WO2002023206A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2002023206A1
WO2002023206A1 PCT/JP2001/007823 JP0107823W WO0223206A1 WO 2002023206 A1 WO2002023206 A1 WO 2002023206A1 JP 0107823 W JP0107823 W JP 0107823W WO 0223206 A1 WO0223206 A1 WO 0223206A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit wiring
branch circuit
inspection
contact sensor
contact
Prior art date
Application number
PCT/JP2001/007823
Other languages
French (fr)
Japanese (ja)
Inventor
Koji Okano
Shogo Ishioka
Original Assignee
Oht Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oht Inc. filed Critical Oht Inc.
Priority to KR1020027006016A priority Critical patent/KR20020058005A/en
Priority to US10/129,097 priority patent/US7049826B2/en
Publication of WO2002023206A1 publication Critical patent/WO2002023206A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/312Contactless testing by capacitive methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R17/00Measuring arrangements involving comparison with a reference value, e.g. bridge
    • G01R17/02Arrangements in which the value to be measured is automatically compared with a reference value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2801Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
    • G01R31/281Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/304Contactless testing of printed or hybrid circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3183Generation of test inputs, e.g. test vectors, patterns or sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections

Definitions

  • the present invention relates to a circuit wiring inspection technique.
  • non-contact type inspection a time-varying inspection signal is supplied to the circuit wiring to detect a signal appearing at the sensor via the capacitance interposed between the circuit wiring and the non-contact sensor.
  • a non-contact sensor has been proposed as a non-contact sensor, for example, an electrode made of a conductive metal plate or the like, or a semiconductor element or the like.
  • Such a non-contact type inspection has an advantage that it is hardly damaged because it is not in contact with the circuit wiring, and that it can cope with a fine pitch circuit wiring.
  • a main object of the present invention is to provide an inspection apparatus and an inspection method capable of inspecting a circuit wiring branched in the middle or a circuit wiring mixed with the same using a smaller number of non-contact sensors. Disclosure of the invention
  • an inspection device for inspecting a branch circuit wiring having three or more ends
  • a supply unit that supplies an inspection signal to one end of the branch circuit wiring; a non-contact sensor that detects the inspection signal in a non-contact manner with the branch circuit wiring at another end of the branch circuit wiring;
  • Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring based on the inspection signal detected by the non-contact sensor
  • the determination means compares the strength of the test signal with a predetermined threshold value, and There is provided an inspection apparatus characterized in that it is determined whether or not the wiring is disconnected.
  • Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring
  • a non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
  • Determining means for determining whether or not a break has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
  • An inspection device is provided, characterized in that:
  • an inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
  • Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring
  • a non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
  • Determining means for determining whether or not a break has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
  • the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus is characterized in that it is determined whether or not a disconnection has occurred.
  • an inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
  • Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring
  • a non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
  • Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor or the probe,
  • An inspection apparatus is provided, wherein the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned.
  • an inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
  • Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring;
  • a non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
  • Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor or the probe,
  • the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus is characterized in that it is determined whether or not a disconnection has occurred.
  • an inspection method for inspecting a branch circuit wiring having three or more ends there is provided an inspection method for inspecting a branch circuit wiring having three or more ends
  • the intensity of the inspection signal is compared with a predetermined threshold value.
  • the intensity of the inspection signal is compared with a predetermined threshold value.
  • the probe may be assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned. Provided.
  • the first arranging step for at least one of the non-contact sensors, the other ends of the two branch circuit wirings, and the other ends of one or a plurality of the single circuit wirings, And assign
  • the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned,
  • the non-contact is assigned two other ends.
  • the inspection method is characterized in that the inspection signal detected by the sensor is compared with the intensity of the inspection signal and a predetermined threshold value to determine whether or not the branch circuit wiring is disconnected.
  • FIG. 1 (a) is a diagram showing an inspection device using a non-contact sensor.
  • (b) is a figure which shows the equivalent circuit of (a).
  • FIG. 2 (a) is a diagram showing an inspection apparatus using a non-contact sensor for inspecting branch circuit wiring.
  • (B) is a diagram showing an equivalent circuit of (a).
  • (C) is a diagram showing the equivalent circuit of (a) when the wire is broken at point 110d.
  • FIG. 3 is a schematic diagram of an inspection device according to one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an inspection device according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an inspection device according to another embodiment of the present invention.
  • FIG. 1 (a) is a diagram showing an inspection device using a non-contact sensor.
  • the inspection device shown in Fig. 1 (a) is a device that inspects the disconnection of the circuit wiring 100, and includes a non-contact sensor 101, a signal source 102, a non-contact sensor 101, and a resistor. 103.
  • the non-contact sensor 101 is an electrode such as a conductive metal plate, but a sensor using a semiconductor element or the like has been proposed.
  • the non-contact sensor 101 is arranged in a non-contact manner at the end of the circuit wiring 100 to be inspected.
  • the signal source 102 generates an AC signal as a test signal. This is supplied to the end of the circuit wiring 100 which is an elephant.
  • the test signal may be a signal that changes over time (for example, a voltage change frequency of about 1 kHz to 10 MHz). Instead of an AC signal, a pulse-like signal is used. Can be adopted.
  • the non-contact sensor 101 and the end of the circuit wiring 100 are in a state of being electrically capacitively coupled, and constitute a capacitor. Therefore, the equivalent circuit of Fig. 1 (a) is as shown in Fig. 1 (b). If there is no break in the circuit wiring 100, the circuit will respond to the test signal supplied from the signal source 102 to the circuit wiring 100. The detected signal appears on the non-contact sensor 101, and the inspection signal can be detected. If the circuit wiring 100 is disconnected, almost no signal appears on the non-contact sensor 101, and it is possible to determine whether the circuit wiring 100 is disconnected.
  • Vout VinRZ ((1 / ⁇ C) + R)
  • Vin inspection signal (angular frequency ⁇ )
  • C capacitance between circuit wiring 100 and non-contact sensor 101
  • FIG. 1 the circuit wiring 100 to be inspected was an unbranched circuit wiring having two ends (referred to as a single circuit wiring in this document).
  • a non-contact inspection in which the circuit wiring to be inspected is a circuit wiring branched in the middle (referred to as a branch circuit wiring in this document) will be described.
  • the branch circuit wiring it will have three or more ends.
  • FIG. 2 (a) is a diagram showing an inspection device using a non-contact sensor for testing the branch circuit wiring 110, Each configuration is the same as in Fig. 1 (a). It is.
  • the branch circuit wiring 110 has three ends in which the wiring branches in the middle.
  • the signal source 102 supplies a test signal to one end 110c of the branch circuit wiring 110, and the non-contact sensor 101 supplies the test signal to the branch circuit wiring 110.
  • the other two ends 110a and 110b are arranged in a non-contact manner.
  • the non-contact sensor 101 and the two ends 110a and 110b of the circuit wiring 110 are electrically capacitively coupled to each other, and are connected in parallel. It comprises two capacitors. Therefore, the equivalent circuit of Fig. 2 (a) becomes Fig. 2 (b).
  • the combined capacitance between the non-contact sensor 101 and the circuit wiring 110 in the case of Fig. 2 (b) is the same as that of the non-contact sensor 101 and each end 110a and 110b. If the capacitance between the two is C, then it is 2 C. Therefore, the output signal Vout of the equivalent circuit of FIG. 2 (b) can be approximated as follows.
  • Vout Vin ⁇ / ((1 / ⁇ 2 ⁇ + R)
  • Fig. 2 (c) is the same as the case of Fig. 1 (b). Therefore, comparing the case where the point 110d is not disconnected and the case where the point 110d is disconnected, the intensity (voltage in this case) of the output signal is smaller in the case of the disconnection. Therefore, if the output signal strength is normal and the If the value between the output signal strength and the output signal strength is determined as a threshold value and the threshold value is compared with the output signal at the time of inspection, it is possible to determine the presence / absence of disconnection. Even if one non-contact sensor is assigned instead of allocating a non-contact sensor, it is possible to determine whether there is a disconnection.
  • the number of branch circuit wiring ends assigned to one non-contact sensor increases, the difference between the strength of the output signal in the normal case and the strength of the output signal in the case of a disconnection decreases. Tend to be. For example, if the number of the ends of the branch circuit wiring is N (the number of branches is N-1), one of the ends is the end to which the inspection signal is input, so The number of ends assigned to the tactile sensor is N-1. Therefore, the combined capacitance between the non-contact sensor and the branch circuit wiring is the combined capacitance when N-1 capacitors are connected in parallel.
  • the output signal Vout can be approximated as follows. V out two V inR / ((1 / ⁇ ( ⁇ -1) C) + R)
  • the output signal Vout when one of the branched wires is broken can be approximated as follows.
  • Vout Vin ⁇ R / (( ⁇ ⁇ ( ⁇ — 2) C) + R)
  • the inventor of the present application has found that if the ends of two branch circuit wirings are assigned to one non-contact sensor at the maximum, the accuracy of the disconnection inspection is not impaired.
  • the threshold a value in the range of about 30% to 40% of the intensity of the output signal when the branch circuit wiring is normal may be used. It is suitable.
  • FIG. 3 is a schematic diagram of an inspection device according to one embodiment of the present invention.
  • the circuit board X is provided with a branch circuit wiring A having eight ends, which is an inspection target.
  • the inspection apparatus includes a signal source 1 for supplying an inspection signal to one end of the branch circuit wiring A, and four non-contact sensors 2 a to 4 for detecting the inspection signal at the other seven ends of the branch circuit wiring A. 2d, a signal processing unit 3 for performing signal processing and the like on the inspection signals detected by the non-contact sensors 2a to 2d, and a control unit for controlling the entire apparatus and branching based on data from the signal processing unit 3. And a computer 4 for determining whether or not the circuit wiring A is disconnected.
  • the signal source 1 is controlled by the computer 4 to generate a test signal, and supplies this to the branch circuit wiring A.
  • the test signal is supplied from the signal source 1 via a pin having conductivity, for example, by contacting one end of the branch circuit wiring A with this pin.
  • Two ends of the branch circuit wiring A are respectively assigned to the non-contact sensors 2a to 2c, and one end is assigned to the non-contact sensor 2d. , The maximum two ends are allocated.
  • the non-contact sensors there are various ways of assigning the non-contact sensors. As shown in FIG. 3, it is most preferable to assign two ends as much as possible to each of the non-contact sensors 2a to 2d.
  • the number of contact sensors can be reduced and, preferably, two ends are provided on at least one of the non-contact sensors 2a to 2d. And one end is assigned to each of the remaining sensors, or two ends of the non-contact sensors 2a to 2d are assigned to each other, and one end is assigned to each of the remaining sensors. Departments may be assigned.
  • the signal processing unit 3 includes, for example, an amplifier circuit that amplifies the inspection signal detected by the non-contact sensors 2a to 2d, an AD converter that performs analog-to-digital conversion, and the like. Information indicating the strength of the test signal detected by 2 a to 2 d is provided to the computer 4.
  • the computer 4 compares the information obtained from the signal processing unit 3 and indicating the strength of the inspection signal detected by each of the non-contact sensors 2a to 2d with a predetermined threshold value, and determines the branch circuit wiring. Processing such as determining whether or not A is disconnected is executed.
  • the non-contact sensors 2a to 2d are arranged as shown in FIG.
  • the computer 4 controls the signal source 1 to transmit an inspection signal, and the inspection signal is supplied to the branch circuit wiring A.
  • each of the non-contact sensors 2a to 2d detects an inspection signal, and the signal processing unit 3 performs a predetermined process on the detected inspection signal.
  • the signal processing unit 3 sends the intensity of the inspection signal detected by each of the non-contact sensors 2a to 2d to the computer 4, and the computer 4 transmits the intensity of the inspection signal detected by each of the non-contact sensors 2a to 2d.
  • the strength is compared with a predetermined threshold value to determine whether or not the branch circuit wiring A is disconnected.
  • the strength of the test signal detected by the non-contact sensor 2a is below the threshold, one of the two branched wires above the branch circuit wire A in Fig. 3 is disconnected. Will be determined to be present. Since only one end of the branch circuit wiring A is assigned to the non-contact sensor 2d, The presence or absence of disconnection may be determined based only on whether or not the inspection signal has been detected, or may be determined by comparing with a threshold value as described above.
  • FIG. 4 is a schematic diagram of an inspection apparatus according to another embodiment of the present invention.
  • a circuit board Y has a branch circuit wiring D having seven ends and four single circuit wirings A to C. , And E are mixed, and this is the inspection target.
  • the inspection apparatus includes a signal source 11 for supplying an inspection signal to one end of the branch circuit wiring D and one end of each of the single circuit wirings A to C and E; Three non-contact sensors 12a to 12c and non-contact sensors 12a to 1c for detecting test signals at the six ends of the single circuit wiring and the other ends of the single circuit wirings A to C and E. 2
  • a signal processing unit 13 that performs signal processing and the like on the inspection signal detected by c, controls the entire apparatus, and based on data from the signal processing unit 13 a branch circuit wiring D and a single circuit wiring.
  • a computer 14 for determining whether or not the lines A to C and E are disconnected.
  • the signal source 11, the non-contact sensors 12 a to 12 c, the signal processing unit 13, and the computer 14 are respectively the signal source 1 and the non-contact sensors 2 a to 2 d of the inspection apparatus shown in FIG. ,
  • the signal processing unit 3, and the computer 4, and different points will be mainly described below.
  • the signal source 11 supplies a test signal to each end of the circuit wirings A to E in order, and the supply timing is controlled by the computer 14.
  • Each non-contact sensor 12a to 12c may be assigned a maximum of two ends of branch circuit wiring D and one or more ends of single circuit wirings A to C and E. it can. To explain the reason, mutually independent rounds If the inspection signal is supplied separately between the road wirings, the inspection signal can be detected independently from each end, so one non-contact sensor is sufficient.
  • the inspection signals are sequentially supplied to them at a predetermined timing, and the presence or absence of the inspection signal detected by the non-contact sensor 12a is synchronized with the timing. From the figure, it can be determined whether or not each of the single circuit wirings A to C is broken.
  • one of the branched wirings of the branch circuit wiring D can be inspected by one non-contact sensor 12a based on the same concept. It is.
  • the same is applied to the two branched wirings of the branch circuit wiring D, and the determination as to whether or not there is a disconnection is made based on the detected inspection signal and the predetermined value, as described in the principle of the non-contact inspection for the branch circuit wiring described above. By comparing the threshold value with the threshold value, the presence or absence of disconnection can be determined.
  • each end of the single circuit wirings A to C and two ends of the branch circuit wiring D are assigned to the non-contact sensor 12a. Further, the non-contact sensor 12 c is assigned an end of the single circuit wiring E and two ends of the branch circuit wiring D. The remaining two ends of the branch circuit wiring D are assigned with the non-contact sensor 12b.
  • the non-contact sensors 12a to 2c are arranged as shown in FIG.
  • the computer 14 controls the signal source 11 to transmit a test signal.
  • the inspection signal is sequentially supplied to each of the circuit wirings A to E such as a single circuit wiring A ⁇ B ⁇ C—a branch circuit wiring D ⁇ single circuit wiring E.
  • each of the non-contact sensors 12a to 12c detects the inspection signal, and the signal The processing unit 13 performs predetermined processing on the detected inspection signal.
  • the signal processing unit 13 sends the information of the inspection signal detected by each of the non-contact sensors 12a to 12d to the computer 14.
  • the computer 14 determines the timing at which the signal source 11 supplies a test signal to each of the circuit wirings A to E, the timing at which each of the non-contact sensors 12 a to 12 c detects the test signal, Based on the above, it is determined whether there is a disconnection.
  • the presence / absence of disconnection of the single circuit wirings A to C and E can be determined based on whether the inspection signal is detected at the above-mentioned timing in each of the non-contact sensors 12a and 12c. Is enough. That is, if the inspection signal is detected, there is no disconnection, and if the inspection signal is not detected, it can be determined that the disconnection has occurred.
  • the presence / absence of the disconnection of the branch circuit wiring D cannot be accurately determined based on whether or not the inspection signal is detected, so that the strength of the inspection signal detected by each of the non-contact sensors 12a to 12c and By comparing with a predetermined threshold value, it is determined whether or not the branch circuit wiring D is disconnected.
  • noncontact sensors 12a to 12c various modes can be considered for the assignment of the noncontact sensors 12a to 12c.
  • two ends of the branch circuit wiring D are assigned to the non-contact sensors 12a and 12c, but one end is assigned. Is also good. In this case, the presence / absence of disconnection is sufficient if it is based on whether or not an inspection signal is detected by these sensors, and it is not always necessary to compare with a threshold value.
  • one non-contact sensor 12 a is assigned to the ends of the single circuit wirings A to C and the two ends of the branch circuit wiring D.
  • One non-contact sensor is assigned to the ends of B and B, and one non-contact sensor is assigned to the two ends of single circuit wiring C and branch circuit wiring D. You may make it so.
  • the end of the single circuit wiring and the end of the branch circuit wiring are provided for one non-contact sensor. Since both parts are allocated, the number of non-contact sensors can be reduced.
  • FIG. 5 is a schematic diagram of an inspection apparatus according to another embodiment of the present invention.
  • a circuit board Z has a branch circuit wiring D having seven ends and four single circuit wirings A to C. , E, and are mixed, and are the same as the circuit board Y in FIG. 4, which is the inspection target.
  • the inspection device includes a signal source 21 for supplying an inspection signal to one end of the branch circuit wiring D and one end of each of the single circuit wirings A to C and E; At the two ends of the single circuit wiring A to C and the other end of the single circuit wirings A to C and E, two non-contact sensors 22a and 22b for detecting a test signal, and the other four At one end, probe 25a to 25d for detecting test signal, and signal processing etc. for test signal detected by non-contact sensor 22a and 22b and probe 25a to 25d
  • the signal source 21, the non-contact sensors 22 a and 22 b, the signal processing unit 23, and the computer 24 are respectively the signal source 11 and the non-contact sensors 12 a to 1 of the inspection apparatus of FIG. This is the same as 2d, signal processing unit 13 and combi box 14 and the following description focuses on the differences.
  • the probes 25a to 25d are, for example, conductive pins, which detect an inspection signal by contacting the ends of the branch circuit wiring D. Fig. 5
  • the probes 25a to 25d are used instead of the non-contact sensor 12b of the inspection apparatus of FIG.
  • non-contact sensors are generally more expensive than probes, and the use of probes makes it possible to construct an inspection device at lower cost.
  • the non-contact sensor has the advantage that one single non-contact sensor can inspect a large number of single circuit wirings. Things.
  • each end of the single circuit wirings A to C and one end of the branch circuit wiring D are assigned to the non-contact sensor 22a. Further, the non-contact sensor 22 b is assigned an end of the single circuit wiring E and one end of the branch circuit wiring D. Probes 25a to 25d are respectively assigned to the remaining four ends of the branch circuit wiring D.
  • the non-contact sensors 22 a and 22 b are arranged as shown in FIG. 5 and the probes 25 a to 25 are attached to the remaining end of the branch circuit wiring D. Arrange d.
  • a test signal is supplied to each of the circuit wirings A to E in the order of single circuit wiring A ⁇ B ⁇ C ⁇ branch circuit wiring D ⁇ single circuit wiring E.
  • each of the non-contact sensors 22 a and 22 b and each of the probes 25 a to 25 d detect an inspection signal, and the signal processing unit 23 performs predetermined processing on the detected inspection signal.
  • the signal processing unit 23 sends to the computer 24 information of the inspection signal detected by each of the non-contact sensors 22 a and 22 b and each of the probes 25 a to 25 d.
  • the computer 24 detects that the signal source 21 detects each of the circuit wirings A to E. Based on the timing at which the inspection signal is supplied and the timing at which each of the non-contact sensors 12a to 12c detects the inspection signal, the presence or absence of a disconnection is determined.
  • the presence / absence of disconnection of each of the circuit wirings A to E is determined by detecting whether the inspection signal is detected at the above timing in each of the non-contact sensors 12a and 12b and each of the probes 25a to 25d. It suffices to make a judgment based on whether or not it is not. That is, if the inspection signal is detected, there is no disconnection, and if the inspection signal is not detected, it can be determined that the disconnection has occurred.
  • one end of the branch circuit wiring D is assigned to each of the non-contact sensors 22a and 22b, and two are not assigned.
  • one end of the branch circuit wiring D is assigned to the non-contact sensors 22a and 22b, but two ends may be assigned. Good.
  • the presence / absence of disconnection is determined by comparing the strength of the inspection signal detected by these sensors with a predetermined threshold.
  • both the ends of the single circuit wiring A and the like and the ends of the branch circuit wiring D are assigned to the non-contact sensors 22a and 22b, and the branch circuit wiring D Probes 25a to 25d were assigned to all of the remaining ends of, but probes were assigned to some of the remaining ends of branch circuit wiring D, and non-contact sensors were assigned to the remaining ends.
  • the non-contact sensor can be assigned up to two ends.
  • both the end of the single circuit wiring and the end of the branch circuit wiring are assigned to one non-contact sensor, so the number of non-contact sensors can be reduced. it can. Further, by allocating a plug to the remaining end of the branch circuit wiring, the number of non-contact sensors can be further reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

A circuit wiring branching in the middle thereof is inspected by using fewer non-contact sensors. A method of inspecting a branched circuit wiring having at least three ends, comprising the supply step of supplying an inspection signal to one end of the branched circuit wiring, the disposing step of disposing non-contact sensors that detect the inspection signal without contacting the branched circuit wiring at the other ends of the wiring, and the judging step of judging whether or not the wiring is disconnected based on the inspection signal detected by the non-contact sensors, characterized in that the disposing step allocates the other two ends to at least one non-contact sensor, and the judging step compares a specified threshold with the strength of the inspection signal detected by the non-contact sensors to which the other two ends are allocated to judge whether the wiring is disconnected or not.

Description

明細書 検査装置及び検査方法 技術分野  Description Inspection device and inspection method
本発明は、 回路配線の検査技術に関する。 背景技術  The present invention relates to a circuit wiring inspection technique. Background art
回路基板上の回路配線 (導電パターン) の断線を検査する場合、 回路 配線に検査信号を供給し、 これを回路配線の端部等において検出し、 こ れを分析する方法が採用されている。 ここで、 回路配線の端部等におい て検査信号を検出する手法としては、 回路配線に接触するプローブを用 いる接触式と、 回路配線に非接触のセンサを用いる非接触式とが提案さ れている。  When inspecting for breaks in circuit wiring (conductive patterns) on a circuit board, a method is used in which an inspection signal is supplied to the circuit wiring, detected at the end of the circuit wiring, and analyzed. Here, as a method of detecting the inspection signal at the end of the circuit wiring, a contact type using a probe that contacts the circuit wiring and a non-contact type using a non-contact sensor for the circuit wiring have been proposed. ing.
非接触式の検査は、 回路配線に時間的に変化する検査信号を供給する ことにより、 回路配線と非接触センサとの間に介在する静電容量を介し て該センサに現れる信号を検出して、 その回路配線の断線等を検查する ものであり、 非接触センサとしては、 例えば、 導電性を有する金属板等 からなる電極や、 半導体素子等から構成されるものが提案されている。 係る非接触式の検査では、 回路配線に非接触なのでこれを傷つける場 合がほとんど無く、 また、 微細ピッチの回路配線にも対応できるという 利点がある。  In non-contact type inspection, a time-varying inspection signal is supplied to the circuit wiring to detect a signal appearing at the sensor via the capacitance interposed between the circuit wiring and the non-contact sensor. A non-contact sensor has been proposed as a non-contact sensor, for example, an electrode made of a conductive metal plate or the like, or a semiconductor element or the like. Such a non-contact type inspection has an advantage that it is hardly damaged because it is not in contact with the circuit wiring, and that it can cope with a fine pitch circuit wiring.
このような非接触式の検査の一例としては、 例えば、 特開平 1 0— 2 3 9 3 7 1号公報に記載されている。 この公報には、 途中で分岐した回 路配線を検査する場合に非接触センサを採用すると、 断線の有無を正確 に判別できないことを問題の一つとしており、 これを解決するために、 分岐した回路配線の各端部に個別に非接触センサを配置することにより 、 断線の有無を判別する発明が記載されている。 An example of such a non-contact type inspection is described in, for example, Japanese Patent Application Laid-Open No. 10-239371. In this publication, one of the problems is that if a non-contact sensor is used when inspecting a circuit wiring branched on the way, it will not be possible to accurately determine the presence or absence of a disconnection. An invention is described in which a non-contact sensor is individually arranged at each end of a branched circuit wiring to determine whether there is a disconnection.
しかし、 特開平 1 0— 2 3 9 3 7 1号の発明によれば、 分岐した各回 路配線の端部に非接触センサを個別に配置するので、 分岐の数だけ非接 触センサを必要とし、 非接触センサの数が多くなる傾向に陥る。 このた め、 検査装置のコストが高くなる傾向にある。  However, according to the invention disclosed in Japanese Patent Application Laid-Open No. H10-2393971, since the non-contact sensors are individually arranged at the ends of the branched circuit wirings, the number of the non-contact sensors is required by the number of branches. However, the number of non-contact sensors tends to increase. For this reason, the cost of inspection equipment tends to increase.
そこで、 本発明の主たる目的は、 より少ない数の非接触センサを用い て、 途中で分岐した回路配線又はこれが混在した回路配線の検査し得る 検査装置及び検査方法を提供することにある。 発明の開示  Accordingly, a main object of the present invention is to provide an inspection apparatus and an inspection method capable of inspecting a circuit wiring branched in the middle or a circuit wiring mixed with the same using a smaller number of non-contact sensors. Disclosure of the invention
本発明によれば、 3以上の端部を有する分岐回路配線を検査するため の検査装置であって、  According to the present invention, there is provided an inspection device for inspecting a branch circuit wiring having three or more ends,
前記分岐回路配線の一の端部に、 検査信号を供給する供給手段と、 前記分岐回路配線の他の端部において、 前記検査信号を当該分岐回路 配線に非接触で検出する非接触センサと、  A supply unit that supplies an inspection signal to one end of the branch circuit wiring; a non-contact sensor that detects the inspection signal in a non-contact manner with the branch circuit wiring at another end of the branch circuit wiring;
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線に断線が生じているか否かを判定する判定手段と、 を備え、  Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring based on the inspection signal detected by the non-contact sensor,
少なくとも 1つの前記非接触センサに対して、 2つの前記他の端部を 割り当て、  Assigning the two other ends to at least one of the non-contact sensors;
前記判定手段は、 2つの前記他の端部が割り当てられた前記非接触セ ンサが検出した前記検査信号については、 該検查信号の強度と、 所定の 閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判定 することを特徴とする検査装置が提供される。  For the test signal detected by the non-contact sensor to which the two other ends are assigned, the determination means compares the strength of the test signal with a predetermined threshold value, and There is provided an inspection apparatus characterized in that it is determined whether or not the wiring is disconnected.
また、' 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査装置であって、 Further, according to the present invention, it is possible to inspect a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed. An inspection device,
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、  Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定手 段と、 を備え、  Determining means for determining whether or not a break has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
少なくとも一つの前記非接触センサに対して、 1つの前記分岐回路配 線の前記他の端部と、 1つ又は複数の前記単一回路配線の他方の端部と For at least one of the non-contact sensors, the other end of one branch circuit wiring and the other end of one or more single circuit wirings
、 を割り当てたことを特徴とする検査装置が提供される。 An inspection device is provided, characterized in that:
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査装置であって、  Further, according to the present invention, there is provided an inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、  Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定手 段と、 を備え、  Determining means for determining whether or not a break has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
少なくとも一つの前記非接触センサに対して、 2つの前記分岐回路配 線の前記他の端部と、 1つ又は複数の前記単一回路配線の他方の端部と 、 を割り当て、 前記判定手段は、 2つの前記他の端部が割り当てられた前記非接触セ ンサが検出した前記検査信号については、 該検査信号の強度と、 所定の 閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判定 することを特徴とする検査装置が提供される。 Assigning, to at least one of the non-contact sensors, the other end of two branch circuit wirings and the other end of one or more single circuit wirings; For the test signal detected by the non-contact sensor to which the two other ends are assigned, the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus is characterized in that it is determined whether or not a disconnection has occurred.
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査装置であって、  Further, according to the present invention, there is provided an inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、  Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記分岐回路配線の他の端部において、 前記検査信号を当該分岐回路 配線に接触して検出するためのプローブと、  A probe for detecting the inspection signal by contacting the branch circuit wiring at another end of the branch circuit wiring;
前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定手段と、 を備え、  Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor or the probe,
少なくとも 1つの前記非接触センサに対して、 1つの前記分岐回路配 線の前記他の端部と、 1又は複数の前記単一回路配線の他方の端部と、 を割り当て、  Assigning, to at least one of the non-contact sensors, the other end of one of the branch circuit wirings and the other end of one or more of the single circuit wirings;
前記非接触センサが割り当てられていない前記分岐回路配線の前記他 の端部の一部又は全部に、 それぞれ前記プローブを割り当てたことを特 徴とする検査装置が提供される。  An inspection apparatus is provided, wherein the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned.
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査装置であって、 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、 Further, according to the present invention, there is provided an inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed. Supply means for supplying a test signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記分岐回路配線の他の端部において、 前記検査信号を当該分岐回路 配線に接触して検出するためのプローブと、  A probe for detecting the inspection signal by contacting the branch circuit wiring at another end of the branch circuit wiring;
前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定手段と、 を備え、  Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor or the probe,
少なくとも一つの前記非接触センサに対して、 2つの前記分岐回路配 線の前記他の端部と、 1つ又は複数の前記単一回路配線の他方の端部と 、 を割り当て、  Assigning, to at least one of the non-contact sensors, the other end of two branch circuit wirings and the other end of one or more single circuit wirings;
前記非接触センサが割り当てられていない前記分岐回路配線の前記他 の端部の一部又は全部に、 それぞれ前記プローブを割り当て、  Allocating the probe to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not allocated,
前記判定手段は、 2つの前記他の端部が割り当てられた前記非接触セ ンサが検出した前記検査信号については、 該検査信号の強度と、 所定の 閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判定 することを特徴とする検査装置が提供される。  For the test signal detected by the non-contact sensor to which the two other ends are assigned, the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus is characterized in that it is determined whether or not a disconnection has occurred.
また、 本発明によれば、 3以上の端部を有する分岐回路配線を検査す るための検査方法であって、  Further, according to the present invention, there is provided an inspection method for inspecting a branch circuit wiring having three or more ends,
前記分岐回路配線の一の端部に、 検査信号を供給する供給工程と、 前記分岐回路配線の他の端部に、 前記検査信号を当該分岐回路配線に 非接触で検出する非接触センサを配置する配置工程と、  A supply step of supplying a test signal to one end of the branch circuit wiring; and a non-contact sensor for detecting the test signal in a non-contact manner on the branch circuit wiring at another end of the branch circuit wiring. Placement process to
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線に断線が生じているか否かを判定する判定工程と、 を備え、 前記配置工程では、 少なくとも 1つの前記非接触センサに対して、 2 つの前記他の端部を割り当て、 A determination step of determining whether a disconnection has occurred in the branch circuit wiring based on the inspection signal detected by the non-contact sensor, In the disposing step, two of the other ends are assigned to at least one of the non-contact sensors;
前記判定工程では、 2つの前記他の端部が割り当てられた前記非接触 センサが検出した前記検査信号については、 該検査信号の強度と、 所定 の閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判 定することを特徴とする検査方法が提供される。  In the determining step, for the inspection signal detected by the non-contact sensor to which the two other ends are assigned, the intensity of the inspection signal is compared with a predetermined threshold value. An inspection method characterized by determining whether or not a disconnection has occurred is provided.
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査方法であって、  Further, according to the present invention, there is provided an inspection method for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、  Supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する配置工程と、  An arranging step of arranging a non-contact sensor at the other end of the branch circuit wiring or the other end of the single circuit wiring so as to detect the test signal on the branch circuit wiring or the single circuit wiring in a non-contact manner; When,
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定ェ 程と、 を備え、  A determination step of determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
前記配置工程では、 少なくとも一つの前記非接触センサに対して、 1 つの前記分岐回路配線の前記他の端部と、 1つ又は複数の前記単一回路 配線の他方の端部と、 を割り当てることを特徴とする検査方法が提供さ れる。  In the arranging step, assigning the other end of one branch circuit wiring and the other end of one or more single circuit wirings to at least one of the non-contact sensors. An inspection method characterized by the following is provided.
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査方法であって、  Further, according to the present invention, there is provided an inspection method for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、 前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する配置工程と、 Supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring; An arranging step of arranging a non-contact sensor at the other end of the branch circuit wiring or the other end of the single circuit wiring so as to detect the test signal on the branch circuit wiring or the single circuit wiring in a non-contact manner; When,
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定ェ 程と、 を備え、  A determination step of determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
前記歯位置工程では、 少なくとも一つの前記非接触センサに対して、 2つの前記分岐回路配線の前記他の端部と、 1つ又は複数の前記単一回 路配線の他方の端部と、 を割り当て、  In the tooth position step, for at least one of the non-contact sensors, the other ends of the two branch circuit wirings and the other ends of one or a plurality of the single circuit wirings are provided. Assignment,
前記判定工程では、 2つの前記他の端部が割り当てられた前記非接触 センサが検出した前記検査信号については、 該検査信号の強度と、 所定 の閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判 定することを特徴とする検査方法が提供される。  In the determining step, for the inspection signal detected by the non-contact sensor to which the two other ends are assigned, the intensity of the inspection signal is compared with a predetermined threshold value. An inspection method characterized by determining whether or not a disconnection has occurred is provided.
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査方法であって、  Further, according to the present invention, there is provided an inspection method for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、  Supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する第 1の配置工程と、  A first non-contact sensor for detecting the inspection signal in a non-contact manner on the branch circuit wiring or the single circuit wiring at another end of the branch circuit wiring or the other end of the single circuit wiring. Arrangement process,
前記分岐回路配線の他の端部に、 前記検査信号を当該分岐回路配線に 接触して検出するためのプローブを配置する第 2の配置工程と、 前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定工程と、 を備え、 前記第 1の配置工程では、 少なくとも 1つの前記非接触センサに対し て、 1つの前記分岐回路配線の前記他の端部と、 1又は複数の前記単一 回路配線の他方の端部と、 を割り当て、 A second arranging step of arranging a probe for contacting and detecting the inspection signal with the branch circuit wiring at another end of the branch circuit wiring; and the inspection detected by the non-contact sensor or the probe. A determination step of determining whether a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on a signal, In the first arranging step, for at least one of the non-contact sensors, the other end of one branch circuit wiring and the other end of one or more single circuit wirings are provided. allocation,
前記第 2の配置工程では、 前記非接触センサが割り当てられていない 前記分岐回路配線の前記他の端部の一部又は全部に、 それぞれ前記プロ ーブを割り当てたことを特徴とする検査方法が提供される。  In the second disposing step, the probe may be assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned. Provided.
また、 本発明によれば、 3以上の端部を有する分岐回路配線と、 2つ の端部を有する単一回路配線と、 が混在した回路配線を検査するための 検査方法であって、  Further, according to the present invention, there is provided an inspection method for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、  Supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する第 1の配置工程と、  A first non-contact sensor for detecting the inspection signal in a non-contact manner on the branch circuit wiring or the single circuit wiring at another end of the branch circuit wiring or the other end of the single circuit wiring. Arrangement process,
前記分岐回路配線の他の端部に、 前記検査信号を当該分岐回路配線に 接触して検出するためのプローブを配置する第 2の配置工程と、 前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定工程と、 を備え、  A second arranging step of arranging a probe for contacting and detecting the inspection signal with the branch circuit wiring at another end of the branch circuit wiring; and the inspection detected by the non-contact sensor or the probe. A determination step of determining whether a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on a signal,
前記第 1の配置工程では、 少なくとも一つの前記非接触センサに対し て、 2つの前記分岐回路配線の前記他の端部と、 1つ又は複数の前記単 一回路配線の他方の端部と、 を割り当て、  In the first arranging step, for at least one of the non-contact sensors, the other ends of the two branch circuit wirings, and the other ends of one or a plurality of the single circuit wirings, And assign
前記第 2の配置工程では、 前記非接触センサが割り当てられていない 前記分岐回路配線の前記他の端部の一部又は全部に、 それぞれ前記プロ ーブを割り当て、  In the second arranging step, the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned,
前記判定工程では、 2つの前記他の端部が割り当てられた前記非接触 センサが検出した前記検査信号については、 該検査信号の強度と、 所定 の閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判 定することを特徴とする検査方法が提供される。 図面の簡単な説明 In the determining step, the non-contact is assigned two other ends. The inspection method is characterized in that the inspection signal detected by the sensor is compared with the intensity of the inspection signal and a predetermined threshold value to determine whether or not the branch circuit wiring is disconnected. Provided. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 (a) は、 非接触センサを用いた検査装置を示す図である。 (b) は、 ( a) の等価回路を示す図である。  FIG. 1 (a) is a diagram showing an inspection device using a non-contact sensor. (b) is a figure which shows the equivalent circuit of (a).
第 2図は、 ( a) は、 分岐回路配線を検査対象とする非接触センサを 用いた検査装置を示す図である。 (b) は、 (a) の等価回路を示す図で ある。 ( c ) は、 ポイント 1 1 0 dで断線していた場合の ( a) の等価 回路を示す図である。  FIG. 2 (a) is a diagram showing an inspection apparatus using a non-contact sensor for inspecting branch circuit wiring. (B) is a diagram showing an equivalent circuit of (a). (C) is a diagram showing the equivalent circuit of (a) when the wire is broken at point 110d.
第 3図は、 本発明の一実施形態に係る検査装置の概略図である。  FIG. 3 is a schematic diagram of an inspection device according to one embodiment of the present invention.
第 4図は、 本発明の他の実施形態に係る検査装置の概略図である。 第 5図は、 本発明の他の実施形態に係る検査装置の概略図である。 発明を実施するための最良の形態  FIG. 4 is a schematic diagram of an inspection device according to another embodiment of the present invention. FIG. 5 is a schematic diagram of an inspection device according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態について説明する。  Hereinafter, a preferred embodiment of the present invention will be described.
く非接触検査の原理 >  The principle of non-contact inspection>
図 1 ( a) は、 非接触センサを用いた検査装置を示す図である。  FIG. 1 (a) is a diagram showing an inspection device using a non-contact sensor.
図 1 ( a) の検査装置は、 回路配線 1 0 0の断線を検査する装置であ り、 非接触センサ 1 0 1と、 信号源 1 0 2と、 非接触センサ 1 0 1 と、 抵抗器 1 0 3と、 を備える。 非接触センサ 1 0 1は、 導電性金属板等の 電極であるが、 半導体素子等を利用したものも提案されている。 非接触 センサ 1 0 1は、 検査対象である回路配線 1 0 0の端部に非接触で配置 されている。  The inspection device shown in Fig. 1 (a) is a device that inspects the disconnection of the circuit wiring 100, and includes a non-contact sensor 101, a signal source 102, a non-contact sensor 101, and a resistor. 103. The non-contact sensor 101 is an electrode such as a conductive metal plate, but a sensor using a semiconductor element or the like has been proposed. The non-contact sensor 101 is arranged in a non-contact manner at the end of the circuit wiring 100 to be inspected.
信号源 1 0 2は、 検査信号として交流信号を発生するもので、 検査対 象である回路配線 1 0 0の端部にこれを供給する。 なお、 検査信号とし ては、 時間的に変化する信号 (例えば、 電圧変化の周波数が、 1 k H z から 1 0 MH z程度のもの。) であればよく、 交流信号の代わりにパル ス状の信号を採用することもできる。 The signal source 102 generates an AC signal as a test signal. This is supplied to the end of the circuit wiring 100 which is an elephant. The test signal may be a signal that changes over time (for example, a voltage change frequency of about 1 kHz to 10 MHz). Instead of an AC signal, a pulse-like signal is used. Can be adopted.
ここで、 非接触センサ 1 0 1 と回路配線 1 0 0の端部とは、 電気的に は容量結合された状態にあり、 コンデンサを構成している。 従って、 図 1 ( a) の等価回路は、 図 1 ( b) となり、 回路配線 1 0 0に断線が無 ければ、 信号源 1 0 2から回路配線 1 0 0に供給された検査信号に応じ た信号が非接触センサ 1 0 1に現れて、 検査信号を検出することが可能 となる。 回路配線 1 0 0が断線していれば、 非接触センサ 1 0 1にはほ とんど信号が現れず、 これにより回路配線 1 0 0の断線の有無を判別す ることができる。  Here, the non-contact sensor 101 and the end of the circuit wiring 100 are in a state of being electrically capacitively coupled, and constitute a capacitor. Therefore, the equivalent circuit of Fig. 1 (a) is as shown in Fig. 1 (b). If there is no break in the circuit wiring 100, the circuit will respond to the test signal supplied from the signal source 102 to the circuit wiring 100. The detected signal appears on the non-contact sensor 101, and the inspection signal can be detected. If the circuit wiring 100 is disconnected, almost no signal appears on the non-contact sensor 101, and it is possible to determine whether the circuit wiring 100 is disconnected.
この場合、 図 1 ( b) の等価回路の出力信号 Voxit は、 以下のように 近似することができる。  In this case, the output signal Voxit of the equivalent circuit of FIG. 1 (b) can be approximated as follows.
Vout=Vin · RZ (( 1 / ω · C) + R)  Vout = VinRZ ((1 / ωC) + R)
但し、 Vin:検査信号 (角振動数 ω)、 C : 回路配線 1 0 0 と非接触 センサ 1 0 1 との間の静電容量  Where, Vin: inspection signal (angular frequency ω), C: capacitance between circuit wiring 100 and non-contact sensor 101
ぐ分岐回路配線に対する非接触検査の原理 >  Of Non-contact Inspection for Branch Circuit Wiring>
図 1では、 検査対象である回路配線 1 0 0は、 2つの端部を有する分 岐の無い回路配線 (本書において単一回路配線という。) であった。 次 に、 検査対象である回路配線が、 途中で分岐した回路配線 (本書におい て分岐回路配線という。) である場合についての非接触検査について説 明する。 なお、 分岐回路配線の場合、 3以上の端部を有することとなる 図 2 ( a ) は、 分岐回路配線 1 1 0を検査対象とする非接触センサを 用いた検査装置を示す図であり、 その各構成は図 1 ( a ) の場合と同様 である。 In FIG. 1, the circuit wiring 100 to be inspected was an unbranched circuit wiring having two ends (referred to as a single circuit wiring in this document). Next, a non-contact inspection in which the circuit wiring to be inspected is a circuit wiring branched in the middle (referred to as a branch circuit wiring in this document) will be described. In addition, in the case of the branch circuit wiring, it will have three or more ends.FIG. 2 (a) is a diagram showing an inspection device using a non-contact sensor for testing the branch circuit wiring 110, Each configuration is the same as in Fig. 1 (a). It is.
分岐回路配線 1 1 0は、 配線が途中で分岐しており、 3つの端部を有 するものである。 信号源 1 0 2は、 分岐回路配線 1 1 0の一の端部 1 1 0 cに検査信号を供給するようにしており、 また、 非接触センサ 1 0 1 は、 分岐回路配線 1 1 0の他の 2つの端部 1 1 0 a及び 1 1 0 bに非接 触で配置されている。  The branch circuit wiring 110 has three ends in which the wiring branches in the middle. The signal source 102 supplies a test signal to one end 110c of the branch circuit wiring 110, and the non-contact sensor 101 supplies the test signal to the branch circuit wiring 110. The other two ends 110a and 110b are arranged in a non-contact manner.
ここで、 非接触センサ 1 0 1と回路配線 1 1 0の 2つの端部 1 1 0 a 及び 1 1 O bとは、 電気的にはそれぞれ容量結合された状態にあり、 並 列接続された 2つのコンデンサを構成している。 従って、 図 2 ( a) の 等価回路は、 図 2 (b) となる。  Here, the non-contact sensor 101 and the two ends 110a and 110b of the circuit wiring 110 are electrically capacitively coupled to each other, and are connected in parallel. It comprises two capacitors. Therefore, the equivalent circuit of Fig. 2 (a) becomes Fig. 2 (b).
一方、 分岐回路配線 1 1 0が、 例えば、 ポイント 1 1 0 dで断線して いた場合、 図 2 ( a) の等価回路は、 図 2 ( c ) となる。 従って、 この 場合も、 非接触センサ 1 0 1には、 検査信号に応じた信号が現れて検査 信号が検出されることとなる。 このため、 非接触センサ 1 0 1が検査信 号を検出したか否かを基準として断線の有無を判別すれば、 ポイント 1 1 0 dで断線していた場合も、 断線無しと判断されることとなる。  On the other hand, if the branch circuit wiring 110 is disconnected at the point 110d, for example, the equivalent circuit of FIG. 2A is as shown in FIG. 2C. Therefore, also in this case, a signal corresponding to the inspection signal appears on the non-contact sensor 101 and the inspection signal is detected. Therefore, if the presence or absence of disconnection is determined based on whether or not the non-contact sensor 101 detects the inspection signal, it is determined that there is no disconnection even if the disconnection occurs at point 110d. Becomes
しかし、 図 2 ( b) の場合の非接触センサ 1 0 1と回路配線 1 1 0と の間の合成容量は、 非接触センサ 1 0 1と各端部 1 1 0 a及び 1 1 0 b との間の静電容量がそれぞれ Cであるとすれば、 2 Cとなる。 従って、 図 2 (b) の等価回路の出力信号 Vout は、 以下のように近似すること ができる。  However, the combined capacitance between the non-contact sensor 101 and the circuit wiring 110 in the case of Fig. 2 (b) is the same as that of the non-contact sensor 101 and each end 110a and 110b. If the capacitance between the two is C, then it is 2 C. Therefore, the output signal Vout of the equivalent circuit of FIG. 2 (b) can be approximated as follows.
Vout=Vin · Ε/ (( 1 /ω · 2 θ + R)  Vout = Vin Ε / ((1 / ω2 θ + R)
一方、 図 2 (c ) の場合は、 図 1 (b) の場合と同じである。 従って 、 ポイント 1 1 0 dが断線していない場合と、 断線している場合と、 を 比較すると、 断線している場合の方が、 出力信号の強度 (ここでは電圧 ) が小さくなる。 故に、 正常な場合の出力信号の強度と断線している場 合の出力信号の強度との間の値を閾値として定め、 検査時にその閾値と 出力信号と対比すれば、 断線の有無を判別することが可能となり、 分岐 回路配線の各端部に、 個別に非接触センサを割り当てるのではなく、 一 つの非接触センサを割り当てても断線の有無を判別することができる。 On the other hand, the case of Fig. 2 (c) is the same as the case of Fig. 1 (b). Therefore, comparing the case where the point 110d is not disconnected and the case where the point 110d is disconnected, the intensity (voltage in this case) of the output signal is smaller in the case of the disconnection. Therefore, if the output signal strength is normal and the If the value between the output signal strength and the output signal strength is determined as a threshold value and the threshold value is compared with the output signal at the time of inspection, it is possible to determine the presence / absence of disconnection. Even if one non-contact sensor is assigned instead of allocating a non-contact sensor, it is possible to determine whether there is a disconnection.
しかしながら、 一つの非接触センサに割当てられる分岐回路配線の端 部の数が増えれば増える程、 正常な場合の出力信号の強度と断線してい る場合の出力信号の強度との間の開きが小さくなる傾向にある。 例えば 、 分岐回路配線の端部の数が N個あるとすると (分岐数は N— 1個とな る。)、 そのうちの一つは、 検査信号が入力される端部となるので、 非接 触センサに割り当てられる端部の数は、 N— 1個となる。 従って、 非接 触センサと分岐回路配線との間の合成容量は、 N— 1個のコンデンサを 並列接続した場合の合成容量となる。  However, as the number of branch circuit wiring ends assigned to one non-contact sensor increases, the difference between the strength of the output signal in the normal case and the strength of the output signal in the case of a disconnection decreases. Tend to be. For example, if the number of the ends of the branch circuit wiring is N (the number of branches is N-1), one of the ends is the end to which the inspection signal is input, so The number of ends assigned to the tactile sensor is N-1. Therefore, the combined capacitance between the non-contact sensor and the branch circuit wiring is the combined capacitance when N-1 capacitors are connected in parallel.
この場合、 出力信号 Voutは、 以下のように近似することができる。 V out二 V in · R/ (( 1 / ω · (Ν - 1 ) C) + R)  In this case, the output signal Vout can be approximated as follows. V out two V inR / ((1 / ω (Ν-1) C) + R)
また、 この場合において、 分岐した配線の一つが断線している場合の 出力信号 Voutは、 以下のように近似することができる。  In this case, the output signal Vout when one of the branched wires is broken can be approximated as follows.
Vout=Vin · R/ ((ΐΖω · (Ν— 2 ) C) + R)  Vout = Vin · R / ((ΐΖω · (Ν— 2) C) + R)
このように、 一つの非接触センサに割当てられる分岐回路配線の端部 の数が増えれば増える程、 正常な場合の出力信号の強度と断線している 場合の出力信号の強度との間の開きが小さくなつて、 定め得る閾値の範 囲も狭くなる。 そして、 検査時のノイズ等の存在を考慮すると、 断線の 有無を正確に判断することが困難となる。  Thus, as the number of ends of the branch circuit wiring assigned to one non-contact sensor increases, the difference between the strength of the output signal in the normal case and the strength of the output signal in the case of the disconnection increases. The smaller the is, the narrower the range of thresholds that can be determined. Then, considering the presence of noise or the like at the time of inspection, it is difficult to accurately determine whether there is a disconnection.
本出願の発明者は、 一つの非接触センサに対して最大で 2つの分岐回 路配線の端部を割り当てた場合は、 断線検査の正確性を損なうことがな いことを見出した。 この場合、 閾値としては、 分岐回路配線が正常な場 合の出力信号の強度の約 3 0 %乃至 4 0 %の範囲の値を採用することが 好適である。 一つの非接触センサに対して 2つの分岐回路配線の端部を 割り当てれば、 個別に割り当てる場合に比べて非接触センサの数を最大 で半分に減らすことができ、 検査コス卜の低減を達成することができる <検査装置の例 > The inventor of the present application has found that if the ends of two branch circuit wirings are assigned to one non-contact sensor at the maximum, the accuracy of the disconnection inspection is not impaired. In this case, as the threshold, a value in the range of about 30% to 40% of the intensity of the output signal when the branch circuit wiring is normal may be used. It is suitable. By allocating the ends of two branch circuit wirings to one non-contact sensor, the number of non-contact sensors can be reduced by up to half compared to the case of individually allocating, and inspection costs can be reduced. <Example of inspection equipment>
図 3は、 本発明の一実施形態に係る検査装置の概略図である。  FIG. 3 is a schematic diagram of an inspection device according to one embodiment of the present invention.
回路基板 Xには、 8つの端部を有する分岐回路配線 Aが施されており 、 これが検査対象である。  The circuit board X is provided with a branch circuit wiring A having eight ends, which is an inspection target.
検査装置は、 分岐回路配線 Aの一の端部に検査信号を供給する信号源 1と、 分岐回路配線 Aの他の 7つの端部において、 検査信号を検出する 4つの非接触センサ 2 a乃至 2 dと、 非接触センサ 2 a乃至 2 dが検出 した検査信号に信号処理等を行う信号処理ュニッ ト 3と、 装置全体の制 御を司ると共に、 信号処理ュニット 3からのデータに基づいて分岐回路 配線 Aの断線の有無を判定するコンピュータ 4と、 を備える。  The inspection apparatus includes a signal source 1 for supplying an inspection signal to one end of the branch circuit wiring A, and four non-contact sensors 2 a to 4 for detecting the inspection signal at the other seven ends of the branch circuit wiring A. 2d, a signal processing unit 3 for performing signal processing and the like on the inspection signals detected by the non-contact sensors 2a to 2d, and a control unit for controlling the entire apparatus and branching based on data from the signal processing unit 3. And a computer 4 for determining whether or not the circuit wiring A is disconnected.
信号源 1は、 コンピュータ 4により制御されて検査信号を発生し、 こ れを分岐回路配線 Aに供給する。 検査信号は、 例えば、 導電性を有する ピンを分岐回路配線 Aの一の端部に接触し、 このピンを介して信号源 1 から供給される。  The signal source 1 is controlled by the computer 4 to generate a test signal, and supplies this to the branch circuit wiring A. The test signal is supplied from the signal source 1 via a pin having conductivity, for example, by contacting one end of the branch circuit wiring A with this pin.
非接触センサ 2 a乃至 2 cには、 分岐回路配線 Aの端部がそれぞれ 2 つずつ割り当てられて、 非接触センサ 2 dには、 1つの端部が割り当て られており、 一つの非接触センサに対して、 最大で 2つの端部を割り当 てるようにしている。  Two ends of the branch circuit wiring A are respectively assigned to the non-contact sensors 2a to 2c, and one end is assigned to the non-contact sensor 2d. , The maximum two ends are allocated.
なお、 非接触センサの割り当て方は、 種々考えられ、 図 3に示すよう に、 各非接触センサ 2 a乃至 2 dに対して、 可能な限り 2つの端部を割 り当てるようにすると最も非接触センサの数を減らすことができ、 好ま しいが、 非接触センサ 2 a乃至 2 dのうちの少なくとも一つに 2つの端 部を割り当て、 残りのセンサには、 それぞれ一つの端部を割り当てるよ うにしたり、 非接触センサ 2 a乃至 2 dのうちの 2つの端部を割り当て 、 残りのセンサには、 それぞれ一つの端部を割り当てるようにしてもよ い。 In addition, there are various ways of assigning the non-contact sensors. As shown in FIG. 3, it is most preferable to assign two ends as much as possible to each of the non-contact sensors 2a to 2d. The number of contact sensors can be reduced and, preferably, two ends are provided on at least one of the non-contact sensors 2a to 2d. And one end is assigned to each of the remaining sensors, or two ends of the non-contact sensors 2a to 2d are assigned to each other, and one end is assigned to each of the remaining sensors. Departments may be assigned.
信号処理ユニット 3は、 例えば、 非接触センサ 2 a乃至 2 dが検出し た検査信号を増幅する増幅回路や、 アナログ一デジタル変換を行う A D 変換器等を具備するもので、 各々の非接触センサ 2 a乃至 2 dが検出し た検査信号の強度を示す情報をコンピュータ 4に提供する。  The signal processing unit 3 includes, for example, an amplifier circuit that amplifies the inspection signal detected by the non-contact sensors 2a to 2d, an AD converter that performs analog-to-digital conversion, and the like. Information indicating the strength of the test signal detected by 2 a to 2 d is provided to the computer 4.
コンピュータ 4は、 信号処理ユニッ ト 3から得た、 各々の非接触セン サ 2 a乃至 2 dが検出した検査信号の強度を示す情報と、 予め定めた閾 値と、 を比較し、 分岐回路配線 Aに断線が生じているか否かを判定する といった処理を実行する。  The computer 4 compares the information obtained from the signal processing unit 3 and indicating the strength of the inspection signal detected by each of the non-contact sensors 2a to 2d with a predetermined threshold value, and determines the branch circuit wiring. Processing such as determining whether or not A is disconnected is executed.
係る構成からなる検査装置による検査では、 まず、 各非接触センサ 2 a乃至 2 dを図 3に示すように配置する。 次に、 コンピュータ 4が信号 源 1を検査信号を発信するように制御し、 分岐回路配線 Aに検査信号が 供給される。  In the inspection by the inspection device having such a configuration, first, the non-contact sensors 2a to 2d are arranged as shown in FIG. Next, the computer 4 controls the signal source 1 to transmit an inspection signal, and the inspection signal is supplied to the branch circuit wiring A.
すると、 各非接触センサ 2 a乃至 2 dが検査信号を検出し、 信号処理 ユニット 3が検出された検査信号に所定の処理を行う。 信号処理ュニッ ト 3は、 各非接触センサ 2 a乃至 2 dが検出した検査信号の強度をコン ピュータ 4に送出し、 コンピュータ 4は、 各非接触センサ 2 a乃至 2 d が検出した検査信号の強度と、 所定の閾値とを比較し、 分岐回路配線 A の断線の有無を判定する。  Then, each of the non-contact sensors 2a to 2d detects an inspection signal, and the signal processing unit 3 performs a predetermined process on the detected inspection signal. The signal processing unit 3 sends the intensity of the inspection signal detected by each of the non-contact sensors 2a to 2d to the computer 4, and the computer 4 transmits the intensity of the inspection signal detected by each of the non-contact sensors 2a to 2d. The strength is compared with a predetermined threshold value to determine whether or not the branch circuit wiring A is disconnected.
例えば、 非接触センサ 2 aが検出した検査信号の強度が閾値を下回つ ていた場合は、 図 3の分岐回路配線 Aの上の 2本の分岐した配線のいず れかが断線しているものと判定することとなる。 なお、 非接触センサ 2 dには、 分岐回路配線 Aの端部が一つだけ割り当てられているので、 検 査信号を検出したか否かだけに基づいて、 断線の有無を判定するように してもよいし、 上述した通り閾値と比較して判定してもよい。 For example, if the strength of the test signal detected by the non-contact sensor 2a is below the threshold, one of the two branched wires above the branch circuit wire A in Fig. 3 is disconnected. Will be determined to be present. Since only one end of the branch circuit wiring A is assigned to the non-contact sensor 2d, The presence or absence of disconnection may be determined based only on whether or not the inspection signal has been detected, or may be determined by comparing with a threshold value as described above.
次に、 図 4は、 本発明の他の実施形態に係る検査装置の概略図である 回路基板 Yには、 7つの端部を有する分岐回路配線 Dと、 4つの単一 回路配線 A乃至 C及び Eと、 が混在して施されており、 これが検査対象 である。  Next, FIG. 4 is a schematic diagram of an inspection apparatus according to another embodiment of the present invention. A circuit board Y has a branch circuit wiring D having seven ends and four single circuit wirings A to C. , And E are mixed, and this is the inspection target.
検査装置は、 分岐回路配線 Dの一の端部と各単一回路配線 A乃至 C及 び Eの一方の端部とにそれぞれ検査信号を供給する信号源 1 1と、 分岐 回路配線 Dの他の 6つの端部と単一回路配線 A乃至 C及び Eの他方の端 部とにおいて、 検査信号を検出する 3つの非接触センサ 1 2 a乃至 1 2 c と、 非接触センサ 1 2 a乃至 1 2 cが検出した検査信号に信号処理等 を行う信号処理ユニット 1 3と、 装置全体の制御を司ると共に、 信号処 理ュニッ ト 1 3からのデータに基づいて分岐回路配線 D及び単一回路配 線 A乃至 C及び Eの断線の有無を判定するコンピュータ 1 4と、 を備え る。  The inspection apparatus includes a signal source 11 for supplying an inspection signal to one end of the branch circuit wiring D and one end of each of the single circuit wirings A to C and E; Three non-contact sensors 12a to 12c and non-contact sensors 12a to 1c for detecting test signals at the six ends of the single circuit wiring and the other ends of the single circuit wirings A to C and E. 2 A signal processing unit 13 that performs signal processing and the like on the inspection signal detected by c, controls the entire apparatus, and based on data from the signal processing unit 13 a branch circuit wiring D and a single circuit wiring. And a computer 14 for determining whether or not the lines A to C and E are disconnected.
信号源 1 1、 非接触センサ 1 2 a乃至 1 2 c、 信号処理ュニット 1 3 、 及び、 コンピュータ 1 4、 は、 夫々図 3の検査装置の信号源 1、 非接 触センサ 2 a乃至 2 d、 信号処理ユニッ ト 3、 及び、 コンピュータ 4、 と同様のものであり、 以下、 異なる点を中心に説明する。  The signal source 11, the non-contact sensors 12 a to 12 c, the signal processing unit 13, and the computer 14 are respectively the signal source 1 and the non-contact sensors 2 a to 2 d of the inspection apparatus shown in FIG. , The signal processing unit 3, and the computer 4, and different points will be mainly described below.
信号源 1 1は、 回路配線 A乃至 Eの各端部に、 順番に検査信号を供給 するものであり、 供給のタイミングはコンピュータ 1 4により制御され る。  The signal source 11 supplies a test signal to each end of the circuit wirings A to E in order, and the supply timing is controlled by the computer 14.
各非接触センサ 1 2 a乃至 1 2 cには、 最大で 2つの分岐回路配線 D の端部と、 1又は複数の単一回路配線 A乃至 C及び Eの端部と、 を割り 当てることができる。 その理由について説明すると、 相互に独立した回 路配線間では、 それぞれ別々に検査信号を供給すれば、 各端部から独立 して検査信号を検出できるので、 一つの非接触センサで足りるからであ る。 Each non-contact sensor 12a to 12c may be assigned a maximum of two ends of branch circuit wiring D and one or more ends of single circuit wirings A to C and E. it can. To explain the reason, mutually independent rounds If the inspection signal is supplied separately between the road wirings, the inspection signal can be detected independently from each end, so one non-contact sensor is sufficient.
具体的には、 例えば、 単一回路配線 A乃至 Cの場合、 所定のタイミン グでこれらに順番に検査信号を供給し、 そのタイミングに併せて非接触 センサ 1 2 aが検出する検査信号の有無を見れば、 各単一回路配線 A乃 至 Cのそれぞれについて断線が生じているか否かを判定することができ る。  Specifically, for example, in the case of the single circuit wirings A to C, the inspection signals are sequentially supplied to them at a predetermined timing, and the presence or absence of the inspection signal detected by the non-contact sensor 12a is synchronized with the timing. From the figure, it can be determined whether or not each of the single circuit wirings A to C is broken.
そして、 図 4のように、 単一回路配線 A乃至 Cに加えて、 分岐回路配 線 Dの分岐した配線の一つも、 同様の考え方により一つの非接触センサ 1 2 aで検査することが可能である。 更に、 分岐回路配線 Dの分岐した 配線の 2つも、 同様にし、 かつ、 断線か否かの判定は、 上記ぐ分岐回路 配線に対する非接触検査の原理 >で述べたとおり、 検出した検査信号と 所定の閾値と、 を比較することにより、 断線の有無を判定することがで きる。  Then, as shown in Fig. 4, in addition to the single circuit wirings A to C, one of the branched wirings of the branch circuit wiring D can be inspected by one non-contact sensor 12a based on the same concept. It is. In addition, the same is applied to the two branched wirings of the branch circuit wiring D, and the determination as to whether or not there is a disconnection is made based on the detected inspection signal and the predetermined value, as described in the principle of the non-contact inspection for the branch circuit wiring described above. By comparing the threshold value with the threshold value, the presence or absence of disconnection can be determined.
図 4の場合、 非接触センサ 1 2 aには、 単一回路配線 A乃至 Cの各端 部と、 分岐回路配線 Dの 2つの端部とが割り当てられている。 また、 非 接触センサ 1 2 cには、 単一回路配線 Eの端部と、 分岐回路配線 Dの 2 つの端部と、 が割り当てられている。 そして、 分岐回路配線 Dの残りの 2つの端部には、 非接触センサ 1 2 bが割り当てられている。  In the case of FIG. 4, each end of the single circuit wirings A to C and two ends of the branch circuit wiring D are assigned to the non-contact sensor 12a. Further, the non-contact sensor 12 c is assigned an end of the single circuit wiring E and two ends of the branch circuit wiring D. The remaining two ends of the branch circuit wiring D are assigned with the non-contact sensor 12b.
係る構成からなる検査装置による検査では、 まず、 各非接触センサ 1 2 a乃至 2 cを図 4に示すように配置する。 次に、 コンピュータ 1 4が 信号源 1 1 を検査信号を発信するように制御する。 この場合、 例えば、 単一回路配線 A→ B→ C—分岐回路配線 D→単一回路配線 Eといったよ うに各回路配線 A乃至 Eに順番に検査信号が供給される。  In the inspection by the inspection device having such a configuration, first, the non-contact sensors 12a to 2c are arranged as shown in FIG. Next, the computer 14 controls the signal source 11 to transmit a test signal. In this case, for example, the inspection signal is sequentially supplied to each of the circuit wirings A to E such as a single circuit wiring A → B → C—a branch circuit wiring D → single circuit wiring E.
すると、 各非接触センサ 1 2 a乃至 1 2 cが検査信号を検出し、 信号 処理ュニッ ト 1 3が検出された検査信号に所定の処理を行う。 信号処理 ュニット 1 3は、 各非接触センサ 1 2 a乃至 1 2 dが検出した検査信号 の情報をコンピュータ 1 4に送出する。 Then, each of the non-contact sensors 12a to 12c detects the inspection signal, and the signal The processing unit 13 performs predetermined processing on the detected inspection signal. The signal processing unit 13 sends the information of the inspection signal detected by each of the non-contact sensors 12a to 12d to the computer 14.
ここで、 コンピュータ 1 4は、 信号源 1 1が各回路配線 A乃至 Eに検 査信号を供給するタイミングと、 各非接触センサ 1 2 a乃至 1 2 cが検 査信号を検出したタイミングと、 に基づいて、 断線の有無を判断するこ ととなる。  Here, the computer 14 determines the timing at which the signal source 11 supplies a test signal to each of the circuit wirings A to E, the timing at which each of the non-contact sensors 12 a to 12 c detects the test signal, Based on the above, it is determined whether there is a disconnection.
この場合、 単一回路配線 A乃至 C及び Eの断線の有無は、 各非接触セ ンサ 1 2 a及び 1 2 cにおいて、 上記夕イミングで検査信号が検出され たか否かを基準として判断すれば足りる。 すなわち、 検査信号が検出さ れておれば、 断線は無く、 検査信号が検出されていなかった場合は、 断 線が生じていると判断することができる。  In this case, the presence / absence of disconnection of the single circuit wirings A to C and E can be determined based on whether the inspection signal is detected at the above-mentioned timing in each of the non-contact sensors 12a and 12c. Is enough. That is, if the inspection signal is detected, there is no disconnection, and if the inspection signal is not detected, it can be determined that the disconnection has occurred.
一方、 分岐回路配線 Dの断線の有無は、 検査信号が検出されたか否か を基準とすると正確に判断できないので、 各非接触センサ 1 2 a乃至 1 2 cが検出した検査信号の強度と、 所定の閾値とを比較し、 分岐回路配 線 Dの断線の有無を判定することとなる。  On the other hand, the presence / absence of the disconnection of the branch circuit wiring D cannot be accurately determined based on whether or not the inspection signal is detected, so that the strength of the inspection signal detected by each of the non-contact sensors 12a to 12c and By comparing with a predetermined threshold value, it is determined whether or not the branch circuit wiring D is disconnected.
なお、 図 4の検査装置においても、 非接触センサ 1 2 a乃至 1 2 cの 割り当て方は、 種々の態様が考えられる。 例えば、 図 4の例では、 非接 触センサ 1 2 aと 1 2 cとには、 分岐回路配線 Dの 2つの端部が割り当 てられているが、 1つの端部を割り当てるようにしてもよい。 この場合 、 断線の有無は、 これらのセンサにおいて検査信号が検出されたか否か を基準とすれば足り、 閾値と比較する必要は必ずしもない。  It should be noted that in the inspection apparatus of FIG. 4 as well, various modes can be considered for the assignment of the noncontact sensors 12a to 12c. For example, in the example of FIG. 4, two ends of the branch circuit wiring D are assigned to the non-contact sensors 12a and 12c, but one end is assigned. Is also good. In this case, the presence / absence of disconnection is sufficient if it is based on whether or not an inspection signal is detected by these sensors, and it is not always necessary to compare with a threshold value.
また、 図 4の例では、 単一回路配線 A乃至 Cの端部と、 分岐回路配線 Dの 2つの端部と、 に一つの非接触センサ 1 2 aを割り当てたが、 単一 回路配線 Aと Bの端部に一つの非接触センサを、 単一回路配線 Cと分岐 回路配線 Dの 2つの端部とに一つの非接触センサを、 それぞれ割り当て るようにしてもよい。 Further, in the example of FIG. 4, one non-contact sensor 12 a is assigned to the ends of the single circuit wirings A to C and the two ends of the branch circuit wiring D. One non-contact sensor is assigned to the ends of B and B, and one non-contact sensor is assigned to the two ends of single circuit wiring C and branch circuit wiring D. You may make it so.
このように図 4の検査装置では、 単一回路配線と分岐回路配線とが混 在している場合に、 一つの非接触センサに対して、 単一回路配線の端部 と分岐回路配線の端部との双方を割り当てるようにしたので、 非接触セ ンサの数を減らすことができる。  As described above, in the inspection apparatus of FIG. 4, when the single circuit wiring and the branch circuit wiring are mixed, the end of the single circuit wiring and the end of the branch circuit wiring are provided for one non-contact sensor. Since both parts are allocated, the number of non-contact sensors can be reduced.
次に、 図 5は、 本発明の他の実施形態に係る検査装置の概略図である 回路基板 Zには、 7つの端部を有する分岐回路配線 Dと、 4つの単一 回路配線 A乃至 C及び Eと、 が混在して施されており、 図 4の回路基板 Yと同じものであり、 これが検査対象である。  Next, FIG. 5 is a schematic diagram of an inspection apparatus according to another embodiment of the present invention. A circuit board Z has a branch circuit wiring D having seven ends and four single circuit wirings A to C. , E, and are mixed, and are the same as the circuit board Y in FIG. 4, which is the inspection target.
検査装置は、 分岐回路配線 Dの一の端部と各単一回路配線 A乃至 C及 び Eの一方の端部とにそれぞれ検査信号を供給する信号源 2 1と、 分岐 回路配線 Dの他の 2つの端部と単一回路配線 A乃至 C及び Eの他方の端 部とにおいて、 検査信号を検出する 2つの非接触センサ 2 2 a及び 2 2 bと、 分岐回路配線 Dの他の 4つの端部において、 検査信号を検出する プローブ 2 5 a乃至 2 5 dと、 非接触センサ 2 2 a及び 2 2 b及びプロ ーブ 2 5 a乃至 2 5 dが検出した検査信号に信号処理等を行う信号処理 ユニット 2 3と、 装置全体の制御を司ると共に、 信号処理ユニッ ト 2 3 からのデ一タに基づいて分岐回路配線 D及び単一回路配線 A乃至 C及び Eの断線の有無を判定するコンピュータ 2 4と、 を備える。  The inspection device includes a signal source 21 for supplying an inspection signal to one end of the branch circuit wiring D and one end of each of the single circuit wirings A to C and E; At the two ends of the single circuit wiring A to C and the other end of the single circuit wirings A to C and E, two non-contact sensors 22a and 22b for detecting a test signal, and the other four At one end, probe 25a to 25d for detecting test signal, and signal processing etc. for test signal detected by non-contact sensor 22a and 22b and probe 25a to 25d Signal processing unit 23, which controls the entire apparatus, and based on data from the signal processing unit 23, determines whether there is a disconnection in the branch circuit wiring D and the single circuit wirings A to C and E. Computer 24 for determination.
信号源 2 1、 非接触センサ 2 2 a及び 2 2 b、 信号処理ュニット 2 3 、 及び、 コンピュータ 2 4、 は、 夫々図 4の検査装置の信号源 1 1、 非 接触センサ 1 2 a乃至 1 2 d、 信号処理ュニッ ト 1 3、 及び、 コンビュ 一夕 1 4、 と同様のものであり、 以下、 異なる点を中心に説明する。 プロ一ブ 2 5 a乃至 2 5 dは、 例えば、 導電性を有するピンであり、 分岐回路配線 Dの端部に接触して検査信号を検出するものである。 図 5 の検査装置では、 図 4の検査装置の非接触センサ 1 2 b等に代えて、 こ のプローブ 2 5 a乃至 2 5 dを採用したものである。 個体差はあるが、 一般には、 非接触センサはプローブよりも高価であり、 プローブを用い た方が検査装置を安価に構成できるからである。 しかしながら、 非接触 センサは、 上述した通り、 一つの非接触センサで、 多数の単一回路配線 の検査をなし得るという利点を有することから、 図 5の検査装置では両 者を混在した構成としたものである。 The signal source 21, the non-contact sensors 22 a and 22 b, the signal processing unit 23, and the computer 24 are respectively the signal source 11 and the non-contact sensors 12 a to 1 of the inspection apparatus of FIG. This is the same as 2d, signal processing unit 13 and combi box 14 and the following description focuses on the differences. The probes 25a to 25d are, for example, conductive pins, which detect an inspection signal by contacting the ends of the branch circuit wiring D. Fig. 5 In the inspection apparatus of this embodiment, the probes 25a to 25d are used instead of the non-contact sensor 12b of the inspection apparatus of FIG. Although there are individual differences, non-contact sensors are generally more expensive than probes, and the use of probes makes it possible to construct an inspection device at lower cost. However, as described above, the non-contact sensor has the advantage that one single non-contact sensor can inspect a large number of single circuit wirings. Things.
図 5の場合、 非接触センサ 2 2 aには、 単一回路配線 A乃至 Cの各端 部と、 分岐回路配線 Dの 1つの端部とが割り当てられている。 また、 非 接触センサ 2 2 bには、 単一回路配線 Eの端部と、 分岐回路配線 Dの 1 つの端部と、 が割り当てられている。 そして、 分岐回路配線 Dの残りの 4つの端部には、 プローブ 2 5 a乃至 2 5 dがそれぞれ割り当てられて いる。  In the case of FIG. 5, each end of the single circuit wirings A to C and one end of the branch circuit wiring D are assigned to the non-contact sensor 22a. Further, the non-contact sensor 22 b is assigned an end of the single circuit wiring E and one end of the branch circuit wiring D. Probes 25a to 25d are respectively assigned to the remaining four ends of the branch circuit wiring D.
係る構成からなる検査装置による検査では、 まず、 各非接触センサ 2 2 a及び 2 2 bを図 5に示すように配置し、 分岐回路配線 Dの残りの端 部にプローブ 2 5 a乃至 2 5 dを配置する。  In the inspection by the inspection device having such a configuration, first, the non-contact sensors 22 a and 22 b are arranged as shown in FIG. 5 and the probes 25 a to 25 are attached to the remaining end of the branch circuit wiring D. Arrange d.
以下、 図 4の場合と略同様であり、 コンピュータ 2 4が信号源 2 1を 検査信号を発信するように制御する。 この場合、 例えば、 単一回路配線 A→B→C→分岐回路配線 D→単一回路配線 Eといったように各回路配 線 A乃至 Eに順番に検査信号が供給される。  Hereinafter, this is substantially the same as the case of FIG. 4, and the computer 24 controls the signal source 21 to transmit the inspection signal. In this case, for example, a test signal is supplied to each of the circuit wirings A to E in the order of single circuit wiring A → B → C → branch circuit wiring D → single circuit wiring E.
すると、 各非接触センサ 2 2 a及び 2 2 bと、 各プローブ 2 5 a乃至 2 5 dとが検査信号を検出し、 信号処理ュニット 2 3が検出された検査 信号に所定の処理を行う。 信号処理ユニッ ト 2 3は、 各非接触センサ 2 2 a及び 2 2 bと、 各プローブ 2 5 a乃至 2 5 dが検出した検査信号の 情報をコンピュータ 2 4に送出する。  Then, each of the non-contact sensors 22 a and 22 b and each of the probes 25 a to 25 d detect an inspection signal, and the signal processing unit 23 performs predetermined processing on the detected inspection signal. The signal processing unit 23 sends to the computer 24 information of the inspection signal detected by each of the non-contact sensors 22 a and 22 b and each of the probes 25 a to 25 d.
ここで、 コンピュータ 2 4は、 信号源 2 1が各回路配線 A乃至 Eに検 査信号を供給するタイミングと、 各非接触センサ 1 2 a乃至 1 2 cが検 査信号を検出したタイミングと、 に基づいて、 断線の有無を判断するこ ととなる。 Here, the computer 24 detects that the signal source 21 detects each of the circuit wirings A to E. Based on the timing at which the inspection signal is supplied and the timing at which each of the non-contact sensors 12a to 12c detects the inspection signal, the presence or absence of a disconnection is determined.
この場合、 各回路配線 A乃至 Eの断線の有無は、 各非接触センサ 1 2 a及び 1 2 b、 及び、 各プローブ 2 5 a乃至 2 5 dにおいて、 上記タイ ミングで検査信号が検出されたか否かを基準として判断すれば足りる。 すなわち、 検査信号が検出されておれば、 断線は無く、 検査信号が検出 されていなかった場合は、 断線が生じていると判断することができる。 図 5の場合、 非接触センサ 2 2 a及び 2 2 bには、 分岐回路配線 Dの一 つの端部がそれぞれ割り当てられており、 2つ割り当てられてはいない からである。  In this case, the presence / absence of disconnection of each of the circuit wirings A to E is determined by detecting whether the inspection signal is detected at the above timing in each of the non-contact sensors 12a and 12b and each of the probes 25a to 25d. It suffices to make a judgment based on whether or not it is not. That is, if the inspection signal is detected, there is no disconnection, and if the inspection signal is not detected, it can be determined that the disconnection has occurred. In the case of FIG. 5, one end of the branch circuit wiring D is assigned to each of the non-contact sensors 22a and 22b, and two are not assigned.
なお、 図 5の検査装置においても、 非接触センサ 2 2 a及び 2 2 b、 及び、 プローブ 2 5 a乃至 2 5 dの割り当て方は、 種々の態様が考えら れる。  In the inspection apparatus shown in FIG. 5, various modes can be considered for the assignment of the non-contact sensors 22a and 22b and the probes 25a to 25d.
例えば、 図 5の例では、 非接触センサ 2 2 aと 2 2 bとには、 分岐回 路配線 Dの 1つの端部が割り当てられているが、 2つの端部を割り当て るようにしてもよい。 この場合、 断線の有無は、 これらのセンサにおい て検出された検査信号の強度と、 所定の閾値と、 を比較して判断するこ ととなる。  For example, in the example of FIG. 5, one end of the branch circuit wiring D is assigned to the non-contact sensors 22a and 22b, but two ends may be assigned. Good. In this case, the presence / absence of disconnection is determined by comparing the strength of the inspection signal detected by these sensors with a predetermined threshold.
また、 図 5の例では、 非接触センサ 2 2 aと 2 2 bに対しては、 単一 回路配線 A等の端部と分岐回路配線 Dの端部との双方を割り当て、 分岐 回路配線 Dの残りの端部の全てについてプローブ 2 5 a乃至 2 5 dを割 り当てたが、 分岐回路配線 Dの残りの端部の一部についてプローブを、 更に残った端部について非接触センサを割り当ててもよく、 この場合、 非接触センサには最大で 2つの端部を割り当てることもできる。  In the example of FIG. 5, both the ends of the single circuit wiring A and the like and the ends of the branch circuit wiring D are assigned to the non-contact sensors 22a and 22b, and the branch circuit wiring D Probes 25a to 25d were assigned to all of the remaining ends of, but probes were assigned to some of the remaining ends of branch circuit wiring D, and non-contact sensors were assigned to the remaining ends. In this case, the non-contact sensor can be assigned up to two ends.
このように図 5の検査装置では、 単一回路配線と分岐回路配線とが混 在している場合に、 一つの非接触センサに対して、 単一回路配線の端部 と分岐回路配線の端部との双方を割り当てるようにしたので、 非接触セ ンサの数を減らすことができる。 更に、 分岐回路配線の残りの端部にプ 口一ブを割り当てることにより、 非接触センサの数を一層減らすことが できる。 Thus, in the inspection apparatus of FIG. 5, single circuit wiring and branch circuit wiring are mixed. In this case, both the end of the single circuit wiring and the end of the branch circuit wiring are assigned to one non-contact sensor, so the number of non-contact sensors can be reduced. it can. Further, by allocating a plug to the remaining end of the branch circuit wiring, the number of non-contact sensors can be further reduced.
以上、 本発明の好適な実施形態について種々説明したが、 本発明はこ れに限定されないことはいうまでもない。 特に、 非接触センサやプロ一 ブの割り当て方には、 本発明の趣旨を逸脱しない範囲で種々の態様が考 えられることはいうまでもない。 産業上の利用可能性  As described above, various preferred embodiments of the present invention have been described, but it is needless to say that the present invention is not limited thereto. In particular, it goes without saying that various modes can be considered for the method of assigning the non-contact sensor and the probe without departing from the gist of the present invention. Industrial applicability
以上説明したように、 本発明によれば、 より少ない数の非接触センサ を用いて、 途中で分岐した回路配線又はこれが混在した回路配線の検査 することができる。  As described above, according to the present invention, it is possible to inspect a circuit wiring branched in the middle or a circuit wiring in which the circuit wiring is mixed by using a smaller number of non-contact sensors.

Claims

請求の範囲 The scope of the claims
1 . 3以上の端部を有する分岐回路配線を検査するための検査装置 であって、 1.3 An inspection device for inspecting a branch circuit wiring having three or more ends,
前記分岐回路配線の一の端部に、 検査信号を供給する供給手段と、 前記分岐回路配線の他の端部において、 前記検査信号を当該分岐回路 配線に非接触で検出する非接触センサと、  A supply unit that supplies an inspection signal to one end of the branch circuit wiring; a non-contact sensor that detects the inspection signal in a non-contact manner with the branch circuit wiring at another end of the branch circuit wiring;
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線に断線が生じているか否かを判定する判定手段と、 を備え、 少なくとも 1つの前記非接触センサに対して、 2つの前記他の端部を 割り当て、  Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring based on the inspection signal detected by the non-contact sensor, and at least one of the non-contact sensors, Assign the other end,
前記判定手段は、 2つの前記他の端部が割り当てられた前記非接触セ ンサが検出した前記検査信号については、 該検査信号の強度と、 所定の 閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判定 することを特徴とする検査装置。  For the test signal detected by the non-contact sensor to which the two other ends are assigned, the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus characterized in that it is determined whether or not a disconnection has occurred.
2 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単一 回路配線と、 が混在した回路配線を検査するための検査装置であって、 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、  2.3 An inspection device for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed, wherein one end of the branch circuit wiring is provided. Supply means for supplying a test signal to the unit and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定手 段と、 を備え、  Determining means for determining whether or not a break has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
少なくとも一つの前記非接触センサに対して、 1つの前記分岐回路配 線の前記他の端部と、 1つ又は複数の前記単一回路配線の他方の端部と 、 を割り当てたことを特徴とする検査装置。 One branch circuit arrangement for at least one non-contact sensor; An inspection apparatus, wherein the other end of a line and the other end of one or more of the single circuit wires are assigned.
3 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単一 回路配線と、 が混在した回路配線を検査するための検査装置であって、 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、  3.3 An inspection apparatus for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed, wherein one end of the branch circuit wiring is provided. Supply means for supplying a test signal to the unit and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定手 段と、 を備え、  Determining means for determining whether or not a break has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
少なくとも一つの前記非接触センサに対して、 2つの前記分岐回路配 線の前記他の端部と、 1つ又は複数の前記単一回路配線の他方の端部と 、 を割り当て、  Assigning, to at least one of the non-contact sensors, the other end of two branch circuit wirings and the other end of one or more single circuit wirings;
前記判定手段は、 2つの前記他の端部が割り当てられた前記非接触セ ンサが検出した前記検査信号については、 該検査信号の強度と、 所定の 閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判定 することを特徴とする検査装置。  For the test signal detected by the non-contact sensor to which the two other ends are assigned, the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus characterized in that it is determined whether or not a disconnection has occurred.
4 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単一 回路配線と、 が混在した回路配線を検査するための検査装置であって、 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、 4.3 An inspection device for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed, wherein one end of the branch circuit wiring is provided. Supply means for supplying a test signal to the unit and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触- 前記分岐回路配線の他の端部において、 前記検査信号を当該分岐回路 配線に接触して検出するためのプローブと、 At the other end of the branch circuit wiring or at the other end of the single circuit wiring, a non-contact method for detecting the inspection signal in a non-contact manner with the branch circuit wiring or the single circuit wiring. A probe for detecting the inspection signal by contacting the branch circuit wiring at another end of the branch circuit wiring;
前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定手段と、 を備え、  Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor or the probe,
少なくとも 1つの前記非接触センサに対して、 1つの前記分岐回路配 線の前記他の端部と、 1又は複数の前記単一回路配線の他方の端部と、 を割り当て、  Assigning, to at least one of the non-contact sensors, the other end of one of the branch circuit wirings and the other end of one or more of the single circuit wirings;
前記非接触センサが割り当てられていない前記分岐回路配線の前記他 の端部の一部又は全部に、 それぞれ前記プローブを割り当てたことを特 徵とする検査装置。  An inspection apparatus, wherein the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned.
5 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単一 回路配線と、 が混在した回路配線を検査するための検査装置であって、 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給手段と、  5. An inspection device for inspecting a circuit wiring in which a branch circuit wiring having three or more ends and a single circuit wiring having two ends are mixed, wherein one end of the branch circuit wiring is provided. Supply means for supplying a test signal to the unit and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部にお いて、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触 で検出する非接触センサと、  A non-contact sensor for detecting the inspection signal in a non-contact manner at the other end of the branch circuit wiring or at the other end of the single circuit wiring;
前記分岐回路配線の他の端部において、 前記検査信号を当該分岐回路 配線に接触して検出するためのプローブと、  A probe for detecting the inspection signal by contacting the branch circuit wiring at another end of the branch circuit wiring;
前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定手段と、 を備え、  Determining means for determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor or the probe,
少なくとも一つの前記非接触センサに対して、 2つの前記分岐回路配 線の前記他の端部と、 1つ又は複数の前記単一回路配線の他方の端部と 、 を割り当て、 前記非接触センサが割り当てられていない前記分岐回路配線の前記他 の端部の一部又は全部に、 それぞれ前記プローブを割り当て、 Assigning, to at least one of the non-contact sensors, the other end of two branch circuit wirings and the other end of one or more single circuit wirings; Allocating the probe to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not allocated,
前記判定手段は、 2つの前記他の端部が割り当てられた前記非接触セ ンサが検出した前記検査信号については、 該検査信号の強度と、 所定の 閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判定 することを特徴とする検査装置。  For the test signal detected by the non-contact sensor to which the two other ends are assigned, the determination means compares the strength of the test signal with a predetermined threshold value, and An inspection apparatus characterized in that it is determined whether or not a disconnection has occurred.
6 . 各々の前記非接触センサに対して、 可能な限り 2つの前記分岐回 路配線の前記他の端部を割り当てたことを特徴とする請求項 1乃至 5の いずれかに記載の検査装置。  6. The inspection device according to any one of claims 1 to 5, wherein the other ends of the two branch circuit wirings are assigned to each of the non-contact sensors as much as possible.
7 . 前記供給手段は、 前記分岐回路配線の一の端部及び前記単一回路 配線の一方の端部に、 順番に検査信号を供給することを特徵とする請求 項 2乃至 5のいずれかに記載の検査装置。  7. The supply device according to claim 2, wherein the supply unit sequentially supplies an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring. Inspection device as described.
8 . 3以上の端部を有する分岐回路配線を検査するための検査方法で あって、  8. An inspection method for inspecting a branch circuit wiring having three or more ends,
前記分岐回路配線の一の端部に、 検査信号を供給する供給工程と、 前記分岐回路配線の他の端部に、 前記検査信号を当該分岐回路配線に 非接触で検出する非接触センサを配置する配置工程と、  A supply step of supplying a test signal to one end of the branch circuit wiring; and a non-contact sensor for detecting the test signal in a non-contact manner on the branch circuit wiring at another end of the branch circuit wiring. Placement process to
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線に断線が生じているか否かを判定する判定工程と、 を備え、  A determination step of determining whether or not a disconnection has occurred in the branch circuit wiring based on the inspection signal detected by the non-contact sensor,
前記配置工程では、 少なくとも 1つの前記非接触センサに対して、 2 つの前記他の端部を割り当て、  In the disposing step, two of the other ends are assigned to at least one of the non-contact sensors;
前記判定工程では、 2つの前記他の端部が割り当てられた前記非接触 センサが検出した前記検査信号については、 該検査信号の強度と、 所定 の閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判 定することを特徴とする検査方法。  In the determining step, for the inspection signal detected by the non-contact sensor to which the two other ends are assigned, the intensity of the inspection signal is compared with a predetermined threshold value. An inspection method characterized by determining whether a disconnection has occurred.
9 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単一 回路配線と、 が混在した回路配線を検査するための検査方法であって、 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、 9.3 Branch circuit wiring with three or more ends and single with two ends A circuit wiring, and an inspection method for inspecting a circuit wiring in which the mixed circuit wiring is mixed, a supply step of supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring, ,
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する配置工程と、  An arranging step of arranging a non-contact sensor at the other end of the branch circuit wiring or the other end of the single circuit wiring so as to detect the test signal on the branch circuit wiring or the single circuit wiring in a non-contact manner; When,
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定ェ 程と、 を備え、  A determination step of determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
前記配置工程では、 少なくとも一つの前記非接触センサに対して、 1 つの前記分岐回路配線の前記他の端部と、 1つ又は複数の前記単一回路 配線の他方の端部と、 を割り当てることを特徴とする検査方法。  In the arranging step, assigning the other end of one branch circuit wiring and the other end of one or more single circuit wirings to at least one of the non-contact sensors. An inspection method characterized by the following.
1 0 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単 一回路配線と、 が混在した回路配線を検査するための検査方法であって 、  An inspection method for inspecting a circuit wiring in which a branch circuit wiring having more than 10.3 ends and a single circuit wiring having two ends are mixed.
前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、  Supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する配置工程と、  An arranging step of arranging a non-contact sensor at the other end of the branch circuit wiring or the other end of the single circuit wiring so as to detect the test signal on the branch circuit wiring or the single circuit wiring in a non-contact manner; When,
前記非接触センサが検出した前記検査信号に基づいて、 前記分岐回路 配線又は前記単一回路配線に断線が生じているか否かを判定する判定ェ 程と、 を備え、  A determination step of determining whether or not a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on the inspection signal detected by the non-contact sensor,
前記歯位置工程では、 少なくとも一つの前記非接触センサに対して、 2つの前記分岐回路配線の前記他の端部と、 1つ又は複数の前記単一回 路配線の他方の端部と、 を割り当て、 前記判定工程では、 2つの前記他の端部が割り当てられた前記非接触 センサが検出した前記検査信号については、 該検査信号の強度と、 所定 の閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判 定することを特徴とする検査方法。 In the tooth position step, for at least one of the non-contact sensors, the other ends of the two branch circuit wirings and the other ends of one or a plurality of the single circuit wirings are provided. allocation, In the determining step, for the inspection signal detected by the non-contact sensor to which the two other ends are assigned, the intensity of the inspection signal is compared with a predetermined threshold value. An inspection method characterized by determining whether a disconnection has occurred.
1 1 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単 一回路配線と、 が混在した回路配線を検査するための検査方法であって 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、  11. A method for inspecting a circuit wiring in which a branch circuit wiring having at least 1.3 ends and a single circuit wiring having two ends are mixed, wherein one end of the branch circuit wiring is provided. Supplying a test signal to the unit and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する第 1の配置工程と、  A first non-contact sensor for detecting the inspection signal in a non-contact manner on the branch circuit wiring or the single circuit wiring at another end of the branch circuit wiring or the other end of the single circuit wiring. Arrangement process,
前記分岐回路配線の他の端部に、 前記検査信号を当該分岐回路配線に 接触して検出するためのプローブを配置する第 2の配置工程と、 前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定工程と、 を備え、  A second arranging step of arranging a probe for contacting and detecting the inspection signal with the branch circuit wiring at another end of the branch circuit wiring; and the inspection detected by the non-contact sensor or the probe. A determination step of determining whether a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on a signal,
前記第 1の配置工程では、 少なくとも 1つの前記非接触センサに対し て、 1つの前記分岐回路配線の前記他の端部と、 1又は複数の前記単一 回路配線の他方の端部と、 を割り当て、  In the first arranging step, for at least one of the non-contact sensors, the other end of one branch circuit wiring and the other end of one or more single circuit wirings are provided. Assignment,
前記第 2の配置工程では、 前記非接触センサが割り当てられていない 前記分岐回路配線の前記他の端部の一部又は全部に、 それぞれ前記プロ ーブを割り当てたことを特徴とする検査方法。  The inspection method, wherein, in the second arranging step, the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned.
1 2 . 3以上の端部を有する分岐回路配線と、 2つの端部を有する単 一回路配線と、 が混在した回路配線を検査するための検査方法であって 前記分岐回路配線の一の端部及び前記単一回路配線の一方の端部に、 検査信号を供給する供給工程と、 12. An inspection method for inspecting a circuit wiring in which a branch circuit wiring having two or more ends and a single circuit wiring having two ends are mixed. Supplying an inspection signal to one end of the branch circuit wiring and one end of the single circuit wiring;
前記分岐回路配線の他の端部又は前記単一回路配線の他方の端部に、 前記検査信号を当該分岐回路配線又は当該単一回路配線に非接触で検出 する非接触センサを配置する第 1の配置工程と、  A first non-contact sensor for detecting the inspection signal in a non-contact manner on the branch circuit wiring or the single circuit wiring at another end of the branch circuit wiring or the other end of the single circuit wiring. Arrangement process,
前記分岐回路配線の他の端部に、 前記検査信号を当該分岐回路配線に 接触して検出するためのプローブを配置する第 2の配置工程と、 前記非接触センサ又は前記プローブが検出した前記検査信号に基づい て、 前記分岐回路配線又は前記単一回路配線に断線が生じているか否か を判定する判定工程と、 を備え、  A second arranging step of arranging a probe for contacting and detecting the inspection signal with the branch circuit wiring at another end of the branch circuit wiring; and the inspection detected by the non-contact sensor or the probe. A determination step of determining whether a disconnection has occurred in the branch circuit wiring or the single circuit wiring based on a signal,
前記第 1の配置工程では、 少なくとも一つの前記非接触センサに対し て、 2つの前記分岐回路配線の前記他の端部と、 1つ又は複数の前記単 一回路配線の他方の端部と、 を割り当て、  In the first arranging step, for at least one of the non-contact sensors, the other ends of the two branch circuit wirings, and the other ends of one or a plurality of the single circuit wirings, And assign
前記第 2の配置工程では、 前記非接触センサが割り当てられていない 前記分岐回路配線の前記他の端部の一部又は全部に、 それぞれ前記プロ ーブを割り当て、  In the second arranging step, the probe is assigned to a part or all of the other end of the branch circuit wiring to which the non-contact sensor is not assigned,
前記判定工程では、 2つの前記他の端部が割り当てられた前記非接触 センサが検出した前記検査信号については、 該検査信号の強度と、 所定 の閾値と、 を比較し、 前記分岐回路配線に断線が生じているか否かを判 定することを特徴とする検査方法。  In the determining step, for the inspection signal detected by the non-contact sensor to which the two other ends are assigned, the intensity of the inspection signal is compared with a predetermined threshold value. An inspection method characterized by determining whether a disconnection has occurred.
PCT/JP2001/007823 2000-09-11 2001-09-10 Inspection device and inspection method WO2002023206A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020027006016A KR20020058005A (en) 2000-09-11 2001-09-10 Inspection Device And Inspection Method
US10/129,097 US7049826B2 (en) 2000-09-11 2001-09-10 Inspection device and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-275503 2000-09-11
JP2000275503A JP2002090407A (en) 2000-09-11 2000-09-11 Apparatus and method for inspection

Publications (1)

Publication Number Publication Date
WO2002023206A1 true WO2002023206A1 (en) 2002-03-21

Family

ID=18761115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007823 WO2002023206A1 (en) 2000-09-11 2001-09-10 Inspection device and inspection method

Country Status (5)

Country Link
JP (1) JP2002090407A (en)
KR (1) KR20020058005A (en)
CN (1) CN1175275C (en)
TW (1) TWI291553B (en)
WO (1) WO2002023206A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394113B2 (en) * 2002-11-30 2010-01-06 オー・エイチ・ティー株式会社 Circuit pattern inspection apparatus and circuit pattern inspection method
JP2004184385A (en) * 2002-11-30 2004-07-02 Oht Inc Circuit pattern inspection device and pattern inspection method
JP4351032B2 (en) * 2003-11-28 2009-10-28 住友電装株式会社 Inspection signal supply apparatus and inspection signal application method
JP3989488B2 (en) * 2005-01-19 2007-10-10 オー・エイチ・ティー株式会社 Inspection device, inspection method, and sensor for inspection device
JP4291843B2 (en) * 2006-10-19 2009-07-08 株式会社東京カソード研究所 Pattern inspection device
JP2013210247A (en) * 2012-03-30 2013-10-10 Nidec-Read Corp Insulation inspection device and insulation inspection method
CN103308817B (en) * 2013-06-20 2015-11-25 京东方科技集团股份有限公司 Array base palte line detection apparatus and detection method
JP6202452B1 (en) * 2016-06-01 2017-09-27 オー・エイチ・ティー株式会社 Non-contact type substrate inspection apparatus and inspection method thereof
DE102018130626B3 (en) * 2018-12-03 2020-02-20 Lisa Dräxlmaier GmbH Test device for connecting an electrical cable and method for testing an electrical cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457178A (en) * 1987-08-28 1989-03-03 Hitachi Seiko Kk Method for testing electric connection circuitry
JPH0412468Y2 (en) * 1984-06-23 1992-03-25
JPH11153638A (en) * 1997-11-25 1999-06-08 Nihon Densan Riido Kk Method and device for inspecting substrate
JP2000074975A (en) * 1998-08-27 2000-03-14 Nippon Densan Riido Kk Substrate inspection device and substrate inspection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412468Y2 (en) * 1984-06-23 1992-03-25
JPS6457178A (en) * 1987-08-28 1989-03-03 Hitachi Seiko Kk Method for testing electric connection circuitry
JPH11153638A (en) * 1997-11-25 1999-06-08 Nihon Densan Riido Kk Method and device for inspecting substrate
JP2000074975A (en) * 1998-08-27 2000-03-14 Nippon Densan Riido Kk Substrate inspection device and substrate inspection method

Also Published As

Publication number Publication date
KR20020058005A (en) 2002-07-12
CN1388899A (en) 2003-01-01
CN1175275C (en) 2004-11-10
TWI291553B (en) 2007-12-21
JP2002090407A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
CN100565217C (en) The equipment and the method for contact type single side probe unit and test lead open circuit or short circuit
CN101109782B (en) Noncontact type single side probe device and apparatus and method for testing open or short circuits of pattern electrodes using the same
JP3080595B2 (en) Substrate inspection device and substrate inspection method
KR100599499B1 (en) Substrate inspection apparatus and method
KR101101848B1 (en) Touch panel inspection apparatus
US6703849B2 (en) Inspection apparatus, inspection method and inspection unit therefor
JPH09264919A (en) Method and device for inspecting board
KR20020019951A (en) Method and apparatus for circuit board continuity test, tool for continuity test, and recording medium
WO2002023206A1 (en) Inspection device and inspection method
US7138805B2 (en) Device and method for inspection
US6995566B2 (en) Circuit pattern inspection apparatus, circuit pattern inspection method, and recording medium
CN101107537A (en) Inspection device, inspection method, and inspection device sensor
US7049826B2 (en) Inspection device and inspection method
WO2006022434A1 (en) Inspecting apparatus, inspecting method and sensor for inspecting apparatus
KR20080098088A (en) Non-contact type single side probe and inspection apparatus and method for open/short test of pattern electrodes used thereof
KR20210049257A (en) Inspection apparatus of printed circuit board and control method thereof
JPH0886822A (en) Wire harness inspection instrument
WO2004076966A1 (en) Conductor inspecting device and conductor inspecting method
WO2001096891A1 (en) Device and method for inspecting circuit board
JPH1026647A (en) Method and device for inspecting substrate
JP3361311B2 (en) Substrate inspection device and substrate inspection method
JP3717502B2 (en) Inspection apparatus and inspection method
JP2007333492A (en) Method and device for inspecting condition of electric contact
US6545484B1 (en) Board inspection apparatus and board inspection method
JP2007187511A (en) Circuit board inspection apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 018025927

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027006016

Country of ref document: KR

Ref document number: 10129097

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020027006016

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase