WO2002025691A1 - Procede d'inspection d'un faisceau d'electrons et dispositif associe - Google Patents

Procede d'inspection d'un faisceau d'electrons et dispositif associe Download PDF

Info

Publication number
WO2002025691A1
WO2002025691A1 PCT/JP2001/008096 JP0108096W WO0225691A1 WO 2002025691 A1 WO2002025691 A1 WO 2002025691A1 JP 0108096 W JP0108096 W JP 0108096W WO 0225691 A1 WO0225691 A1 WO 0225691A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
target
sample
axis direction
detected
Prior art date
Application number
PCT/JP2001/008096
Other languages
English (en)
French (fr)
Inventor
Akira Kintaka
Jun Matsumoto
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2002025691A1 publication Critical patent/WO2002025691A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/226Optical arrangements for illuminating the object; optical arrangements for collecting light from the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20292Means for position and/or orientation registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection

Definitions

  • the present invention relates to a method and an apparatus for performing detection such as length measurement, potential measurement, and material analysis by irradiating an electron beam. .
  • FIG. 1 A proposed device of this type (whether or not it is publicly known) is shown in FIG. 1, in which an electron beam irradiation unit 11 and an optical microscope 12 are juxtaposed, and an electron beam is emitted from the electron beam irradiation unit 11.
  • a vacuum chamber 13 is provided so that a part to be irradiated and a part to be imaged by the optical microscope 12 are located inside, and a movable stage 14 includes an electron beam irradiation part 11 and an optical microscope 1 in the vacuum chamber 13. It can move freely in the arrangement direction of 2 (X-axis direction), and can move freely in two directions orthogonal to this arrangement direction, Y-axis direction (direction perpendicular to the paper in the figure), and Z-axis direction (vertical direction in the figure).
  • the sample 15 is placed on the stage 14.
  • the electron beam irradiator 11 focuses an electron beam 17 from an electron gun 16 by electron lenses 18 and 19 and an objective electron lens 21 and irradiates the sample 15 with the electron beam.
  • the deflector 22 allows the electron beam 17 to scan a predetermined area on the sample 15. Further, the irradiation of the electron beam 17 can be turned on and off by the blanker 23.
  • the optical microscope 12 is, for example, a so-called CCD camera (electronic imaging device).
  • the stage 14 is positioned below the optical microscope 12 as shown by a broken line in the figure, and a portion including the target portion 25 on the sample 15 is photographed with the optical microscope 12 and the photographed image signal is obtained. Is subjected to image processing by the optical position detection processing unit 28 in the control unit 27. At this time, the stage 14 is controlled to reciprocate (vertically move) the sample 15 in the Z-axis direction to obtain the best image forming position, and to determine the position of the target portion 25 in the X-axis direction and the Y-axis direction. Is detected.
  • the processing in the optical position detection processing section 28 is a digital processing, and before the processing section, the photographed image signal is converted into a digital signal by an AD converter (not shown) in the control section 27. I have.
  • the X-axis and the Y-axis are coordinate origins at a predetermined position in the vacuum chamber 13; for example, the X-axis The origin is the left end of the vacuum chamber 13, and the origin of the Z axis is the sample mounting surface of the stage 14.
  • the target portion 25 is shown as a protruding portion of the sample 15 for easy understanding, the target portion 25 may be located on one surface of the sample 15 without protruding. This is the same in the following description.
  • the distance X »between the optical axis of the optical microscope 12 and the electronic optical axis of the electron beam irradiation unit 11 is located at the detected X-axis position.
  • the stage 14 is moved by adding only, and the target position is positioned at the position in each of the detected Y-axis and Z-axis directions.
  • the target position 25 of the sample 15 is scanned by the electron beam 17. In this state, the sample 15 is scanned over the sample 15 with the electron beam 17 and the reflected electrons from the sample 15 at that time are detected by the detector 31 and converted into an electric signal. Is amplified by an amplifier 32, converted into a digital signal by an AD converter, and supplied to a control unit 27.
  • This detection signal is processed by an electron beam position detection processing unit 34 in the control unit 27, and 1 4 is reciprocated in the Z-axis direction, and the position where the electron beam 17 is focused on the sample 15 is obtained. Can be obtained, for example, as the position where the differential value of the detection signal becomes the maximum.
  • the detection signal is subjected to image processing to obtain a so-called SEM image, and each position in the X-axis direction and the Y-axis direction of the target portion 25 is obtained. -In this way, the position of the target portion 25 is optically determined with a certain degree of accuracy, and the position of the target portion 25 is further determined with the electronic beam 17 with a higher degree of accuracy.
  • the stage 14 is controlled to position the target portion 25 at the optical axis of the electron beam 17, and the inspection is performed by irradiating the electron beam 17 to the target portion 25.
  • the inspection is performed by the target location inspection section 35. This inspection detects reflected electrons or secondary electrons with the detector 31 according to the type such as length measurement, potential measurement, material detection, etc.
  • the control unit 27 performs various controls such as focusing, deflection, and on / off of the electron beam 17.
  • the electron beam control unit 38 and the stage 14 control the movement of the stage 14 in the X, Y, and Z axes.
  • a stage control section 39 for providing a control signal to the drive mechanism section 40 is provided.
  • a display unit 41 such as a CRT display or a liquid crystal display
  • an input unit 42 such as a keypad mouse
  • a storage unit 43 for storing various data are connected to the control unit 27.
  • electron beam irradiation was performed to accurately know the position of the target portion, and then electron beam irradiation was performed for the original inspection.
  • the vacuum chamber 13 contains a small amount of organic gas and the like. There was a possibility that the sample was deposited at the electron beam irradiation point of No. 15 and the sample No. 15 was contaminated and the quality of the sample No. 15 was deteriorated. In addition, the electron beam irradiation causes charges to accumulate on the sample 15, making it difficult to view the SEM image and making it impossible to perform a correct inspection.
  • This departure date is based on the premise that a specimen is placed on a movable stage and the target area of the specimen is irradiated with an electron beam for inspection.
  • a reference member having a reference point is provided on the movable stage.
  • a position Z so of the reference point of the reference member in the Z-axis direction is obtained by a position sensor, and the position Z omega in the Z-axis direction of the target portion determined more position sensors, the reference member moves to the position capable of irradiating an electron beam, an electron beam and irradiation if the above reference member, the reference member
  • the position ZSB of the reference point of the reference member on which the electron beam is focused in the Z-axis direction is obtained.From the position Z, the position Z ⁇ , and the position ZSB , the target position of the sample in the Z-axis direction is determined. Calculate the position ZtB in the Z-axis direction where the electron beam is focused, position the target area of the sample at the position ZtB , and irradiate the target area of the sample with the electron beam for inspection. .
  • the sample is performed by using the position chi omega and Upsilon omega, electronic Move to the beam irradiation position,
  • An electron beam is applied to a position shifted from the target position of the sample by a predetermined value, and the positions X QF and YOF in the X-axis and ⁇ -axis directions of the shifted position are obtained, and the positions X QF and Y .
  • the sample is moved based on F, and the target portion of the sample is irradiated with the electron beam.
  • the position X so and ⁇ ⁇ of the reference point of the reference member in the X-axis direction and the Y-axis direction are obtained by a position sensor, and the X-axis and ⁇ -axis directions of the target portion of the sample are obtained.
  • the position X tQ and ⁇ ⁇ are obtained by a position sensor, the reference member is moved to a position where the electron beam can be irradiated, the electron beam is irradiated on the reference member, and the X-axis of the reference point of the reference member is moved.
  • the electron beam to the target portion of the sample the position X tB and Y tB in the X-axis direction and the Y-axis direction can be irradiated is calculated, the portion of the position X tB and Y tB of the sample is positioned in the electron beam irradiation position, the upper Symbol sample with an electron beam Irradiate and inspect the target area.
  • position can be irradiated to the target portion: tB, Z where Y tB and electron beam can be focused It calculates the position Z tB in the direction, the position of the upper Symbol sample X tB, a portion of the Y tB and Z tB is located in the electron beam irradiation position, inspected by irradiating the electron beam over beam to target portion of the sample.
  • FIG. 1 is a diagram showing a functional configuration example of a proposed electron beam inspection apparatus.
  • FIG. 2 is a functional configuration diagram showing an embodiment of the present invention.
  • FIG. 3 is a diagram for explaining the principle of the height sensor 51.
  • FIG. 4A is a plan view showing an example of the inspection target portion 25 and the reference member 53 on the sample 15.
  • FIG. 4B is a diagram showing an example of the reference point 54 on the reference member 53.
  • FIG. 4C is a front view on the moving stage showing an example where the sample 15 is warped.
  • FIG. 5 is a flowchart showing a processing procedure of the embodiment of the method of the present invention.
  • FIG. 6 is a flowchart showing a processing procedure of another embodiment of the method of the present invention.
  • FIG. 7 is a flowchart showing a processing procedure of still another embodiment of the method of the present invention.
  • FIG. 8 is a block diagram showing a main part when the device of the present invention is operated by a computer.
  • FIG. 2 shows an embodiment of the present invention, and portions corresponding to FIG. 1 are denoted by the same reference numerals.
  • the electron beam irradiation unit 11 and the optical microscope 12 are provided so as to be able to face the movable stage 14 in the vacuum chamber 13.
  • the configuration of the electron beam irradiation unit 11 is the same as that in FIG.
  • an optical microscope 12 and a height sensor 51 are provided as position sensors.
  • the optical microscope 12 is used to detect the position of the target portion 25 of the sample 15 in the X-axis direction and the Y-axis direction, and the height sensor 51 is the sample 15 through the Z-axis direction of the target portion 25. To detect the position at.
  • the height sensor 51 is, for example, of an optical type, and its principle is shown in FIG.
  • the light beam from the light emitter 51a is obliquely incident on the upper surface 15a of the sample 15 and the reflected light is received by the receiver 51b, and the position of the reflection surface (top surface) 15a is indicated by a broken line.
  • the position of the light receiving point of the reflected beam changes.
  • the position of the light receiving point of the reflected beam in the light receiving device 51b is calibrated.
  • the height (position in the Z-axis direction) of the reflecting surface 15a is detected.
  • the light-emitting device 51a and the light-receiving device 51b are arranged relatively close to each other (in FIG. 2, in a direction perpendicular to the paper surface), and the incident point is set to the optical microscope 1 2
  • the half mirror 52 is arranged directly below the optical microscope 12 and the light emitted from the light emitter 51 a of the height sensor 51 is almost parallel to the X axis. And the reflected light from the half mirror 52 enters the sample 15 immediately below, and the reflected light from the sample 15 is reflected again by the half mirror 52, The light is received by the light receiver 51b of the height sensor 51.
  • the optical microscope 12 photographs the sample 15 through the half mirror 52.
  • a reference member 53 is disposed at a corner on the movable stage 14 as shown in FIGS. 2 and 4A, for example.
  • a + mark is formed on the reference member 53, that is, on the surface opposite to the stage contact surface of the reference member 53, and the center point is defined as the reference point 54.
  • the control unit 55 in FIG. 2 includes the electron beam position detection processing unit 34, the target location inspection unit 35, the electron beam control unit 38, and the stage control unit 39, similarly to the control unit 27 in FIG.
  • a processing unit 56 for the sample 15 and a processing unit 56b for the reference member 53 are further provided as the optical position detection processing unit 56.
  • an electron beam irradiation position calculator 57 is provided.
  • the stage 14 is moved to a photographing position by the optical microscope 12, that is, a position detection position by the optical position sensor (Sl).
  • a target portion 25 to be inspected in the sample 15 is designated (S2).
  • all target locations 25 in sample 15 may be sequentially specified in a predetermined order.For example, as shown in FIG.4A, target locations 25 are arranged in rows and columns. If so, specify one of the target locations 25 s at a specific location such as both ends or four corners of each line in a predetermined order (S2).
  • the stage 14 is moved and controlled so that the designated target location falls within the photographing range of the optical microscope 12 (S3). It is assumed that the position of the sample 15 on the stage 14, its target position, and the position of the reference member 53 on the stage 14 are known in advance. Also, the position of the optical axis of the optical microscope 12 is known.
  • the position of the target portion 2 5 specified ( ⁇ ⁇ , Y t0 detect (S 4).
  • the height sensor 5 1 in the example shown in FIG. 2 position Zeta omega in the Z-axis direction (Z t0) determined, each position in the X-axis direction and Upsilon axial direction by an optical microscope 1 2;.
  • Request chi omega and Upsilon omega i.e. the output of the height sensor 5 1 the output of the optical microscope 1 2 optical position of the controller 5 5 is processed by the sample processing unit 5 6 a detection processing section 5 in 6 X t0, Y t0, Z tQ is obtained.
  • the obtained position ⁇ ⁇ , ⁇ 'to. ⁇ ⁇ is stored in the storage unit 4 3 Keep it.
  • it is checked whether the target portion 25 to be specified (S 5). In this example, it is checked whether the specific target portion 25 s remains. Specify s and return to step S3 (S6).
  • the other target locations 25 Is calculated (S7).
  • the target locations 25 between them are determined from the positions at both ends. Can be calculated ( ⁇ ⁇ , Y t0 . Z t0 ).
  • each target location array row is calculated, and Each position of the target location in the target location array row can be calculated.
  • the position calculated in this way that is, the position obtained optically of each target portion 25 is stored in the storage section 43.
  • the reference member 53 is designated, and the stage 14 is controlled so that the position of the reference member 53 is obtained optically (S8).
  • the position ( Xso , Yso> Zso ) of the reference point 54 of the reference member 53 is optically obtained, and the obtained position is stored in the storage unit 43 (S9).
  • the position Z so of the reference point 54 is obtained by the height sensor 51
  • the position X so , ⁇ is obtained by the optical microscope 12. That is, the outputs of the optical microscope 12 and the height sensor 51 are supplied to the reference member processing unit 56 b of the optical position detection processing unit 56 , and the positions X ⁇ , Y so. seek Z s ().
  • the order of the processes of steps S2 to S7 and the processes of steps S8 and S9 may be reversed.
  • the stage 14 is controlled to move the reference member 53 to the irradiation range of the electron beam (S10), and the reference member 53 is irradiated with the electron beam, and the reflected electrons or secondary electrons are detected by the detector. detected in 3 1, the position to process the detection output by an electron beam position detecting unit 3 4 (X SB, Y SB , Z SB) obtaining the (S ll). That is, first, the stage 14 is moved up and down so that the electron beam 17 is focused on the reference member 53 to obtain the Z-axis direction position Z SB , and then the X-axis direction and Y position of the reference point 54 are obtained. Find each position X SB and Y SB in the axial direction. These can be obtained by so-called image processing. The obtained position is stored in the storage unit 43. '
  • the position is the same in the Y-axis direction and the Z-axis direction. Therefore, the specified target portion 25 can be correctly scanned with the electron beam 17, and the target portion 25 can be inspected. This inspection process is performed by the target location inspection unit 35 as shown in FIG.
  • step S16 This inspection result is stored in the storage section 43 as necessary, and is displayed on the display 41.
  • step S16 it is checked whether there is any target portion that has not yet been specified, that is, has not been inspected (S16). If so, the next target portion 25 is specified, and the process returns to step S13 (S17). As a result, the specified target portion is similarly inspected. If there is no target portion to be specified in step S16, the inspection ends.
  • step S13 the specified target position is located.
  • the Z-axis direction position Z is calculated only once the first time when all target positions 25 are at the same height, and then the calculated value is used. Good. In this case, the detection of Zeta omega in step S 4 may be performed for only one target site.
  • the optical position detection of the reference point and the position detection by the electron beam are not performed for all three axis components.For example, only the positions Z so and Z SB in the ⁇ axis direction are detected, and the target position 25 is irradiated with the electron beam. Other components of the correct position to be performed, X and Y in this example, may be performed using electron beam irradiation.
  • Fig. 6 shows an example of the processing procedure in this case.
  • Steps S1 to S8 are the same as the processing shown in FIG. It is like.
  • step S9 'following step S8
  • only the position ZS () of the reference member 53 in the Z-axis direction is obtained using the height sensor 51 and the reference member processing unit 56b of the optical position detection processing unit 56.
  • step S10 the reference member 53 is moved to the electron beam irradiation position.
  • only the position Z SB in the Z-axis direction where the electron beam focuses on the reference member 53 is detected by the electron beam position detection processing. It is obtained and stored by the unit 34.
  • step S20 the position Z in the Z-axis direction at which the target portion 25 should be positioned during the inspection.
  • a specific target location 25 s is designated (S21), and the stage is set so that a position offset by a predetermined distance ⁇ , ⁇ near the target location 25 becomes the electron beam irradiation position. 14 is moved (S22). That is, the position X tQ , Y t of the target location 25 s obtained in step S4 . From the axis, and each interval X M and Y M of the Y axis: If, in the optical microscope 12 and an electronic optical axis of the electron beam 17
  • the stage 14 is moved to the calculated position and the position ⁇ ⁇ obtained in step S20.
  • the specific shape (mark) on the specimen 15 itself or the specimen 15 The mark 61 formed at the position is located in the scanning area of the electron beam 17.
  • the electron beam is irradiated and scanned, and the positions X tB ′ and Y tB ′ of the mark 61 in each of the X-axis and Y-axis directions are obtained by the electron beam position detection processing unit 34 based on the SEM image (S23).
  • step S24 the position X tB ', Y tB ' of the mark 61 obtained for the specific target portion 25 s is subtracted by the positional deviation ⁇ , ⁇ between the target portion 25 s and the mark 61, respectively.
  • the respective positions X tB and Y tB of the target portion 25 located therebetween are calculated and stored. This calculation may be performed by the same method as described in step S7 in FIG.
  • X tB is performed to electron beam irradiation in order to determine the Y tB, since the irradiation region is a region of the mark 61 that deviates from the target point 2 of 5, or this portion contamination, Chiya Jiappu Does not affect the inspection of the target area 25 and does not cause quality deterioration.
  • the distances ⁇ ⁇ and ⁇ ⁇ ⁇ are selected so that the mark 61 is located at a specific target location apart from the target location 25 to such an extent that this contamination or deterioration does not occur.
  • step S2 and S12 in Fig. 5 the location and location of the specific target area 25 s, the size and number of target areas 25 required for stage movement, and the data required for the calculation in step S7 are required.
  • FIG. 7 shows the same steps as those in FIG. 5 with the same step numbers, but in step S4 , the positions X t0 and Y t of the target location 25 are shown. And Z t0 is not detected. Therefore, the calculation of the other target positions in step S7 is performed for XtQ and YtQ , but not for ZtQ .
  • step S9 the reference point position X SQ , Y s . Is obtained and stored.
  • step S11 only the positions XSB and YSB are obtained.
  • step S13 only the positions X and Y are calculated.
  • step S14 the movement of the stage 14 is not hindered.
  • the stage 14 is moved so that the portion becomes the electron beam irradiation position, and then, in step S31, the stage 14 and / or the electron beam irradiation unit 11 are so set that the electron beam is focused at the designated target position. Control. At this time, it is preferable that the focus position is adjusted so as to be shifted from the designated target portion, and then the designated target portion is returned to the beam irradiation position. Others are exactly the same as the processing in FIG.
  • step S4 only ⁇ ⁇ of a specific target portion 25 s is detected in step S4.
  • step S4 For example to detect the Z tQ specific target portion 2 5 S across the X-axis direction of the sample 1 5 as shown in FIG. Therefore only Zeta omega of target portion 2 5 other than the specific target portion 2 5 3 calculated in step S 7, only the measured Micromax Zeta in step S 9, also measures only the Z SB in step S 1 1, In step S13, only Z is calculated.
  • Step S31 is omitted as shown by a broken line in FIG.
  • the stage 14 may be moved using the shift in the XY plane between the optical axis and the electron beam irradiation position.
  • step S 6 by, X tB similarly by SEM images and step S 2 3 ', Y tB' is detected and further step S 2 4 similarly to X tB ', Y tB' from X tB. calculate the Y tB, Sutetsu flop It is preferable that the stage 14 be moved to XtB , YtB , and Z in the same manner as in S25 , and the process be moved to step S15.
  • the Zeta omega above detected for a plurality of target portions, we search out the Z t. Calculating Zt () of another target portion using ⁇ ⁇ and using ⁇ ⁇ can be applied to all the embodiments described above.
  • the height sensor 51 is omitted, and the optical microscope 12 is used to determine Z s . Or Z t0 may be obtained.
  • a light beam may be scanned to detect positions in the X-axis direction and the Y-axis direction.
  • the height sensor 51 is not limited to an optical sensor, and for example, a capacitance sensor may be used. These are collectively referred to as position sensors in this specification.
  • the position of the specific target portion 25 s is obtained by measurement, and the positions of the other target portions 25 are obtained by calculation. However, the positions of all the target portions 25 may be obtained by measurement.
  • the reference member 53 may be provided on the movable stage 14, for example, in parentheses in FIG. 4A.
  • the mark 61 on the sample 15 on the movable stage 14 may be used as the reference point 54, and the portion where the mark 61 is formed may be used as the reference member 53 as shown by.
  • the processing shown in FIGS. 5, 6, and 7 can be caused to function by, for example, a computer. That is, for example, as shown in FIG. 8, a display unit 41, an input unit 42, a storage unit 43, the position sensor 6'3, an electron beam utilizing detection unit 64 including the detector 31 and a drive unit for the stage 14 65, Memory for storing the image processing program 66, Memory 67 for storing the inspection program for performing the entire processing as shown in Fig. 5, Fig. 6, or Fig. 7, and CPU 68 connected to path 69 It has been.
  • the CPU 68 executes the inspection program in the memory 67, but the position sensor 63, for example, uses an image in the case of an optical microscope to determine each position, and also generates an SEM image based on the irradiation of the electronic beam.
  • the processing for obtaining each position by using the image processing program is performed by the CPU 68 executing the image processing program in the memory 66.
  • the present invention is applicable to various devices such as GMR (Giant Magnet Resistive) head devices, semiconductor devices such as ICs and LSIs, passive devices, various sensors, and components in which these are contained in one package. Applicable to inspection of things.
  • GMR Gate Magnet Resistive
  • the reference member having the reference point and determining the position of the reference point by the sensor and the electron beam irradiation it is possible to reduce the number of times the target beam is irradiated with the electron beam. Yes, it will not be adversely affected by contamination or charge-up of the target area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

明 細 書
電子ビーム検査方法及びその装置 技術分野
この発明は電子ビームを照射して対象箇所の長さ測定、電位測定、材質分析などの検 查を行う方法及びその装置に関する。 .
背景技術
この種の装置として提案されているもの(公知となっているかは不明)を図 1に示す 電子ビーム照射部 1 1と光学顕微鏡 1 2とが並置され、電子ビーム照射部 1 1から電子 ビームが照射される部分及び光学顕微鏡 1 2による撮像される部分が内部に位置する ように真空室 1 3が設けられ、真空室 1 3内に可動ステージ 1 4が電子ビーム照射部 1 1及び光学顕微鏡 1 2の配列方向 (X軸方向) に移動自在に、 またこの配列方向と直交 する 2方向、 Y軸方向 (図において紙面と垂直な方向) 及び Z軸方向 (図において上下 方向) に移動自在に設けられる。 ステージ 1 4上に試料 1 5が載置されている。
電子ビーム照射部 1 1は、電子銃 1 6よりの電子ビーム 1 7が、 電子レンズ 1 8、 1 9、対物電子レンズ 2 1により集束されて試料 1 5上に照射される。偏向器 2 2により 試料 1 5上について所定の領域を電子ビーム 1 7を走查することができるようにされ ている。またブランカー 2 3により電子ビーム 1 7の照射をオン、オフ制御することが できる。
光学顕微鏡 1 2は例えばいわゆる C C Dカメラ (電子撮像機) である。
ステージ 1 4を図中に破線で示すように、光学顕微鏡 1 2の下に位置させ、光学顕微 鏡 1 2で試料 1 5上の対象箇所 2 5を含む部分を撮影し、その撮影した画像信号は制御 部 2 7内の光学的位置検出処理部 2 8により画像処理される。その際にステージ 1 4を 制御して試料 1 5を Z軸方向において往復動 (上下動) させ、最良の結像位置を求める と共に、対象箇所 2 5の X軸方向及び Y軸方向の各位置を検出する。 この光学的位置検 出処理部 2 8における処理はデジタル処理であり、その処理部に先立ち、前記撮影画像 信号は制御部 2 7内の図に示していない AD変換器によりデジタル信号に変換されて いる。 なお X軸、 Y軸は真空室 1 3内の予め決めた位置を座標原点とし、例えば X軸の 原点は真空室 1 3の左端とされ、 Z軸の原点はステージ 1 4の試料載置面とされる。ま た対象箇所 2 5はわかり易いように試料 1 5の突出部として示したが、対象箇所 2 5は 試料 1 5の一面に突出することなく位置していてもよい。このことは以下の説明でも同 様である。
対象箇所 2 5の X, Υ, Z位置を求めた後、 その検出した X軸方向位置に、光学顕微 鏡 1 2の光軸と電子ビーム照射部 1 1の電子的光学軸との間隔 X» (だけ加算してステー ジ 1 4を移動させ、 かつ前記検出した Y軸、 Z軸の各方向における位置に、対象箇所を 位置させ、試料 1 5の対象箇所 2 5が電子ビーム 1 7の走査領域内に入るようにする。 この状態で電子ビーム 1 7により試料 1 5上を走査し、その時の試料 1 5からの反射電 子を検出器 3 1で検出して電気信号とし、その検出信号を増幅器 3 2で増幅して AD変 換器でデジタル信号に変換して制御部 2 7に供給する。この検出信号は制御部 2 7内の 電子ビーム位置検出処理部 3 4により処理され、ステージ 1 4を Z軸方向に往復動させ、 電子ビーム 1 7が試料 1 5上で焦点を結ぶ位置を求める。 この焦点位置検出は、例えば 検出信号の微分値が最大となる位置として求めることができる。またこの検出信号を画 像処理し、 いわゆる S EM像を求め、対象箇所 2 5の X軸方向、 Y軸方向における各位 置を求める。 - このようにして光学的に対象箇所 2 5の位置をある程度の精度で求め、更に電子ビー ム 1 7を利用して対象箇所 2 5の位置を更に高い精度で求め、この高い精度位置に基づ き、ステージ 1 4を制御して対象箇所 2 5を電子ビーム 1 7の光学的軸心に位置させ、 電子ビーム 1 7を対象箇所 2 5に照射して検査を行う。この検査は対象箇所検査部 3 5 により行う。 この検査は長さの測定、 電位測定、材質検出などその種類に応じて検出器 3 1で反射電子又は 2次電子を検出し、また検出器 3 1の入射面近くに配したグリッド 3 6に対する印加電圧を分析電圧印加部 3 7により変更する。
制御部 2 7には電子ビーム 1 7に対する集束、偏向、オンオフなどの各種制御を行う 電子ビーム制御部 3 8、 ステージ 1 4を X, Y, Zの各軸方向に移動制御するために、 ステージ駆動機構部 4 0に制御信号を与えるステージ制御部 3 9が設けられている。更 に C RT表示器や液晶表示器などの表示器 4 1、キーポ一ドゃマウスなどの入力部 4 2、 各種データの記憶を行う記憶部 4 3が制御部 2 7に接続されている。 この提案されている装置においては対象箇所の位置を精度よく知るために電子ビ一 ム照射を行い、 その後、本来の検査のために電子ビーム照射を行っていた。真空室 1 3 内の真空 Sをある程度上げても、真空室 1 3内には有機ガスなどがわずか含まれ、その 有機ガスに電子ビームが衝突すると、分解し、分解により生じたカーボンなどが試料 1 5の電子ビーム照射点に堆積し、試料 1 5が汚染し、試料 1 5の品質が悪くなるおそれ があった。 また電子ビームの照射により試料 1 5に電荷が蓄積され、 S EM像が見づら くなり、 正しい検査ができなくなるなどの問題がある。
発明の開示
この発日月は可動ステージ上に試料を配し、その試料の対象箇所に電子ビームを照射し て検査する方法を前提としており、
この発明においては基準点を有する基準部材を上記可動ステージ上に設け、 この発明の第 1観点によれば上記基準部材の基準点の Z軸方向における位置 Zsoを位 置センサにより求め、上記試料の対象箇所の Z軸方向における位置 Z ωを位置センサに より求め、上記基準部材を電子ビームを照射することができる位置に移動し、上記基準 部材に電子ビームを照 ifして、上記基準部材上に電子ビームが焦点を結ぶ上記基準部材 の基準点の Z軸方向における位置 Z SBを求め、上記位置 Z と位置 Z ωと位置 Z SBとから、 上記 Z軸方向において上記試料の対象箇所に電子ビームが焦点を結ぶ Z軸方向におけ • る位置 Z tBを計算し、 上記試料の対象箇所を上記位置 Z tBに位置させ、 電子ビームを上 記試料の対象箇所に照射して検査をする。
この第 1観点において、上記試料の対象箇所の X軸方向及び Y軸方向における位置 X ω及び Ytoを位置センサにより求め、上記位置 Χω及び Υωを用いて行い上記試料を、電 子ビーム照射位置へ移動し、
上記試料の対象箇所から予め決められた値だけずれた箇所に電子ビームを照射して、 そのずれた箇所の X軸及び Υ軸方向における位置 XQF及び YOFを求め、 上記位置 XQF及 び Y。Fに基づき上記試料を移動して、上記試料の対象箇所に上記電子ビーム照射を行う ことが好ましい。
この発明の第 2観点によれば上記基準部材の基準点の X軸方向及び Y軸方向におけ る位置 Xso及び ΥΜを位置センサにより求め、 上記試料の対象個所の X軸及び Υ軸方向 における位置 XtQ及び Υωを位置センサにより求め、 上記基準部材を電子ビームを照射 することができる位置に移動し、上記基準部材に電子ビームを照射して、上記基準部材 の基準点の X軸方向及び γ軸方向における位置 XSB及び YSBを求め、 上記位置 xSQ及び YS()と位置 Xw及び Υωと位置 XSB及び YSBとから、 上記試料の対象箇所に電子ビームを 照射することができる X軸方向及び Y軸方向における位置 XtB及び YtBを計算し、 上記 試料の上記位置 X tB及び YtBの部分を電子ビーム照射位置に位置させ、 電子ビームを上 記試料の対象箇所に照射して検査する。
この発明の第 3観点によれば、上記基準部材の基準点の X軸、 Y軸及び Z軸方向にお ける位置 XSC), YSo及び Ζを位置センサにより求め、 上記試料の対象箇所の X軸、 Y軸 及び Z軸方向における位置 Χω, Υω及び ζ ωを位置センサにより求め、 上記基準部材 を、電子ビームを照射することができる位置に移動し、上記基準部材に電子ビームを照 射して、 上記基準部材の基準点の X軸方向及び Υ軸方向における位置 XSB及び YSB、 基 準点に電子ビームが焦点を結ぶ Z軸方向における基準点の位置 Z SBを求め、上記位置 X so, Yso及び Z soと、 位置 Χω, Υω及び Ζ ωと位置 XSB, YSB及び Z SBとから、 X軸方向、 Y軸方向において電子ビームを上記試料の対象箇所に照射することができる位置: tB, YtBかつ電子ビームが焦点を結ぶことができる Z軸方向における位置 Z tBを計算し、 上 記試料の上記位置 XtB, YtB及び Z tBの部分を電子ビーム照射位置に位置させ、 電子ビ ームを試料の対象箇所に照射して検査する。
上述の各観点において、上記試料中の複数の対象箇所中の一部の複数の箇所について 上記 Xt0と Υω又は Z及び Z t。を求め、 これら求めた Χωと Υω又は Z及び Z t。から、 残 りの各対象箇所のそれぞれ Χωと Yt0又は/及び z t。に対応する位置を計算により求め、 これら計算により求めた X t0と Υ ω又はノ及び Z t。を用いて、 対応する試料の各対象箇 所に電子ビームが照射することができる X軸方向と. Y軸方向又は Z及び Z軸方向にお ける上記位置 XtBと YtB又はノ及び Z tBをそれぞれ計算することが好ましい。
図面の簡単な説明
図 1は提案されている電子ビーム検査装置の機能構成例を示す図である。
図 2はこの発明の実施例を示す機能構成図である。
図 3は高さセンサ 5 1の原理を説明するための図である。 図 4 Aは試料 1 5上の検査対象箇所 2 5と基準部材 5 3の例を示す平面図である。 図 4 Bは基準部材 5 3上の基準点 5 4の例を示す図である。
図 4 Cは試料 1 5が反っている場合の例を示す移動ステージ上の正面図である。 図 5はこの発明の方法の実施例の処理手順を示す流れ図である。
図 6はこの発明の方法の他の実施例の処理手順を示す流れ図である。
図 7はこの発明の方法の更に他の実施例の処理手順を示す流れ図である。
図 8はこの発明装置をコンピュータにより機能させる場合の要部を示すブロック図 である。
発明を実施するための最良の形態
図 2にこの発明の実施例を示し、図 1と対応する部分に同一参照符号を付けてある。 この実施例においても電子ビーム照射部 1 1と光学顕微鏡 1 2が真空室 1 3内の可動 ステージ 1 4と対向できるように設けられている。電子ビーム照射部 1 1の構成は図 1 中のそれと同様である。この実施例では位置センサとして光学顕微鏡 1 2と高さセンサ 5 1とが設けられる。光学顕微鏡 1 2は試料 1 5の対象箇所 2 5の X軸方向及び Y軸方 向の位置を検出するために用いられ、高さセンサ 5 1は試料 1 5乃至対象箇所 2 5の Z 軸方向における位置を検出するものである。
この高さセンサ 5 1は例えば光学式のものであってその原理を図 3に示す。発光器 5 1 aからの光ビームが試料 1 5の上面 1 5 aに斜めに入射され、その反射光が受光器 5 1 bに受光され、反射面(上面) 1 5 aの位置が破線に示すように上下に(図では下に) 変化すると、反射ビームの受光点の位置が変化する。試料 1 5の Z軸方向における位置 と受光器 5 1 bが反射ビームを受光する受光点の位置との関係を予め校正しておくこ とにより受光器 5 1 bにおいて反射ビームの受光点の位置により、その反射面 1 5 aの 高さ (Z軸方向の位置) を検出する。 図 2に示した例においては、 発光器 5 1 aと受光 器 5 1 bとを比較的近くに並べて (図 2では紙面と直角方向に並べて)配され、 かつ入 射点が光学顕微鏡 1 2の光学軸上にほぼ位置するようにした場合で、光学顕微鏡 1 2の 直下にハーフミラー 5 2が配され、高さセンサ 5 1の発光器 5 1 aからの出射光が X軸 とほぼ平行にハーフミラー 5 2に入射し、そのハーフミラー 5 2による反射光が直下の 試料 1 5に入射し、その試料 1 5からの反射光がハーフミラ一 5 2で再び反射されて、 高さセンサ 5 1の受光器 5 1 bに入射するようにされている。光学顕微鏡 1 2はハーフ ミラー 5 2を通して試料 1 5を撮影する。
この発明において重要なことは例えば図 2及び図 4 Aに示すように可動ステージ 1 4上のコーナ部に基準部材 5 3が配置される。基準部材 5 3上には例えば図 4 Bに示す ようにその上面、つまり基準部材 5 3のステージ対接面と反対の面上に +マークが形成 されて、 その中心点が基準点 5 4とされている。
図 2中の制御部 5 5には、図 1中の制御部 2 7と同様に電子ビーム位置検出処理部 3 4、対象箇所検査部 3 5、電子ビーム制御部 3 8、 ステージ制御部 3 9が設けられるが、 この実施例では、更に光学的位置検出処理部 5 6として、試料 1 5に対する処理部 5 6 と、基準部材 5 3に対する処理部 5 6 bとが設けられる。また電子ビーム照射位置計 算部 5 7が設けられる。
次に図 5を参照してこの発明により電子ビーム検査方法の処理手順を説明する。まず 図 2中に破線で示すようにステージ 1 4を、光学顕微鏡 1 2による撮影位置、つまり光 学位置センサによる位置検出位置に移動する (S l )。
次に試料 1 5中の検査すべき対象箇所 2 5を指定する (S 2 )。 この指定は試料 1 5 中の全ての対象箇所 2 5を予め決めた順で順次指定してもよいが、例えば、図 4 Aに示 すように対象箇所 2 5が行及び列に配列されている場合は各行の両端又は 4隅など特 定箇所の対象箇所 2 5 sの 1つを予め決めた順に 1つを指定する (S 2)。 その対象箇 所の指定がなされるとその指定された対象箇所が光学顕微鏡 1 2の撮影範囲に入るよ うにステージ 1 4を移動制御する (S 3 )。 ステージ 1 4上における試料 1 5の位置、 その対象箇所位置、またステージ 1 4上における基準部材 5 3の位置は予め知っている ものとする。 また光学顕微鏡 1 2の光学軸の位置は知られている。
次に指定された対象箇所 2 5の位置 (Χω, Yt0( Z t0) を検出する (S 4 )。 図 2に 示した例では高さセンサ 5 1により Z軸方向における位置 Ζ ωを求め、光学顕微鏡 1 2 により X軸方向及び Υ軸方向における各位置; Χω及び Υωを求める。 つまり高さセンサ 5 1の出力、光学顕微鏡 1 2の出力が制御部 5 5の光学的位置検出処理部 5 6中の試料 処理部 5 6 aにより処理されて Xt0, Yt0, Z tQが求められる。 この求めた位置 Χω, Υ ' to. Ζ ωは記憶部 4 3に記憶しておく。 次に指定すべき対象箇所 2 5が残っているかを調べ (S 5 )、 この例では特定の対象 箇所 2 5 sが残っているかを調べ、残っている場合は次の特定の対象箇所 2 5 sを指定 してステップ S 3に戻る (S 6 )。
このようにして各特定箇所の全ての対象箇所 2 5 sの Xt0, Yt0, Z t0を求めると、 こ れら求めた特定の対象箇所 2 5 sの位置から、他の対象箇所 2 5の位置を計算する (S 7 )。 例えば図 4 Aにおいて、 対象箇所 2 5の配列の各行において、 その配列個数が知 られ、 かつ対象箇所間隔が等間隔配列であれば、その両端の位置から、 これら間の各対 象箇所 2 5の位置 (Χω, Yt0. Z t0) を計算することができる。 同様に 4隅を特定対象 箇所 2 5 sとする場合も、対象箇所の配列行の数も既知で、かつ行間隔が等間隔であれ ば、各対象箇所配列行の位置を計算し、かつ各対象箇所配列行における対象箇所の各位 置を計算することができる。 このようにして計算した、つまり各対象箇所 2 5の光学的 に求めた位置を記憶部 4 3に格納する。
次に基準部材 5 3を指定し、基準部材 5 3の位置が光学的に求められるようにステー ジ 1 4を制御する (S 8 )。 この状態で基準部材 5 3の基準点 5 4の位置 (Xso, Yso> Z so) を光学的に求め、 その求めた位置を記憶部 4 3に記憶する (S 9 )。 この基準点 5 4の位置 Z soはこの例では高さセンサ 5 1により求め、 位置 Xso, ΥΜは光学顕微鏡 1 2により求める。つまりこれら光学顕微鏡 1 2、高さセンサ 5 1の出力を光学的位置 検出処理部 5 6の基準部材処理部 5 6 bに供給して、基準部材処理部 5 6 bによりこれ ら位置 X, Yso. Z s()を求める。 なおステップ S 2〜S 7の処理と、 ステップ S 8及び S 9の処理との順は逆にしてもよい。
次にステージ 1 4を制御して基準部材 5 3を電子ビームの照射範囲に移動し (S 1 0 )、 基準部材 5 3に電子ビームを照射して、 その反射電子又は 2次電子を検出器 3 1 で検出し、 その検出出力を電子ビーム位置検出処理部 3 4で処理して位置 (XSB, YSB, Z SB) を求める (S l l )。 つまり、 まず基準部材 5 3上に電子ビーム 1 7の焦点が結 ぶようにステージ 1 4を上下動して、 Z軸方向位置 Z SBを求め、 次に基準点 5 4の X軸 方向及び Y軸方向における各位置 XSB及び YSBを求める。 これらはいわゆる画像処理に より求めることができる。 この求めた位置は記憶部 4 3に記億する。 '
対象箇所の 1つを指定し (S 1 2 )、 その指定した対象箇所の位置を計算する (S 1 3 )。 つまりその指定した対象箇所の記憶部 4 3に記憶されている位置 Χω, Yt0. Z t0 を取出し、 また基準点に対し求めた位置 Xso, Yso, Z soと XSB, YSB, ∑58を記憶部4 3 から取出し、
X = X«)+ ASB— xso)
Figure imgf000010_0001
ム— Z t0+ ( SB— so)
を計算する。 この計算は制御部 5 5内の電子ビーム照射位置計算部 5 7で行う。 この計 算した位置 X, Y. Zにステージ 1 4を移動し、指定対象箇所が電子ビーム 1 7の照射 位置になる. ( S 1 4)、 この状態で電子ビーム 1 7を照射してその対象箇所の検査を行 う (S 1 5 )。 つまり図 2に示すように基準点 5 4の X軸方向における光学検出位置 X soと、 電子ビーム検出位置 XSBとの差 (XSB- XS0) を、 対象箇所の光学検出位置 xt0に 加算した値 Xの対象箇所が、電子ビーム 1 7の電子光学軸の直下に位置する。 Y軸方向、 Z軸方向についても同様に位置する。従って、指定した対象箇所 2 5上を電子ビーム 1 7で正しく走査することができ、その対象箇所 2 5に対する検査を行うことができる。 この検査の処理は、 図 1に示したと同様に対象箇所検査部 3 5により行う。
この検査結果は必要に応じて記憶部 4 3に記憶され、また表示器 4 1に表示される。 次にまだ指定していない、 つまり検査していない対象箇所があるかを調べ (S 1 6 )、 あれば次の対象箇所 2 5を指定してステップ S 1 3に戻る (S 1 7 )。 これによりその 指定された対象箇所が同様に検査される。ステップ S 1 6で指定すべき対象箇所がなけ れば、検査は終了となる。ステップ S 1 3において指定対象箇所を位置させる Z軸方向 位置 Zは、全ての対象箇所 2 5が同一高さにある場合は最初の 1回だけ計算し、その後 はその計算した値を利用すればよい。 この場合はステップ S 4における Ζ ωの検出は 1 つの対象箇所についてだけ行えばよい。
基準点の光学的位置検出及び電子ビームによる位置検出は、 3軸成分の全てについて 行うことなく、 例えば Ζ軸方向について位置 Z soと Z SBのみを検出し、 対象箇所 2 5を 電子ビームに照射すべき正しい位置の他の成分、 この例では X, Yは電子ビーム照射を 利用して行ってもよい。
この場合の処理手順の例を図 6に示す。ステップ S 1 ~ S 8は図 5に示した処理と同 様である。ステップ S 8の次のステップ S 9' では基準部材 53の Z軸方向における位 置 ZS()のみを高さセンサ 51と光学的位置検出処理部 56の基準部材処理部 56 bを 用いて求めて記憶する。ステップ S 10は基準部材 53を電子ビーム照射位置に移動し、 次のステップ S 1 では、電子ビームの焦点が基準部材 53上で結ぶ Z軸方向におけ る位置 ZSBのみを電子ビーム位置検出処理部 34により求めて記憶する。
次にステップ S 20で、 検査時に対象箇所 25を位置させるべき Z軸方向の位置 Z
Z = Z t0+ ( SBso
を'計算して求めて記憶する。 ZtQはステップ S 4で求めた対象箇所 25の Z軸方向にお ける位置である。対象箇所 25が同一高さにある場合は、 この Zの計算を 1回行えばよ く、 同一高さでない場合は、 各対象箇所 25について Z (=Zt) を求めて記憶する。 次に特定の対象箇所 25 sを指定し (S21)、 その対象箇所 25の近くでこれに対 し、 予め決められた距離 ΔΧ, ΔΥだけオフセットした位置が、電子ビーム照射位置と なるようにステージ 14を移動させる (S22)。 つまりステップ S 4で求めた対象箇 所 25 sの位置 XtQ, Yt。と、 光学顕微鏡 12の光軸と電子ビーム 17の電子的光軸と の: 軸、 Y軸上の各間隔 XMと YMとから
Xt0+XH+ ΔΧ, Υιο+Υ„+ΔΥ
をそれぞれ計算し、 この計算位置と、ステップ S 20で求めた位置 Ζにステージ 14を 移動させる。 この結果、例えば図 4 Αに示すように、特定の対象箇所 25 sの近くで予 め知られた距離 ΔΧ, ΔΥだけ離れた位置で試料 15自体にある固有の形状 (マーク) 又は特に試料 15に形成したマーク 61が電子ビーム 17の走査領域に位置する。
よって電子ビームを照射走査し、電子ビーム位置検出処理部 34により、 SEM像に 基づきマーク 61の X軸、 Y軸の各方向における位置 XtB' , YtB' を求める (S23)。 次にステップ S 24では、 特定の対象箇所 25 sについて求めたマーク 61の位置 X tB' , YtB' に対し、 それぞれその対象箇所 25 sとマーク 61の位置ずれ ΔΧ, ΔΥ だけ減算して対象箇所 25 sの位置 XtB, YtBを求める。 更に特定対象箇所 25 sの位 置を利用して、 これら間に位置している対象箇所 25の各位置 XtB, YtBを計算して記 憶する。 この計算は図 5中のステップ S 7で述べたと同様な手法で行えばよい。
