Beschreibung
AntriebsSteuerung für einen elektrischen Antrieb mit sicherer elektrischer Trennung von Leistungsteil und Regelungseinheit
Die Erfindung bezieht sich auf eine Antriebssteuerung für einen elektrischen Antrieb mit einem Leistungsteil, das auf einem vergleichsweise hohen elektrischen Potential liegt, mit einer Ansteuerelektronik, die dem Leistungsteil Ansteuersig- nale liefert und von diesem Phasenstromistwerte erhält, und mit einer Regelungseinheit, die auf einem vergleichsweise niedrigen elektrischen Potential liegt und mit der Ansteuerelektronik über eine digitale Kommunikationsschnittstelle verbunden ist, wobei zwischen dem Leistungsteil und der Rege- lungseinheit eine galvanische Trennung besteht.
Bei einer solchen Antriebssteuerung muss aus Sicherheitsgründen die Hochvoltseite des Leistungsteils (bis zu 720 Volt) von der Niedervoltseite der Regelungseinheit (in der Regel ca. 5 Volt) sicher elektrisch getrennt sein. Dazu ist an einer Stelle eine galvanische Trennung erforderlich, wobei einschlägige Normen eine Luft- und Kriechstrecke von z.B. 8 mm erfordern. Dazu müssen die verwendeten elektrischen Bauteile die Anforderungen dieser speziellen Normen erfüllen.
Heutige Lösungen zu einer solchen sicheren elektrischen Trennung nehmen diese Trennung zwischen einer Ansteuerelektronik und dem Leistungsteil vor. Eine solche bekannte Anordnung einer AntriebsSteuerung ist in Form eines Blockschaltbildes in FIG 3 dargestellt.
Das Leistungsteil LT bezieht seine Energie aus einem Zwischenkreis ZK eines Umrichters (nicht gezeigt) und liefert die drei Phasenspannungen zur Ansteuerung eines Motors M. Die Ansteuerelektronik A liefert sechs AnsteuerSignale Ux über sechs jeweilige Optokoppler OK (der besseren Übersichtlichkeit halber ist exemplarisch nur ein solcher Optokoppler ge-
zeigt) , die zur Ansteuerung von in dem Leistungsteil angeordneten Stromventilen, insbesondere einer Brückenschaltung von IGBT-Transistoren, dienen. Zusätzlich ist eventuell ein weiterer solcher Pfad Ubr für die Ansteuerung eines Brems- choppers erforderlich.
In den drei Phasen R, S, T des Motors M werden die jeweiligen Phasenstromistwerte IistR, IistS, IistT gemessen und über je- weilge Trennverstärker TV an die Ansteuerelektronik geführt. In einzelnen Fällen sind auch nur zwei Trennverstärker vorgesehen, da der Strom in der dritten Phase aus den beiden er- fassten Phasenstro istwerten gewonnen werden kann. Zusätzlich ist ein Trennverstärker TV für die Erfassung der Zwischen- kreisspannung Uzk erforderlich. Die Ansteuerelektronik ist über eine Kommunikationsschnittstelle K mit der Regelungseinheit R verbunden.
Damit müssen nach dem Stand der Technik die sechs oder sieben (mit Bremschopper) Optokoppler OK und die Trennverstärker TV die Anforderungen an eine sichere elektrische Trennung erfüllen. Solche Bauelemente sind vergleichsweise teuer, weshalb die Tatsache, dass eine Vielzahl dieser genannten Bauelemente benötigt wird, sehr kostenintensiv ist.
Aufgabe der vorliegenden Erfindung ist es daher, eine einfachere und damit kostengünstigere Antriebssteuerung für einen elektrischen Antrieb mit sicherer elektrischer Trennung von Leistungsteil und Regelungseinheit zu schaffen.
Gemäß der vorliegenden Erfindung wird diese Aufgabe dadurch gelöst, dass eine Antriebssteuerung der eingangs geschilderten Art dadurch weitergebildet wird, dass zur galvanischen Trennung ausschließlich ein geeigneter elektrischer Übertrager in die Kommunikationsschnittstelle zwischen der Rege- lungseinheit und der Ansteuerelektronik geschaltet ist.
Der Übertrager wird dabei vorzugsweise so ausgestaltet, dass die durch den elektrischen Übertrager gewährleistete galvanische Trennung die Anforderungen an eine sichere elektrische Trennung erfüllt.
Häufig ist auch eine bidirektionale Übertragung zu ermöglichen. Dazu wird eine Lösung mit Bauteilen nach dem aus der Bürokommunikationstechnik weit verbreiteten Ethernet-Standard vorgeschlagen, indem die digitale Kommunikationsschnittstelle auf Basis einer Ethernet-Physik ausgeführt ist, wobei der Übertrager beide bei einer Ethernet-Physik vorgesehenen Kommunikationsstrecken galvanisch trennt.
Dabei hat es sich als vorteilhaft erwiesen, wenn der Übertra- ger in die Ansteuerelektronik integriert ist.
Bei Ethernet kann somit eine bidirektionale Übertragung über einen Kanal nicht realisiert werden, man braucht zwei getrennte Kanäle, verbunden mit erhöhtem Aufwand. Eine weitere Einschränkung besteht darin, dass der Übertrager für Ethernet standardmäßig keine ausreichende Störfestigkeit gegenüber hohen Spannungsanderungen über die Zeit (du/dt) gewährleistet, insbesondere aber keine sichere Trennung für Spannungen über 720V. Aus diesem Grund wird erfindungsgemäß extra ein geeig- neter Übertrager geschaffen, welcher diese Anforderungen erfüllt .
Eine weitere vorteilhafte Ausgestaltung der AntriebsSteuerung für einen elektrischen Antrieb nach der Erfindung zeichnet sich dadurch aus, dass ein Codierer zur gleichanteilsfreien Codierung eines binären Datenstroms auf der Sendeseite vorgesehen ist, wodurch der codierte Datenstrom über die digitale Kommunikationsschnittstelle mit dem elektrischen Übertrager übertragbar ist, und mit einem Decoder zur Decodierung des Datenstroms auf der Empfangsseite.
Dadurch wird eine Übertragung von binären Informationen zwischen der Regelungseinheit und der Ansteuerelektronik ermöglicht, wobei auftretende Gleichanteile im Datenstrom über die Kommunikationsschnittstelle, die der Übertrager nicht verar- beiten könnte, vermieden werden.
Dabei hat es sich als günstig erwiesen, wenn durch den Codierer auf der Sendeseite Erzeugung von künstlichen Signalwechseln durch Übertragung von Binärwerten des Datenstroms als definierte Folge von Signalwechseln durchführbar ist und durch den Decoder die ursprünglichen Binärwerte des Datenstroms durch Zuordnung der zugehörigen Binärwerte zu den auf der Empfangsseite eintreffenden Folgen von Signalwechseln rückgewinnbar sind.
Besonders vorteilhaft ist es hierbei, wenn der Codierer und der Decoder eine Manchestercodierung durchführen, weil dafür eine Vielzahl von günstigen Standardkomponenten zur Verfügung steht .
Mit besonders geringem Aufwand lässt sich auf der Grundlage der Erfindung eine serielle Kommunikationsschnittstelle zur Übertragung realisieren, wobei eine Übertragung im Halb- duplex-Betrieb durchführbar ist.
Um eine synchrone digitale Kommunikation zwischen der Regelungseinheit und der Ansteuerelektronik mit einem Datensignal und einem Taktsignal durchzuführen, hat es sich als vorteilhaft erwiesen, wenn der Codierer zur logischen Verknüpfung von Datensignal und Taktsignal auf der Sendeseite derart dient, dass ein gleichanteilsfreies codiertes Datensignal resultiert, welches über eine erste Kommunikationsstrecke der Kommunikationsschnittstelle übertragbar ist. Eine zweite Kommunikationsstrecke der Kommunikationsschnittstelle dient dann zur Übertragung des Taktsignals und der elektrische Übertrager ist derart ausgestaltet, dass er beide Kommunikations- strecken galvanisch trennt, wobei durch den Decodierer auf
der Empfangsseite durch erneute logische Verknüpfung von codiertem Datensignal und Taktsignal das ursprüngliche Datensignal wiedergewinnbar ist.
Um LaufZeitdifferenzen zwischen Datensignal und Taktsignal zu vermeiden, empfiehlt es sich, dass die Mittel zur Codierung und Decodierung des Taktsignals mit derselben logischen Verknüpfung mit einem konstanten Binärwert dienen und das codierte Taktsignal über die zweite Kommunikationsstrecke bertragbar ist.
Besonders einfach und damit kostengünstig lässt sich dies realisieren, wenn der Codierer zur Exklusiv-Oder-Verknüpfung von Datensignal und Taktsignal auf der Sendeseite dient, und der Decoder auf der Empfangsseite zur erneuten Exklusiv-Oder- Verknüpfung von codiertem Datensignal und Taktsignal dient.
Für das Taktsignal und zur Vermeidung' unterschiedlicher Laufzeiten kann dann erfindungsgemäß der Codierer zur Exklusiv- Oder-Verknüpfung des Taktsignals mit einem konstanten binären
Wert, insbesondere mit dem Wert Null, auf der Sendeseite dienen, wobei das so codierte Taktsignal über die zweite Kommunikationsstrecke übertragbar ist, wobei durch den Decoder eine erneute Exklusiv-Oder-Verknüpfung von codiertem Taktsig- nal und dem gleichen konstanten binären Wert, insbesondere mit dem Wert Null, auf der Empfangsseite durchführbar ist.
Für alle diese Maßnahmen hat es sich als günstig erwiesen, wenn ein Übertrager mit einer geringen Koppelkapazität zwi- sehen dessen Primärkreis und Sekundärkreis, insbesondere mit einer Koppelkapazität kleiner als 1 pF, vorgesehen ist.
Außerdem sollte vorteilhafterweise ein Übertrager mit einer geringen Dämpfung vorgesehen sein, insbesondere um die hohen Datenübertragungsraten zu verarbeiten, die auf Basis einer Ethernet-Physik erreichbar sind.
Weitere Vorteile und Details der vorliegenden Erfindung ergeben sich anhand des im folgenden dargestellten Ausführungsbeispiels und in Verbindung mit den Figuren. Dabei sind Elemente mit gleicher Funktionalität mit den gleichen Bezugszei- chen gekennzeichnet . Es zeigt:
FIG 1 ein Blockschaltbild einer Antriebssteuerung mit einfacher und sicherer elektrischer Trennung nach der Erfindung, FIG 2 ein Blockschaltbild einer Antriebssteuerung nach
FIG auf Basis einer Ethernet-Physik und FIG 3 ein Blockschaltbild einer Antriebssteuerung mit sicherer elektrischer Trennung nach dem Stand der
Technik.
In der Darstellung nach FIG 1 ist ein Blockschaltbild einer Antriebssteuerung mit einfacher und sicherer elektrischer Trennung nach der Erfindung gezeigt . Die Anordnung entspricht im wesentlichen der bereits einleitend dargestellten nach dem Stand der Technik gemäß FIG 3. Der entscheidende erfindungsgemäße Unterschied besteht darin, dass die Kommunikationsschnittstelle K einen Übertrager U aufweist, der die sichere elektrische Trennung SET übernimmt.
Die im folgenden erläuterten Kommunikationsverfahren ermöglichen eine galvanische Trennung der Datenleitungen der Kommunikationsschnittstelle K und damit die Möglichkeit, die sichere elektrische Trennung SET auf die Kommunikationsschnittstelle K zu verschieben.
Dadurch wird es ermöglicht, auf die Mehrzahl an teueren Optokopplern OK und Trennverstärkern TV zu verzichten, wie sie nach dem Stand der Technik in FIG 3 benötigt werden. Da nur noch eine Funktionale Trennung von Hochvoltseite und Nieder- voltseite notwendig ist, ist nur noch eine Luft- und Kriechstrecke von z.B. 4 mm erforderlich. Dadurch lässt sich eine beträchtliche Kostenersparnis erreichen.
Nach der Erfindung wird der Datenstrom zunächst geeignet aufbereitet und dann über den Übertrager U übertragen. Dieser Übertrager sollte eine sehr geringe Koppelkapazität zwischen Primär- und Sekundärseite besitzen (typischerweise <lpF) , um Probleme mit dem hohen Spannungs-Zeit-Änderungen du/dt zu vermeiden. Außerdem sollte dieser eine geringe Dämpfung besitzen, um hohe Datenraten übertragen zu können und für eine sichere Trennung SET geeignet zu sein.
Eine Möglichkeit zur Kommunikation über eine durch einen solchen Übertrager U abgesicherte Kommunikationsschnittstelle K besteht in der Verwendung von Kommunikationskomponenten nach dem weit verbreiteten Ethernet-Standard, indem die digitale Kommunikationsschnittstelle auf Basis einer Ethernet-Physik ausgeführt ist, wobei der Übertrager beide bei einer Ethernet-Physik vorgesehenen Kommunikationsstrecken galvanisch trenn .
Eine solche Möglichkeit ist ausschnittsweise in der Darstel- lung nach FIG 2 gezeigt. Dazu weisen die Ansteuerelektronik A und die Regelungseinheit R Leitungstreiber PL auf Basis des Ethernet-Physical-Layer auf, die mit einem geeigneten Übertragungsprotokoll betrieben werden. Die eigentliche Übertragung erfolgt über den Übertrager U, der die beiden Kommunika- tionsstrecken galvanisch trennt.
Da, wie bereits weiter oben erwähnt, bei Ethernet keine bidirektionale Übertragung über einen Kanal realisiert werden kann, braucht man zwei getrennte Kanäle RXl und TX1. Daher wird ein Übertrager für Ethernet, der standardmäßig keine ausreichende Störfestigkeit gegenüber hohen Spannungsände- rungen über die Zeit (du/dt) gewährleistet, insbesondere aber keine sichere Trennung für Spannungen über 720V, durch einen erfindungsgemäßen Übertrager ersetzt. Dieser wird so ausge- führt, dass er für beide Kommunikationsstrecken bzw. Kanäle eine sichere galvanische Trennung gewährleistet.
Bei Einsatz der geschilderten Ethernet-Physik stellt sich kein Problem mit Gleichanteilen bei der Übertragung von binären Daten über den Übertrager, da nach dem Ethernet-Standard mit den darin realisierten drei Spannungszuständen mit einer positiven und negativen Spannung sowie Null Volt keine Sätti- gungszustände im Übertrager zu befürchten sind.
Ein Beispiel für ein geeignetes synchrones ÜbertragungsSystem stellt ein Kommunikationsnetzwerk auf Basis einer Ethernet- Physik dar, welches über ein geeignetes digitales Übertragungsprotokoll zu einem deterministischen Übertragungssystem ertüchtigt wird.
Da es bei der in FIG 1 gezeigten Anwendung in der Regel so- wohl auf eine hochgenaue Einhaltung der Echtzeitbedingung als auch auf eine hohe Sicherheit der Übertragung ankommt, wird beispielsweise die genormte ÜbertragungsSchicht 2 (Telegrammrahmen und Zugriffsverfahren) des (Fast) -Ethernet, die diese Anforderungen nicht erfüllt, durch ein neues Daten-Protokoll und eine neue ZugriffSteuerung vollständig neu definiert und damit die Ethernet-Physik als Basis für eine Echtzeitkommuni- kation zwischen beispielsweise Antriebskomponenten genutzt.' Damit kann die Kommunikation zwischen der Regelungseinheit R und dem Leistungsteil LT realisiert werden.
Bezüglich einer Synchronisation zwischen einem Master, z.B. der Regelungseinheit R, und Slaveeinheiten, z.B. mehreren Leistungsteilen LT eines dezentralen Antriebsverbandes, erweist es sich als vorteilhaft, wenn eine Synchronisierung der Slaveeinheiten auf die Mastereinheit erfolgt, indem jede
Slaveeinheit über einen jeweiligen Zeitzähler mit einer vorgegebenen Gesamtzykluszeit getaktet wird, der zyklisch durch den Empfang einer jeweiligen von der Mastereinheit bestimmten Slave-spezifischen Synchronisationsinformation gesetzt wird.
Es kann somit eine Master-Slave-Kommunikationsarchitektur zum Einsatz kommen. Um einen zyklischen Datenaustausch mit
gleichen Abtastzeitpunkten realisieren zu können, wird eine gemeinsame Zeitbasis für den Master und alle Slaves hergestellt. Die Synchronisierung der Slaves auf den Master erfolgt durch speziell ausgezeichnete, zeitlich definierten Te- legramme des Masters an die Slaves und individuell para et- rierte Zeitzähler in den Slaves .
Dabei können Nutzdatentelegramme und spezielle Synchronisationstelegramme, die die jeweiligen Synchronisationsinfor a- tionen beinhalten, übertragen werden. Alternativ kann die
Synchronisationsinformation auch in ein ausgezeichnetes Nutzdatentelegramm integriert sein.
Dabei lässt sich die Stabilität des Kommunikationssystems weiter steigern, wenn jeder Zeitzähler einer Slaveeinheit auch bei Ausbleiben der jeweiligen Synchronisationsinformation nach Ablauf der vorgegebenen Gesamtzykluszeit selbsttätig einen neuen Zyklus startet.
Für den Sende- und Empfangsbetrieb bei der zyklischen Datenübertragung kommt beispielsweise ein Zeitschlitz-Zugriffsverfahren zum Einsatz, das vom Master im Netzwerk initialisiert wird und eine totzeit-optimale Datenübertragung erlaubt. Dadurch können die Telegramme bzgl . gestörter, verfrühter oder verspäteter Übertragung präzise überwacht werden.
Dazu besitzt zur Initialisierung ausschließlich die Mastereinheit Sendeberechtigung auf der Kommunikationsstrecke und teilt jeder Slaveeinheit, die ausschließlich Antwortberech- tigung besitzt, über ein entsprechendes Slave-spezifisches
Telegramm neben der Gesamtzykluszeit mit, in welchen Zeitschlitzen innerhalb der GesamtZykluszeit die jeweilige Slaveeinheit welche Telegramme von der Mastereinheit empfangen wird und in welchen Zeitschlitzen sie ihre Telegramme senden soll.
Dabei hat es sich als vorteilhaft erwiesen, wenn jeder Slaveeinheit in der Initialisierungsphase der jeweilige Synchronisationszeitpunkt mitgeteilt wird.
Wenn in jeder Slaveeinheit, eben dem jeweiligen Leistungsteil LT mit dessen Ansteuerelektronik A, zu einem gemeinsamen Zeitpunkt, insbesondere zu einem Zyklusbeginn, jeweilige Augenblickswerte (z.B. Phasenstromistwerte eines angeschlossenen Motors M etc.) gespeichert werden, lässt sich eine gleichzeitige und äquidistante Abtastung für die Regelungseinheit R erreichen.
Außerdem lassen sich in jedem von der Mastereinheit an eine Slaveeinheit übermittelten Telegramm Kontrollinformationen vorsehen, mit denen sich direkt in der Slaveeinheit vorgesehene sicherheitsgerichtete Funktionen aktivieren lassen.
Die Nutzdaten können in einem Telegrammrahmen transportiert werden, der neben der Slave-Adressierung und Telegrammlängen- Information die Absicherung der Datenintegrität mittels beispielsweise einer CRC-Prüfsumme und weitere sicherheitsrelevante Datenbereiche zur Verfügung stellt . Die Daten im Telegrammrahmen können nicht nur von einem Applikationsprozessor, sondern auch von einem Kommunikationsbaustein KOM ausgewertet werden.
Dazu sendet jede Slaveeinheit mit jedem Telegramm ein Signal an die Mastereinheit aus. Die Mastereinheit setzt dann bei Ausbleiben dieses Signals die entsprechende Slaveeinheit kon- trolliert still.
Obwohl die zur Anwendung kommende Übertragungstechnik nach dem Ethernet-Standard prinzipiell nur Punk -zu- unkt-Verbindungen erlaubt, kann wie bei (Fast) Ethernet Netzen auch durch die Verwendung von Netzknoten (sogenannte HUBs) die
Bildung von Netzwerken ermöglicht werden, indem mehrere oder jeder Kommunikationsteilnehmer über einen Schaltungsteil zur
Bildung von Netzknpten verfügt, der zur Weiterleitung der Telegramme in Richtung einer anderen Mastereinheit oder weiterer Slaveeinheiten dient, wobei eine Kommunikation zwischen Kommunikationsteilnehmern über Netzknoten ebenfalls nach der vorangehend beschriebenen Vorgehensweise erfolgt. Erfindungsgemäß wird dann jede Kommunikationsschnittstelle K mittels eines geeigneten Übertragers U sicher elektrisch von der Hochvoltseite des Leistungsteils LT getrennt.
Mit Hilfe der im vorangehenden beschriebenen Vorgehensweise lässt sich auf Basis eines Kommunikationssystems mit Ethernet-Physik eine Echtzeitkommunikation erreichen. Dabei können auch hierarchische Netzwerke mit über Netzknoten verbundenen Punkt-zu-Punkt-Verbindungen mit Ethernet-Physik zur Durchfüh- rung einer Echtzeitkommunikation in größeren Netztopologien erstellt werden.
Selbstverständlich lassen sich zur Realisierung der erfindungsgemäßen sicheren elektrischen Trennung SET von Leis- tungsteilen LT und deren Vernetzung mit einer Regelungseinheit R auch andere Kommunikationsnetzwerke als das vorangehend beispielhaft beschriebene verwenden, vorausgesetzt, dass die Bandbreite der Übertragung die Kommunikation im Stromregelungstakt gewährleistet.
Dabei ist zu beachten, dass für den Einsatz eines Übertragers auch bei anderen digitalen Kommunikationsverfahren zunächst eine gleichanteilsfreie Codierung durchgeführt wird, wobei sich hier beispielsweise die Manchestercodierung anbietet. Dadurch kann vermieden werden, dass aufgrund einer Folge mehrerer gleicher Binärwerte quasi ein Gleichspannung am Übertrager U anliegt, welche dieser nicht verarbeiten kann.
Dazu sind in der nach FIG 1 dargestellten Antriebssteuerung sowohl in der Regelungseinheit R und der Ansteuerelektronik A, also an den beiden Ende der Kommunikationsstrecke, jeweilige Encoder/Decoder EC_DC vorgesehen. Damit werden die Daten
gleichanteilsfrei codiert, z.B. manchestercodiert, und stehen als codierte Daten zur Verfügung.
Selbstverständlich sind eine Vielzahl anderer Codierungsmög- lichkeiten ebenfalls einsetzbar, sofern eine gleichanteils- freie Signalübertragung ermöglicht wird.
Ein weiteres Ausführungsbeispiel ermöglicht eine Übertragung von synchronen Daten, wobei eine geeignete Codierung der Sig- nale zur Vermeidung der Entstehung von Gleichanteilen durch eine EXOR-Verknüpfung von Taktsignal und Daten erfolgt.
Dafür müssen zwei Datenströme übertragen werden, nämlich ein Datensignal und das zur synchronen Übertragung erforderliche Taktsignal. Daher werden zwei Kommunikationsstrecken vorgesehen, welche durch einen Übertrager ähnlich dem in FIG 2 gezeigten mit sicherer galvanischer Trennung geschützt sind.
Das Datensignal ist zunächst nicht gleichanteilsfrei. Um es dennoch mit einem Übertrager übertragen zu können, wird es zunächst mit dem Taktsignal Exklusiv-Oder- bzw. EXOR-ver- knüpft. Es resultiert ein codiertes Datensignal . Das Taktsignal kann zur Vermeidung unterschiedlicher Lautzeiten mit einem konstanten binären Wert wie etwa ,Null' EXOR-verknüpft .
Durch die logische Verknüpfung von Datensignal und Taktsignal ist somit gewährleistet, dass ein gleichanteilsfreies codiertes Datensignal über den Übertrager U übertragen werden kann. Das Taktsignal selbst ist stets gleichanteilsfrei.
Danach erfolgt die Übertragung beider codierter Signale über die jeweilige Kommunikationsstrecke sowie die Rückgewinnung des Originaldatenstromes durch nochmalige EXOR-Verknüpfung beider codierter Signale. Zur Rückgewinnung des ursprüngli- chen Taktsignals wird dieses erneut mit dem konstanten Binärwert EXOR-verknüpft .
Selbstverständlich sind weitere Möglichkeiten zur logischen Verknüpfung von Datensignal und Taktsignal möglich, die eine gleichanteilsfreie Übertragung des Datensignals ermöglichen. Die vorangehend erläuterte EXOR-Verknüpfung zeichnet sich für die Erfindung durch deren besonders einfache und effektive Realisierung aus.