JPH10267565A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH10267565A JPH10267565A JP7694797A JP7694797A JPH10267565A JP H10267565 A JPH10267565 A JP H10267565A JP 7694797 A JP7694797 A JP 7694797A JP 7694797 A JP7694797 A JP 7694797A JP H10267565 A JPH10267565 A JP H10267565A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- pipes
- pipe
- heat
- hexagonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/04—Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/26—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、例えば空調装置や
給湯装置などに用いるに好適な熱交換器に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger suitable for use in, for example, an air conditioner or a hot water supply device.
【0002】[0002]
【従来の技術】図15は例えば特開昭56−46993
号公報に示されている従来のこの種熱交換器の一例を示
す斜視図、図16はその縦断面図である。2. Description of the Related Art FIG.
FIG. 16 is a perspective view showing an example of a conventional heat exchanger of this type disclosed in Japanese Patent Laid-Open Publication No. H10-260, and FIG.
【0003】各図において、30は熱交換器の一方の流
路を形成する断面ハニカム形状の流路、31は各流路を
接続する湾曲管、32は熱交換を行う他方の流路であ
る。In each of the figures, reference numeral 30 denotes a flow passage having a honeycomb shape in cross section which forms one flow passage of a heat exchanger, 31 denotes a curved tube connecting each flow passage, and 32 denotes the other flow passage for performing heat exchange. .
【0004】図15に示すハニカム状流路群は、金属製
などのシートを多数枚貼りあわせた後、各シートに剥離
方向の力を加えて断面六角形をなすハニカム状通路に形
成している。こうして形成されたハニカム状流路30を
湾曲管31で接続し、加熱または冷却される流体を供給
する。また流路32相互も各通路が連通するように端部
において湾曲管などで連通し、加熱または冷却に使用す
る熱媒体を供給することによって熱交換を行っている。The honeycomb-shaped flow path group shown in FIG. 15 is formed into a honeycomb-shaped flow path having a hexagonal cross section by applying a force in the peeling direction to each sheet after a number of sheets made of metal or the like are pasted together. . The honeycomb-shaped channels 30 formed in this way are connected by a curved tube 31, and a fluid to be heated or cooled is supplied. Also, the flow paths 32 communicate with each other at their ends through a curved tube or the like so that the respective paths communicate with each other, and heat exchange is performed by supplying a heat medium used for heating or cooling.
【0005】[0005]
【発明が解決しようとする課題】従来の熱交換器は、以
上のように構成され、ハニカム状流路は、隣接する流路
が互いに共通壁を介して隔絶されている。このため、腐
食等により共通壁に穴が開いた場合には、2つの熱交換
を行う流体(一方は熱媒体)が直接接してしまう。The conventional heat exchanger is configured as described above, and the honeycomb-shaped flow passages have adjacent flow passages separated from each other by a common wall. Therefore, when a hole is formed in the common wall due to corrosion or the like, two fluids that perform heat exchange (one of them is a heat medium) are in direct contact with each other.
【0006】また、一方の流体流路に対して他方の流路
本数が多く必要となる上に、流体を流さない流路も出来
てしまうため、熱交換器が大型化してしまう。In addition, one of the fluid flow paths requires a large number of the other flow paths, and a flow path through which the fluid does not flow can be formed, so that the heat exchanger becomes large.
【0007】腐食等により共通壁に穴が開いた場合で
も、2つの熱交換を行う流体(一方は熱媒体)が直接接
してしまうのを防ぐために、ハニカム状流路どうしが隣
接しないように流路30、流路32間に流体を流さない
流路を1つ分あけて接続することことも可能であるが、
この方法では熱交換効率が落ち、熱交換器がさらに大型
化してしまう。[0007] Even when a hole is formed in the common wall due to corrosion or the like, in order to prevent two fluids for heat exchange (one of which is a heat medium) from coming into direct contact with each other, flow is made so that the honeycomb-shaped flow paths are not adjacent to each other. It is also possible to connect a passage that does not allow fluid to flow between the passage 30 and the passage 32 by connecting one passage.
In this method, the heat exchange efficiency is reduced, and the heat exchanger is further increased in size.
【0008】ところで、高い伝熱性能を得るためには、
二重管、プレート型熱交換器などを用いれば良いが、二
重管の場合には、二重管を断面が潰れないように曲げR
の円またはトラック形状にする必要があり、円またはト
ラック形状の内側には、無駄なスペースが生じてしまう
上に、熱交換器全体が大型化してしまう。By the way, in order to obtain high heat transfer performance,
A double tube, plate type heat exchanger, etc. may be used, but in the case of a double tube, the double tube is bent so that the cross section does not collapse.
It is necessary to make the shape of a circle or a track, and inside the shape of the circle or the track, useless space is generated and the entire heat exchanger becomes large.
【0009】また、内部パイプの腐食等により流路に穴
が開いた場合には、前述の従来例同様、2つの互いに熱
交換を行う流体(一方は熱媒体)が直接接してしまうの
を避けられない。Further, when a hole is formed in the flow path due to corrosion of the internal pipe or the like, it is possible to avoid direct contact between two fluids which exchange heat with each other (one of them is a heat medium) as in the above-mentioned conventional example. I can't.
【0010】一方、プレート型熱交換器を用いれば、小
型化は可能であるが、内部パイプの腐食等により流路に
穴が開いた場合には、やはり流体が直接接してしまう。
このため、これら従来の熱交換器では、2つの熱流体が
混ざり合うことを嫌う熱交換の用途には使用できない。[0010] On the other hand, if a plate-type heat exchanger is used, the size can be reduced. However, if a hole is formed in the flow path due to corrosion of an internal pipe or the like, the fluid is still in direct contact.
For this reason, these conventional heat exchangers cannot be used for heat exchange applications that dislike mixing of two heat fluids.
【0011】本発明の技術的課題は、熱交換器の小型
化、高性能化が図れるとともに、流路を形成するパイプ
に腐食が生じても熱交換を行う流体相互の接触を防止で
き、かつ腐食が生じて熱流体が漏れた場合にはこれを検
知できるようにすることにある。A technical object of the present invention is to reduce the size and performance of a heat exchanger and to prevent the fluids performing heat exchange from contacting each other even if corrosion occurs in a pipe forming a flow path, and An object of the present invention is to make it possible to detect a leak of hot fluid caused by corrosion.
【0012】[0012]
【課題を解決するための手段】本発明の請求項1に係る
熱交換器は、断面多角形からなる独立形成されたパイプ
を複数組み合わせて集合密接させ、隣り合うパイプ相互
をUベンドで接続することにより流路を形成して成るも
のである。A heat exchanger according to a first aspect of the present invention combines a plurality of independently formed pipes each having a polygonal cross section so that they are brought into close contact with each other, and adjacent pipes are connected to each other by a U-bend. Thus, a flow path is formed.
【0013】また、本発明の請求項2に係る熱交換器
は、パイプの内面に溝または突起を形成したものであ
る。A heat exchanger according to a second aspect of the present invention is one in which a groove or a projection is formed on the inner surface of the pipe.
【0014】また、本発明の請求項3に係る熱交換器
は、パイプの内部にインナーフィンを挿入したものであ
る。The heat exchanger according to a third aspect of the present invention is one in which an inner fin is inserted inside a pipe.
【0015】また、本発明の請求項4に係る熱交換器
は、パイプ相互の接触面に熱伝導性能の高いシール材を
介在設置したものである。In the heat exchanger according to a fourth aspect of the present invention, a sealing material having a high heat conduction performance is interposed between the contact surfaces of the pipes.
【0016】また、本発明の請求項5に係る熱交換器
は、集合したパイプの外側を断熱材で覆ったものであ
る。Further, in the heat exchanger according to claim 5 of the present invention, the outside of the assembled pipes is covered with a heat insulating material.
【0017】また、本発明の請求項6に係る熱交換器
は、集合したパイプの下方に受皿を配置するとともに、
受皿内の液体を検知する漏れ検知手段を設けたものであ
る。In the heat exchanger according to claim 6 of the present invention, a saucer is arranged below the assembled pipes,
The apparatus is provided with a leak detecting means for detecting the liquid in the tray.
【0018】[0018]
【発明の実施の形態】 実施形態1.以下、図示実施形態に基づき本発明を説明
する。図1は本発明の請求項1に係る熱交換器の第1の
例を示す構成図、図2はその流路を形成する六角パイプ
を示す斜視図、図3はその流路湾曲部を形成するUベン
ドを示す構成図、図4はその隣り合うパイプ相互をUベ
ンドで接続した状態を示す正面図、図5はその使用例を
示すヒートポンプの流体回路図である。BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 Hereinafter, the present invention will be described based on the illustrated embodiments. FIG. 1 is a block diagram showing a first example of a heat exchanger according to claim 1 of the present invention, FIG. 2 is a perspective view showing a hexagonal pipe forming its flow path, and FIG. FIG. 4 is a front view showing a state in which adjacent pipes are connected by a U-bend, and FIG. 5 is a fluid circuit diagram of a heat pump showing an example of use.
【0019】本実施形態の熱交換器10は、分離可能に
独立形成された複数の六角パイプ1と、隣り合う六角パ
イプ相互を接続して屈曲部流路を形成する複数のUベン
ド2と、各六角パイプ1を束ねて集合密接させるバンド
3とから構成されている。The heat exchanger 10 of the present embodiment includes a plurality of hexagonal pipes 1 formed independently so as to be separable, a plurality of U-bends 2 connecting adjacent hexagonal pipes to form a bent portion flow path, A band 3 for bundling the hexagonal pipes 1 and bringing them into close contact with each other.
【0020】これを更に詳述すると、六角パイプ1とU
ベンド2は、いずれも銅などの金属から形成されてい
る。Uベンド2は、その曲率Rが図1に示すように隣り
合う六角パイプ相互を他のUベンドに接触することなく
接続できるように極め小さく設定され、図3に示すよう
にそのU字部2aの断面形状がほぼ円形に、また両端部
2b,2cの断面形状が六角パイプ1との接続を容易に
するために六角形に形成されて、その径が図4に示すよ
うに六角パイプ1内に嵌入できる寸法に設定されてい
る。そして、これら六角パイプ1とUベンド2は、Uベ
ンド2が六角パイプ1に差し込まれた状態で、溶接やろ
う付け等により接合固定されるようになっている。な
お、図中の符号4はろう付けする際のろう材である。This will be described in more detail.
Each of the bends 2 is formed from a metal such as copper. The U-bend 2 has an extremely small curvature R so that adjacent hexagonal pipes can be connected to each other without contacting other U-bends as shown in FIG. 1, and the U-shaped portion 2a as shown in FIG. Is formed in a substantially circular shape, and the cross-sectional shapes of both ends 2b and 2c are formed in a hexagonal shape to facilitate connection with the hexagonal pipe 1. The diameter of the hexagonal pipe 1 is as shown in FIG. It is set to a size that can fit into The hexagonal pipe 1 and the U-bend 2 are joined and fixed by welding, brazing, or the like in a state where the U-bend 2 is inserted into the hexagonal pipe 1. Reference numeral 4 in the drawing is a brazing material used for brazing.
【0021】バンド3は、金属または樹脂などから形成
され、六角パイプ1を締付けることによって固定する機
能と、六角パイプ相互の密接性を高めて熱交換性能を向
上させる機能とを有している。このようにして、バンド
3により六角パイプ1を束ねて集合密接させ、組み合わ
せを選択してUベンド2により接続し、2つの流路すな
わち高温流体流路(図1中にハッチで示す流路)1aと
低温流体流路(図1中に白塗りで示す流路)1bを形成
することにより、コンパクトかつ軽量で熱交換性能に優
れた安価な熱交換器10の製作が可能となる。なお、図
1中の×印は流体の入り側ポート、・印は流体の出側ポ
ート、をそれぞれ意味している。また、ここでは高温流
体流路1aと低温流体流路1bが平面的に見てS字状に
絡み合う組み合わせを例に挙げて説明しているが、これ
ら2つの流路は、後述の実施形態2,3,4,5で詳述
するように様々な組み合わせが可能であり、集合六角パ
イプの大きさや、六角パイプの形状、流路長さも自由に
変えることが可能である。The band 3 is made of metal or resin, and has a function of fixing the hexagonal pipes 1 by tightening them, and a function of improving the heat exchange performance by increasing the tightness between the hexagonal pipes. In this way, the hexagonal pipes 1 are bundled by the band 3 and brought into close contact with each other, a combination is selected and connected by the U-bend 2, and two flow paths, that is, high-temperature fluid flow paths (flow paths indicated by hatching in FIG. 1) By forming the low-temperature fluid flow path 1a and the low-temperature fluid flow path (the flow path shown in white in FIG. 1) 1b, it is possible to manufacture a compact, lightweight, and inexpensive heat exchanger 10 having excellent heat exchange performance. In FIG. 1, the symbol “x” indicates a fluid inlet port, and the symbol “流体” indicates a fluid outlet port. Further, here, the combination in which the high-temperature fluid flow path 1a and the low-temperature fluid flow path 1b are entangled in an S-shape in plan view is described as an example, but these two flow paths are described in a second embodiment described later. , 3, 4, and 5, various combinations are possible, and the size of the assembled hexagonal pipe, the shape of the hexagonal pipe, and the flow path length can be freely changed.
【0022】そして、前述のように構成された本実施形
態の熱交換器は、例えば図5に示すヒートポンプの熱交
換器として使用される。このヒートポンプのシステム
は、本実施形態の熱交換器10を除けば、一般的な周知
の構成となっていて、圧縮機21から吐出された高温高
圧のガス冷媒が熱交換器10に至り、そこでポンプ22
により水回路内を循環する低温水と高温冷媒が熱交換さ
れ、水は温水になってタンク23に溜められ、冷媒は凝
縮されて液冷媒となる。液冷媒となった冷媒は、膨張弁
24を経て低温低圧の気液二相状態となり、空気熱交換
器25にて蒸発し低温のガス冷媒となり圧縮機21に吸
引される。また、四方弁26を反転させることにより冷
媒の凝縮と蒸発を前記とは逆の熱交換器にて行い熱交換
器10で冷水を作ることも可能である。以上のように冷
媒と水の熱交換を行うことにより、温水や冷水を作るこ
とができる。The heat exchanger of the present embodiment configured as described above is used, for example, as a heat exchanger of a heat pump shown in FIG. This heat pump system has a general well-known configuration except for the heat exchanger 10 of the present embodiment, and the high-temperature and high-pressure gas refrigerant discharged from the compressor 21 reaches the heat exchanger 10, where Pump 22
As a result, the low-temperature water and the high-temperature refrigerant circulating in the water circuit exchange heat, the water becomes hot water and is stored in the tank 23, and the refrigerant is condensed to become a liquid refrigerant. The refrigerant that has become the liquid refrigerant enters a low-temperature low-pressure gas-liquid two-phase state via the expansion valve 24, evaporates in the air heat exchanger 25, becomes a low-temperature gas refrigerant, and is sucked into the compressor 21. Further, by inverting the four-way valve 26, it is also possible to condense and evaporate the refrigerant by the heat exchanger opposite to the above, and to make the heat exchanger 10 produce cold water. By performing the heat exchange between the refrigerant and the water as described above, hot or cold water can be produced.
【0023】このように、本実施形態の熱交換器におい
ては、独立形成された複数の六角パイプ1をバンド3に
よって集合密接させ、隣り合う六角パイプ相互をUベン
ド2で接続して流路を形成するようにしたので、熱交換
器10が小型化され、熱交換効率が向上して高性能化が
図れる。As described above, in the heat exchanger of this embodiment, a plurality of independently formed hexagonal pipes 1 are brought into close contact with each other by the band 3, and adjacent hexagonal pipes are connected to each other by the U-bend 2 to form a flow path. Since the heat exchanger 10 is formed, the heat exchanger 10 is downsized, the heat exchange efficiency is improved, and the performance is improved.
【0024】また、流路を形成する六角パイプ1がそれ
ぞれ独立して形成されているので、いずれか1つの六角
パイプ1に腐食が生じても、熱交換を行う流体相互の接
触を防止することができる。このため、2つの熱流体が
混ざり合うことを嫌う熱交換の用途にも使用可能であ
る。In addition, since the hexagonal pipes 1 forming the flow paths are formed independently of each other, even if any one of the hexagonal pipes 1 is corroded, it is possible to prevent the fluids performing heat exchange from coming into contact with each other. Can be. For this reason, it can also be used for heat exchange applications that dislike mixing of two heat fluids.
【0025】実施形態2.図6は本発明の請求項1に係
る熱交換器の第2の例を示すパイプ配置の構成図であ
り、図中、前述の第1実施形態(図1)のものと同一部
材には同一符号を付してある。Embodiment 2 FIG. FIG. 6 is a configuration diagram of a pipe arrangement showing a second example of the heat exchanger according to claim 1 of the present invention. In the figure, the same members as those of the above-described first embodiment (FIG. 1) are the same. The code is attached.
【0026】この実施形態の熱交換器10Aは、六角パ
イプ1を束ねて集合密接させ、組み合わせを選択して隣
り合う六角パイプ相互をUベンド2により接続して形成
されてなる2つの流路、すなわち高温流体流路(図6中
にハッチで示す流路)1aと低温流体流路(図6中に白
塗りで示す流路)1bを、平面的に見て渦巻き状に絡み
合うように組み合わせたものである。それ以外の構成は
前述の第1実施形態のものと同様である。The heat exchanger 10A of this embodiment comprises two flow paths formed by bundling the hexagonal pipes 1 and bringing them into close contact, selecting a combination, and connecting adjacent hexagonal pipes to each other by the U-bend 2. That is, the high-temperature fluid flow path (the flow path shown by hatching in FIG. 6) 1a and the low-temperature fluid flow path (the flow path shown by white paint in FIG. 6) 1b are combined so as to be spirally entangled in plan view. Things. The other configuration is the same as that of the first embodiment.
【0027】この実施形態の熱交換器においても、熱媒
体を取り巻くように流路を形成しているため、前述の第
1実施形態のものと同様にコンパクトかつ軽量で熱交換
性能に優れた安価な熱交換器10Aの製作が可能とな
る。In the heat exchanger of this embodiment, since the flow path is formed so as to surround the heat medium, the heat exchanger is compact, lightweight, and excellent in heat exchange performance as in the first embodiment. It is possible to manufacture the heat exchanger 10A.
【0028】実施形態3.図7は本発明の請求項1に係
る熱交換器の第3の例を示すパイプ配置の構成図であ
り、図中、前述の第1実施形態(図1)のものと同一部
材には同一符号を付してある。Embodiment 3 FIG. 7 is a configuration diagram of a pipe arrangement showing a third example of the heat exchanger according to claim 1 of the present invention. In the figure, the same members as those of the above-described first embodiment (FIG. 1) are the same. The code is attached.
【0029】この実施形態の熱交換器10Bは、六角パ
イプ1を束ねて集合密接させ、組み合わせを選択して隣
り合う六角パイプ相互をUベンド2により接続して形成
されてなる2つの流路、すなわち高温流体流路(図7中
にハッチで示す流路)1aと低温流体流路(図7中に白
塗りで示す流路)1bを、並列に組み合わせたものであ
る。それ以外の構成は前述の第1実施形態のものと同様
である。The heat exchanger 10B of this embodiment is composed of two flow paths formed by bundling hexagonal pipes 1 to bring them into close contact, selecting a combination and connecting adjacent hexagonal pipes to each other by U-bends 2, That is, the high-temperature fluid flow path (the flow path shown by hatching in FIG. 7) 1a and the low-temperature fluid flow path (the flow path shown by white in FIG. 7) 1b are combined in parallel. The other configuration is the same as that of the first embodiment.
【0030】この実施形態の熱交換器においては、高温
流体流路1aと低温流体流路1bを並列に組み合わせる
ことで、熱交換器10Bを板状にできるため、薄型の板
状熱交換器の製作が可能となる。In the heat exchanger of this embodiment, the heat exchanger 10B can be formed in a plate shape by combining the high-temperature fluid passage 1a and the low-temperature fluid passage 1b in parallel. Production becomes possible.
【0031】また、この板状の熱交換器10Bを複数積
み重ねることにより、容易に熱交換容量を変えることが
できる。By stacking a plurality of the plate-shaped heat exchangers 10B, the heat exchange capacity can be easily changed.
【0032】実施形態4.図8は本発明の請求項1に係
る熱交換器の第4の例を示すパイプ配置の構成図であ
り、図中、前述の第1実施形態(図1)のものと同一部
材には同一符号を付してある。Embodiment 4 FIG. FIG. 8 is a configuration diagram of a pipe arrangement showing a fourth example of the heat exchanger according to claim 1 of the present invention. In the figure, the same members as those of the above-described first embodiment (FIG. 1) are the same. The code is attached.
【0033】この実施形態の熱交換器10Cは、分離可
能に独立形成された複数の四角パイプ1Aを束ねて集合
密接させ、組み合わせを選択して隣り合う四角パイプ相
互ををUベンド2により接続して2つの流路、すなわち
高温流体流路(図8中にハッチで示す流路)1aと低温
流体流路(図8中に白塗りで示す流路)1bを、平面的
に見てS字状に絡み合うように組み合わせたものであ
る。それ以外の構成は前述の第1実施形態のものと同様
である。In the heat exchanger 10C of this embodiment, a plurality of square pipes 1A which are formed independently so as to be separable are bundled and brought into close contact, a combination is selected, and adjacent square pipes are connected to each other by a U-bend 2. The two flow paths, that is, the high-temperature fluid flow path (the flow path indicated by hatching in FIG. 8) 1a and the low-temperature fluid flow path (the white flow path shown in FIG. 8) 1b They are combined so that they are intertwined in a shape. The other configuration is the same as that of the first embodiment.
【0034】この実施形態の熱交換器において、Uベン
ド2の両端部の断面形状を、四角パイプ1Aとの接続を
容易にするために四角形に形成することは好ましい。In the heat exchanger of this embodiment, it is preferable that the cross-sectional shape of both ends of the U-bend 2 is formed in a square shape in order to facilitate connection with the square pipe 1A.
【0035】この実施形態に示すように、本発明の熱交
換器は、流路を形成するパイプの多角形断面の形状が特
定の形状に限定されるものでなく、種々の変形例を含む
ものである。すなわち、熱交換器の設置空間の断面形状
に合わせてパイプの断面形状を適宜選択すればよい。こ
の実施形態の四角パイプ1Aの場合は、熱交換器の設置
空間の断面形状が矩形空間の場合に有効である。As shown in this embodiment, in the heat exchanger of the present invention, the shape of the polygonal cross section of the pipe forming the flow path is not limited to a specific shape, but includes various modifications. . That is, the sectional shape of the pipe may be appropriately selected according to the sectional shape of the installation space of the heat exchanger. In the case of the square pipe 1A of this embodiment, it is effective when the sectional shape of the installation space of the heat exchanger is a rectangular space.
【0036】実施形態5.図9は本発明の請求項1に係
る熱交換器の第5の例を示すパイプ配置の構成図であ
り、図中、前述の第1実施形態(図1)のものと同一部
材には同一符号を付してある。Embodiment 5 FIG. FIG. 9 is a configuration diagram of a pipe arrangement showing a fifth example of the heat exchanger according to claim 1 of the present invention. In the figure, the same members as those of the above-described first embodiment (FIG. 1) are the same. The code is attached.
【0037】この実施形態の熱交換器10Dは、分離可
能に独立形成された複数の三角パイプ1Bを束ねて集合
密接させ、組み合わせを選択して隣り合う三角パイプ相
互ををUベンド2により接続して2つの流路、すなわち
高温流体流路(図9中にハッチで示す流路)1aと低温
流体流路(図9中に白塗りで示す流路)1bを、平面的
に見て渦巻き状に絡み合うように組み合わせたものであ
る。それ以外の構成は前述の第1実施形態のものと同様
である。In the heat exchanger 10D of this embodiment, a plurality of triangular pipes 1B which are independently formed so as to be separable are bundled and brought into close contact with each other, a combination is selected, and adjacent triangular pipes are connected to each other by a U-bend 2. The two flow paths, that is, the high-temperature fluid flow path (the flow path indicated by hatching in FIG. 9) 1a and the low-temperature fluid flow path (the flow path indicated by white in FIG. 9) 1b are formed into a spiral shape in plan view. It is a combination that is intertwined. The other configuration is the same as that of the first embodiment.
【0038】この実施形態の熱交換器において、Uベン
ド2の両端部の断面形状を、三角パイプ1Aとの接続を
容易にするために三角形に形成することは好ましい。In the heat exchanger of this embodiment, it is preferable that the cross-sectional shape of both ends of the U-bend 2 is formed in a triangular shape to facilitate connection with the triangular pipe 1A.
【0039】この実施形態においては、複数の三角パイ
プ1Bを6面体状に束ねて集合密接させているが、3面
体状に束ねて集合密接させることも可能である。つまり
熱交換器の設置空間の断面形状に合わせて、パイプの断
面形状と集合ブロックの形状を選択すればよい。In this embodiment, the plurality of triangular pipes 1B are bundled in a hexahedral shape and brought into close contact, but they may be bundled in a trihedral shape and brought into close contact with each other. That is, the cross-sectional shape of the pipe and the shape of the assembly block may be selected according to the cross-sectional shape of the installation space of the heat exchanger.
【0040】実施形態6.図10は本発明の請求項1,
2に係る熱交換器の第1の例を示す要部構成図であり、
図中、前述の第1実施形態(図1)のものと同一部材に
は同一符号を付してある。Embodiment 6 FIG. FIG. 10 shows claim 1 of the present invention.
2 is a main part configuration diagram showing a first example of a heat exchanger according to FIG.
In the figure, the same members as those of the above-described first embodiment (FIG. 1) are denoted by the same reference numerals.
【0041】この実施形態の熱交換器は、六角パイプ1
の内面に多数のスパイラル状溝1cを形成したものであ
り、それ以外の構成は前述の第1実施形態のものと同様
である。The heat exchanger of this embodiment has a hexagonal pipe 1
Are formed with a large number of spiral grooves 1c on the inner surface thereof, and the other configuration is the same as that of the above-described first embodiment.
【0042】この実施形態においては、熱交換部分であ
る六角パイプ1の内面に多数の溝1cを形成しているの
で、六角パイプ1の内部流れに乱れを起こさせることが
でき、壁近傍の温度境界層を薄くすることができる。こ
のため、熱交換性能が向上し、使用する六角パイプ1の
更なる数の削減、コンパクト化が可能となる。In this embodiment, since a large number of grooves 1c are formed on the inner surface of the hexagonal pipe 1 which is a heat exchange part, the internal flow of the hexagonal pipe 1 can be disturbed, and the temperature near the wall can be reduced. The boundary layer can be made thin. For this reason, the heat exchange performance is improved, and the number of hexagonal pipes 1 to be used can be further reduced and the size can be reduced.
【0043】実施形態7.図11は本発明の請求項1,
2に係る熱交換器の第2の例を示す要部構成図であり、
図中、前述の第1実施形態(図1)のものと同一部材に
は同一符号を付してある。Embodiment 7 FIG. 11 shows claim 1 of the present invention.
2 is a main part configuration diagram showing a second example of the heat exchanger according to 2,
In the figure, the same members as those of the above-described first embodiment (FIG. 1) are denoted by the same reference numerals.
【0044】この実施形態の熱交換器は、六角パイプ1
の内面に多数の突起1dを形成したものであり、それ以
外の構成は前述の第1実施形態のものと同様である。The heat exchanger of this embodiment has a hexagonal pipe 1
Are formed with a large number of protrusions 1d on the inner surface thereof, and the other configuration is the same as that of the above-described first embodiment.
【0045】この実施形態においても、六角パイプ1内
面の突起1dによって、六角パイプ1の内部流れに乱れ
を起こさせることができ、壁近傍の温度境界層を薄くす
ることができる。このため、熱交換性能が向上し、使用
する六角パイプ1の更なる数の削減、コンパクト化が可
能となる。Also in this embodiment, the internal flow of the hexagonal pipe 1 can be disturbed by the protrusion 1d on the inner surface of the hexagonal pipe 1, and the temperature boundary layer near the wall can be thinned. For this reason, the heat exchange performance is improved, and the number of hexagonal pipes 1 to be used can be further reduced and the size can be reduced.
【0046】実施形態8.図12は本発明の請求項1,
3に係る熱交換器を示す要部構成図であり、図中、前述
の第1実施形態(図1)のものと同一部材には同一符号
を付してある。Embodiment 8 FIG. FIG. 12 shows claim 1 of the present invention.
FIG. 3 is a main part configuration diagram showing a heat exchanger according to No. 3, in which the same members as those of the first embodiment (FIG. 1) described above are denoted by the same reference numerals.
【0047】この実施形態の熱交換器は、六角パイプ1
の内部に管軸方向に延びる放射状のインナーフィン5を
挿入したものであり、それ以外の構成は前述の第1実施
形態のものと同様である。The heat exchanger of this embodiment has a hexagonal pipe 1
The radial inner fins 5 extending in the pipe axis direction are inserted into the inside, and the other configuration is the same as that of the above-described first embodiment.
【0048】この実施形態においては、インナーフィン
5を六角パイプ1内に挿入することにより、伝熱に寄与
する面積を大きくすることが可能となるため、管壁を介
して外部から受けた熱を管内の流体に効率良く伝達で
き、あるいはパイプ内を流れる熱媒体から受けた熱を管
壁に効率良く伝達できて、伝熱性能が向上する。In this embodiment, since the area contributing to heat transfer can be increased by inserting the inner fin 5 into the hexagonal pipe 1, heat received from the outside via the tube wall can be obtained. The heat transfer performance can be improved by efficiently transmitting the heat to the fluid in the pipe or the heat received from the heat medium flowing through the pipe to the pipe wall.
【0049】なお、前述の第1乃至第8実施形態ではい
ずれも流路を形成する多角パイプ相互が直接接触するよ
うにしたものを例に挙げて説明したが、請求項4の発明
のように多角パイプを組込む際に互いの接触面に熱伝導
性能の高いシール材などを塗り挟み込めば、非接触部分
がなくなるので、伝熱性能をさらに向上させることが可
能である。In each of the first to eighth embodiments described above, an example is described in which polygonal pipes forming a flow path are in direct contact with each other. If a sealing material or the like having a high thermal conductivity is applied between the contact surfaces when the polygonal pipes are assembled, the non-contact portion is eliminated, so that the heat transfer performance can be further improved.
【0050】実施形態9.図13は本発明の請求項1,
2,3,4,5に係る熱交換器を示す構成図であり、図
中、前述の第1実施形態(図1)のものと同一部材には
同一符号を付してある。Embodiment 9 FIG. FIG. 13 shows claim 1 of the present invention.
It is a block diagram which shows the heat exchanger which concerns on 2,3,4,5. In the figure, the same code | symbol is attached | subjected to the same member as that of 1st Embodiment (FIG. 1) mentioned above.
【0051】この実施形態の熱交換器は、六角パイプ1
を束ねて集合密接させ、組み合わせを選択して隣り合う
六角パイプ相互をUベンド2により接続して成る熱交換
器10の外側を、ウレタン等の発泡材からなる断熱材6
で覆ったものであり、それ以外の構成は前述の第1実施
形態のものと同様である。The heat exchanger of this embodiment has a hexagonal pipe 1
The heat exchanger 10 made of a foam material such as urethane or the like is formed on the outside of the heat exchanger 10 which is formed by bundling and closely contacting each other, selecting a combination and connecting adjacent hexagonal pipes by the U-bend 2.
The other configuration is the same as that of the above-described first embodiment.
【0052】この実施形態の熱交換器において、断熱被
覆体(断熱材)の形成は、まず熱交換器10すなわち集
合パイプを製作し、これを型に入れた後、集合パイプ周
りに断熱材6すなわちウレタン等の発泡材を充填し、集
合パイプを固定することにより行われる。In the heat exchanger of this embodiment, the heat insulating coating (heat insulating material) is formed by first manufacturing the heat exchanger 10, that is, the collecting pipe, putting it into a mold, and then placing the heat insulating material 6 around the collecting pipe. That is, it is performed by filling a foam material such as urethane and fixing the collecting pipe.
【0053】この実施形態においては、集合パイプを断
熱材6で覆ったので、高断熱性能が得られ、熱交換効率
がさらに向上する。In this embodiment, since the collecting pipe is covered with the heat insulating material 6, high heat insulating performance is obtained, and the heat exchange efficiency is further improved.
【0054】また、断熱材6としてウレタン等の発泡材
を用いたので、発泡材の弾性力により集合パイプに締め
付け力を加えることができ、これによって六角パイプ相
互の密接度がさらに高まり、熱交換性能の向上が望め
る。Further, since a foaming material such as urethane is used as the heat insulating material 6, a tightening force can be applied to the collective pipe by the elastic force of the foaming material, thereby further increasing the degree of close contact between the hexagonal pipes and heat exchange. The performance can be improved.
【0055】なお、ここでは断熱材6として発泡材を用
いたものを例に挙げて説明したが、これをシート状の断
熱材に代えて、集合パイプの外側に巻き付けるようにし
てもよい。Although a case where a foam material is used as the heat insulating material 6 has been described here as an example, the heat insulating material 6 may be wound around the outside of the collecting pipe instead of a sheet-like heat insulating material.
【0056】実施形態10.図14は本発明の請求項
1,2,3,4,5,6に係る熱交換器を示す構成図で
あり、図中、前述の第1実施形態(図1)のものと同一
部材には同一符号を付してある。Embodiment 10 FIG. FIG. 14 is a block diagram showing a heat exchanger according to the first, second, third, fourth, fifth and sixth aspects of the present invention. In the figure, the same members as those of the first embodiment (FIG. 1) are used. Are denoted by the same reference numerals.
【0057】この実施形態の熱交換器は、六角パイプ1
を束ねて集合密接させ、組み合わせを選択して隣り合う
六角パイプ相互をUベンド2により接続して成る熱交換
器10の下方に受皿7配置するとともに、受皿7内の液
体を検知する漏れ検知手段8を設けたものである。漏れ
検知手段8は、例えばフロートスイッチや液体に浸され
ることにより通電する一対の電極からなる液体検知セン
サ等、種々のものが採用可能であり、適宜選択すればよ
い。それ以外の構成は前述の第1実施形態のものと同様
である。The heat exchanger of this embodiment has a hexagonal pipe 1
And a pair of hexagonal pipes are connected to each other by a U-bend 2 and disposed in a saucer 7 below the heat exchanger 10, and a leak detecting means for detecting a liquid in the saucer 7 is provided. 8 is provided. As the leak detecting means 8, various types such as a float switch and a liquid detecting sensor composed of a pair of electrodes which are energized by being immersed in a liquid can be adopted, and may be appropriately selected. The other configuration is the same as that of the first embodiment.
【0058】この実施形態において、2つの流路すなわ
ち高温流体流路と低温流体流路のいずれかの六角パイプ
1に、腐食などによる穴が生じると、流路間の隙間から
液体が下方へ伝わり受皿7内に滴下する。受皿7内に液
体が溜まれば漏れ検知手段8により漏れが検知され、ア
ラーム等により液体漏れが発生したことが報知される。
このため、液体漏れによって熱交換器10が働かなくな
った状態でこれを利用したシステムが長時間放置される
のを防止することができる。In this embodiment, when a hole due to corrosion or the like is formed in the hexagonal pipe 1 of one of the two flow paths, that is, the high-temperature fluid flow path and the low-temperature fluid flow path, the liquid is transmitted downward from the gap between the flow paths. The solution is dropped into the pan 7. If the liquid accumulates in the tray 7, the leak is detected by the leak detecting means 8, and the occurrence of the liquid leak is notified by an alarm or the like.
For this reason, it is possible to prevent a system using the heat exchanger 10 from being left for a long time in a state where the heat exchanger 10 does not work due to the liquid leakage.
【0059】[0059]
【発明の効果】以上述べたように、請求項1の発明によ
れば、断面多角形からなる独立形成されたパイプを複数
組み合わせて集合密接させ、隣り合うパイプ相互をUベ
ンドで接続するようにしたので、熱交換器が小型化さ
れ、熱交換効率が向上して高性能化が図れる。更に流路
を形成するパイプのいずれか1つに腐食が生じても、熱
交換を行う流体相互の接触を防止することができるの
で、2つの熱流体が混ざり合うことを嫌う熱交換の用途
にも使用可能となる。As described above, according to the first aspect of the present invention, a plurality of independently formed pipes each having a polygonal cross section are combined and brought into close contact, and adjacent pipes are connected to each other by U-bends. Therefore, the heat exchanger can be downsized, the heat exchange efficiency can be improved, and the performance can be improved. Furthermore, even if any one of the pipes forming the flow path is corroded, the fluids performing the heat exchange can be prevented from contacting each other. Can also be used.
【0060】また、請求項2の発明によれば、パイプの
内面に溝または突起を形成したので、パイプの内部流れ
に乱れを起こさせることができ、壁近傍の温度境界層を
薄くすることができる。このため、熱交換性能が向上
し、使用するパイプの更なる数の削減、コンパクト化が
可能となる。According to the second aspect of the present invention, since the grooves or projections are formed on the inner surface of the pipe, the internal flow of the pipe can be disturbed, and the temperature boundary layer near the wall can be made thinner. it can. Therefore, the heat exchange performance is improved, and the number of pipes to be used can be further reduced and downsized.
【0061】また、請求項3の発明によれば、パイプの
内部にインナーフィンを挿入するようにしたので、伝熱
に寄与する面積を大きくすることが可能となり、管壁を
介して外部から受けた熱を管内の流体に効率良く伝達で
き、あるいはパイプ内を流れる熱媒体から受けた熱を管
壁に効率良く伝達できて、伝熱性能が向上する。According to the third aspect of the present invention, since the inner fin is inserted into the inside of the pipe, it is possible to increase the area contributing to the heat transfer, and to receive the external fin through the pipe wall. The heat can be efficiently transmitted to the fluid in the pipe, or the heat received from the heat medium flowing in the pipe can be efficiently transmitted to the pipe wall, thereby improving the heat transfer performance.
【0062】また、請求項4の発明によれば、パイプ相
互の接触面に熱伝導性能の高いシール材を介在設置した
ので、非接触部分がなくなって、伝熱性能をさらに向上
させることができる。According to the fourth aspect of the present invention, since the sealing member having high heat conduction performance is interposed between the contact surfaces of the pipes, the non-contact portion is eliminated and the heat transfer performance can be further improved. .
【0063】また、請求項5の発明によれば、集合した
パイプの外側を断熱材で覆ったので、高断熱性能が得ら
れ、熱交換効率がさらに向上する。According to the fifth aspect of the present invention, since the outside of the assembled pipes is covered with the heat insulating material, high heat insulating performance is obtained, and the heat exchange efficiency is further improved.
【0064】また、請求項6の発明によれば、集合した
パイプの下方に受皿を配置するとともに、受皿内の液体
を検知する漏れ検知手段を設けたので、腐食などにより
パイプに穴が生じて内部の液体が漏れると、この漏れを
検出することができる。このため、液体漏れによって熱
交換器が働かなくなった状態でこれを利用したシステム
が長時間放置されるのを防止することができる。According to the sixth aspect of the present invention, the saucer is disposed below the assembled pipes, and the leak detecting means for detecting the liquid in the saucer is provided. If the liquid inside leaks, this leak can be detected. Therefore, it is possible to prevent a system using the heat exchanger from being left for a long time in a state where the heat exchanger does not work due to the liquid leakage.
【図1】 本発明の第1実施形態に係る熱交換器を示す
構成図である。FIG. 1 is a configuration diagram illustrating a heat exchanger according to a first embodiment of the present invention.
【図2】 第1実施形態に係る熱交換器の流路を形成す
る六角パイプを示す斜視図である。FIG. 2 is a perspective view showing a hexagonal pipe forming a flow path of the heat exchanger according to the first embodiment.
【図3】 第1実施形態に係る熱交換器の流路湾曲部を
形成するUベンドを示す構成図である。FIG. 3 is a configuration diagram illustrating a U-bend that forms a curved path portion of the heat exchanger according to the first embodiment.
【図4】 第1実施形態に係る熱交換器の隣り合うパイ
プ相互をUベンドで接続した状態を示す正面図である。FIG. 4 is a front view showing a state in which adjacent pipes of the heat exchanger according to the first embodiment are connected to each other by a U-bend.
【図5】 第1実施形態に係る熱交換器の使用例を示す
ヒートポンプの流体回路図である。FIG. 5 is a fluid circuit diagram of a heat pump showing an example of use of the heat exchanger according to the first embodiment.
【図6】 本発明の第2実施形態に係る熱交換器のパイ
プ配置を示す構成図である。FIG. 6 is a configuration diagram showing a pipe arrangement of a heat exchanger according to a second embodiment of the present invention.
【図7】 本発明の第3実施形態に係る熱交換器のパイ
プ配置を示す構成図である。FIG. 7 is a configuration diagram showing a pipe arrangement of a heat exchanger according to a third embodiment of the present invention.
【図8】 本発明の第4実施形態に係る熱交換器のパイ
プ配置を示す構成図である。FIG. 8 is a configuration diagram showing a pipe arrangement of a heat exchanger according to a fourth embodiment of the present invention.
【図9】 本発明の第5実施形態に係る熱交換器のパイ
プ配置を示す構成図である。FIG. 9 is a configuration diagram showing a pipe arrangement of a heat exchanger according to a fifth embodiment of the present invention.
【図10】 本発明の第6実施形態に係る熱交換器を示
す要部構成図である。FIG. 10 is a main part configuration diagram showing a heat exchanger according to a sixth embodiment of the present invention.
【図11】 本発明の第7実施形態に係る熱交換器を示
す要部構成図である。FIG. 11 is a main part configuration diagram showing a heat exchanger according to a seventh embodiment of the present invention.
【図12】 本発明の第8実施形態に係る熱交換器を示
す要部構成図である。FIG. 12 is a main part configuration diagram showing a heat exchanger according to an eighth embodiment of the present invention.
【図13】 本発明の第9実施形態に係る熱交換器を示
す構成図である。FIG. 13 is a configuration diagram illustrating a heat exchanger according to a ninth embodiment of the present invention.
【図14】 本発明の第10実施形態に係る熱交換器を
示す構成図である。FIG. 14 is a configuration diagram showing a heat exchanger according to a tenth embodiment of the present invention.
【図15】 従来の熱交換器を示す斜視図である。FIG. 15 is a perspective view showing a conventional heat exchanger.
【図16】 従来の熱交換器の縦断面図である。FIG. 16 is a longitudinal sectional view of a conventional heat exchanger.
1 六角パイプ(パイプ)、1A 四角パイプ(パイ
プ)、1B 三角パイプ、1c パイプ内面の溝、1d
パイプ内面の突起、2 Uベンド、5 インナーフィ
ン、6 断熱材、7 受皿、8 漏れ検知手段、10,
10A,10B,10C,10D 熱交換器。1 hexagonal pipe (pipe), 1A square pipe (pipe), 1B triangular pipe, 1c groove on inner surface of pipe, 1d
Projection of pipe inner surface, 2 U bend, 5 inner fins, 6 heat insulating material, 7 saucer, 8 leak detection means, 10,
10A, 10B, 10C, 10D heat exchangers.
Claims (6)
プを複数組み合わせて集合密接させ、隣り合うパイプ相
互をUベンドで接続することにより流路を形成して成る
ことを特徴とする熱交換器。1. A heat exchanger characterized in that a plurality of independently formed pipes each having a polygonal cross section are combined so as to be brought into close contact with each other, and adjacent pipes are connected to each other by a U-bend to form a flow path. .
ことを特徴とする請求項1記載の熱交換器。2. The heat exchanger according to claim 1, wherein a groove or a projection is formed on an inner surface of the pipe.
たことを特徴とする請求項1記載の熱交換器。3. The heat exchanger according to claim 1, wherein an inner fin is inserted inside the pipe.
シール材を介在設置したことを特徴とする請求項1乃至
請求項3のいずれかに記載の熱交換器。4. The heat exchanger according to claim 1, wherein a sealing material having high heat conduction performance is interposed and installed on the contact surfaces between the pipes.
ことを特徴とする請求項1乃至請求項4のいずれかに記
載の熱交換器。5. The heat exchanger according to claim 1, wherein an outside of the assembled pipe is covered with a heat insulating material.
とともに、受皿内の液体を検知する漏れ検知手段を設け
たことを特徴とする請求項1乃至請求項5のいずれかに
記載の熱交換器。6. The heat exchange according to claim 1, wherein a tray is arranged below the assembled pipes, and leak detecting means for detecting a liquid in the tray is provided. vessel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7694797A JPH10267565A (en) | 1997-03-28 | 1997-03-28 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7694797A JPH10267565A (en) | 1997-03-28 | 1997-03-28 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10267565A true JPH10267565A (en) | 1998-10-09 |
Family
ID=13619966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7694797A Pending JPH10267565A (en) | 1997-03-28 | 1997-03-28 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10267565A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025189A1 (en) * | 2000-09-25 | 2002-03-28 | Zexel Valeo Climate Control Corporation | Heat exchanger and method of manufacturing the heat exchanger |
CN102853709A (en) * | 2011-06-28 | 2013-01-02 | 沈阳铝镁设计研究院有限公司 | Multi-double-pipe connecting structure for heat exchangers |
-
1997
- 1997-03-28 JP JP7694797A patent/JPH10267565A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025189A1 (en) * | 2000-09-25 | 2002-03-28 | Zexel Valeo Climate Control Corporation | Heat exchanger and method of manufacturing the heat exchanger |
CN102853709A (en) * | 2011-06-28 | 2013-01-02 | 沈阳铝镁设计研究院有限公司 | Multi-double-pipe connecting structure for heat exchangers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200408465A1 (en) | Plate heat exchanger and heat pump device including the same | |
WO2010089957A1 (en) | Heat exchanger | |
JP2007017132A (en) | Tube for heat exchange, and heat exchanger | |
JP2006317096A (en) | Heat exchanger for electric water heater | |
JP2009121758A (en) | Heat exchanger and cryogenic system | |
JP2008008574A (en) | Heat exchanger | |
US20060108107A1 (en) | Wound layered tube heat exchanger | |
US7036568B2 (en) | Heat exchanger having projecting fluid passage | |
US10495383B2 (en) | Wound layered tube heat exchanger | |
JP2005133999A (en) | Heat pump type hot-water supplier | |
JP2004085196A (en) | Refrigerant leak preventing structure for heat exchanger, and forming method | |
JP2003028582A (en) | Heat exchanger | |
WO2009110663A1 (en) | Heat exchanger and method of manufacturing the same | |
JPH10267565A (en) | Heat exchanger | |
JP3845565B2 (en) | Heat exchanger | |
JP2006317094A (en) | Heat exchanger | |
JP3165553B2 (en) | Stacked heat exchanger | |
JPH05215482A (en) | Heat exchanger | |
JP2005024109A (en) | Heat exchanger | |
WO2017179399A1 (en) | Heat exchanger | |
JP2005249325A (en) | Heat exchanger and heat pump water heater using the same | |
JP2004218945A (en) | Heat exchanger and method of manufacturing the same | |
JP2004183960A (en) | Heat exchanger | |
JP3922088B2 (en) | Heat exchanger | |
JP2005003209A (en) | Heat exchanger and heat pump water heater using the heat exchanger |