その位置 XtB, YtB. Z (=Zt) を記億部 43から取出し、 その位置にステージ 14 を移動させ (S 2 5 )、 電子ビームを照射して目的とする検査を行い、 その結果を記憶 する (S 2 6 )。 この処理は対象箇所検查部 3 5により行う。 次にまだ検査していない 対象箇所 2 5が残っているかを調べ (S 2 7 )、 残っていれば次の対象箇所を指定して ステップ S 2 2に戻る (S 2 8 )。全ての対象箇所 2 5を検査したら全処理を終了する。 ステップ S 2〜S 7と、 ステップ S 8 , S 9 ' との順は入れかえてもよい。 ステップ S 2 0では (Z SB— Ζ) = Δ Ζのみを計算し、 ステップ S 2 4で各対象箇所 2 5の位 置 XtB, YtBを計算する際にその Z tを Ζ ω+ Δ Zにより計算してもよい。
この場合は XtB, YtBを求めるために電子ビーム照射を行っているが、 その照射領域 は対象箇所 2 5から外れたマーク 6 1の領域であるから、 この箇所が汚染したり、チヤ ージアップしたりしても対象箇所 2 5の検査に影響しない、また品質劣化が生じること もない。つまり、 この汚染や劣化が生じない程度で対象箇所 2 5から離して、特定の対 象箇所にマーク 6 1が存在するように距離 Δ Χ, Δ Υを選定する。
図 5中のステップ S 2 , S 1 2における特定対象箇所 2 5 sの場所設定やステージ移 動に必要とする対象箇所 2 5の大きさ、個数などやステップ S 7の演算に必要とするデ —タなどは入力部 4 2から入力する。図 6中の同様なステップにおける設定やデータ入 力も入力部 4 2により行う。
図 6に示したと同様に、基準部材の基準点 5 4の X軸方向、 Y軸方向における位置を、 光学と電子ビームとによりそれぞれ Xso, Ysoと XSB. YSBとして求め、 これらと各対象 箇所 2 5の光学的に求めた位置 Xt。, Υωとから検査時にステージを移動すべき位置 X, Υを前述したようにして求め対象箇所 2 5の Ζ軸方向における位置 (焦点を結ぶ位置) Ζを電子ビーム照射により求めてもよい。 この場合も、 Ζを求めるには対象箇所 2 5の 近くの部分を利用することが好ましい。
つまり図 7に、図 5と対応する部分に同一ステップ番号を付けて示すが、ステップ S 4では対象箇所 2 5の位置 Xt0, Yt。を検出して、 Z t0は検出しない。 従って、 ステツ プ S 7での他の対象箇所位置の計算は XtQ, YtQについて行い、 Z tQについては行わな い。 ステップ S 9では基準点位置 XSQ, Ys。のみを求めて記憶し、 ステップ S 1 1では 位置 XSB, YSBのみを求め、 ステップ S 1 3では位置 Xと Yのみを計算し、 ステップ S 1 4ではステージ 1 4の移動の障害とならない Z軸上の位置の X Y面内で位置 X, Yの 部分が電子ビーム照射位置になるようにステージ 1 4を移動し、次にステップ S 3 1で 電子ビームの焦点が指定対象箇所位置で結ぶようにステージ 1 4又は/及び電子ビー ム照射部 1 1を制御する。 この際、 この焦点位置調整は、 指定対象箇所からずらして行 い、 その後、指定対象箇所をビーム照射位置に戻すことが好ましい。 その他は図 5にお ける処理と全く同様である。
また図 7に示す流れ図において、 ステップ S 4で特定の対象箇所 2 5 sの Ζ ωのみを 検出する。 例えば図 4に示すように試料 1 5の X軸方向における両端の特定対象箇所 2 5 Sの Z tQを検出する。従ってステップ S 7で特定対象箇所 2 5 3以外の対象箇所 2 5 の Ζ ωのみを計算し、 ステップ S 9で Ζ Μのみを測定し、 またステップ S 1 1で Z SBの みを測定し、 ステップ S 1 3では Zのみを計算する。図 7中に破線で示すようにステツ プ S 3 1は省略される。 X Y面内において指定対象箇所を電子ビーム照射位置に移動さ せるには、位置センサにより各対象箇所の X軸方向位置 XtQ、 Y軸方向位置 YtQを求め、 これらと、光学顕微鏡 1 2の光軸と電子ビーム照射位置との X Y面内ずれとを用いてス テージ 1 4を移動させればよい。好ましくは図 7中に破線で示すように、図 6中のステ ップ S 2 2と同様に Xt0, Υωに対しオフセットした値と Zで決る位置にステージ 1 4 を移動し電子ビーム照射により、ステップ S 2 3と同様に S E M像により XtB' , YtB' を検出し、 更にステップ S 2 4と同様に XtB' , YtB' から XtB. YtBを計算し、 ステツ プ S 2 5と同様にその XtB, YtB, Zにステージ 1 4を移動して、 ステップ S 1 5に移 るようにするのが好ましい。上記した Ζ ωを複数の対象箇所について検出し、 これら検 出した Z t。を用いて他の対象箇所の Z t()を計算して、 この Ζ ωを利用することは前述し た全ての実施例にも適用できる。
上述において、 高さセンサ 5 1を省略して、 光学顕微鏡 1 2を利用して Zs。や Z t0を 求めてもよい。光学顕微鏡 1 2の代りに光ビームを走査して X軸方向、 Y軸方向におけ る位置を検出するものでもよい。更に高さセンサ 5 1としては光学式のものに限らず、 例えば静電容量式のものを用いてもよい。 これらを総称して、 この明細書では位置セン ザと呼ぶ。上述において特定の対象箇所 2 5 sの位置を測定により求め、他の対象箇所 2 5の位置を計算により求めたが、全ての対象箇所 2 5の位置を測定により求めてもよ い。また基準部材 5 3は可動ステージ 1 4上に設ければよく、例えば図 4 Aに括弧書き で示すように可動ステージ 1 4上の試料 1 5上のマーク 6 1を基準点 5 4とし、マ一ク 6 1が形成されている部分を基準部材 5 3としてもよい。
図 5、図 6、図 7に示した処理は例えばコンピュータにより機能させることができる。 即ち例えば図 8に示すように表示器 4 1、入力部 4 2、記憶部 4 3、前記位置センサ 6 ' 3、検出器 3 1を含む電子ビーム利用検出部 6 4、 ステージ 1 4に対する駆動部 6 5、 画像処理プログラムが格納されたメモリ 6 6、図 5、図 6又は図 7に示したような全体 の処理を行う検査プログラムを格納したメモリ 6 7、C P U 6 8がパス 6 9に接続され ている。 C P U 6 8はメモリ 6 7の検査プログラムを実行するが、位置センサ 6 3が例 えば光学顕微鏡の場合におけるその画像を利用して各位置を求める処理、また電子ビー ムを照射に基づく S E M像を利用して各位置を求める処理は何れもメモリ 6 6の画像 処理プログラムを C P U 6 8が実行することにより行う。
なおこの発明は例えば GMR (Giant Magnet Resistive:巨大磁気抵抗効果) へッド 素子、 I Cや L S Iなどの半導体素子、 受動素子、 各種センサー、 これらを一つのパッ ケ一ジに収めた部品など、 各種のものの検査に適用できる。
以上述べたようにこの発明によれば基準点を有する基準部材を用い、基準点の位置を センサにより、また電子ビーム照射により求めることにより、対象箇所に対する電子ビ —ム照射回数を少なくすることができ、それだけ対象箇所の汚染やチャージアツプなど 悪影響を受けない。

Claims

請求の範囲
1 . 可動ステージ上に試料を配し、その試料の対象箇所に電子ビームを照射して検査 する方法において、
基準点を有する基準部材を上記可動ステージ上に設け、
上記基準部材の基準点の位置を位置センサにより検出し、
上記試料の対象箇所の位置を位置センサにより検出し、
上記基準部材を、その基準部材上に電子ビームを照射することができる位置に移動し、 上記基準部材に電子ビームを照射して、 上記基準点の位置を検出し、
上記位置センサにより検出した基準点の位置と、上記位置センサにより検出した対象 箇所の位置と、上記電子ビーム照射により検出した上記基準点の位置とに基づき対象箇 所を電子ビーム照射位置に移動し、
上記電子ビームを上記試料の対象箇所に照射して検査することを特徴とする電子ビ ーム検査方法。
2. 請求の範囲第 1項記載の方法において、上記基準部材の基準点の位置を位置セン サにより求める位置は Z軸方向における位置 Z S()であり、
上記試料の対象箇所の位置を位置センサにより求める位置は Z軸方向における位置 Z t0であり、
上記基準部材に電子ビームを照射して、求める基準点の位置は上記基準部材上に電子 ビームが焦点を結ぶ上記基準部材の基準点の Z軸方向における位置 Z SBであり、
上記位置 Z soと位置 Z t()と位置 Z SBとから、 上記 Z軸方向において上記試料の対象箇 所に電子ビームが焦点を結ぶ Z軸方向における位置 Z tBを計算し、
上記試料の対象箇所を上記位置 Z tBに位置させることを特徴とする電子ビーム検査 方法。
3. 請求の範囲第 2項記載の方法において、上記試料の対象箇所の X軸方向及び Y軸 方向における位置 Xt。及び Υωを位置センサにより求め、
上記位置 Χω及び Υωを用いて上記試料を上記電子ビーム照射位置へ移動し、 上記試 料の対象箇所から予め決められた値だけずれた箇所に電子ビームを照射して、そのずれ た箇所の X軸及び Υ軸方向における位置 XQF及び Y。Fを求め、 上記位置 XQF及び YQFに基づき、 上記試料の対象箇所の上記電子ビーム照射位置への 移動を行う。
4. 請求の範囲第 3項記載の方法において、上記試料中の複数の対象箇所中の一部の 複数の箇所について上記 Xt。及び Υωを検出し、 これら検出した Xt0及び Υωから、残り
5 の対象箇所のそれぞれ Χω及び Yt。に対応する位置を計算により求め、 これら計算によ り求めた Xt。及び Yt。を用いて、 対応する試料の対象箇所に電子ビームが照射すること ができる X軸方向及び Y軸方向における上記位置 XtB及び YtBを計算する。
5. 請求の範囲第 2項記載の方法において、 上記位置センサによる位置 Z tQの検出は 1つの対象箇所について行い、 その位置 Z t0を他の対象箇所に対する上記 Z tBの計算に
10 用いる。
6. 請求の範囲第 2項記載の方法において、 上記位置センサによる上記位置 Ζ ωの検 出は、上記試料中の複数の対象箇所中の一部の複数箇所について行い、 これら検出した Ζ ωから、 残りの対象箇所の Ζ ωは検出する位置を計算により求め、 これら計算により 求めた ζ を用いて、 上記 Z tBを計算する。
15 7. 請求の範囲第 1項記載の方法において、
上記基準部材の基準点の位置センサにより;^出する位置は X軸方向及び Y軸方向に おける各位置 Χ及び YSoであり、
上記試料の対象箇所の位置センサにより検出する位置は X軸方向及び Y軸方向にお ける各位置 Xt。及び Ywであり、
20 上記基準部材に電子ビームを照射して、検出する上記基準部材の基準点の位置は X軸 方向及び Y軸方向における各位置 XSB及び YSBであり、
上記位置 Xs()及び Ys。と位置 Χω及び Υωと位置 XSB及び YSBとから、 上記試料の対象 • 箇所に電子ビームを照射する X軸方向及び Y軸方向における位置 XtB及び YtBを計算し、 上記可動ステージを上記位置 XtB及び YtBに移動させて、 上記対象箇所の電子ビーム 25 照射位置への移動を行う。
8. 請求の範囲第 6項記載の方法において、上記試料中の複数の対象箇所中の一部の 複数の箇所について上記 Χω及び Yt。を検出し、 これら検出した Xw及び YtQから、残り の対象箇所のそれぞれ Χω及び Yt。に対応する位置を計算により求め、 これら計算によ り求めた X ω及び Y tQを用いて、 対応する試料の対象箇所に電子ビームが照射すること が きる X軸方向及び Y軸方向における上記位置 XtB及び YtBを計算する。
9. 請求の範囲第 6項記載の方法において、上記試料の対象箇所から外れ、 これに近 い箇所に電子ビームが焦点を結ぶ Z軸方向における位置を検出し、その求めた Z軸方向 位置で上記電子ビーム検査を行う。
1 0. 請求の範囲第 6項記載の方法において、 上記 Z軸方向における位置 Ζ ωの検出 は 1つの対象箇所において行い、 全ての対象箇所に対して、 この Ζ軸方向位置 z t0を利 用する。
1 1 . 請求の範囲第 6項記載の方法において、 上記 Z軸方向における位置 Ζ ωは複数 箇所において行い、 これら計算した ζωを用いて、 他の対象箇所に対する zt0を計算し て求める。
1 2. 請求の範囲第 1項記載の方法において、
上記基準部材の基準点の上記位置センサにより検出する位置は X軸、 Y軸及び Z軸方 向における各位置 XS(), YSo及び Z Soであり、
上記試料の対象箇所の位置センサにより検出する位置は X軸、 Y軸及び Z軸方向にお ける各位置 Χω. Υω及び Ζ ωであり、
上記基準部材に電子ビームを照射して、検出する上記基準部材の基準点の位置は X軸 方向及び Υ軸方向における各位置 XSB及び YSB、 及び上記電子ビームが上記基準部材上 に焦点を結ぶ Z軸方向における位置 z SBであり、
上記位置 XS(), YSQ及び Z S(3と、 位置 XtQ, Yt()及び Ζ ωと位置 XSB, YSB及び Z SBとから、 X軸方向、 Y軸方向において電子ビームを上記試料.の対象箇所に照射する位置 XtB, Y tBかつ電子ビームが焦点を結ぶことができる Z軸方向における位置 Z tBを計算し、 上記可動ステージを上記位置 XtB, YtB及び Z tBに移動させて、 上記対象箇所の電子 ビーム照射位置への移動を行う。
1 3. 請求の範囲第 1 2項記載の方法において、上記試料中の複数の対象箇所中の一 部の複数の箇所について上記 Χω及び Yt。を検出し、これら検出した Xt()及び Yt0から、 残りの対象箇所のそれぞれ Xw及び Yt。に対応する位置を計算により求め、 これら計算 により求めた Χω及び Yt。を用いて、 対応する試料の対象箇所に電子ビームが照射する ことができる X軸方向及び Y軸方向における上記位置 XtB及び YtBを計算する。
1 4. 請求の範囲第 1 2項記載の方法において、 上記位置センサによる位置 Ζ ωの検 出は 1つの対象箇所について行い、 その位置 Ζ ωを他の対象箇所に対する上記 Z tBの計 算に用いる。
1 5. 請求の範囲第 1 3項記載の方法において、 Z t。方向における位置 Z tQは複数の 対象箇所について行い、 これら計算した Ζ ωを用いて、 他の対象箇所の Z t0を計算して 求める。
1 6. 請求の範囲第 1項記載の方法において、
上記基準点の Z軸方向における位置を検出する位置センサとして光学センサを用い、 上記基準点の X軸方向および Y軸方向における各位置を検出する位置センサとして光 学顕微鏡を用いる。
1 7. 請求の範囲第 1 2項記載の方法において、上記基準部材として、上記試料上に 対象箇所から離れて存在する、 又は形成した基準点となる部分を利用する。
1 8. 電子ビーム照射部と、
位置センサ部と、
真空室内で試料を載置して上記電子ビーム照射部よりの電子ビームの照射を受ける 位置、上記位置センサ部により検出される位置に移動させることができる可動ステージ と、
上記試料の対象箇所を、上記位置センサの検出出力により、三軸方向中の少くとも一 方向における位置を検出し、上記可動ステージ上に設けられた基準部材の基準点を、上 記位置センサの検出出力により、三軸方向中の上記少くとも一方向における位置を検出 するセンサ位置検出処理部と、
上記電子ビーム照射部より上記基準部材に電子ビームを照射して、その反射電子又は 2次電子の検出出力により、電子ビームの焦点が基準部材の基準点上に一致した状態に おける三軸方向中の上記少くとも一方向における位置を検出する電子ビーム位置検出 処理部と、
上記各検出された位置が記憶される記憶部と、
上記センサ位置検出処理部および電子ビーム位置検出処理部により求めた位置によ り、上記試料の電子ビ一ム照 部よりの電子ビームが照射される位置を計算する電子ビ ーム照射位置計算部と、
上記電子ビーム照射位置計算部により計算された位置の上記試料の対象箇所が電子 ビーム照射部からの電子ビーム照射位置に移動させて、その対象箇所に電子ビームを照 射してその反射電子又は 2次電子を検出して検査を行う検査部と、
上記可動ステージを駆動する駆動部と、
上記電子ビーム照射部、上記位置センサ、上記センサ位置検出処理部、上記電子ビー ム位置検出処理部、上記電子ビーム照射位置計算部、上記検査部および上記駆動部を制 御する制御部と、
を具備する電子ビーム検査装置。
1 9. 請求の範囲第 1 8項記載の装置において、上記センサ位置検出処理部は上記可 動ステージの上下方向における上記基準部材の基準点位置および上記対象箇所位置の 各検出を光学センサを用いて行う処理部と、
上記可動ステ一ジの水平方向における上記基準点位置およぴ上記対象箇所位置の検 出を光学顕微鏡を用いて行う処理部とよりなることを特徴とする電子ビーム検査装置。
PCT/JP2001/008096 2000-09-19 2001-09-18 Procede d'inspection d'un faisceau d'electrons et dispositif associe WO2002025691A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000283641 2000-09-19
JP2000-283641 2000-09-19

Publications (1)

Publication Number Publication Date
WO2002025691A1 true WO2002025691A1 (fr) 2002-03-28

Family

ID=18767978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008096 WO2002025691A1 (fr) 2000-09-19 2001-09-18 Procede d'inspection d'un faisceau d'electrons et dispositif associe

Country Status (1)

Country Link
WO (1) WO2002025691A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581799B2 (en) 2009-05-11 2017-02-28 Carl Zeiss Ag Microscopic examination of an object using a sequence of optical microscopy and particle beam microscopy
CN110337707A (zh) * 2017-02-13 2019-10-15 株式会社日立高新技术 带电粒子线装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541194A (ja) * 1991-08-02 1993-02-19 Sumitomo Electric Ind Ltd 観察装置
JPH06325717A (ja) * 1993-05-18 1994-11-25 Shimadzu Corp 電子線分析装置
JPH07161328A (ja) * 1993-12-08 1995-06-23 Seiko Instr Inc 集束イオンビーム加工装置
US5656812A (en) * 1995-07-21 1997-08-12 Jeol Ltd. Electron probe microanalyzer and X-ray analysis using same
JPH11274044A (ja) * 1998-03-24 1999-10-08 Hitachi Ltd 荷電ビームによる加工方法およびその加工システム並びに荷電ビームによる観察方法およびその観察システム
JP2000348660A (ja) * 1999-06-04 2000-12-15 Shimadzu Corp 電子プローブマイクロアナライザー

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0541194A (ja) * 1991-08-02 1993-02-19 Sumitomo Electric Ind Ltd 観察装置
JPH06325717A (ja) * 1993-05-18 1994-11-25 Shimadzu Corp 電子線分析装置
JPH07161328A (ja) * 1993-12-08 1995-06-23 Seiko Instr Inc 集束イオンビーム加工装置
US5656812A (en) * 1995-07-21 1997-08-12 Jeol Ltd. Electron probe microanalyzer and X-ray analysis using same
JPH11274044A (ja) * 1998-03-24 1999-10-08 Hitachi Ltd 荷電ビームによる加工方法およびその加工システム並びに荷電ビームによる観察方法およびその観察システム
JP2000348660A (ja) * 1999-06-04 2000-12-15 Shimadzu Corp 電子プローブマイクロアナライザー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581799B2 (en) 2009-05-11 2017-02-28 Carl Zeiss Ag Microscopic examination of an object using a sequence of optical microscopy and particle beam microscopy
US10473907B2 (en) 2009-05-11 2019-11-12 Carl Zeiss Microscopy Gmbh Microscopic examination of an object using a sequence of optical microscopy and particle beam microscopy
US11454797B2 (en) 2009-05-11 2022-09-27 Carl Zeiss Microscopy Gmbh Microscopic examination of an object using a sequence of optical microscopy and particle beam microscopy
CN110337707A (zh) * 2017-02-13 2019-10-15 株式会社日立高新技术 带电粒子线装置
US11239051B2 (en) * 2017-02-13 2022-02-01 Hitachi High-Tech Corporation Charged particle beam device

Similar Documents

Publication Publication Date Title
KR101469403B1 (ko) 하전 입자선 장치
KR102102018B1 (ko) 다이별 검사를 위한 오토포커스 시스템 및 방법
WO2010032857A1 (ja) パターンの検査装置、及びパターンの検査方法
US20060284088A1 (en) Focus correction method for inspection of circuit patterns
US20170328842A1 (en) Defect observation method and defect observation device
JP5639541B2 (ja) 光学式検査装置、検査システムおよび座標管理用ウエハ
JPH09184714A (ja) パターン寸法測定方法
KR102422827B1 (ko) 하전 입자 빔 시스템, 및 중첩 시프트량 측정 방법
JP3602646B2 (ja) 試料の寸法測定装置
JP2006276454A (ja) 画像補正方法、およびこれを用いたパターン欠陥検査方法
KR20190037112A (ko) 검사 방법 및 검사 장치
WO2018003493A1 (ja) 荷電粒子線装置
US20140312224A1 (en) Pattern inspection method and pattern inspection apparatus
KR20170032602A (ko) 결함 촬상 장치, 이를 구비하는 결함 검사 시스템 및 이를 이용한 결함 검사 방법
KR101067996B1 (ko) 선폭 측정 장치의 검사 방법
KR20140078621A (ko) 기판의 형상 변화 측정 방법
KR100926019B1 (ko) 결함 입자 측정 장치 및 결함 입자 측정 방법
JP5103253B2 (ja) 荷電粒子線装置
WO2002025691A1 (fr) Procede d'inspection d'un faisceau d'electrons et dispositif associe
US20170256070A1 (en) Inspection method and system and a method of inspecting a semiconductor device using the same
JP3488707B2 (ja) パターン寸法測定装置
JP2945448B2 (ja) 表面形状測定装置
JP3430788B2 (ja) 試料像測定装置
JP2009037985A (ja) ライン・スペース判定方法およびライン・スペース判定装置
JP5074058B2 (ja) 異物検査方法及び異物検査装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP PH US

NENP Non-entry into the national phase

Ref country code: JP