WO2002025189A1 - Heat exchanger and method of manufacturing the heat exchanger - Google Patents

Heat exchanger and method of manufacturing the heat exchanger Download PDF

Info

Publication number
WO2002025189A1
WO2002025189A1 PCT/JP2001/008241 JP0108241W WO0225189A1 WO 2002025189 A1 WO2002025189 A1 WO 2002025189A1 JP 0108241 W JP0108241 W JP 0108241W WO 0225189 A1 WO0225189 A1 WO 0225189A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure side
flow path
heat exchanger
refrigerant
tube body
Prior art date
Application number
PCT/JP2001/008241
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiko Takano
Shunichi Furuya
Original Assignee
Zexel Valeo Climate Control Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corporation filed Critical Zexel Valeo Climate Control Corporation
Publication of WO2002025189A1 publication Critical patent/WO2002025189A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a heat exchanger that is used in a compression refrigeration cycle that circulates refrigerant and exchanges heat between a high-pressure side and a low-pressure side of the refrigerant, and a method for manufacturing the same.
  • the refrigeration efficiency can be improved by exchanging heat between the high pressure side and the low pressure side of the refrigerant.
  • Heat exchangers for exchanging heat between the high-pressure side and the low-pressure side of the refrigerant are also described in Japanese Patent Application Laid-Open Nos. Hei 9-111, 152, and Hei 11-114,207. o
  • a tube is formed in a spiral shape, and refrigerant inlet portions are provided on the outer side and the center side of the spiral, respectively.
  • the one provided with the outlet portion has a complicated structure for circulating the refrigerant and is very difficult to manufacture.
  • the C 0 2 is adopted as the refrigerant
  • the refrigeration Saikuru is used the pressure inside the radiator exceed the critical point of the refrigerant.
  • a refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the refrigerant requires extremely high pressure resistance, and the heat exchanger described above can improve the heat exchange efficiency and endure the refrigerant pressure. Configuration is required.
  • the present invention has been made in view of the above circumstances, and provides a heat exchanger capable of efficiently exchanging heat between a high pressure side and a low pressure side of a refrigerant and a method for manufacturing the same. It is intended to provide. Disclosure of the invention
  • the invention described in claim 1 of the present application is used in a compression type refrigeration cycle that circulates refrigerant, and in a heat exchanger that exchanges heat between a high pressure side and a low pressure side of the refrigerant, the heat exchanger is A tube body through which the high-pressure side and the low-pressure side refrigerant flows, and performing the heat exchange by heat transmitted to the tube body, wherein the tube body has a line of the high-pressure side refrigerant flow paths.
  • An end of the tube body has an inlet section of the first flow path layer.
  • the heat exchanger has a structure in which a refrigerant and an outlet are provided, and the inlet and the outlet of the second flow path layer are provided. According to such a structure, the high-pressure side and the low-pressure side of the refrigerant are efficiently heated. Exchanged o
  • the tube body by arranging the refrigerant passages on the high pressure side and arranging the refrigerant passages on the low pressure side, the heat transfer surface with the refrigerant on the high pressure side and the refrigerant passage on the low pressure side are arranged.
  • the heat transfer surface of the refrigerant is expanded, and the heat transfer between the two refrigerants is ensured.
  • the diameter of each refrigerant channel is relatively small, it is possible to ensure high pressure resistance.
  • the heat exchanger has a simple configuration. And can be easily manufactured.
  • the one end of the tube body is provided with an inlet of the first flow path layer and an outlet of the second flow path layer.
  • a heat exchanger having a structure in which an outlet of the first flow path layer and an inlet of the second flow path layer are provided at the other end of the tube body.
  • the refrigerant on the side flows from one end of the tube to the other end, and the refrigerant on the low pressure side flows from the other end of the tube to one end.
  • the high-pressure side and the low-pressure side of the coolant flow in directions opposite to each other.
  • the heat exchange efficiency of the heat exchanger is further improved. If the high-pressure refrigerant and the low-pressure refrigerant flow in the same direction, a satisfactory temperature difference is obtained near the outlet of the first flow channel layer and the outlet of the second flow channel layer. In some cases, such an inconvenience is avoided according to the configuration of the present invention.
  • the invention described in claim 3 of the present application is the invention according to claim 1 or 2, wherein the tube body is a heat exchanger configured by a single extruded tube.
  • the road is formed as small as possible.
  • the invention described in claim 4 of the present application is the invention according to claim 1 or 2, wherein the tube body is formed by assembling or brazing a plurality of extruded tubes, and the plurality of extruded tubes are provided with the plurality of extruded tubes.
  • This is a heat exchanger having a configuration in which one of the first flow path layer and the second flow path layer is provided. According to such a configuration, each refrigerant flow path is formed as small as possible. Further, an inlet and an outlet of the first channel layer and an inlet and an outlet of the second channel layer are provided for each tube.
  • the invention described in claim 5 of the present application is the invention according to any one of claims 1 to 4, wherein the tube body includes at least one of the first channel layer and the second channel layer.
  • the second flow path layer or the first flow path layer is interposed between the plurality of first flow path layers or the plurality of second flow path layers. Heat transfer between them is performed more reliably.
  • the tube body in claim 6 of the present application, includes one first flow path layer and two second flow path layers sandwiching the first flow path layer. According to such a configuration, the tube body is configured in a well-balanced manner.
  • the invention described in claim 7 of the present application is the heat exchanger according to any one of claims 1 to 6, wherein the inlet portion and the outlet portion of the first flow path layer are symmetrical to each other. According to such a configuration, the flow velocity distribution of the refrigerant in the first flow path layer is set in a well-balanced manner.
  • the invention described in claim 8 of the present application is directed to any one of claims 1 to 7
  • the inlet and outlet of the second flow path layer are heat exchangers that are symmetrical to each other. According to such a configuration, the flow velocity distribution of the refrigerant in the second flow path layer is set in a well-balanced manner. Is done.
  • the heat exchanger in the heat exchanger according to any one of the first to eighth aspects, has a configuration in which a heat insulating material is attached around the tube body. And the heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is promoted. As a result, the performance of the refrigeration cycle is improved.
  • the invention described in claim 10 of the present application is the liquid crystal display device according to any one of claims 1 to 9, wherein, with respect to a cross section of the tube body, a sum of cross sectional areas in the refrigerant flow path on the high pressure side is X, and When the sum of the cross-sectional areas in the refrigerant passage on the low pressure side is Y, these are
  • the flow rates of the high-pressure side and the low-pressure side refrigerant are ensured in a well-balanced manner, and as a result, the heat exchange efficiency is improved.
  • the sum of the cross-sectional areas of the low-pressure side refrigerant flow path is expressed by the cross-sectional area of the high-pressure side refrigerant flow path.
  • the sum X of the cross-sectional area in the refrigerant passage on the high-pressure side and the sum ⁇ of the cross-sectional area in the refrigerant passage on the low-pressure side are: ,
  • the flow rates of the refrigerant on the high-pressure side and the low-pressure side are ensured in a more balanced manner.
  • condition of claim 8 is further limited in terms of numerical values while considering heat exchange efficiency. It is set between 1.7 times and 5.0 times.
  • the present invention is configured such that by setting the equivalent diameter Dl 3 D 2 to such a value, the pressure resistance and the heat exchange property can be suitably secured while suppressing the flow path resistance to a practical range. I have.
  • the invention described in claim 13 of the present application is characterized in that, in the heat exchanger according to any one of claims 1 to 12, the amount of heat transferred between the high pressure side and the low pressure side of the refrigerant is The amount of heat transferred when the temperature difference of
  • the heat exchanger has a configuration of about 60 to 95 [%]. With such a configuration, the performance of the heat exchanger is sufficiently ensured. In other words, the ratio of the amount of heat transferred between the high pressure side and the low pressure side of the refrigerant increases as the length of the tube increases, and decreases as the length of the tube decreases. By setting the amount of heat transferred between the pressure side and the low-pressure side to such a value, it is possible to avoid unnecessary increase in the size and weight of the heat exchanger and to achieve better performance. I have.
  • the invention described in claim 14 of the present application is the heat exchanger according to any one of claims 1 to 13, wherein the refrigeration cycle is configured such that a pressure inside a radiator exceeds a critical point of the refrigerant. It is.
  • the critical point is the limit on the high temperature side (that is, the limit on the high pressure side) where the gas layer and the ⁇ layer coexist, and is the end point of one of the vapor pressure curves.
  • the pressure, temperature, and density at, respectively, are the critical pressure, critical temperature, and critical density. If the pressure exceeds the critical point of the refrigerant inside the radiator, the refrigerant will not condense.
  • the heat exchanger can efficiently exchange heat between the high-pressure side and the low-pressure side of the refrigerant, and is suitably used in a refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the refrigerant. Is done.
  • the invention described in claim 15 of the present application is used in a compression type refrigeration cycle for circulating a refrigerant, and in a method of manufacturing a heat exchanger for exchanging heat between a high pressure side and a low pressure side of the refrigerant, the method comprises:
  • the heat exchanger includes a tube body through which the high-pressure side and the low-pressure side coolant flows, and performs the heat exchange by heat transmitted to the tube body.
  • a second flow path layer in which the low-pressure-side refrigerant flow paths are arranged in a row, and the first flow path layer and the second flow path layer are arranged in a row.
  • a plurality of extruded tubes provided on one side are brazed, and when brazing the plurality of extruded tubes, fins are arranged on the surface of the extruded tube, and then the fins are placed.
  • This is a method of manufacturing a heat exchanger with a According to such a configuration, the plurality of extruded Ji Interview part, is efficiently brazed by heat transmitted to the fins, the heat exchanger is easily manufactured.
  • FIG. 1 is a schematic diagram showing a refrigeration cycle according to a specific example of the present invention.
  • FIG. 2 is a perspective view showing a heat exchanger according to a specific example of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a tube body according to a specific example of the present invention.
  • FIG. 4 is a perspective view illustrating a manufacturing step of the tube body according to a specific example of the present invention.
  • FIG. 5 is a perspective view showing a tube body manufacturing process according to a specific example of the present invention.
  • FIG. 6 is a perspective view showing a tank according to a specific example of the present invention.
  • FIG. 7 is a perspective view showing a heat exchanger according to a specific example of the present invention.
  • FIG. 8 is a perspective view showing a heat exchanger according to a specific example of the present invention.
  • FIG. 9 is a cross-sectional view showing a tube body according to a specific example of the present invention.
  • FIG. 10 is a cross-sectional view showing a tube body according to a specific example of the present invention.
  • FIG. 11 is a cross-sectional view illustrating a main part of a heat exchanger according to a specific example of the present invention.
  • the compression-type refrigeration cycle 1 shown in FIG. 1 is used for in-vehicle cooling mounted on an automobile, and includes a compressor 2 for compressing a refrigerant and a radiator 3 for cooling the refrigerant compressed by the compressor 2.
  • a decompressor 4 that decompresses and expands the refrigerant cooled by the radiator 3, an evaporator 5 that evaporates the refrigerant depressurized by the decompressor 4, and a refrigerant that flows out of the evaporator 5 into a gas layer.
  • An accumulator 6 that separates the refrigerant into a liquid layer and sends the refrigerant in the gas layer to the compressor 2 is provided.
  • the coolant adopts a C 0 2, the internal pressure of the radiator 3, the operating conditions such as air temperature, exceed the critical point of the refrigerant.
  • a heat exchanger 7 for exchanging heat between the high-pressure side and the low-pressure side of the refrigerant is provided between the radiator 3 and the decompressor 4 and between the accumulator 6 and the compressor 2. Is provided.
  • the heat exchanger 7 improves the efficiency of the refrigeration cycle 1 by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant.
  • the white arrow in the drawing indicates the direction in which the high-pressure side refrigerant flows, and the black arrow indicates the direction in which the low-pressure side refrigerant flows.
  • the heat exchanger 7 of the present embodiment includes a tube body 110 through which the high-pressure side and the low-pressure side refrigerant flows, and heat is transferred by the heat transferred to the tube body 7 10.
  • the tube body 7110 has a first flow path layer 711 formed by arranging high-pressure side refrigerant flow paths 711a and a second flow path layer formed by arranging a low-pressure side refrigerant flow path 712a. And two flow path layers 12.
  • the high-pressure side refrigerant flow path 711a and the low-pressure side refrigerant flow path 712a are illustrated in the form of elliptical ones, or they may be circular, elliptical, or square. , Triangular, etc.
  • the equivalent diameter of the high-pressure side refrigerant flow path 71 1a and the equivalent diameter of the low-pressure side refrigerant flow path 71 2a are determined in consideration of pressure resistance, heat exchange property, and flow path resistance. It is set in the range of ⁇ 1.2 [mm].
  • the tube body 7100 is formed by brazing a plurality of flat extruded tubes. Specifically, one extruded tube provided with the first flow path layer 711 and the second flow path Two extruded tubes provided with layers 7 12 are laminated in parallel and alternately, and this is heated and brazed by heating in a furnace.
  • the tube body 7 10 includes one first flow path layer 7 1 1 and two second flow path layers 7 1 2 sandwiching the first flow path layer 7 1 1, and is connected to the high pressure side of the refrigerant. Heat exchange with the low pressure side takes place between these layers.
  • the dimensions of the tube body 70 of this example are 30 to 60 [mm] in width and 4.5 to 9.0 [mm] in thickness.
  • the length is set in consideration of the balance between heat exchange performance and installation space.
  • the inlet 7 2 0 of the first flow path layer 7 1 1 connects the piping 1 10 on the radiator 3 side
  • a joint type joint block 721, a single pipe section 722 extending from the joint block 721, and a sunset section 723 communicating the tip of the pipe section 722 are provided.
  • One end of an extruded tube provided with the first flow path layer 7 11 is inserted into the tank section 7 23 and brazed.
  • the first flow path layer 7 11 communicates with the tank section 7 23.
  • the outlet section 730 of the first flow path layer 111 is a union-type joint block 732 that connects the pipe 120 on the pressure reducer 4 side, and one pipe section extending from the joint block 732.
  • the extruded tube provided with the first flow path layer 7 1 1 and the tank 7 3 3 is provided with a nozzle section 7 3 3 communicating the tip of the pipe section 7 32 The other end is inserted and brazed.
  • the first flow path layer 7 11 communicates with the tank section 7 33.
  • the inlet part 7400 of the second flow path layer 712 is composed of a union type joint work 741 for connecting the pipe 13 on the accumulator 6 side, and two pipe parts 7 extending from the joint work 741. 4 2 and two tank sections 7 4 3 communicating the ends of the pipe sections 7 4 2 with each other, and two extrusions provided with a second flow path layer 7 1 2 for each tank section 7 4 3 One end of the molded tube is inserted and brazed, respectively.
  • the second flow path layer 7 12 communicates with the tank section 7 43.
  • the outlet 750 of the second flow path layer 712 is a union type joint block 715 for connecting the piping 140 on the compressor 2 side, and two pipe sections extending from the joint block 750. 7 5 2 and two tanks 7 5 3 communicating the ends of the pipes 7 52 respectively, and two extrusions provided with a second flow path layer 7 1 2 for each tank 7 5 3 The other end of the molded tube is inserted and brazed, respectively.
  • the second flow path layer 7 12 communicates with the tank section 753.
  • an inlet 720 of the first flow channel layer 711 and an outlet 7500 of the second flow channel layer 7112 are provided at one end of the tube 7 10,
  • the outlet portion 730 of the flow channel layer 711 and the inlet portion 740 of the second flow channel layer 712 are provided at the other end of the tube body 710. Accordingly, the high-pressure side refrigerant flows from one end of the tube: 110 to the other end, and the low-pressure side refrigerant flows from the other end of the tube body 110 to one end. Flows to That is, in the tube body 110, the high-pressure side and the low-pressure side of the refrigerant flow in directions opposite to each other.
  • the heat exchange efficiency of the heat exchanger 7 can be further improved by flowing the high-pressure side and the low-pressure side of the refrigerant in directions facing each other. If the high-pressure side refrigerant and the low-pressure side refrigerant flow in the same direction, the outlet section 7300 of the first flow path layer 711 and the outlet section 7500 of the second flow path layer 7 In the vicinity, those temperature differences may not be obtained satisfactorily, but according to the configuration of this example, such inconvenience can be avoided.
  • the tank 723 of the inlet 720 and the tank 734 of the outlet 73.0 are as follows. It has a cylindrical shape along the width direction of the first flow path layer 711.
  • the pipe section 722 of the inlet section 702 and the pipe section 732 of the outlet section 730 communicate with both ends of the tank sections 723, 733 in different directions. ing.
  • the inlet part 720 and the outlet part 730 of the first flow path layer 71 1 are symmetric with each other.
  • the tank part 743 of the inlet part 7400 and the tank part 754 of the outlet part 750 It has a cylindrical shape along the width direction of the second flow path layer 712.
  • the pipe part 742 of the inlet part 7400 and the pipe part 752 of the outlet part 750 communicate with both ends of each tank part 743, 753 in different directions. ing.
  • the inlet 740 and the outlet 7500 of the second flow path layer 712 are symmetric with each other.
  • each joint block 7 2 1, 7 3 1, 7 4 1, 7 5 1 It can be set arbitrarily by bending the middle part of the eve parts 722, 732, 742, 752.
  • the value of ⁇ ⁇ ⁇ ⁇ with respect to X is set between 1.7 times and 5.0 times, and the total X of the cross-sectional areas in the high-pressure side refrigerant flow path and the low-pressure side refrigerant The sum of the cross-sectional areas in the channel is ⁇ ⁇
  • the low-pressure side refrigerant expands more reliably than the high-pressure side refrigerant, by adopting such a configuration in the tube body 710, the flow velocity difference between the high-pressure side and the low-pressure side refrigerant is reduced. The flow rate of the refrigerant has been reduced to ensure a good balance.
  • FIGS. 4 to 5 are perspective views showing the steps of manufacturing the tube body 710.
  • the tube body 710 is constructed by assembling each extruded tube, each pipe section 722, 132, 742, 752, and each tank section 723, 733, 743, 753, and heat-treating this assembly in a furnace. Attached. Prior to the heat treatment, brazing filler metal and flux are provided at key points of each member.
  • the brazing material is Si powder, which is mixed with a flux and applied.
  • fins F are arranged on the surface of each extruded tube during the heat treatment (see FIG. 4). Fin F is removed after brazing (see Fig. 5). However, brazing of multiple extruded tubes is efficiently performed by the heat transmitted to the fins F. In addition, each joint pro- cess 721, 731, 741, 751 is provided by torch brazing after such brazing in a furnace. In other words, thermal deformation due to heat treatment in the furnace is avoided.
  • the heat exchanger 7 of the present embodiment can be easily manufactured, and can efficiently perform heat exchange between the high-pressure side and the low-pressure side of the refrigerant.
  • the temperature difference between the high pressure side and the low pressure side of the refrigerant is about 1 to 10 ° C.
  • the amount of heat that moves between the high-pressure side and the low-pressure side of the refrigerant is approximately 60 to 9 if the amount of heat that moves when the temperature difference is 0 ° C is 100 [%]. 5 [%].
  • the tube body 110 of this example was formed using an extruded tube, or if the required pressure resistance can be satisfactorily secured, a tube formed and brazed plate is used. May be configured.
  • the plate is formed by mouth forming or press forming.
  • the tube body 7 10 of this example is formed by brazing a plurality of extruded tubes. However, if sufficient heat exchange between the extruded tubes can be obtained, such brazing may be omitted. Good. That is, the tube body 7100 may be one in which a plurality of extruded tubes are assembled in close contact.
  • each part of the heat exchanger 7 can be further simplified by reducing the number of parts and using common parts.
  • each of the tank sections 7 2 3 and 7 5 3 at the inlet section 7 20 of the first flow path layer 7 11 and the outlet section 7 50 of the second flow path layer 7 12 it is also possible to constitute with an integral extruded member.
  • a brazing member is brazed to the key of the extruded member.
  • such an extruded member is referred to as each of the tank sections 7 2 3 and 7 5 3 at the outlet section 7 30 of the first channel layer 7 11 and the inlet section 7 40 of the second channel layer 7 12. It is also possible to make them common.
  • the heat exchanger includes the tube body through which the high-pressure side and the low-pressure side refrigerant flows, and is transmitted to the tube body.
  • the tube body is composed of a first flow path layer having a high-pressure side refrigerant flow path and a second flow path having a low-pressure side flow path. Since the inlet and outlet of the first channel layer and the inlet and outlet of the second channel layer are provided at the end of the tube body, the high pressure side of the refrigerant and the low pressure The heat can be exchanged efficiently with the side.
  • the heat transfer surface with the refrigerant on the high pressure side and the refrigerant passage on the low pressure side are arranged.
  • the heat transfer surface can be enlarged, and the heat transfer between the two refrigerants can be reliably performed.
  • the diameter of each refrigerant flow path is relatively small, high pressure resistance can be ensured.
  • the heat exchanger has a simple structure. It can be easily manufactured.
  • the heat exchanger of the present example at one end of the tube body, an inlet of the first flow path layer and an outlet of the second flow path layer are provided, and the other end of the tube body is provided. Since the outlet is provided with the outlet of the first channel layer and the inlet of the second channel layer, the heat exchange efficiency of the heat exchanger can be further improved. If the high-pressure refrigerant and the low-pressure refrigerant flow in the same direction, the temperature difference between the outlets of the first and second flow path layers will not be satisfactory. However, according to the configuration of the present invention, such inconvenience can be avoided.
  • the tube body is formed by assembling or brazing a plurality of extruded tubes, and the plurality of extruded tubes are provided with the first flow path layer and the second flow tube. Since one of the road layers is provided, each of the refrigerant passages can be formed as small as possible. The inlet and outlet of the first channel layer and the inlet and outlet of the second channel layer can be provided for each tube.
  • the tube body includes at least one of the first flow path layer and the second flow path layer, the plurality of first flow path layers or the plurality of first flow path layers are provided.
  • the second channel layer or the first channel layer is interposed between the second channel layers, so that heat transfer between the two refrigerants can be performed more reliably.
  • the tube body includes one first flow path layer and two second flow path layers sandwiching the second flow path layer, so that the tube body can be configured in a well-balanced manner. it can.
  • the inlet and outlet of the first flow path layer are symmetrical with each other, so that the flow velocity distribution of the refrigerant in the first flow path layer can be set in a well-balanced manner.
  • the inlet and outlet of the second flow path layer are symmetrical to each other, so that the flow velocity distribution of the refrigerant in the second flow path layer can be set in a well-balanced manner.
  • the flow rates of the refrigerant on the high-pressure side and the low-pressure side can be ensured in a well-balanced manner, and as a result, the heat exchange efficiency can be improved.
  • the sum of the cross-sectional areas of the low-pressure side refrigerant flow path ⁇ is calculated as the cross-sectional area of the high-pressure side refrigerant flow path.
  • the values of X and ⁇ are more desirably limited while considering the heat exchange efficiency, and the value of ⁇ ⁇ ⁇ ⁇ for X is from 1.7 times. It is set between 5.0 times.
  • the equivalent diameter of the high-pressure side refrigerant flow path and the equivalent diameter D 2 of the low-pressure side refrigerant flow path are as follows:
  • the pressure resistance, the heat exchange property, and the flow path resistance can be set in a well-balanced manner.
  • the amount of heat that moves between the high-pressure side and the low-pressure side of the refrigerant is equal to the amount of heat that moves when the temperature difference becomes 0 ° C. If it is 0 [%], it is about 60-95 [%], so the performance of the heat exchanger can be satisfactorily secured.
  • the pressure inside the radiator exceeds the critical point of the refrigerant.
  • the heat exchanger can efficiently exchange heat between the high-pressure side and the low-pressure side of the refrigerant, and is suitably used in a refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the refrigerant. can do.
  • the heat exchanger 7 of this example is provided around the tube body 7 10. It is equipped with a heat insulator 760.
  • the heat insulating member 760 is for ensuring heat insulation between the tube body 710 and the outside.
  • the heat insulating member 760 is a sponge made of rubber or synthetic resin. Since other configurations are the same as those of the above-described specific example, common members are denoted by the same reference numerals, and description thereof is omitted.
  • the heat exchanger of this example since the heat insulating material is attached around the tube body, heat insulation with the outside is secured, and heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is performed. Can be promoted. As a result, the performance of the frozen cycle can be further improved.
  • the heat exchanger 7 of the present example is formed by bending a tube body 710 into a U-shape. Since other configurations are the same as those of the above-described specific example, common members are denoted by the same reference numerals and description thereof is omitted.
  • the tube body may be appropriately shaped in consideration of the installation space of the heat exchanger.
  • the tube body 110 of the present example is composed of two extruded tubes provided with a first flow path layer 711, and three extruded tubes provided with a second flow path layer 712. Tubes are stacked in parallel and alternately and brazed.
  • the pipe section is used for the inlet section 720 and the outlet section 730 of the first flow path layer 711 and the inlet section 740 and the outlet 750 of the second flow path layer 712.
  • the tube body may be provided with more first and second flow path layers.
  • the tube body 7 10 of the present example is composed of a single extruded tube.
  • Each tank section 72 3, 73 33, 74 43, 75 53 is provided for such a single extruded tube.
  • the ends of the extruded tube, considering each tank section 7 2 3 7 3 3 7 4 3 7 5 3 of assembly property, Note c is subjected to appropriate processing, the other configurations Since this is the same as the specific example described above, common members are denoted by the same reference numerals, and description thereof is omitted.
  • each refrigerant channel can be formed as small as possible. Further, the first channel layer and the second channel layer can be provided integrally without brazing. Industrial applicability
  • the present invention is a heat exchanger and its production method used in a refrigeration cycle generally for automobiles and home air conditioners, among others, to adopt the example C 0 2 as the refrigerant, the critical point of the pressure inside the radiator coolant It is suitable for refrigeration cycles that exceed the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger (7) and a method of manufacturing the heat exchanger; the heat exchanger used in a refrigerant circulating compression refrigeration cycle (1) and exchanging heat between the high and low pressure sides of the refrigerant, comprising a tube body (710) allowing the refrigerant to circulate therethrough on the high and low pressure sides for performing a heat exchange by utilizing a heat conducting through the tube body, the tube body further comprising a first flow passage layer (711) formed by disposing a high-pressure side refrigerant flow passage (711) and a second flow passage layer formed by disposing a low-pressure side refrigerant flow passage (712a), wherein the inlet part (720) and outlet part (730) of the first flow passage layer and the inlet part (740) and outlet part (750) of the second flow passage layer are provided at the end part of the tube body.

Description

明糸田書  Akitoda
熱交換器及びその製造方法 技術分野 Heat exchanger and method for manufacturing the same
本発明は、 冷媒を循環する圧縮式の冷凍サイクルに用いられて、 冷媒 の高圧側と低圧側とを熱交換する熱交換器とその製造方法に関する。 背景技術  The present invention relates to a heat exchanger that is used in a compression refrigeration cycle that circulates refrigerant and exchanges heat between a high-pressure side and a low-pressure side of the refrigerant, and a method for manufacturing the same. Background art
冷媒を循環する圧縮式の冷凍サイクルについては、冷媒の高圧側と低 圧側とを熱交換することにより、 その冷凍効率を向上させることが可能 である。  As for the compression type refrigeration cycle that circulates the refrigerant, the refrigeration efficiency can be improved by exchanging heat between the high pressure side and the low pressure side of the refrigerant.
冷媒の高圧側と低圧側とを熱交換する熱交換器は、特開平 9一 1 1 3 1 5 2号公報や、特開平 1 1一 1 4 2 0 0 7号公報等にも記載されてい o  Heat exchangers for exchanging heat between the high-pressure side and the low-pressure side of the refrigerant are also described in Japanese Patent Application Laid-Open Nos. Hei 9-111, 152, and Hei 11-114,207. o
ところで、 冷凍サイクルについては、 設置スペースの節約や、 製造コ ストの更なる低減が求められており、前述したように冷媒の高圧側と低 圧側とを熱交換する熱交換器についても、簡素な構成であるとともに、 より優れた性能を有するものが望まれている。  By the way, as for the refrigeration cycle, there is a demand for saving installation space and further reducing the production cost.As mentioned above, a simple heat exchanger for exchanging heat between the high-pressure side and low-pressure side of the refrigerant is required. What has been desired is a structure having more excellent performance.
例えば、前記特開平 9 _ 1 1 3 1 5 2号公報に記載された熱交換器の ように、 チューブを渦巻き状に形成し、 その渦巻きの外方側と中心側と にそれぞれ冷媒の入口部及び出口部を設けたものは、冷媒を流通する構 成が複雑であるうえに、 製造も非常に困難である。  For example, as in a heat exchanger described in the above-mentioned Japanese Patent Application Laid-Open No. 9-11131, a tube is formed in a spiral shape, and refrigerant inlet portions are provided on the outer side and the center side of the spiral, respectively. In addition, the one provided with the outlet portion has a complicated structure for circulating the refrigerant and is very difficult to manufacture.
また、 近年では、 冷媒として C 0 2を採用し、 放熱器の内部の圧力が 冷媒の臨界点を上まわる冷凍サィクルが使用されている。 In recent years, the C 0 2 is adopted as the refrigerant, the refrigeration Saikuru is used the pressure inside the radiator exceed the critical point of the refrigerant.
放熱器の内部の圧力が冷媒の臨界点を上まわる冷凍サイクルは、非常 に高い耐圧性を要し、 前述した熱交換器についても、 熱交換効率を向上 するとともに、 かかる冷媒の圧力に絶え得る構成が要求される。  A refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the refrigerant requires extremely high pressure resistance, and the heat exchanger described above can improve the heat exchange efficiency and endure the refrigerant pressure. Configuration is required.
本発明は、 上記事情に鑑みてなされたものであり、 冷媒の高圧側と低 圧側とを効率よく熱交換することができる熱交換器とその製造方法を 提供することを目的としている。 発明の開示 The present invention has been made in view of the above circumstances, and provides a heat exchanger capable of efficiently exchanging heat between a high pressure side and a low pressure side of a refrigerant and a method for manufacturing the same. It is intended to provide. Disclosure of the invention
本願第 1請求項に記載した発明は、冷媒を循環する圧縮式の冷凍サイ クルに用いられ、前記冷媒の高圧側と低圧側とを熱交換する熱交換器に おいて、 当該熱交換器は、 前記高圧側及び前記低圧側の冷媒を流通する チューブ体を備え、前記チューブ体に伝わる熱にて前記熱交換を行うも のであり、 前記チューブ体は、 前記高圧側の冷媒流路を列設してなる第 1流路層と、前記低圧側の冷媒流路を列設してなる第 2流路層とを備え、 前記チューブ体の端部には、 前記第 1流路層の入口部及び出口部と、 前 記第 2流路層の入口部及び出口部とを設けた構成の熱交換器であり、 こ のような構成によると、冷媒の高圧側と低圧側とが効率よく熱交換され o  The invention described in claim 1 of the present application is used in a compression type refrigeration cycle that circulates refrigerant, and in a heat exchanger that exchanges heat between a high pressure side and a low pressure side of the refrigerant, the heat exchanger is A tube body through which the high-pressure side and the low-pressure side refrigerant flows, and performing the heat exchange by heat transmitted to the tube body, wherein the tube body has a line of the high-pressure side refrigerant flow paths. A first flow path layer, and a second flow path layer in which the low-pressure-side refrigerant flow paths are arranged. An end of the tube body has an inlet section of the first flow path layer. The heat exchanger has a structure in which a refrigerant and an outlet are provided, and the inlet and the outlet of the second flow path layer are provided. According to such a structure, the high-pressure side and the low-pressure side of the refrigerant are efficiently heated. Exchanged o
すなわち、 チューブ体については、 高圧側の冷媒流路を列設するとと もに、 低圧側の冷媒流路を列設することにより、 高圧側の冷媒との伝熱 面、 及び低圧側の冷媒との伝熱面が拡大され、 両冷媒間の熱伝達が確実 に行われる。 また、 各個の冷媒流路の径が比較的小さくなるので、 高い 耐圧性を確保することも可能である。  That is, for the tube body, by arranging the refrigerant passages on the high pressure side and arranging the refrigerant passages on the low pressure side, the heat transfer surface with the refrigerant on the high pressure side and the refrigerant passage on the low pressure side are arranged. The heat transfer surface of the refrigerant is expanded, and the heat transfer between the two refrigerants is ensured. In addition, since the diameter of each refrigerant channel is relatively small, it is possible to ensure high pressure resistance.
更に、 第 1流路層の入口部及び出口部と、 第 2流路層の入口部及び出 口部とをチューブ体の端部に設ければ、 当該熱交換器は、 その構成が簡 素化され、 容易に製造することが可能である。  Furthermore, if the inlet and outlet of the first channel layer and the inlet and outlet of the second channel layer are provided at the end of the tube body, the heat exchanger has a simple configuration. And can be easily manufactured.
本願第 2請求項に記載した発明は、 請求項 1において、 前記チューブ 体の一方の端部には、前記第 1流路層の入口部及び前記第 2流路層の出 口部を設けるとともに、 前記チューブ体の他方の端部には、 前記第 1流 路層の出口部及び前記第 2流路層の入口部を設けた構成の熱交換器で あり、 このような構成によると、 高圧側の冷媒は、 チューブ体の一方の 端部から他方の端部へ流れるとともに、 低圧側の冷媒は、 チュ一ブ体の 他方の端部から一方の端部へ流れる。 つまり、 チューブ体において、 冷 媒の高圧側と低圧側とは、 互いに対向する方向に流れる。 このように、冷媒の高圧側と低圧側とを互いに対向する方向に流せば、 熱交換器の熱交換効率が一層向上される。仮に、 高圧側の冷媒と低圧側 の冷媒とを同じ方向に流すと、 第 1流路層の出口部、 及び第 2流路層の 出口部の付近では、それらの温度差が満足に得られない場合があるが、 本発明の構成によれば、 そのような不都合が回避される。 In the invention described in claim 2 of the present application, in claim 1, the one end of the tube body is provided with an inlet of the first flow path layer and an outlet of the second flow path layer. A heat exchanger having a structure in which an outlet of the first flow path layer and an inlet of the second flow path layer are provided at the other end of the tube body. The refrigerant on the side flows from one end of the tube to the other end, and the refrigerant on the low pressure side flows from the other end of the tube to one end. In other words, in the tube body, the high-pressure side and the low-pressure side of the coolant flow in directions opposite to each other. In this way, if the high-pressure side and the low-pressure side of the refrigerant are caused to flow in the directions facing each other, the heat exchange efficiency of the heat exchanger is further improved. If the high-pressure refrigerant and the low-pressure refrigerant flow in the same direction, a satisfactory temperature difference is obtained near the outlet of the first flow channel layer and the outlet of the second flow channel layer. In some cases, such an inconvenience is avoided according to the configuration of the present invention.
本願第 3請求項に記載した発明は、 請求項 1又は 2において、 前記チ ユーブ体は、単一の押出し成形チューブからなる構成の熱交換器であり、 このような構成によると、 各冷媒流路は、 可及的に小さく形成される。 本願第 4請求項に記載した発明は、 請求項 1又は 2において、 前記チ ユーブ体は、複数の押出し成形チューブを組み付けて又はろう付けして なり、 前記複数の押出し成形チューブには、 前記第 1流路層及び前記第 2流路層の一方をそれぞれ設けた構成の熱交換器であり、 このような構 成によると、 各冷媒流路は、 可及的に小さく形成される。 また、 第 1流 路層の入口部及び出口部と、 第 2流路層の入口部及び出口部とは、 各チ ュ一ブに対してそれぞれ設けられる。  The invention described in claim 3 of the present application is the invention according to claim 1 or 2, wherein the tube body is a heat exchanger configured by a single extruded tube. The road is formed as small as possible. The invention described in claim 4 of the present application is the invention according to claim 1 or 2, wherein the tube body is formed by assembling or brazing a plurality of extruded tubes, and the plurality of extruded tubes are provided with the plurality of extruded tubes. This is a heat exchanger having a configuration in which one of the first flow path layer and the second flow path layer is provided. According to such a configuration, each refrigerant flow path is formed as small as possible. Further, an inlet and an outlet of the first channel layer and an inlet and an outlet of the second channel layer are provided for each tube.
本願第 5請求項に記載した発明は、請求項 1乃至 4のいずれかにおい て、 前記チューブ体は、 前記第 1流路層及び前記第 2流路層の少なくと も一方を複数備えた構成の熱交換器であり、 このような構成によると、 複数の第 1流路層又は複数の第 2流路層の間に、第 2流路層又は第 1流 路層が介在され、 両冷媒間の熱伝達がより確実に行われる。  The invention described in claim 5 of the present application is the invention according to any one of claims 1 to 4, wherein the tube body includes at least one of the first channel layer and the second channel layer. According to such a configuration, the second flow path layer or the first flow path layer is interposed between the plurality of first flow path layers or the plurality of second flow path layers. Heat transfer between them is performed more reliably.
本願第 6請求項に記載した発明は、 請求項 5において、前記チューブ 体は、 1つの前記第 1流路層と、 前記第 1流路層を挟む 2つの前記第 2 流路層とを備えた構成の熱交換器であり、 このような構成によると、 チ ユーブ体がバランスよく構成される。  In the invention described in claim 6 of the present application, in claim 5, the tube body includes one first flow path layer and two second flow path layers sandwiching the first flow path layer. According to such a configuration, the tube body is configured in a well-balanced manner.
本願第 7請求項に記載した発明は、請求項 1乃至 6のいずれかにおい て、 前記第 1流路層の入口部及び出口部は、 互いに対称である構成の熱 交換器であり、 このような構成によると、 第 1流路層における冷媒の流 速分布がバランスよく設定される。  The invention described in claim 7 of the present application is the heat exchanger according to any one of claims 1 to 6, wherein the inlet portion and the outlet portion of the first flow path layer are symmetrical to each other. According to such a configuration, the flow velocity distribution of the refrigerant in the first flow path layer is set in a well-balanced manner.
本願第 8請求項に記載した発明は、請求項 1乃至 7のいずれかにおい て、 前記第 2流路層の入口部及び出口部は、 互いに対称である構成の熱 交換器であり、 このような構成によると、 第 2流路層における冷媒の流 速分布がバランスよく設定される。 The invention described in claim 8 of the present application is directed to any one of claims 1 to 7 The inlet and outlet of the second flow path layer are heat exchangers that are symmetrical to each other. According to such a configuration, the flow velocity distribution of the refrigerant in the second flow path layer is set in a well-balanced manner. Is done.
本願第 9請求項に記載した発明は、請求項 1乃至 8のいずれかにおい て、前記チューブ体の周囲には断熱材を装着した構成の熱交換器であり、 このような構成によると、 外部との断熱性が確保され、 高圧側の冷媒と 低圧側の冷媒との熱交換が促進される。 その結果、 冷凍サイクルの性能 がー層向上される。  According to a ninth aspect of the present invention, in the heat exchanger according to any one of the first to eighth aspects, the heat exchanger has a configuration in which a heat insulating material is attached around the tube body. And the heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is promoted. As a result, the performance of the refrigeration cycle is improved.
