativ schmalen Abgastemperaturfenstern erreicht werden, ist es erforderlich, den Motorbetrieb und das Katalysatorsystem so aufeinander abzustimmen, daß die Abgastemperaturen am Eintritt in den Speicherkatalysator möglichst für einen großen Betriebsbereich innerhalb des Temperaturfensters liegen.
Um eine Überschreitung der oberen Temperaturgrenzen zu verhindern, ist der Einsatz von Abgasanlagen mit einer Kühlstrecke sinnvoll, wobei diese Kühlstrecke die Abgastemperatur gezielt absenkt. Damit wird gleichzeitig die thermische Belastung des Katalysatorsystems abgesenkt und somit die Lebensdauer erhöht. So ist beispielsweise aus der DE 199 05 345 A1 eine Abgasnachbehandlungseinrichtung für ein Kraftfahrzeug zur Behandlung des Abgasstromes eines Verbrennungsmotors mit einem Dreiwege- Katalysator und einer nachgeordneten NOx-Falle bekannt. Zwischen dem Dreiwege- Katalysator und der NOx-Falle wird das Abgas über sensitive Parallelpfade mit kontinuierlichem Fluß aufweisenden Temperaturänderungsweg geführt. Hierdurch wird erreicht, daß schneller strömendes Abgas überwiegend über einen Weg mit höherer Wärmeenergieabgabe und langsam strömendes Abgas überwiegend über einen Weg mit niedrigerer Wärmeenergieabgabe strömt, so daß die Temperatur vor der NOx-Falle in einem vorgegebenen Fenster gehalten werden kann. Durch diese Maßnahme wird für niedrige Abgasmassenströme eine relative Wärmeabgabe (Wärmeabgabe bezogen auf die gesamte im Abgas enthaltene Wärme) reduziert, während diese relative Wärmeabgabe für hohe Abgasmassenströme erhöht wird. Diese Anordnung ist jedoch aufwendig und kostenintensiv, vor allem bei ggf. erforderlichen Wartungsarbeiten oder Reparaturen.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Abgasanlage der obengenannten Art zur Verfügung zu stellen, bei der mit geringem Aufwand die Überschreitung der oberen Temperaturgrenze möglichst für den gesamten Magerbetriebsbereich der Brennkraftmaschine verhindert wird. Diese Aufgabe wird erfindungsgemäß durch eine Abgasanlage der o. g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
Dazu ist es erfindungsgemäß vorgesehen, daß die Kühlstrecke in geeigneter Form mehrflutig ausgeführt und/oder mit zusätzlichen Kühlmitteln versehen ist, wodurch sich in allen jeweiligen Betriebsphasen der Brennkraftmaschine mit unterschiedlichen Abgasmassenströmen eine Wärmeenergieabgabe aus dem Abgas bezogen auf die im Abgas enthaltene Wärmeenergie (relative Wärmeenergieabgabe) erhöht.
Dies hat den Vorteil, daß ein Maximum einer Temperaturabsenkung durch die Kühlstrecke bezogen auf den Nennleistungspunkt bei mittleren Werten des Abgasmassenstroms liegt, so daß die stärkste Kühlwirkung dann auftritt, wenn die Abgastemperaturen vor dem Katalysator gerade die obere Temperaturgrenze für einen Magerbetrieb erreichen. Durch zusätzliche Kühlmittel kann das Maximum der Temperaturabsenkung zu höheren Abgasmassenströmen verschoben und dadurch optimal auf das Motorbetriebsverhalten abgestimmt werden.
Zur Oberflächenvergrößerung einer Wärmeübergangsfläche umfassen die zusätzlichen Kühlmittel außen an der Kühlstrecke angeordnete, umfangsförmig gleichmäßig verteilte und nach außen abstehende Rippen.
Zur Oberflächenvergrößerung wie auch zur Turbulenzbildung mit der Folge eines höheren Wärmeübergangs vom Abgas an die Umgebung umfassen die zusätzlichen Kühlmittel wenigstens eine als Wärmetauscher ausgebildete Abgaszuführleitung, welche eine in Längserstreckung wechselnde Ovalität aufweist.
Eine weitere Oberflächenvergrößerung und verbesserte Turbulenzbildung wird dadurch erzielt, daß die zusätzlichen Kühlmittel wenigstens eine in Längsrichtung wellenförmige Abgaszuführleitung umfassen.
Dadurch, daß die zusätzlichen Kühlmittel wenigstens eine Abgaszuführleitung mit nach innen sich erstreckenden Eindrücken umfassen, wird sowohl eine Oberflächenvergrößerung der Wärmeübertragungsfläche als auch eine Turbulenzbildung des durchströmenden Abgasstromes erzielt. Zur Turbulenzbildung des Abgasstromes in der Kühlstrecke sowie zur gleichzeitigen Oberflächenvergrößerung umfassen die zusätzlichen Kühlmittel wenigstens eine Abgaszuführleitung mit inneren Sicken, welche optional in Durchflußrichtung schräg gestellt sind.
In einer besonders bevorzugten Ausführungsform umfassen die zusätzlichen Kühlmittel wenigstens eine im Querschnitt n-eckig, rechteckige, dreieckige, halbrunde oder halb ovalförmige Abgaszuführleitung.
Eine weitere Erhöhung der Wärmeabfuhr aus dem Abgas wird dadurch erzielt, daß die zusätzlichen Kühlmittel wenigstens eine im Bereich der Kühlstrecke angeordnete Beschichtung aufweisen, welche eine Wärmeabfuhr begünstigt und/oder die zusätzlichen Kühlmittel eine Einrichtung zum Beaufschlagen der Kühlstrecke mit einem Außenluftstrom umfassen.
Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfindung anhand der beigefügten Zeichnungen. Diese zeigen in
Fig. 1 eine graphische Darstellung einer relativen Wärmeabfuhr sowie einer Temperaturabsenkung in Abhängigkeit von einem Abgasmassenstrom bzw. einer Fahrzeuggeschwindigkeit,
Fig. 2 eine bevorzugte Ausführungsform einer erfindungsgemäßen Abgasanlage,
Fig. 3a eine weitere graphische Darstellung einer relativen Wärmeabfuhr sowie einer Temperaturabsenkung in Abhängigkeit von einem Abgasmassenstrom,
Fig. 3b eine Wertetabelle für die Graphik gemäß Fig. 3a,
Fig. 4, 6,
8, 10, 12 jeweils schematische Seitenansichten verschiedener Ausführungsformen einer als Wärmetauscher ausgebildeten Abgaszuführleitung, und
Fig. 5, 7,
9, 11 , 13 jeweils schematische Frontalansicht der Abgaszuführleitung gemäß den Figuren 4, 6, 8, 10 und 12. Fig. 1 veranschaulicht qualitativ in der Kurve (a) die über einer konventionellen Abgasanlage auftretende Temperaturabsenkung in Abhängigkeit von dem Abgasmassenstrom bzw. von der Fahrzeuggeschwindigkeit. Dabei zeigt sich für die Temperaturabsenkung (gestrichelt) ein typischer Verlauf, der von niedrigen zu mittleren Abgasmassenströmen zunächst ansteigt und anschließend zu hohen Abgasmassenströmen hin wieder abnimmt. Durch die Erfindung wird nun die Kühlungswirkung der Abgasanlage optimal auf das Betriebsverhalten des Fahrzeuges mit direkt einspritzendem Ottomotor abgestimmt. Hierzu wird die in Fig. 2 dargestellte Abgasanlage 110 mehrflutig ausgeführt und/oder mit zusätzlichen Kühlmitteln im Bereich der Kühlstrecke 112 vor einem Katalysator 113 versehen, um die Wärmeabfuhr (durchgezogene Linien in Fig. 1) insgesamt zu erhöhen. Dies ist durch die Kurven (b) und (c) in Fig. 1 veranschaulicht. Die dargestellte, mehrflutige Kühlstrecke 112 (Fig. 1) umfaßt mehrere Abgaszuführieitungen 114. Bei 116 strömt Abgas ein und bei 118 strömt Abgas ab.
Es ist vorteilhaft, daß der Bereich der stärksten Kühlungswirkung dann auftritt, wenn die Abgastemperatur vor dem beispielsweise als NOx-Speicherkatalysator ausgebildeten Katalysator 113 gerade die obere Temperaturgrenze für den Magerbetrieb erreicht. Dabei liegen die Abgastemperaturen typischerweise in einem Bereich von ca. 400 °C bis 550 °C, was abhängig von der Motor-Getriebe-Fahrzeug-Kombination einem Geschwindigkeitsbereich von ca. 60 km/h bis 160 km/h entspricht (Konstantfahrt in der Ebene).
Für das erfindungsgemäße Kühlverhalten werden bei der Auslegung der Abgasanlage folgende Punkte aufeinander abgestimmt:
1. Größe der wärmeabgebenden Oberfläche durch Anzahl der Rohre sowie deren Durchmesser und Länge.
2. Vergrößerung des inneren Wärmeübergangs, beispielsweise durch Turbulenzerhöhung.
3. Verbesserung des äußeren Wärmeübergangskoeffizienten durch gezielte Anströmung mit Luft, beispielsweise Fahrtwind, über Luftleitelemente bzw. Luftleitkanäle oder Gebläse. 4. Erhöhung der Strahlungswärmeabfuhr, beispielsweise durch spezielle Oberflächenbeschichtungen.
Dadurch wird nicht nur das absolute Kühlungsniveau erhöht, sondern auch der Punkt bzw. der Bereich der maximalen Kühlungswirkung (Punkte 120 in Fig. 1) zu höheren Abgasmassenströmen (höheren Fahrzeuggeschwindigkeiten) verschoben. Dies ist bei vorgegebener wärmeabgebender Oberfläche insbesondere deshalb vorteilhaft, da damit das Kaltstartverhalten nur geringfügig negativ beeinflußt wird. Hier soll ein möglichst schnelles Aufheizen des Katalysators erfolgen, was eine möglichst geringe Wärmeabfuhr über die Abgasanlage und eine möglichst geringe thermisch träge Masse erfordert. Außerdem wird dadurch vermieden, daß der Katalysator bei sehr niedrigen Fahrgeschwindigkeiten (und zusätzlich geringen Umgebungstemperaturen) zu schnell das untere Arbeitsfenster wieder verläßt.
In Fig. 1 ist zusätzlich die über die Rohrwände abgeführte Wärme bezogen auf die gesamte im Abgas enthaltene Wärme (relative Wärmeabfuhr) aufgetragen (durchgezogene Linien 122). Charakteristisch ist, daß diese mit zunehmendem Abgasmassenstrom (zunehmender Fahrgeschwindigkeit) für alle Varianten abnimmt.
In Fig. 3a und 3b sind Meßwerte von einer bevorzugten Ausführungsform einer erfindungsgemäßen Abgasanlage graphisch und tabellarisch dargestellt. Hierbei ist in Fig. 3a die über die Kühlstrecke 112 auftretende Abgastemperaturabsenkung in Abhängigkeit vom Abgasmassenstrom (Fahrzeuggeschwindigkeit) aufgetragen. Wie unmittelbar ersichtlich, wird im gewünschten Geschwindigkeitsbereich die maximale Abgastemperaturabsenkung vor dem NOx-Speicherkatalysator 113 erzielt. Weiterhin ist der ermittelte Verlauf der relativen Wärmeabfuhr aufgetragen.
In den Figuren 4 bis 13 sind verschiedene Möglichkeiten für zusätzliche Kühlmittel dargestellt. Die als Wärmetauscher 14 ausgebildete Abgaszuführleitung 12 gemäß den Figuren 4 und 5 ist mit außen angeordneten, umfangsförmig gleichmäßig verteilten und nach außen abstehenden Rippen 33 versehen. Die Rippen 33 dienen zur Oberflächenvergrößerung der Wärmeübertragungsfläche der Abgaszuführleitung 12 und somit zu einer verbesserten Wärmeübertragung an die Umgebung. Die Figuren 6, 7 zeigen eine als Wärmetauscher 14 ausgebildete Abgaszuführleitung 12, welche eine in Längserstreckung wechselnde Ovalität aufweist. Dies führt sowohl zu einer Oberflächenvergrößerung als auch zu einer Turbulenzbildung des durch die Abgaszuführleitung 12 strömenden Abgasstromes. In den Figuren 8, 9 ist eine in Längsrichtung wellenförmige Abgaszuführieitung 12 dargestellt. Auch hier wird eine Oberflächenvergrößerung und eine Turbulenzbildung des Abgasstromes in der Abgaszuführieitung 12 erhalten. Die Abgaszuführieitung 12 gemäß den Figuren 10, 11 ist umfangsförmig mit nach innen sich erstreckenden Eindrückungen 34 versehen, wodurch sowohl eine Oberflächenvergrößerung der Wärmeübertragungsfläche als auch eine Turbulenzbildung des durchströmenden Abgasstromes erhalten wird. Die Figuren 12, 13 zeigen eine Abgaszuführieitung 12, welche im Innern mit Sicken 35 versehen ist, wobei die Sicken 35 in Durchflussrichtung auch schräggestellt sein können. Die Sicken 35 dienen zu einer Turbulenzbildung des Abgasstromes in der Abgaszuführieitung 12 und ermöglichen gleichzeitig eine Oberflächenvergrößerung der Wärmeübertragungsfläche der Abgaszuführieitung 12.
Gemäß einer nicht dargestellten Ausführungsform können die als Wärmetauscher 14 ausgebildeten Abgaszuführieitungen 12 zur Turbulenzerhöhung im Querschnitt auch als n-eckige, rechteckige, dreieckige, halbrunde oder halb ovalförmige Rohre ausgebildet sein. Dabei dient die Turbulenzerzeugung in den als Wärmetauscher 14 ausgebildeten Abgaszuführieitungen 12 insbesondere zur Erhöhung des Wärmeübergangs vom heißen Abgas an die Außenwandung der entsprechenden Abgaszuführieitung 12. Ferner wird durch eine Turbulenzbildung des Abgases in der Abgaszuführieitung 12 eine sich mit zunehmender Leitungslänge ausbildende Temperaturschichtung, das heißt die Bildung einer äußeren kalten Abgasströmung und einer inneren heißen Abgasströmung, verhindert.
Gemäß einer weiteren, nicht dargestellten Ausführungsform können die als Wärmetauscher 14 ausgebildeten Abgaszuführieitungen mit einer die Wärmeabfuhr begünstigenden Beschichtung versehen sein und/oder deren gegebenenfalls strukturierte Außenfläche mit einem die Wärmeabfuhr begünstigenden Außenluftstrom beaufschlagt werden.

Claims

PAT E N TA N S P RÜ C H E
1. Abgasanlage (110) einer Brennkraftmaschine, insbesondere eines Kraftfahrzeuges, mit einem Katalysator (113), insbesondere einem NOx-Speicherkatalysator, wobei vor dem Katalysator (113) eine Kühlstrecke (112) vorgesehen ist, dadurch gekennzeichnet, daß die Kühlstrecke (112) mehrere separate Abgasleitungen (114) umfaßt und/oder an dieser zusätzliche Kühlmittel (33; 34; 36) derart vorgesehen sind, daß sich in allen jeweiligen Betriebsphasen der Brennkraftmaschine mit unterschiedlichen Abgasmassenströmen eine Wärmeenergieabgabe aus dem Abgas bezogen auf die im Abgas enthaltene Wärmeenergie (relative Wärmeenergieabgabe) derart erhöht, daß sich für mittlere Werte des Abgasmassenstroms eine maximale Temperaturabsenkung einstellt.
2. Abgasanlage (110) nach Anspruch 1 , dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel außen an der Kühlstrecke (112) angeordnete, umfangsförmig gleichmäßig verteilte und nach außen abstehende Rippen umfassen.
3. Abgasanlage (110) nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel wenigstens eine als Wärmetauscher ausgebildete Abgaszuführieitung umfassen, welche eine in Längserstreckung wechselnde Ovalität aufweist.
4. Abgasanlage (110) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel wenigstens eine in Längsrichtung wellenförmige Abgaszuführieitung umfassen.
5. Abgasanlage (110) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel wenigstens eine Abgaszuführieitung mit nach innen sich erstreckenden Eindrückungen (34) umfassen.
6. Abgasanlage (110) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel wenigstens eine Abgaszuführieitung mit inneren Sicken (35) umfassen.
7. Abgasanlage (110) nach Anspruch 6, dadurch gekennzeichnet, daß die Sicken in Durchflußrichtung schräg gestellt sind.
8. Abgasanlage (110) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel wenigstens eine im Querschnitt n-eckig, rechteckige, dreieckige, halbrunde oder halb ovalförmige Abgaszuführieitung umfassen.
9. Abgasanlage (110) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel wenigstens eine im Bereich der Kühlstrecke angeordnete Beschichtung aufweisen, welche eine Wärmeabfuhr begünstigt.
10. Abgasanlage (110) nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die zusätzlichen Kühlmittel eine Einrichtung zum Beaufschlagen der Kühlstrecke mit einem Außenluftstrom umfassen.
PCT/EP2001/009897 2000-09-30 2001-08-28 Abgasanlage einer brennkraftmaschine mit katalysator WO2002029212A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01969658A EP1327058A1 (de) 2000-09-30 2001-08-28 Abgasanlage einer brennkraftmaschine mit katalysator
JP2002532767A JP2004510906A (ja) 2000-09-30 2001-08-28 触媒装置を有する内燃機関の排気ガス装置
US10/398,127 US6854267B2 (en) 2000-09-30 2001-08-28 Exhaust gas system of an internal combustion engine with a catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10048580A DE10048580A1 (de) 2000-09-30 2000-09-30 Abgasanlage einer Brennkraftmaschine mit Katalysator
DE10048580.4 2000-09-30

Publications (1)

Publication Number Publication Date
WO2002029212A1 true WO2002029212A1 (de) 2002-04-11

Family

ID=7658282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/009897 WO2002029212A1 (de) 2000-09-30 2001-08-28 Abgasanlage einer brennkraftmaschine mit katalysator

Country Status (6)

Country Link
US (1) US6854267B2 (de)
EP (1) EP1327058A1 (de)
JP (1) JP2004510906A (de)
CN (1) CN1466651A (de)
DE (1) DE10048580A1 (de)
WO (1) WO2002029212A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345212B2 (en) 2016-08-01 2022-05-31 Volkswagen Aktiengesellschaft Air conditioning device for a motor vehicle and method for its operation

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10161398A1 (de) * 2001-12-13 2003-06-18 Volkswagen Ag Verfahren und Vorrichtung zum Kühlen einer Katalysatoreinrichtung
US20070135875A1 (en) 2002-04-08 2007-06-14 Ardian, Inc. Methods and apparatus for thermally-induced renal neuromodulation
DE10258850A1 (de) * 2002-12-17 2004-07-08 Volkswagen Ag Vorrichtung zur Nachbehandlung von Abgasen einer Brennkraftmaschine
SE525197C2 (sv) * 2003-06-18 2004-12-21 Volvo Lastvagnar Ab Anordning för reglering av temperaturen hos avgaser från ett avgassystem försett med aktivt regenererbart filter
DE10343468B4 (de) * 2003-09-19 2010-07-08 Audi Ag Abgaskühler für eine Abgasanlage einer Brennkraftmaschine eines Fahrzeuges, insbesondere eines Kraftfahrzeuges
US7628012B2 (en) * 2007-10-12 2009-12-08 International Truck Intellectual Property Company, Llc Exhaust temperature reduction device for aftertreatment devices
EP1911943B1 (de) 2006-10-13 2010-12-22 GM Global Technology Operations, Inc. Abgaskühlungsvorrichtung
DE202006021241U1 (de) 2006-10-13 2014-02-27 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Abgaskühlungsvorrichtung
JP4871107B2 (ja) * 2006-12-06 2012-02-08 ヤマハ発動機株式会社 鞍乗り型車両
WO2010098988A2 (en) * 2009-02-26 2010-09-02 Emcon Technologies Llc Temperature and flow control of exhaust gas for thermoelectric units
CN102536389A (zh) * 2010-12-31 2012-07-04 陈温乐 车辆排放废气低温瞬态净化处理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004915A2 (en) * 1987-11-17 1989-06-01 Yamato Kogyo Company, Limited Automotive exhaust system with resin muffler associated with exhaust gas cooling system
DE4410022A1 (de) * 1994-03-23 1995-10-05 Siemens Ag Abgasreinigungsanlage für eine Brennkraftmaschine
EP0839995A1 (de) * 1996-11-05 1998-05-06 Degussa Aktiengesellschaft Abgasreinigungskonverter
DE19742762C1 (de) * 1997-09-27 1998-12-10 Ford Global Tech Inc Abgasanlage für einen Verbrennungsmotor
US5983628A (en) * 1998-01-29 1999-11-16 Chrysler Corporation System and method for controlling exhaust gas temperatures for increasing catalyst conversion of NOx emissions
EP1031708A1 (de) * 1999-02-25 2000-08-30 HEINRICH GILLET GMBH & CO. KG Modul für Abgasanlagen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251564A (en) * 1990-04-26 1993-10-12 Rim Julius J Combustion box exhaust filtration system and method
DE4109227A1 (de) * 1991-03-21 1992-09-24 Schwaebische Huettenwerke Gmbh Abgasfilter und/oder katalysator
US5687565A (en) * 1995-11-29 1997-11-18 Amoco Corporation Control of exhaust emissions from an internal combustion engine
US5979159A (en) 1998-03-16 1999-11-09 Ford Global Technologies, Inc. Exhaust after-treatment system for automotive vehicle
SE519240C2 (sv) * 1998-11-20 2003-02-04 Volvo Personvagnar Ab Arrangemang vid förbränningsmotor innefattandes en värmeväxlare för anpassning av temperaturen hos avgaser vilka ska passera en NOx-adsorberande katalysator
JP2003516493A (ja) * 1999-12-08 2003-05-13 フオルクスワーゲン・アクチエンゲゼルシヤフト 燃焼エンジンから触媒装置、特に貯蔵触媒装置へ排気ガスを供給するための装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004915A2 (en) * 1987-11-17 1989-06-01 Yamato Kogyo Company, Limited Automotive exhaust system with resin muffler associated with exhaust gas cooling system
DE4410022A1 (de) * 1994-03-23 1995-10-05 Siemens Ag Abgasreinigungsanlage für eine Brennkraftmaschine
EP0839995A1 (de) * 1996-11-05 1998-05-06 Degussa Aktiengesellschaft Abgasreinigungskonverter
DE19742762C1 (de) * 1997-09-27 1998-12-10 Ford Global Tech Inc Abgasanlage für einen Verbrennungsmotor
US5983628A (en) * 1998-01-29 1999-11-16 Chrysler Corporation System and method for controlling exhaust gas temperatures for increasing catalyst conversion of NOx emissions
EP1031708A1 (de) * 1999-02-25 2000-08-30 HEINRICH GILLET GMBH & CO. KG Modul für Abgasanlagen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11345212B2 (en) 2016-08-01 2022-05-31 Volkswagen Aktiengesellschaft Air conditioning device for a motor vehicle and method for its operation

Also Published As

Publication number Publication date
DE10048580A1 (de) 2002-04-11
CN1466651A (zh) 2004-01-07
US6854267B2 (en) 2005-02-15
EP1327058A1 (de) 2003-07-16
JP2004510906A (ja) 2004-04-08
US20040093857A1 (en) 2004-05-20

Similar Documents

Publication Publication Date Title
DE102009030963B4 (de) Einrichtung und Verfahren zum Kühlen eines Abgases
EP1985953B1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
DE102006049005B4 (de) Fluidmitnahmevorrichtung sowie damit ausgestattetes Abgassystem
EP3048407B1 (de) Wärmeübertrager
DE69900303T2 (de) Abgasrückführungskühler
WO2002029212A1 (de) Abgasanlage einer brennkraftmaschine mit katalysator
WO2006100069A1 (de) Abgaswärmeübertrager, insbesondere abgaskühler für abgasrückführung in kraftfahrzeugen
DE102011103110A1 (de) Abgassystem mit Kreislaufwärmerohr
EP1238187B1 (de) Vorrichtung zur zuführung von abgasen von einem verbrennungsmotor zu einem katalysator, insbesondere speicherkatalysator
DE102020203570A1 (de) Wärmetauscher
DE19948148B4 (de) Kraftfahrzeug mit einer Brennkraftmaschine
DE102020208061A1 (de) Wärmetauscher
DE102005045098B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE10053591C2 (de) Brennkraftmaschine
DE3509349A1 (de) Waermetauscher fuer heizgeraete
DE3536309C2 (de)
WO2003078911A2 (de) Wärmetauscher und kühlsystem
DE19927246A1 (de) Abgassystem für eine Verbrennungskraftmaschine eines Kraftfahrzeuges
DE10145916B4 (de) Verfahren und Vorrichtung zum Abkühlen einer Katalysatoreinrichtung
EP1430943B1 (de) Vorrichtung zur Nachbehandlung von Abgasen einer Brennkraftmaschine
DE10038796A1 (de) Modul für Abgasanlagen von Verbrennungsmotoren
DE10349887B4 (de) Kühler für ein Abgas-Rückführ-System bei einem Verbrennungsmotor
DE10038795B4 (de) Wärmetauscher
EP1111209B1 (de) Abgasanlage für Kraftfahrzeuge
WO2012168042A1 (de) Brennkraftmaschine mit zumindest einer katalysatoreinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001969658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002532767

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018166253

Country of ref document: CN

Ref document number: 10398127

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001969658

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001969658

Country of ref document: EP