本願第 1 0請求項に記載した発明は、請求項 1乃至 9のいずれかにお いて、 前記チューブ体の断面について、 前記高圧側の冷媒流路における 断面積の総和を Xとするとともに、前記低圧側の冷媒流路における断面 積の総和を Yとするとき、 これらは、  The invention described in claim 10 of the present application is the liquid crystal display device according to any one of claims 1 to 9, wherein, with respect to a cross section of the tube body, a sum of cross sectional areas in the refrigerant flow path on the high pressure side is X, and When the sum of the cross-sectional areas in the refrigerant passage on the low pressure side is Y, these are
X< Y  X <Y
の関係にある構成の熱交換器であり、 このような構成によると、 高圧側 及び低圧側の冷媒の流速がバランスよく確保され、 その結果、 熱交換効 率が向上される。 According to such a configuration, the flow rates of the high-pressure side and the low-pressure side refrigerant are ensured in a well-balanced manner, and as a result, the heat exchange efficiency is improved.
すなわち、 低圧側の冷媒は、高圧側の冷媒と比較して確実に膨張する ので、 チューブ体においては、低圧側の冷媒流路における断面積の総和 Υを、高圧側の冷媒流路における断面積の総和 よりも大きく構成する ことにより、 高圧側及び低圧側の冷媒の流速差が低減される。  That is, since the low-pressure side refrigerant expands more reliably than the high-pressure side refrigerant, in the tube body, the sum of the cross-sectional areas of the low-pressure side refrigerant flow path is expressed by the cross-sectional area of the high-pressure side refrigerant flow path. By setting the sum to be larger than the sum of the flow rates, the difference in flow velocity between the high-pressure side and the low-pressure side refrigerant is reduced.
本願第 1 1請求項に記載した発明は、 請求項 1 0において、 前記高圧 側の冷媒流路における断面積の総和 Xと、前記低圧側の冷媒流路におけ る断面積の総和 Υとは、  In the invention described in claim 11 of the present application, in claim 10, the sum X of the cross-sectional area in the refrigerant passage on the high-pressure side and the sum 断面 of the cross-sectional area in the refrigerant passage on the low-pressure side are: ,
Χ = η · Υ  Χ = η · Υ
1 . 7≤η≤ 5 . 0  1.7≤η≤5.0
の関係にある構成の熱交換器であり、 このような構成によると、 高圧側 及び低圧側の冷媒の流速が一層バランスよく確保される。 According to such a configuration, the flow rates of the refrigerant on the high-pressure side and the low-pressure side are ensured in a more balanced manner.
すなわち、 本発明は、 請求項 8の条件について、 熱交換効率を考慮し つつ、 更に望ましい数値限定をしたものであり、 Xに対する Υの値は、 1 . 7倍から 5 . 0倍の間に設定している。 That is, in the present invention, the condition of claim 8 is further limited in terms of numerical values while considering heat exchange efficiency. It is set between 1.7 times and 5.0 times.
本願第 1 2請求項に記載した発明は、請求項 1乃至 1 1のいずれかに おいて、 前記高圧側の冷媒流路の相当直径 と、 前記低圧側の冷媒流 路の相当直径 D 2とは、 The invention described in claim 12 of the present application is characterized in that, in any one of claims 1 to 11, the equivalent diameter of the high-pressure side refrigerant flow path and the equivalent diameter D 2 of the low-pressure side refrigerant flow path Is
0 . 4 [mm] ≤D i≤ 1 . 2 [mm]  0.4 [mm] ≤D i≤ 1.2 [mm]
0 . 4 [mm] ≤D 2≤ 1 . 2 [mm] 0.4 [mm] ≤D 2 ≤ 1.2 [mm]
の関係にある構成の熱交換器であり、 このような構成によると、 耐圧性、 熱交換性、 及び流路抵抗をバランスよく設定することが可能である。 According to such a configuration, it is possible to set the pressure resistance, the heat exchange property, and the flow path resistance in a well-balanced manner.
すなわち、 これらの相当直径 D l 5 D 2が大きくなると、流路抵抗は低 減するが、 耐圧性、 熱交換性は低下する。 また、 これらの相当直径 Dい D 2が小さくなると、 耐圧性、 熱交換性は向上するが、 流路抵抗は増加 する。 しかるに本発明は、相当直径 D l 3 D 2をかかる値に設定すること により、 流路抵抗を実用的な範囲に抑えつつ、 耐圧性及び熱交換性を好 適に確保するように構成している。 That is, when these equivalent diameter D l 5 D 2 is increased, the flow resistance will be low reduction, pressure resistance, heat exchange is reduced. Further, when the D 2 have these equivalent diameter D decreases, pressure resistance, heat exchange is improved, the channel resistance increases. However, the present invention is configured such that by setting the equivalent diameter Dl 3 D 2 to such a value, the pressure resistance and the heat exchange property can be suitably secured while suppressing the flow path resistance to a practical range. I have.
本願第 1 3請求項に記載した発明は、請求項 1乃至 1 2のいずれかに おいて、 当該熱交換器において、 前記冷媒の高圧側と低圧側との間を移 動する熱量は、 それらの温度差が o °cとなるときに移動する熱量を 1 0 The invention described in claim 13 of the present application is characterized in that, in the heat exchanger according to any one of claims 1 to 12, the amount of heat transferred between the high pressure side and the low pressure side of the refrigerant is The amount of heat transferred when the temperature difference of
0 [%] とすると、 およそ 6 0〜9 5 [%] である構成の熱交換器であ り、 このような構成によると、 熱交換器の性能は満足に確保される。 つまり、 冷媒の高圧側と低圧側との間を移動する熱量の割合は、 チュ ーブ体の長さを長くすると増加し、 チューブ体の長さを短くすると減少 するところ、 本発明では、 高圧側と低圧側との間を移動する熱量をこの ような値に設定することにより、熱交換器の不要な大型化や重量化を回 避しつつ、 より優れた性能を得るように構成している。 If it is 0 [%], the heat exchanger has a configuration of about 60 to 95 [%]. With such a configuration, the performance of the heat exchanger is sufficiently ensured. In other words, the ratio of the amount of heat transferred between the high pressure side and the low pressure side of the refrigerant increases as the length of the tube increases, and decreases as the length of the tube decreases. By setting the amount of heat transferred between the pressure side and the low-pressure side to such a value, it is possible to avoid unnecessary increase in the size and weight of the heat exchanger and to achieve better performance. I have.
本願第 1 4請求項に記載した発明は、請求項 1乃至 1 3のいずれかに おいて、 前記冷凍サイクルは、 放熱器の内部の圧力が前記冷媒の臨界点 を上まわる構成の熱交換器である。  The invention described in claim 14 of the present application is the heat exchanger according to any one of claims 1 to 13, wherein the refrigeration cycle is configured such that a pressure inside a radiator exceeds a critical point of the refrigerant. It is.
ここで、 臨界点とは、 気層と禆層が共存する状態の高温側の限界 (つ まり高圧側の限界) であり、 蒸気圧曲線の一方での終点である。 臨界点 での圧力、 温度、 密度は、 それぞれ臨界圧力、 臨界温度、 臨界密度とな る。放熱器の内部において、 圧力が冷媒の臨界点を上まわると、 冷媒は 凝縮されない。 Here, the critical point is the limit on the high temperature side (that is, the limit on the high pressure side) where the gas layer and the 禆 layer coexist, and is the end point of one of the vapor pressure curves. Critical point The pressure, temperature, and density at, respectively, are the critical pressure, critical temperature, and critical density. If the pressure exceeds the critical point of the refrigerant inside the radiator, the refrigerant will not condense.
すなわち、 本熱交換器は、 冷媒の高圧側と低圧側とを効率よく熱交換 することができるものであり、放熱器の内部の圧力が冷媒の臨界点を上 まわる冷凍サイクルにおいて、 好適に使用される。  In other words, the heat exchanger can efficiently exchange heat between the high-pressure side and the low-pressure side of the refrigerant, and is suitably used in a refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the refrigerant. Is done.
本願第 1 5請求項に記載した発明は、冷媒を循環する圧縮式の冷凍サ ィクルに用いられ、前記冷媒の高圧側と低圧側とを熱交換する熱交換器 の製造方法において、 当該熱交換器は、 前記高圧側及び前記低圧側の冷 媒を流通するチューブ体を備え、前記チューブ体に伝わる熱にて前記熱 交換を行うものであり、 前記チューブ体は、 前記高圧側の冷媒流路を列 設してなる第 1流路層と、前記低圧側の冷媒流路を列設してなる第 2流 路層とを備えるとともに、前記第 1流路層及び前記第 2流路層の一方を それそれ設けた複数の押出し成形チューブをろう付けしてなり、前記複 数の押出し成形チューブをろう付けする際には、 当該押出し成形チュー ブの表面にフィンを配置し、 その後、 前記フィンを取り外す構成の熱交 換器の製造方法であり、 このような構成によると、 複数の押出し成形チ ュ一ブは、 フィンに伝わる熱によって効率よくろう付けされ、 熱交換器 は容易に製造される。 図面の簡単な説明  The invention described in claim 15 of the present application is used in a compression type refrigeration cycle for circulating a refrigerant, and in a method of manufacturing a heat exchanger for exchanging heat between a high pressure side and a low pressure side of the refrigerant, the method comprises: The heat exchanger includes a tube body through which the high-pressure side and the low-pressure side coolant flows, and performs the heat exchange by heat transmitted to the tube body. And a second flow path layer in which the low-pressure-side refrigerant flow paths are arranged in a row, and the first flow path layer and the second flow path layer are arranged in a row. A plurality of extruded tubes provided on one side are brazed, and when brazing the plurality of extruded tubes, fins are arranged on the surface of the extruded tube, and then the fins are placed. This is a method of manufacturing a heat exchanger with a According to such a configuration, the plurality of extruded Ji Interview part, is efficiently brazed by heat transmitted to the fins, the heat exchanger is easily manufactured. BRIEF DESCRIPTION OF THE FIGURES
【図 1】 本発明の具体例に係り、 冷凍サイクルを示す概要図であ る  FIG. 1 is a schematic diagram showing a refrigeration cycle according to a specific example of the present invention.
【図 2】 本発明の具体例に係り、 熱交換器を示す斜視図である。 【図 3】 本発明の具体例に係り、 チューブ体を示す断面図である 【図 4】 本発明の具体例に係り、 チューブ体の製造工程を示す斜 視図である。  FIG. 2 is a perspective view showing a heat exchanger according to a specific example of the present invention. FIG. 3 is a cross-sectional view illustrating a tube body according to a specific example of the present invention. FIG. 4 is a perspective view illustrating a manufacturing step of the tube body according to a specific example of the present invention.
【図 5】 本発明の具体例に係り、 チューブ体の製造工程を示す斜 視図である。 【図 6】 本発明の具体例に係り、 タンクを示す斜視図である。 【図 7】 本発明の具体例に係り、 熱交換器を示す斜視図である。 【図 8】 本発明の具体例に係り、 熱交換器を示す斜視図である。 【図 9】 本発明の具体例に係り、 チューブ体を示す断面図である, 【図 1 0】 本発明の具体例に係り、 チューブ体を示す断面図であ る。 FIG. 5 is a perspective view showing a tube body manufacturing process according to a specific example of the present invention. FIG. 6 is a perspective view showing a tank according to a specific example of the present invention. FIG. 7 is a perspective view showing a heat exchanger according to a specific example of the present invention. FIG. 8 is a perspective view showing a heat exchanger according to a specific example of the present invention. FIG. 9 is a cross-sectional view showing a tube body according to a specific example of the present invention. FIG. 10 is a cross-sectional view showing a tube body according to a specific example of the present invention.
【図 1 1】 本発明の具体例に係り、熱交換器の要部を示す断面図 である。 発明を実施するための最良の形態  FIG. 11 is a cross-sectional view illustrating a main part of a heat exchanger according to a specific example of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明の具体例を図面に基づいて説明する。  Hereinafter, specific examples of the present invention will be described with reference to the drawings.
図 1に示す圧縮式の冷凍サイクル 1は、 自動車に搭載された車内冷房 用のものであり、 冷媒を圧縮する圧縮機 2と、 圧縮機 2で圧縮された冷 媒を冷却する放熱器 3と、放熱器 3で冷却された冷媒を減圧して膨張す る減圧機 4と、 減圧機 4で減圧された冷媒を蒸発する蒸化器 5と、 蒸化 器 5から流出する冷媒を気層と液層とに分離して気層の冷媒を圧縮機 2へ送るアキュムレータ 6とを備えている。  The compression-type refrigeration cycle 1 shown in FIG. 1 is used for in-vehicle cooling mounted on an automobile, and includes a compressor 2 for compressing a refrigerant and a radiator 3 for cooling the refrigerant compressed by the compressor 2. A decompressor 4 that decompresses and expands the refrigerant cooled by the radiator 3, an evaporator 5 that evaporates the refrigerant depressurized by the decompressor 4, and a refrigerant that flows out of the evaporator 5 into a gas layer. An accumulator 6 that separates the refrigerant into a liquid layer and sends the refrigerant in the gas layer to the compressor 2 is provided.
冷媒としては、 C 0 2を採用しており、 放熱器 3の内部の圧力は、 気 温等の使用条件により、 冷媒の臨界点を上まわる。 The coolant adopts a C 0 2, the internal pressure of the radiator 3, the operating conditions such as air temperature, exceed the critical point of the refrigerant.
また、 本冷凍サイクル 1について、 放熱器 3と減圧機 4との間、 並び に、 アキュムレータ 6と圧縮機 2との間には、 冷媒の高圧側と低圧側と を熱交換する熱交換器 7を設けている。熱交換器 7は、 高圧側の冷媒と 低圧側の冷媒とを熱交換することにより、冷凍サイクル 1の効率を向上 するものである。  In the refrigerating cycle 1, a heat exchanger 7 for exchanging heat between the high-pressure side and the low-pressure side of the refrigerant is provided between the radiator 3 and the decompressor 4 and between the accumulator 6 and the compressor 2. Is provided. The heat exchanger 7 improves the efficiency of the refrigeration cycle 1 by exchanging heat between the high-pressure side refrigerant and the low-pressure side refrigerant.
尚、 図中の白矢印は、 高圧側の冷媒が流れる方向を示し、 黒矢印は、 低圧側の冷媒が流れる方向を示している。  The white arrow in the drawing indicates the direction in which the high-pressure side refrigerant flows, and the black arrow indicates the direction in which the low-pressure side refrigerant flows.
本例の熱交換器 7は、 図 2乃至図 3に示すように、 高圧側及び低圧側 の冷媒を流通するチューブ体 7 1 0を備え、 このチューブ体 7 1 0に伝 わる熱にて熱交換を行うものである。 チューブ体 7 1 0は、高圧側の冷媒流路 7 1 1 aを列設してなる第 1 流路層 7 1 1と、低圧側の冷媒流路 7 1 2 aを列設してなる第 2流路層 1 2とを備えたものである。 As shown in FIGS. 2 and 3, the heat exchanger 7 of the present embodiment includes a tube body 110 through which the high-pressure side and the low-pressure side refrigerant flows, and heat is transferred by the heat transferred to the tube body 7 10. Exchange. The tube body 7110 has a first flow path layer 711 formed by arranging high-pressure side refrigerant flow paths 711a and a second flow path layer formed by arranging a low-pressure side refrigerant flow path 712a. And two flow path layers 12.
尚、高圧側の冷媒流路 7 1 1 a、 及び低圧側の冷媒流路 7 1 2 aの形 状については、 長円状のものを図例したが、 或いは円状、 楕円状、 四角 状、 三角状等、 任意に設定してもよい、  The high-pressure side refrigerant flow path 711a and the low-pressure side refrigerant flow path 712a are illustrated in the form of elliptical ones, or they may be circular, elliptical, or square. , Triangular, etc.
また、 高圧側の冷媒流路 7 1 1 aの相当直径、 及び低圧側の冷媒流路 7 1 2 aの相当直径は、 耐圧性、 熱交換性、 及び流路抵抗を考慮し、 0 . 4〜1 . 2 [mm] の範囲に設定している。  In addition, the equivalent diameter of the high-pressure side refrigerant flow path 71 1a and the equivalent diameter of the low-pressure side refrigerant flow path 71 2a are determined in consideration of pressure resistance, heat exchange property, and flow path resistance. It is set in the range of ~ 1.2 [mm].
つまり、高圧側の冷媒流路 7 1 1 aの相当直径を とするとともに、 低圧側の冷媒流路 7 1 2 aの相当直径を D 2とするとき、 これらは、 That, together with the considerable diameter of the coolant channel 7 1 1 a of the high pressure side, when the equivalent diameter of the low pressure side refrigerant flow path 7 1 2 a and D 2, these,
0 . 4 [ mm] ≤Ώ λ≤ 1 . 2 [mm] 0.4 [mm] ≤Ώ λ ≤ 1.2 [mm]
0 . 4 [ mm] ≤D 2≤ 1 . 2 [mm] 0.4 [mm] ≤D 2 ≤ 1.2 [mm]
の関係が成立する。 Is established.
チューブ体 7 1 0は、複数の偏平状の押出し成形チューブをろう付け してなり、 具体的には、 第 1流路層 7 1 1を設けた 1つの押出し成形チ ユーブと、第 2流路層 7 1 2を設けた 2つの押出成形チューブとを並行 且つ交互に積層し、 これを炉中にて加熱処理してろう付けし、 構成して いる。  The tube body 7100 is formed by brazing a plurality of flat extruded tubes. Specifically, one extruded tube provided with the first flow path layer 711 and the second flow path Two extruded tubes provided with layers 7 12 are laminated in parallel and alternately, and this is heated and brazed by heating in a furnace.
しかるに、 チューブ体 7 1 0は、 1つの第 1流路層 7 1 1と、 第 1流 路層 7 1 1を挟む 2つの第 2流路層 7 1 2とを備え、冷媒の高圧側と低 圧側との熱交換は、 これらの層間においてなされる。  However, the tube body 7 10 includes one first flow path layer 7 1 1 and two second flow path layers 7 1 2 sandwiching the first flow path layer 7 1 1, and is connected to the high pressure side of the refrigerant. Heat exchange with the low pressure side takes place between these layers.
本例のチューブ体 7 1 0の寸法は、 幅 3 0〜6 0 [ mm], 厚さ 4 . 5〜9 . 0 [mm]である。 その長さは、 熱交換性能と設置スペースと のバランスを考慮しつつ設定する。  The dimensions of the tube body 70 of this example are 30 to 60 [mm] in width and 4.5 to 9.0 [mm] in thickness. The length is set in consideration of the balance between heat exchange performance and installation space.
更に、 チューブ体 7 1 0の端部には、 第 1流路層 7 1 1の入口部 7 2 0及び出口部 7 2 0と、第 2流路層 7 1 2の入口部及 7 3 0び出口部 7 4 0とを設けている。  Further, at the end of the tube body 7 10, there are an inlet 7 20 and an outlet 7 20 of the first flow path layer 7 11 1, and an inlet 7 And an outlet 7400.
第 1流路層 7 1 1の入口部 7 2 0は、放熱器 3側の配管 1 1 0を接続 するユニオン式の継手プロヅク 7 2 1と、継手ブロック 7 2 1から延び た 1つのパイプ部 7 2 2と、パイプ部 7 2 2の先端を連通した 1つの夕 ンク部 7 2 3とを備え、 タンク部 7 2 3に対し、 第 1流路層 7 1 1を設 けた押出し成形チューブの一端を挿入及びろう付けして構成している。 第 1流路層 7 1 1は、 タンク部 7 2 3と連通される。 The inlet 7 2 0 of the first flow path layer 7 1 1 connects the piping 1 10 on the radiator 3 side A joint type joint block 721, a single pipe section 722 extending from the joint block 721, and a sunset section 723 communicating the tip of the pipe section 722 are provided. One end of an extruded tube provided with the first flow path layer 7 11 is inserted into the tank section 7 23 and brazed. The first flow path layer 7 11 communicates with the tank section 7 23.
第 1流路層 Ί 1 1の出口部 7 3 0は、減圧機 4側の配管 1 2 0を接続 するユニオン式の継手ブロック 7 3 1と、継手プロヅク 7 3 1から延び た 1つのパイプ部 7 3 2と、 パイプ部 7 3 2の先端を連通した 1つの夕 ンク部 7 3 3とを備え、 タンク部 7 3 3に対し、 第 1流路層 7 1 1を設 けた押出し成形チューブの他端を挿入及びろう付けして構成している。 第 1流路層 7 1 1は、 タンク部 7 3 3と連通される。  The outlet section 730 of the first flow path layer 111 is a union-type joint block 732 that connects the pipe 120 on the pressure reducer 4 side, and one pipe section extending from the joint block 732. The extruded tube provided with the first flow path layer 7 1 1 and the tank 7 3 3 is provided with a nozzle section 7 3 3 communicating the tip of the pipe section 7 32 The other end is inserted and brazed. The first flow path layer 7 11 communicates with the tank section 7 33.
第 2流路層 7 1 2の入口部 7 4 0は、 アキュムレータ 6側の配管 1 3 0を接続するユニオン式の継手プロヅク 7 4 1と、継手プロヅク 7 4 1 から延びた 2つのパイプ部 7 4 2と、パイプ部 7 4 2の先端をそれそれ 連通した 2つのタンク部 7 4 3とを備え、 各タンク部 7 4 3に対し、 第 2流路層 7 1 2を設けた 2つの押出し成形チューブの一端をそれぞれ 挿入及びろう付けして構成している。第 2流路層 7 1 2は、 タンク部 7 4 3と連通される。  The inlet part 7400 of the second flow path layer 712 is composed of a union type joint work 741 for connecting the pipe 13 on the accumulator 6 side, and two pipe parts 7 extending from the joint work 741. 4 2 and two tank sections 7 4 3 communicating the ends of the pipe sections 7 4 2 with each other, and two extrusions provided with a second flow path layer 7 1 2 for each tank section 7 4 3 One end of the molded tube is inserted and brazed, respectively. The second flow path layer 7 12 communicates with the tank section 7 43.
第 2流路層 7 1 2の出口部 7 5 0は、圧縮機 2側の配管 1 4 0を接続 するユニオン式の継手ブロック 7 5 1と、継手ブロヅク 7 5 1から延び た 2つのパイプ部 7 5 2と、パイプ部 7 5 2の先端をそれぞれ連通した 2つのタンク部 7 5 3とを備え、 各タンク部 7 5 3に対し、 第 2流路層 7 1 2を設けた 2つの押出し成形チューブの他端をそれぞれ挿入及び ろう付けして構成している。第 2流路層 7 1 2は、 タンク部 7 5 3と連 通される。  The outlet 750 of the second flow path layer 712 is a union type joint block 715 for connecting the piping 140 on the compressor 2 side, and two pipe sections extending from the joint block 750. 7 5 2 and two tanks 7 5 3 communicating the ends of the pipes 7 52 respectively, and two extrusions provided with a second flow path layer 7 1 2 for each tank 7 5 3 The other end of the molded tube is inserted and brazed, respectively. The second flow path layer 7 12 communicates with the tank section 753.
また、第 1流路層 7 1 1の入口部 7 2 0及び第 2流路層 7 1 2の出口 部 7 5 0は、 チューブ体 7 1 0の一方の端部に設けており、 第 1流路層 7 1 1の出口部 7 3 0及び第 2流路層 7 1 2の入口部 7 4 0は、 チュー ブ体 7 1 0の他方の端部に設けている。 従って、 高圧側の冷媒は、 チュー:/体 7 1 0の一方の端部から他方の 端部へ流れるとともに、 低圧側の冷媒は、 チューブ体 7 1 0の他方の端 部から一方の端部へ流れる。 つまり、 チューブ体 7 1 0において、 冷媒 の高圧側と低圧側とは、 互いに対向する方向に流れる。 In addition, an inlet 720 of the first flow channel layer 711 and an outlet 7500 of the second flow channel layer 7112 are provided at one end of the tube 7 10, The outlet portion 730 of the flow channel layer 711 and the inlet portion 740 of the second flow channel layer 712 are provided at the other end of the tube body 710. Accordingly, the high-pressure side refrigerant flows from one end of the tube: 110 to the other end, and the low-pressure side refrigerant flows from the other end of the tube body 110 to one end. Flows to That is, in the tube body 110, the high-pressure side and the low-pressure side of the refrigerant flow in directions opposite to each other.
このように、冷媒の高圧側と低圧側とを互いに対向する方向に流せば、 熱交換器 7の熱交換効率は一層向上することができる。仮に、 高圧側の 冷媒と低圧側の冷媒とを同じ方向に流すと、第 1流路層 7 1 1の出口部 7 3 0、 及び第 2流路層 7 1 2の出口部 7 5 0の付近では、 それらの温 度差が満足に得られない場合があるが、 本例の構成によれば、 そのよう な不都合を回避することができる。  As described above, the heat exchange efficiency of the heat exchanger 7 can be further improved by flowing the high-pressure side and the low-pressure side of the refrigerant in directions facing each other. If the high-pressure side refrigerant and the low-pressure side refrigerant flow in the same direction, the outlet section 7300 of the first flow path layer 711 and the outlet section 7500 of the second flow path layer 7 In the vicinity, those temperature differences may not be obtained satisfactorily, but according to the configuration of this example, such inconvenience can be avoided.
また、第 1流路層 7 1 1の入口部 7 2 0及び出口部 7 3 0について、 入口部 7 2 0のタンク部 7 2 3と、 出口部 7 3 0のタンク部 7 3 4とは、 第 1流路層 7 1 1の幅方向に沿った筒形状を呈するものである。そして、 入口部 7 2 0のパイプ部 7 2 2と、 出口部 7 3 0のパイプ部 7 3 2とは、 各タンク部 7 2 3, 7 3 3の両端に対し、 互いに異なる向きで連通して いる。第 1流路層 7 1 1の入口部 7 2 0及び出口部 7 3 0は、 互いに対 称である。  In addition, regarding the inlet 720 and the outlet 7330 of the first flow path layer 711, the tank 723 of the inlet 720 and the tank 734 of the outlet 73.0 are as follows. It has a cylindrical shape along the width direction of the first flow path layer 711. The pipe section 722 of the inlet section 702 and the pipe section 732 of the outlet section 730 communicate with both ends of the tank sections 723, 733 in different directions. ing. The inlet part 720 and the outlet part 730 of the first flow path layer 71 1 are symmetric with each other.
更に、第 2流路層 7 1 2の入口部 7 4 0及び出口部 7 5 0について、 入口部 7 4 0のタンク部 7 4 3と、 出口部 7 5 0のタンク部 7 5 4とは、 第 2流路層 7 1 2の幅方向に沿った筒形状を呈するものである。そして、 入口部 7 4 0のパイプ部 7 4 2と、 出口部 7 5 0のパイプ部 7 5 2とは、 各タンク部 7 4 3 , 7 5 3の両端に対し、 互いに異なる向きで連通して いる。第 2流路層 7 1 2の入口部 7 4 0及び出口部 7 5 0は、 互いに対 称である。  Furthermore, regarding the inlet part 7400 and the outlet part 750 of the second flow path layer 712, the tank part 743 of the inlet part 7400 and the tank part 754 of the outlet part 750 It has a cylindrical shape along the width direction of the second flow path layer 7 12. And, the pipe part 742 of the inlet part 7400 and the pipe part 752 of the outlet part 750 communicate with both ends of each tank part 743, 753 in different directions. ing. The inlet 740 and the outlet 7500 of the second flow path layer 712 are symmetric with each other.
しかるに、 このような構成によれば、 高圧側の各冷媒流路 7 1 1 aに おける冷媒の流速を平均化することができるとともに、低圧側の各冷媒 流路 7 1 2 aにおける冷媒の流速を平均化することができ、 その結果、 熱交換効率を向上することができる。  However, according to such a configuration, it is possible to average the flow velocity of the refrigerant in each of the refrigerant passages 711a on the high pressure side, and to reduce the flow velocity of the refrigerant in each of the refrigerant passages 712a on the low pressure side. Can be averaged, and as a result, the heat exchange efficiency can be improved.
尚、 各継手ブロック 7 2 1, 7 3 1, 7 4 1 , 7 5 1の向きは、 各パ イブ部 722, 732, 742, 752の中間部位を屈成することによ り、 任意に設定される。 The direction of each joint block 7 2 1, 7 3 1, 7 4 1, 7 5 1 It can be set arbitrarily by bending the middle part of the eve parts 722, 732, 742, 752.
また、 かかるチューブ体 710の断面について、 高圧側の冷媒流路 7 11 aにおける断面積の総和を Xとするとともに、低圧側の冷媒流路 7 12 aにおける断面積の総和を Yとするとき、 これらは、  In addition, regarding the cross section of the tube body 710, when the total cross-sectional area in the high-pressure side refrigerant flow channel 711a is X and the total cross-sectional area in the low-pressure side refrigerant flow channel 712a is Y, They are,
X<Y  X <Y
の関係が成立する。 Is established.
特に、 本例の場合、 Xに対する Υの値は、 1. 7倍から 5. 0倍の間 に設定しており、 高圧側の冷媒流路における断面積の総和 Xと、 前記低 圧側の冷媒流路における断面積の総和 Υとは、  In particular, in the case of this example, the value of に 対 す る with respect to X is set between 1.7 times and 5.0 times, and the total X of the cross-sectional areas in the high-pressure side refrigerant flow path and the low-pressure side refrigerant The sum of the cross-sectional areas in the channel is 流 路
X二 η · Υ  Xii η
1. 7≤η≤5. 0  1.7≤η≤5.0
の関係が成立する。 Is established.
すなわち、 低圧側の冷媒は、 高圧側の冷媒と比較して確実に膨張する ので、 チューブ体 710においては、 このような構成を採用することに より、 高圧側及び低圧側の冷媒の流速差を低減し、 冷媒の流速をバラン スよく確保している。  That is, since the low-pressure side refrigerant expands more reliably than the high-pressure side refrigerant, by adopting such a configuration in the tube body 710, the flow velocity difference between the high-pressure side and the low-pressure side refrigerant is reduced. The flow rate of the refrigerant has been reduced to ensure a good balance.
図 4乃至図 5は、 チューブ体 710の製造工程を示す斜視図である。 チューブ体 710は、 各押出し成形チューブ、 各パイプ部 722, 1 32, 742, 752、 及び各タンク部 723, 733, 743, 75 3を組み立てて、 この組み立て体を炉中で加熱処理してろう付けしてい る。 各部材の要所には、 加熱処理に先だって、 予めろう材及びフラック スを設けている。 本例の場合、 ろう材は S i粉体であり、 これをフラヅ クスと混合して塗布している。  4 to 5 are perspective views showing the steps of manufacturing the tube body 710. The tube body 710 is constructed by assembling each extruded tube, each pipe section 722, 132, 742, 752, and each tank section 723, 733, 743, 753, and heat-treating this assembly in a furnace. Attached. Prior to the heat treatment, brazing filler metal and flux are provided at key points of each member. In the case of this example, the brazing material is Si powder, which is mixed with a flux and applied.
そして、 これらの図に示すように、 加熱処理の際、 各押出し成形チュ —ブの表面には、 それぞれフィン Fを配置している (図 4参照)。 フィ ン Fは、 ろう付けの後に取り外す (図 5参照)。 しかるに、 複数の押出 し成形チューブのろう付けは、 フィン Fに伝わる熱によって効率よく行 われる。 尚、 各継手プロヅク 7 2 1, 7 3 1, 7 4 1, 7 5 1は、 かかる炉中 ろう付けの後に、 トーチろう付けにて設けている。 つまり、 炉中での加 熱処理に伴う熱変形を回避している。 Then, as shown in these figures, fins F are arranged on the surface of each extruded tube during the heat treatment (see FIG. 4). Fin F is removed after brazing (see Fig. 5). However, brazing of multiple extruded tubes is efficiently performed by the heat transmitted to the fins F. In addition, each joint pro- cess 721, 731, 741, 751 is provided by torch brazing after such brazing in a furnace. In other words, thermal deformation due to heat treatment in the furnace is avoided.
このように、 本例の熱交換器 7は、 容易に製造できるとともに、 冷媒 の高圧側と低圧側との熱交換を効率よく行うことができるものである。  As described above, the heat exchanger 7 of the present embodiment can be easily manufactured, and can efficiently perform heat exchange between the high-pressure side and the low-pressure side of the refrigerant.
とりわけ、 本熱交換器 7によると、 冷凍サイクル 1が効率よく作動す る際において、 冷媒の高圧側と低圧側との温度差は、 1〜1 0 °C程度と なる。特に、 冷媒の高圧側と低圧側との間を移動する熱量は、 それらの 温度差が 0 °Cとなるときに移動する熱量を 1 0 0 [%] とすると、 およ そ 6 0〜9 5 [ %] である。  In particular, according to the heat exchanger 7, when the refrigeration cycle 1 operates efficiently, the temperature difference between the high pressure side and the low pressure side of the refrigerant is about 1 to 10 ° C. In particular, the amount of heat that moves between the high-pressure side and the low-pressure side of the refrigerant is approximately 60 to 9 if the amount of heat that moves when the temperature difference is 0 ° C is 100 [%]. 5 [%].
尚、 本例のチューブ体 7 1 0は、 押出し成形チューブを用いて構成し たが、 或いは、 所要の耐圧性を満足に確保できる場合は、 プレートを成 形及びろう付けしてなるチューブを用いて構成してもよい。この場合、 プレートの成形は、 口一ル成形やプレス成形等にて行う。  Note that the tube body 110 of this example was formed using an extruded tube, or if the required pressure resistance can be satisfactorily secured, a tube formed and brazed plate is used. May be configured. In this case, the plate is formed by mouth forming or press forming.
更に、 本例のチューブ体 7 1 0は、 複数の押出し成形チューブをろう 付けしてなるものであるが、押出し成形チューブ同士の熱交換が十分に 得られる場合、 かかるろう付けは省略してもよい。つまりチューブ体 7 1 0は、複数の押出し成形チューブを密着した状態に組み付けてなるも のであってもよい。  Furthermore, the tube body 7 10 of this example is formed by brazing a plurality of extruded tubes. However, if sufficient heat exchange between the extruded tubes can be obtained, such brazing may be omitted. Good. That is, the tube body 7100 may be one in which a plurality of extruded tubes are assembled in close contact.
また、 熱交換器 7の各部については、 部品点数の削減や、 部品の共通 化により、 更なる簡素化も可能である。例えば図 6に示すように、 第 1 流路層 7 1 1の入口部 7 2 0及び第 2流路層 7 1 2の出口部 7 5 0に おける各タンク部 7 2 3 , 7 5 3は、 一体の押出し部材で構成すること も可能である。 この場合、 押出し部材の要所には、 閉鎖部材をろう付け する。 また、 このような押出し部材を、 第 1流路層 7 1 1の出口部 7 3 0及び第 2流路層 7 1 2の入口部 7 4 0における各タンク部 7 2 3 , 7 5 3として共通化することも可能である。  Further, each part of the heat exchanger 7 can be further simplified by reducing the number of parts and using common parts. For example, as shown in FIG. 6, each of the tank sections 7 2 3 and 7 5 3 at the inlet section 7 20 of the first flow path layer 7 11 and the outlet section 7 50 of the second flow path layer 7 12 However, it is also possible to constitute with an integral extruded member. In this case, a brazing member is brazed to the key of the extruded member. Further, such an extruded member is referred to as each of the tank sections 7 2 3 and 7 5 3 at the outlet section 7 30 of the first channel layer 7 11 and the inlet section 7 40 of the second channel layer 7 12. It is also possible to make them common.
以上説明したように、 本例の熱交換器によると、 当該熱交換器は、 高 圧側及び低圧側の冷媒を流通するチューブ体を備え、 チューブ体に伝わ る熱にて熱交換を行うものであり、 チューブ体は、 高圧側の冷媒流路を 列設してなる第 1流路層と、低圧側の冷媒流路を列設してなる第 2流路 層とを備え、 チューブ体の端部には、 第 1流路層の入口部及び出口部と、 第 2流路層の入口部及び出口部とを設けたので、冷媒の高圧側と低圧側 とを効率よく熱交換することができる。 As described above, according to the heat exchanger of this example, the heat exchanger includes the tube body through which the high-pressure side and the low-pressure side refrigerant flows, and is transmitted to the tube body. The tube body is composed of a first flow path layer having a high-pressure side refrigerant flow path and a second flow path having a low-pressure side flow path. Since the inlet and outlet of the first channel layer and the inlet and outlet of the second channel layer are provided at the end of the tube body, the high pressure side of the refrigerant and the low pressure The heat can be exchanged efficiently with the side.
すなわち、 チューブ体については、 高圧側の冷媒流路を列設するとと もに、 低圧側の冷媒流路を列設することにより、 高圧側の冷媒との伝熱 面、 及び低圧側の冷媒との伝熱面を拡大することができ、 両冷媒間の熱 伝達を確実に行うことができる。 また、 各個の冷媒流路の径が比較的小 さくなるので、 高い耐圧性を確保することもできる。  That is, for the tube body, by arranging the refrigerant passages on the high pressure side and arranging the refrigerant passages on the low pressure side, the heat transfer surface with the refrigerant on the high pressure side and the refrigerant passage on the low pressure side are arranged. The heat transfer surface can be enlarged, and the heat transfer between the two refrigerants can be reliably performed. In addition, since the diameter of each refrigerant flow path is relatively small, high pressure resistance can be ensured.
更に、 第 1流路層の入口部及び出口部と、 第 2流路層の入口部及び出 口部とをチューブ体の端部に設ければ、 当該熱交換器は、 その構成を簡 素化することができ、 容易に製造することができる。  Furthermore, if the inlet and outlet of the first channel layer and the inlet and outlet of the second channel layer are provided at the end of the tube body, the heat exchanger has a simple structure. It can be easily manufactured.
また、 本例の熱交換器によると、 チューブ体の一方の端部には、 第 1 流路層の入口部及び前記第 2流路層の出口部を設けるとともに、 チュー ブ体の他方の端部には、第 1流路層の出口部及び第 2流路層の入口部を 設けたので、 熱交換器の熱交換効率を一層向上することができる。仮に、 高圧側の冷媒と低圧側の冷媒とを同じ方向に流すと、第 1流路層の出口 部、 及び第 2流路層の出口部の付近では、 それらの温度差が満足に得ら れない場合があるが、 本発明の構成によれば、 そのような不都合を回避 することができる。  Further, according to the heat exchanger of the present example, at one end of the tube body, an inlet of the first flow path layer and an outlet of the second flow path layer are provided, and the other end of the tube body is provided. Since the outlet is provided with the outlet of the first channel layer and the inlet of the second channel layer, the heat exchange efficiency of the heat exchanger can be further improved. If the high-pressure refrigerant and the low-pressure refrigerant flow in the same direction, the temperature difference between the outlets of the first and second flow path layers will not be satisfactory. However, according to the configuration of the present invention, such inconvenience can be avoided.
また、 本例の熱交換器によると、 チューブ体は、 複数の押出し成形チ ュ一ブを組み付けて又はろう付けしてなり、複数の押出し成形チューブ には、 第 1流路層及び第 2流路層の一方をそれぞれ設けたので、 各冷媒 流路は、 可及的に小さく形成することができる。 また、 第 1流路層の入 口部及び出口部と、 第 2流路層の入口部及び出口部とは、 各チューブに 対してそれぞれ設けることができる。  Also, according to the heat exchanger of this example, the tube body is formed by assembling or brazing a plurality of extruded tubes, and the plurality of extruded tubes are provided with the first flow path layer and the second flow tube. Since one of the road layers is provided, each of the refrigerant passages can be formed as small as possible. The inlet and outlet of the first channel layer and the inlet and outlet of the second channel layer can be provided for each tube.
また、 本例の熱交換器によると、 チューブ体は、 第 1流路層及び第 2流 路層の少なくとも一方を複数備えたので、複数の第 1流路層又は複数の 第 2流路層の間に、 第 2流路層又は第 1流路層が介在され、 両冷媒間の 熱伝達をより確実に行うことができる。 In addition, according to the heat exchanger of the present example, since the tube body includes at least one of the first flow path layer and the second flow path layer, the plurality of first flow path layers or the plurality of first flow path layers are provided. The second channel layer or the first channel layer is interposed between the second channel layers, so that heat transfer between the two refrigerants can be performed more reliably.
また、 本例の熱交換器によると、 チューブ体は、 1つの第 1流路層と、 第 ί流路層を挟む 2つの第 2流路層とを備えたので、バランスよく構成 することができる。  Further, according to the heat exchanger of the present example, the tube body includes one first flow path layer and two second flow path layers sandwiching the second flow path layer, so that the tube body can be configured in a well-balanced manner. it can.
また、 本例の熱交換器によると、 第 1流路層の入口部及び出口部は、 互いに対称であるので、第 1流路層における冷媒の流速分布をバランス よく設定することができる。 ·  Further, according to the heat exchanger of the present example, the inlet and outlet of the first flow path layer are symmetrical with each other, so that the flow velocity distribution of the refrigerant in the first flow path layer can be set in a well-balanced manner. ·
また、 本例の熱交換器によると、 第 2流路層の入口部及び出口部は、 互いに対称であるので、第 2流路層における冷媒の流速分布をバランス よく設定することができる。  Further, according to the heat exchanger of this example, the inlet and outlet of the second flow path layer are symmetrical to each other, so that the flow velocity distribution of the refrigerant in the second flow path layer can be set in a well-balanced manner.
また、 本例の熱交換器によると、 チューブ体の断面について、 高圧側 の冷媒流路における断面積の総和を Xとするとともに、低圧側の冷媒流 路における断面積の総和を Υとするとき、 これらは、  Further, according to the heat exchanger of this example, regarding the cross section of the tube body, when the sum of the cross-sectional areas in the refrigerant passage on the high pressure side is X and the sum of the cross-sectional areas in the refrigerant passage on the low pressure side is Υ , They are,
Χ < Υ  Χ <Υ
の関係にあるので、高圧側及び低圧側の冷媒の流速をバランスよく確保 することができ、 その結果、 熱交換効率を向上することができる。 Therefore, the flow rates of the refrigerant on the high-pressure side and the low-pressure side can be ensured in a well-balanced manner, and as a result, the heat exchange efficiency can be improved.
すなわち、 低圧側の冷媒は、 高圧側の冷媒と比較して確実に膨張する ので、 チューブ体においては、 低圧側の冷媒流路における断面積の総和 Υを、高圧側の冷媒流路における断面積の総和 よりも大きく構成する ことにより、高圧側及び低圧側の冷媒の流速差を低減することができる また、 本例の熱交換器によると、 高圧側の冷媒流路における断面積の 総和 Xと、 低圧側の冷媒流路における断面積の総和 Υとは、  In other words, since the low-pressure side refrigerant expands more reliably than the high-pressure side refrigerant, in the tube body, the sum of the cross-sectional areas of the low-pressure side refrigerant flow path 、 is calculated as the cross-sectional area of the high-pressure side refrigerant flow path. By increasing the flow rate of the refrigerant on the high-pressure side and the low-pressure side, it is possible to reduce the difference in flow velocity between the high-pressure side and the low-pressure side. , The sum of the cross-sectional areas in the refrigerant passage on the low pressure side Υ
X二 η · Υ  Xii η
1 . 7≤η≤5 . 0  1.7≤η≤5.0
の関係にあるので、高圧側及び低圧側の冷媒の流速を一層バランスよく 確保することができる。 Therefore, the flow rates of the refrigerant on the high-pressure side and the low-pressure side can be ensured in a more balanced manner.
すなわち、 本例は、 熱交換効率を考慮しつつ、 X, Υについて更に望 ましい数値限定をしたものであり、 Xに対する Υの値は、 1 . 7倍から 5 . 0倍の間に設定している。 In other words, in this example, the values of X and Υ are more desirably limited while considering the heat exchange efficiency, and the value of に 対 す る for X is from 1.7 times. It is set between 5.0 times.
また、 本例の熱交換器によると、高圧側の冷媒流路の相当直径 と、 前記低圧側の冷媒流路の相当直径 D 2とは、 Further, according to the heat exchanger of this example, the equivalent diameter of the high-pressure side refrigerant flow path and the equivalent diameter D 2 of the low-pressure side refrigerant flow path are as follows:
0 . 4 [mm] ≤D !≤ 1 . 2 [mm]  0.4 [mm] ≤D! ≤ 1.2 [mm]
0 . 4 [mm] ≤D 2≤ 1 . 2 [mm] 0.4 [mm] ≤D 2 ≤ 1.2 [mm]
の関係にあるので、 耐圧性、 熱交換性、 及び流路抵抗をバランスよく設 定することができる。 Therefore, the pressure resistance, the heat exchange property, and the flow path resistance can be set in a well-balanced manner.
すなわち、 これらの相当直径 D 2が大きくなると、流路抵抗は低 減するが、 耐圧性、 熱交換性は低下する。 また、 これらの相当直径 D 2が小さくなると、 耐圧性、 熱交換性は向上するが、 流路抵抗は増加 する。 しかるに本例は、相当直径 D 2をかかる値に設定することに より、 流路抵抗を実用的な範囲に抑えつつ、 耐圧性及び熱交換性を好適 に確保するように構成している。 That is, when these equivalent diameter D 2 is increased, the flow resistance will be low reduction, pressure resistance, heat exchange is reduced. Further, when these equivalent diameter D 2 is smaller, pressure resistance, heat exchange is improved, the channel resistance increases. However this example is more to set the equivalent according to the diameter D 2 value, while suppressing the flow resistance in the practical range, and configured to suitably secure the pressure resistance and the heat exchange.
また、 本例の熱交換器によると、 当該熱交換器において、 冷媒の高圧 側と低圧側との間を移動する熱量は、 それらの温度差が 0 °Cとなるとき に移動する熱量を 1 0 0 [ %] とすると、 およそ 6 0〜9 5 [% ] であ るので、 熱交換器の性能は満足に確保することができる。  Further, according to the heat exchanger of this example, in the heat exchanger, the amount of heat that moves between the high-pressure side and the low-pressure side of the refrigerant is equal to the amount of heat that moves when the temperature difference becomes 0 ° C. If it is 0 [%], it is about 60-95 [%], so the performance of the heat exchanger can be satisfactorily secured.
また、 本例の冷凍サイクルは、 放熱器の内部の圧力が前記冷媒の臨界 点を上まわるものである。 すなわち、 本熱交換器は、 冷媒の高圧側と低 圧側とを効率よく熱交換することができるものであり、放熱器の内部の 圧力が冷媒の臨界点を上まわる冷凍サイクルにおいて、好適に使用する ことができる。  Further, in the refrigeration cycle of this example, the pressure inside the radiator exceeds the critical point of the refrigerant. In other words, the heat exchanger can efficiently exchange heat between the high-pressure side and the low-pressure side of the refrigerant, and is suitably used in a refrigeration cycle in which the pressure inside the radiator exceeds the critical point of the refrigerant. can do.
また、 本例の熱交換器の製造方法によると、 複数の押出し成形チュー ブをろう付けする際には、 当該押出し成形チューブの表面にフィンを配 置し、 その後、 フィンを取り外すので、 複数の押出し成形チューブは、 フィンに伝わる熱によって効率よくろう付けすることができ、熱交換器 は容易に製造することができる。  According to the heat exchanger manufacturing method of this example, when brazing a plurality of extruded tubes, fins are arranged on the surface of the extruded tubes, and then the fins are removed. Extruded tubes can be brazed efficiently by the heat transferred to the fins, and heat exchangers can be easily manufactured.
次に、 本発明の第 2具体例を図 7に基づいて説明する。  Next, a second specific example of the present invention will be described with reference to FIG.
同図に示すように、 本例の熱交換器 7は、 チューブ体 7 1 0の周囲に 断熱材 7 6 0を装着したものである。断熱部材 7 6 0は、 チューブ体 7 1 0とその外部との断熱性を確保するものであり、 本例では、 ゴム製又 は合成樹脂製のスポンジである。 尚、 その他の構成については、 前述し た具体例と同様であるので、共通する部材には同一の符号を付すととも に、 説明は省略する。 As shown in the figure, the heat exchanger 7 of this example is provided around the tube body 7 10. It is equipped with a heat insulator 760. The heat insulating member 760 is for ensuring heat insulation between the tube body 710 and the outside. In the present embodiment, the heat insulating member 760 is a sponge made of rubber or synthetic resin. Since other configurations are the same as those of the above-described specific example, common members are denoted by the same reference numerals, and description thereof is omitted.
以上説明したように、 本例の熱交換器によると、 チューブ体の周囲に は断熱材を装着したので、 外部との断熱性が確保され、高圧側の冷媒と 低圧側の冷媒との熱交換を促進することができる。 その結果、 冷凍サイ クルの性能を一層向上することができる。  As described above, according to the heat exchanger of this example, since the heat insulating material is attached around the tube body, heat insulation with the outside is secured, and heat exchange between the high-pressure refrigerant and the low-pressure refrigerant is performed. Can be promoted. As a result, the performance of the frozen cycle can be further improved.
次に、 本発明の第 3具体例を図 8に基づいて説明する。  Next, a third specific example of the present invention will be described with reference to FIG.
同図に示すように、 本例の熱交換器 7は、 チューブ体 7 1 0を U字状 に折り曲げてなるものである。 尚、 その他の構成については、 前述した 具体例と同様であるので、共通する部材には同一の符号を付すとともに、 説明は省略する。  As shown in the figure, the heat exchanger 7 of the present example is formed by bending a tube body 710 into a U-shape. Since other configurations are the same as those of the above-described specific example, common members are denoted by the same reference numerals and description thereof is omitted.
このように、 チューブ体については、熱交換器の設置スペースを考慮 して、 適宜形状に変形してもよい。  As described above, the tube body may be appropriately shaped in consideration of the installation space of the heat exchanger.
次に、 本発明の第 4具体例を図 9に基づいて説明する。  Next, a fourth specific example of the present invention will be described with reference to FIG.
同図に示すように、 本例のチューブ体 7 1 0は、 第 1流路層 7 1 1を 設けた 2つの押出し成形チューブと、第 2流路層 7 1 2を設けた 3つの 押出成形チューブとを並行且つ交互に積層し、 これをろう付けして構成 している。 この場合、 第 1流路層 7 1 1の入口部 7 2 0及び出口部 7 3 0、 並びに、 第 2流路層 7 1 2の入口部 7 4 0及び出口 7 5 0について は、 パイプ部 7 2 2, 7 3 2 , 7 4 2 , 7 5 2、 及びタンク部 7 2 3, 7 3 3 , 7 4 3, 7 5 3をそれぞれ必要数設ける。 尚、 その他の構成に ついては、 前述した具体例と同様であるので、 共通する部材には同一の 符号を付すとともに、 説明は省略する。  As shown in the figure, the tube body 110 of the present example is composed of two extruded tubes provided with a first flow path layer 711, and three extruded tubes provided with a second flow path layer 712. Tubes are stacked in parallel and alternately and brazed. In this case, the pipe section is used for the inlet section 720 and the outlet section 730 of the first flow path layer 711 and the inlet section 740 and the outlet 750 of the second flow path layer 712. Provide the required number of 7 2 2, 7 3 2, 7 4 2, 7 5 2 and tank sections 7 2 3, 7 3 3, 7 4 3, 7 5 3 respectively. Since other configurations are the same as those of the above-described specific example, common members are denoted by the same reference numerals and description thereof is omitted.
このように、 チューブ体については、 更に多くの第 1流路層及び第 2 流路層を設けてもよい。  As described above, the tube body may be provided with more first and second flow path layers.
次に、 本発明の第 5具体例を図 1 0乃至図 1 1に基づいて説明する。 これらの図に示すように、 本例のチューブ体 7 1 0は、 単一の押出し 成形チューブからなるものである。各タンク部 7 2 3 , 7 3 3 , 7 4 3 , 7 5 3は、 このような単一の押出し成形チューブに対して設けられてい る。 また、 押出し成形チューブの端部については、 各タンク部 7 2 3, 7 3 3, 7 4 3, 7 5 3の組み立て性を考慮し、 適宜加工を施している c 尚、 その他の構成については、 前述した具体例と同様であるので、 共通 する部材には同一の符号を付すとともに、 説明は省略する。 Next, a fifth specific example of the present invention will be described with reference to FIGS. As shown in these figures, the tube body 7 10 of the present example is composed of a single extruded tube. Each tank section 72 3, 73 33, 74 43, 75 53 is provided for such a single extruded tube. Also, the ends of the extruded tube, considering each tank section 7 2 3 7 3 3 7 4 3 7 5 3 of assembly property, Note c is subjected to appropriate processing, the other configurations Since this is the same as the specific example described above, common members are denoted by the same reference numerals, and description thereof is omitted.
以上説明したように、 本例の熱交換器によると、 チューブ体は、 単一 の押出し成形チューブからなるので、 各冷媒流路は、 可及的に小さく形 成することができる。 また、 第 1流路層と第 2流路層とは、 ろう付けせ ずとも一体に設けることができる。 産業上の利用可能性  As described above, according to the heat exchanger of this example, since the tube body is formed of a single extruded tube, each refrigerant channel can be formed as small as possible. Further, the first channel layer and the second channel layer can be provided integrally without brazing. Industrial applicability
本発明は、 自動車や家庭用空調機等の冷凍サイクル一般に用いられる 熱交換とその製造方法であり、 とりわけ、 冷媒として例えば C 0 2を採 用し、放熱器の内部の圧力が冷媒の臨界点を上まわる冷凍サイクルに好 適なものである。 The present invention is a heat exchanger and its production method used in a refrigeration cycle generally for automobiles and home air conditioners, among others, to adopt the example C 0 2 as the refrigerant, the critical point of the pressure inside the radiator coolant It is suitable for refrigeration cycles that exceed the above.

Claims

請求の範囲 The scope of the claims
1 . 冷媒を循環する圧縮式の冷凍サイクルに用いられ、 前記冷媒の高 圧側と低圧側とを熱交換する熱交換器において、 1. A heat exchanger that is used in a compression refrigeration cycle that circulates a refrigerant and that exchanges heat between a high-pressure side and a low-pressure side of the refrigerant.
当該熱交換器は、前記高圧側及び前記低圧側の冷媒を流通するチュー ブ体を備え、前記チューブ体に伝わる熱にて前記熱交換を行うものであ り、  The heat exchanger includes a tube body through which the high-pressure side and the low-pressure side refrigerant flows, and performs the heat exchange by heat transmitted to the tube body.
前記チューブ体は、前記高圧側の冷媒流路を列設してなる第 1流路層 と、 前記低圧側の冷媒流路を列設してなる第 2流路層とを備え、 前記チューブ体の端部には、前記第 1流路層の入口部及び出口部と、 前記第 2流路層の入口部及び出口部とを設けたことを特徴とする熱交  The tube body includes: a first flow path layer in which the high-pressure side refrigerant flow paths are arranged; and a second flow path layer in which the low-pressure side refrigerant flow paths are arranged. Characterized in that an end portion of the heat exchanger is provided with an inlet portion and an outlet portion of the first flow channel layer, and an inlet portion and an outlet portion of the second flow channel layer.
2 . 前記チューブ体の一方の端部には、 前記第 1流路層の入口部及び 前記第 2流路層の出口部を設けるとともに、前記チューブ体の他方の端 部には、前記第 1流路層の出口部及び前記第 2流路層の入口部を設けた ことを特徴とする請求項 1記載の熱交換器。 2. One end of the tube body is provided with an inlet of the first flow path layer and an outlet of the second flow path layer, and the other end of the tube body is provided with the first flow path layer. 2. The heat exchanger according to claim 1, wherein an outlet of the flow channel layer and an inlet of the second flow channel layer are provided.
3 . 前記チューブ体は、 単一の押出し成形チューブからなることを特 徴とする請求項 1又は 2記載の熱交換器。  3. The heat exchanger according to claim 1, wherein the tube body is formed of a single extruded tube.
4 . 前記チューブ体は、 複数の押出し成形チューブを組み付けて又は ろう付けしてなり、 前記複数の押出し成形チューブには、 前記第 1流路 層及び前記第 2流路層の一方をそれぞれ設けたことを特徴とする請求 項 1又は 2記載の熱交換器。  4. The tube body is formed by assembling or brazing a plurality of extruded tubes, and each of the plurality of extruded tubes is provided with one of the first channel layer and the second channel layer. The heat exchanger according to claim 1 or 2, wherein:
5 . 前記チューブ体は、 前記第 1流路層及び前記第 2流路層の少なく とも一方を複数備えたことを特徴とする請求項 1乃至 4のいずれか記 載の熱交換器。  5. The heat exchanger according to claim 1, wherein the tube body includes at least one of the first channel layer and the second channel layer.
6 . 前記チューブ体は、 1つの前記第 1流路層と、 前記第 1流路層を 挟む 2つの前記第 2流路層とを備えたことを特徴とする請求項 5記載 の熱交換器。  6. The heat exchanger according to claim 5, wherein the tube body includes one first flow path layer and two second flow path layers sandwiching the first flow path layer. .
7 . 前記第 1流路層の入口部及び出口部は、 互いに対称であることを 特徴とする請求項 1乃至 6のいずれか記載の熱交換器。 7. The inlet and outlet of the first channel layer are symmetrical to each other. The heat exchanger according to any one of claims 1 to 6, characterized in that:
8 . 前記第 2流路層の入口部及び出口部は、 互いに対称であることを 特徴とする請求項 1乃至 7のいずれか記載の熱交換器。  8. The heat exchanger according to claim 1, wherein an inlet portion and an outlet portion of the second flow path layer are symmetric with each other.
9 . 前記チューブ体の周囲には断熱材を装着したことを特徴とする請 求項 1乃至 8のいずれか記載の熱交換器。  9. The heat exchanger according to claim 1, wherein a heat insulating material is provided around the tube body.
1 0 . 前記チューブ体の断面について、 前記高圧側の冷媒流路におけ る断面積の総和を: とするとともに、前記低圧側の冷媒流路における断 面積の総和を Yとするとき、 これらは、  10. With respect to the cross section of the tube body, when the sum of the cross-sectional areas in the high-pressure side refrigerant flow path is represented by: ,
X < Y  X <Y
の関係にあることを特徴とする請求項 1乃至 9のいずれか記載の熱交 10. The heat exchange according to any one of claims 1 to 9, wherein
1 1 . 前記高圧側の冷媒流路における断面積の総和 Xと、 前記低圧側 の冷媒流路における断面積の総和 Υとは、 1 1. The sum X of the cross-sectional areas in the high-pressure side refrigerant flow path and the sum 断面 of the cross-sectional areas in the low-pressure side refrigerant flow path 、
X二 π · Υ  X2 π
1 . 7≤η≤ 5 . 0  1.7≤η≤5.0
の関係にあることを特徴とする請求項 1 0記載の熱交換器。 10. The heat exchanger according to claim 10, wherein:
1 2 . 前記高圧側の冷媒流路の相当直径 D ^と、 前記低圧側の冷媒流 路の相当直径 D 2とは、 1 2. And the equivalent diameter of the high-pressure side refrigerant flow path of D ^, the equivalent diameter D 2 of the refrigerant flow path of the low pressure side,
0 . 4 [mm] ≤D X≤ 1 . 2 [mm] 0.4 [mm] ≤D X ≤ 1.2 [mm]
0 . 4 [mm] ≤D 2≤ 1 . 2 [mm] 0.4 [mm] ≤D 2 ≤ 1.2 [mm]
の関係にあることを特徴とする請求項 1乃至 1 1のいずれか記載の熱 交換器。 The heat exchanger according to any one of claims 1 to 11, wherein:
1 3 . 当該熱交換器において、 前記冷媒の高圧側と低圧側との間を移 動する熱量は、それらの温度差が 0 °Cとなるときに移動する熱量を 1 0 13. In the heat exchanger, the amount of heat that moves between the high-pressure side and the low-pressure side of the refrigerant is equal to the amount of heat that moves when the temperature difference between them is 0 ° C.
0 [%] とすると、 およそ 6 0〜9 5 [%] であることを特徴とする請 求項 1乃至 1 2のいずれか記載の熱交換器。 The heat exchanger according to any one of claims 1 to 12, wherein the heat exchanger is approximately 60 to 95 [%], where 0 [%].
1 4 . 前記冷凍サイクルは、 放熱器の内部の圧力が前記冷媒の臨界点 を上まわることを特徴とする請求項 1乃至 1 3のいずれか記載の熱交 14. The heat exchange according to any one of claims 1 to 13, wherein the refrigeration cycle has a pressure inside a radiator higher than a critical point of the refrigerant.
1 5 . 冷媒を循環する圧縮式の冷凍サイクルに用いられ、 前記冷媒の 高圧側と低圧側とを熱交換する熱交換器の製造方法において、 15. A method for producing a heat exchanger for use in a compression refrigeration cycle that circulates refrigerant and exchanging heat between a high pressure side and a low pressure side of the refrigerant,
当該熱交換器は、前記高圧側及び前記低圧側の冷媒を流通するチュー ブ体を備え、前記チューブ体に伝わる熱にて前記熱交換を行うものであ s  The heat exchanger includes a tube body through which the high-pressure side and the low-pressure side refrigerant flows, and performs the heat exchange with heat transmitted to the tube body.
前記チューブ体は、前記高圧側の冷媒流路を列設してなる第 1流路層 と、前記低圧側の冷媒流路を列設してなる第 2流路層とを備えるととも に、前記第 1流路層及び前記第 2流路層の一方をそれぞれ設けた複数の 押出し成形チューブをろう付けしてなり、  The tube body includes a first flow path layer in which the high-pressure side refrigerant flow paths are arranged, and a second flow path layer in which the low-pressure side refrigerant flow paths are arranged. A plurality of extruded tubes each provided with one of the first flow path layer and the second flow path layer are brazed,
前記複数の押出し成形チューブをろう付けする際には、当該押出し成 形チューブの表面にフィンを配置し、 その後、前記フィンを取り外すこ とを特徴とする熱交換器の製造方法。  When brazing the plurality of extruded tubes, a fin is disposed on the surface of the extruded tubes, and then the fins are removed.
PCT/JP2001/008241 2000-09-25 2001-09-21 Heat exchanger and method of manufacturing the heat exchanger WO2002025189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000290454A JP2002098486A (en) 2000-09-25 2000-09-25 Heat exchanger and manufacturing method therefor
JP2000-290454 2000-09-25

Publications (1)

Publication Number Publication Date
WO2002025189A1 true WO2002025189A1 (en) 2002-03-28

Family

ID=18773682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008241 WO2002025189A1 (en) 2000-09-25 2001-09-21 Heat exchanger and method of manufacturing the heat exchanger

Country Status (2)

Country Link
JP (1) JP2002098486A (en)
WO (1) WO2002025189A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823839A1 (en) * 2001-04-24 2002-10-25 Modine Mfg Copmpany HEAT EXCHANGER
WO2004033947A1 (en) * 2002-09-20 2004-04-22 Erbslöh Aluminium Gmbh Heat exchanger, method for producing said heat exchanger and an extruded composite profile used for the production thereof
FR2863044A1 (en) * 2003-11-27 2005-06-03 Valeo Climatisation Heat exchange module for circulating fluids has manifold divided by partitions into inlet and outlet chambers for different fluids
FR2907888A1 (en) * 2007-01-16 2008-05-02 Air Liquide Cryogenic liquid e.g. liquefied natural gas, heating and vaporizing method for heat exchanger, involves circulating cryogenic liquid inside elongated tube of heat exchanger, and circulating caloric fluid inside adjacent elongated tube
FR2926877A1 (en) * 2008-01-30 2009-07-31 Air Liquide Aluminum brazed plate heat exchanger for e.g. neon cooling device, in cryogenic separation installation, has heat exchanging sections arranged successively and adjacently in thickness of body, and with alternated inlet and outlet heads

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004177006A (en) * 2002-11-27 2004-06-24 Japan Climate Systems Corp Internal heat exchanger
JP4348113B2 (en) 2003-05-23 2009-10-21 株式会社ヴァレオサーマルシステムズ Heat exchanger
JP3821113B2 (en) * 2003-05-23 2006-09-13 株式会社デンソー Heat exchange tube
JP4196774B2 (en) 2003-07-29 2008-12-17 株式会社デンソー Internal heat exchanger
JP4536459B2 (en) * 2004-08-25 2010-09-01 株式会社ティラド Heat exchanger tubes and heat exchangers
JP4561305B2 (en) * 2004-10-18 2010-10-13 三菱電機株式会社 Heat exchanger
ES2447776T3 (en) * 2006-04-14 2014-03-12 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and cooling air conditioner
JP2009079781A (en) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp Heat exchanger, heat pump water heater using the same, and heat pump air conditioner
AU2010207400B2 (en) * 2009-01-20 2013-01-31 Daikin Industries, Ltd. Water heat exchanger and hot water heat source apparatus
JP4770989B2 (en) * 2009-01-22 2011-09-14 ダイキン工業株式会社 Heat exchanger and heat pump type water heater provided with the same
JP5141730B2 (en) * 2010-07-23 2013-02-13 三菱電機株式会社 Heat exchanger and refrigeration air conditioner
JP2013127346A (en) * 2011-12-19 2013-06-27 Daikin Industries Ltd Heat exchanger
WO2013114435A1 (en) * 2012-01-31 2013-08-08 三菱電機株式会社 Heat exchanger and heat pump system
JP5744316B2 (en) * 2012-03-07 2015-07-08 三菱電機株式会社 Heat exchanger and heat pump system equipped with the heat exchanger
JP5784215B2 (en) * 2012-03-07 2015-09-24 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
WO2015025365A1 (en) * 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, and refrigeration cycle device
JP5749786B2 (en) * 2013-11-28 2015-07-15 株式会社前川製作所 Heat exchanger
WO2021245788A1 (en) * 2020-06-02 2021-12-09 三菱電機株式会社 Heat exchanger and heat pump device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303899A (en) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd Converter for air conditioner
JPH10267565A (en) * 1997-03-28 1998-10-09 Mitsubishi Electric Corp Heat exchanger
JPH1183349A (en) * 1997-08-29 1999-03-26 Hitachi Cable Ltd Two-layer pipe with self-temperature control function and heat exchanger using the same
JP2001343173A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Refrigerating cycle device for co2 refrigerant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205591A (en) * 1983-05-09 1984-11-21 Nippon Denso Co Ltd Heat exchanger
JPS63154967U (en) * 1987-03-30 1988-10-12
JPH0655261A (en) * 1992-08-06 1994-03-01 Showa Alum Corp Brazing method
JP3300192B2 (en) * 1995-03-27 2002-07-08 サンデン株式会社 Heat exchanger
JPH10267585A (en) * 1997-01-27 1998-10-09 Denso Corp Heat exchanger
JP4006861B2 (en) * 1998-12-09 2007-11-14 株式会社デンソー Integrated heat exchanger
JP2000346584A (en) * 1999-06-02 2000-12-15 Denso Corp Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08303899A (en) * 1995-04-28 1996-11-22 Matsushita Seiko Co Ltd Converter for air conditioner
JPH10267565A (en) * 1997-03-28 1998-10-09 Mitsubishi Electric Corp Heat exchanger
JPH1183349A (en) * 1997-08-29 1999-03-26 Hitachi Cable Ltd Two-layer pipe with self-temperature control function and heat exchanger using the same
JP2001343173A (en) * 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd Refrigerating cycle device for co2 refrigerant

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2823839A1 (en) * 2001-04-24 2002-10-25 Modine Mfg Copmpany HEAT EXCHANGER
AU784140B2 (en) * 2001-04-24 2006-02-09 Modine Manufacturing Company Heat exchanger header construction
WO2004033947A1 (en) * 2002-09-20 2004-04-22 Erbslöh Aluminium Gmbh Heat exchanger, method for producing said heat exchanger and an extruded composite profile used for the production thereof
FR2863044A1 (en) * 2003-11-27 2005-06-03 Valeo Climatisation Heat exchange module for circulating fluids has manifold divided by partitions into inlet and outlet chambers for different fluids
WO2005064258A1 (en) * 2003-11-27 2005-07-14 Valeo Climatisation Module for the exchange of heat between circulating fluids
FR2907888A1 (en) * 2007-01-16 2008-05-02 Air Liquide Cryogenic liquid e.g. liquefied natural gas, heating and vaporizing method for heat exchanger, involves circulating cryogenic liquid inside elongated tube of heat exchanger, and circulating caloric fluid inside adjacent elongated tube
FR2926877A1 (en) * 2008-01-30 2009-07-31 Air Liquide Aluminum brazed plate heat exchanger for e.g. neon cooling device, in cryogenic separation installation, has heat exchanging sections arranged successively and adjacently in thickness of body, and with alternated inlet and outlet heads

Also Published As

Publication number Publication date
JP2002098486A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
WO2002025189A1 (en) Heat exchanger and method of manufacturing the heat exchanger
US20050011637A1 (en) Heat exchanger and tube for heat exchanger
JP2007017132A (en) Tube for heat exchange, and heat exchanger
JP2007333304A (en) Heat exchanger
JPH11316093A (en) Liquid-cooled tow-phase heat exchanger
US9719732B2 (en) Cold storage heat exchanger
WO2007013439A1 (en) Heat exchanger
US20040206482A1 (en) Integrated heat exchanger for vehicle and method for manufacturing the same
WO2014147919A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
KR20080063150A (en) Heat exchanger
WO2002052213A1 (en) Heat exchanger
JP4751662B2 (en) Plate for manufacturing flat tube, method for manufacturing flat tube, and method for manufacturing heat exchanger
US11268769B2 (en) Heat exchanger
JPH10325645A (en) Refrigerant evaporator
JP4348113B2 (en) Heat exchanger
JP2002098424A (en) Refrigerating cycle
WO2006073134A1 (en) Tube body and heat exchanger formed by using the same
WO2006073136A1 (en) Heat exchanger
JP3959868B2 (en) Heat exchanger
KR101149725B1 (en) A heat exchanger
JP5257102B2 (en) Heat exchanger and refrigeration air conditioner
JP2004183960A (en) Heat exchanger
JP2001091180A (en) Plate fin tube type heat exchanger, method for manufacture thereof and refrigerator comprising it
JP2004218945A (en) Heat exchanger and method of manufacturing the same
WO2001061263A1 (en) Heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase