WO2002022699A1 - Composition de resine polymerisable conductible et objet polymerise obtenu a partir de cette composition - Google Patents

Composition de resine polymerisable conductible et objet polymerise obtenu a partir de cette composition Download PDF

Info

Publication number
WO2002022699A1
WO2002022699A1 PCT/JP2001/001920 JP0101920W WO0222699A1 WO 2002022699 A1 WO2002022699 A1 WO 2002022699A1 JP 0101920 W JP0101920 W JP 0101920W WO 0222699 A1 WO0222699 A1 WO 0222699A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
resin composition
curable resin
carbon
conductive
Prior art date
Application number
PCT/JP2001/001920
Other languages
English (en)
French (fr)
Inventor
Tadashi Iino
Mitsuhiro Imaizumi
Ryutaro Fujihira
Makoto Endo
Fumio Matsui
Yoshitaka Hatano
Original Assignee
Showa Denko K. K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000274868A external-priority patent/JP2001151833A/ja
Application filed by Showa Denko K. K. filed Critical Showa Denko K. K.
Priority to AU2001241104A priority Critical patent/AU2001241104A1/en
Publication of WO2002022699A1 publication Critical patent/WO2002022699A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a curable resin composition, and more particularly, to a curable resin composition excellent in heat dissipation, heat resistance, and corrosion resistance in addition to conductivity, and a cured product thereof.
  • the main properties required of polymer materials vary depending on the product and application, but include moldability, heat resistance, durability, electrical properties (high insulation, high conductivity, etc.), corrosion resistance, Resins that satisfy these requirements for the time being, for example, heat or light curable resins such as epoxy resin and phenol resin, polyimide, polycarbonate, and polyphenylene Thermoplastic resins represented by various edge plastics represented by lenoxide, liquid crystal polymer and the like are used.
  • Japanese Patent Publication No. 50-113355 and Japanese Patent Application Laid-Open No. 59-213610 disclose a combination of graphite and a phenol resin. If this occurs, not only is the curing time long during production long and there is a problem with productivity, but also low molecular substances can be released as a gas during curing and foams can be generated in the molded product. In terms of characteristics, there are problems in some applications in the electronics field.
  • the resulting combination not only has an inherent problem of poor alkali resistance, but also has a resistance to pressure cooker (eg, 121 (Durability test using saturated steam at 2 ° C and 2 ° C). Disclosure of the invention
  • An object of the present invention is to provide a curable resin composition having excellent conductivity, and excellent heat dissipation, heat resistance, and corrosion resistance, and a cured product thereof.
  • the present inventors have made a cured product having excellent electrical conductivity using a vinyl ester resin and a carbon-based filler as main raw materials, and having heat dissipation, heat resistance, and corrosion resistance.
  • the present inventors have worked diligently to develop a curable resin composition exhibiting curability, and have completed a curable resin composition that meets the purpose of the present invention.
  • the present invention provides at least one monomer selected from the group consisting of (A) a vinyl ester resin, (B) an aryl ester monomer, an acrylate ester monomer, and a methacrylate ester monomer. 1, containing (C) a radical polymerization initiator and (D) at least 40% by mass (based on the total mass of (A) + (B) + (C) + (D)) of a carbon-based filler A conductive curable resin composition and a cured product thereof are provided.
  • a conductive curable resin composition and a cured product thereof are provided.
  • FIG. 1 is a schematic plan view of a thin plate prototyped in an example described later.
  • FIG. 2 is a schematic front view of the thin plate shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the vinyl ester resin (A) in the present invention is not particularly limited, and examples thereof include those obtained by reacting glycidyl ether of bisphenol A with acrylic acid or methacrylic acid.
  • a nopolak-type bullet ester resin can be given.
  • the resin can be produced using nopolak-type glycidyl ether as a raw material.
  • (A) vinyl ester resin, and ((A) + (B) + (C) + ( based on the total weight of the D) (1 0 0 mass 0/0) Te, 3-5 0% by weight, and still more 8-4 0 weight 0/0, yo RiYoshimi Mashiku are is preferably contained in an amount of 1 0 to 3 0% by weight.
  • the (B) aryl ester monomer in the present invention is not particularly limited. Examples thereof include diaryl phthalate and dicyclohexanedicarboxylate. And aryl. Of these, phthalic acid diaryl is preferred.
  • the (meth) acrylic acid ester monomer which is another embodiment of (B), is not particularly limited, and specific examples thereof include phenoxhetyl methacrylate, and isopo / leninolemethacrylate.
  • Benjinoreme Tata Li rate Jishiku b pentenyl O key Chez chill (meth) Atta Li rate, Application Benefits main Chirorupurono ⁇ 0 Nji (meth) Ata Li rate, Application Benefits trimethylol propane Application Benefits (meth) ⁇ Crylate, trimethylolpropanthyl sulfonic (meta) acrylate, pentaerythritol tetra (meta) acrylate, glycerindi (meta) acrylate, 1 , 6-hexanediol diatalylate and the like.
  • these halogen-substituted compounds can be used for the purpose of imparting flame retardancy.
  • (B) at least one monomer selected from the group consisting of an aryl ester monomer, an acrylate monomer and a methacrylate monomer is as follows: Based on the total mass of (A) + (B) + (C) + (D) (100% by mass), 0.5 to 40% by mass, and 2 to 20% by mass / 0 . More preferably, it is contained in an amount of 2.5 to 10% by mass.
  • the (C) radical polymerization initiator in the present invention is not particularly limited.
  • the component include an organic peroxide and a photopolymerization initiator, and in the present invention, the organic peroxide is more preferable.
  • organic peroxide known compounds such as dialkyl peroxide, acyl peroxide, hydroperoxide, keton peroxide, and peroxyester can be used. Specific examples and Benzoyl peroxide, t-butylperoxy-1-ethylhexanoate, 2,5-dimethyl-12,5-di- (2-ethylhexanoinole) peroxyhexane, t-butynole Peroxybenzoate, t-butylinoxide peroxide, cumenehydrono-monoxide, dicumylperoxide, g-t-butylperoxide, 2,5-dimethyl-2,5-dibutylperoxyhexane, etc. Is mentioned.
  • photopolymerization initiators examples include 2,2-dimethoxy-1,2-diphenylethane, 1-hydroxycyclohexyl ethoxyphenol, benzophenone, and benzophenone.
  • (41-Methinolethiophene) 1 2 Monorefolinopropane 1-1, 2 — Benziru 2 — Dimethylamino 1- (41-morpholinophenyl) 1 Butane 1 1, 2 — Hydroxy-1-methinolay 1-phenynopropane 111-on, 2,4,6—trimethyl / rebenzoinolecitheninophosphine oxide and the like.
  • the mixing ratio of the (C) radical polymerization initiator is as follows: ((A) + (B) + (C) +
  • It is preferably from 0.05 to 10% by mass (based on the total mass of (D)), and particularly preferably from 0.1 to 5% by mass.
  • the (D) carbon-based filler in the present invention is not particularly limited. Examples thereof include carbon black (Ketjen black, acetylene black, furnace black, oil furnace black, etc.), artificial graphite, and natural graphite (Kishgraphite, decomposed). Graphite, etc.), carpon fiber, short carbon fiber, glassy carbon, etc., and combinations or composites of two or more of these can be used. Among these, it is preferable to use graphite.
  • the carbon-based filler (D) contains at least 40% by mass (based on the total mass of (A) + (B) + (C) + (D)). However, the content is preferably 50 to 95% by mass, more preferably 60 to 90% by mass, and even more preferably 65 to 85% by mass.
  • the average particle size of the graphite is preferably 3 to 200 ⁇ m, more preferably 5 to 100 ⁇ m (particularly 5 to 80 / zm).
  • the measurement of the average particle size can be performed, for example, as follows.
  • the average particle size was measured by a laser diffraction scattering method. Specifically, 50 mg of a sample was weighed, added to 50 ml of distilled water, further added with 0.2 ml of a 2% aqueous solution of Triton (surfactant), and ultrasonically dispersed for 3 minutes. After that, it was measured using a Microtrack HRA device manufactured by Nikkiso Co., Ltd.
  • artificial graphite may be used as a main component and natural graphite may be blended and used.
  • the graphite has an aspect ratio of preferably 5 or less, more preferably 3.5 or less, and particularly preferably 2.0 or less.
  • those having a property of an aspect ratio of 5 or less and an average particle size of 5 to 100 ⁇ m are preferable. More preferably 3.5 or less (particularly 2.0 or less) and having an average particle size of 5 to 80 ⁇ m (Combination of graphite and other carbon-based fillers)
  • graphite may be used as the main component, and the entire carbon-based filler may be combined or combined with carbon black and / or carbon fiber (preferably carbon fiber). It may be preferable. In such an embodiment, when the total amount of the carbon-based filler is 100% by mass, at most 40% by mass (or at most 20% by mass) of carbon black and / or short carbon fiber is used. Is preferred.
  • Examples of the short carbon fiber include milled carbon fiber, vapor-grown carbon fiber, and carbon nanotube. From the standpoint of improving electrical and mechanical properties, as carbon short fibers, vapor-grown carbon fibers having a fiber diameter of 0.05 to: and a fiber length of 1 ⁇ m to 5 mm, and / or It is further preferable to use carbon nanotubes having a fiber diameter of 0.05 to 5 ⁇ m and a fiber length of 1 to 100 ⁇ .
  • the aspect ratio is the ratio between the major axis and the minor axis of a particle, and the larger the ratio, the flatter the particle.
  • the minimum aspect ratio is 1, which is a sphere or spherical polyhedron. Scanning electron microscopy was used to measure the aspect ratio in the present invention. Specifically, the appearance of the powder was photographed with a scanning electron microscope, the major axis and minor axis of each particle were measured for about 300 particles, and the arithmetic average was obtained.
  • the aspect ratio of graphite is about 50 for ordinary natural graphite, and about 6 to 12 for crushed artificial graphite.
  • the formability represented by the filling property into the vinyl ester resin and the fluidity are insufficient depending on the application, the shape of the molded product, and the required level of conductivity. Or increase the density of the molded product In some cases, it may not be satisfactory or the air permeability may be large.
  • each of the above-mentioned components is generally used in the resin field such as a Lorenole, an eder, a non-mixer mixer, a Henschel mixer, and a planetary mixer extruder. It is preferable to use a mixer that has a good mixing ratio.
  • the radical polymerization initiator is added and mixed. If necessary, mix all components except for the radical polymerization initiator and the carbon-based filler uniformly, then add the radical polymerization initiator and mix evenly.Finally, remove the carbon-based filler. In addition, they may be mixed.
  • thermosetting resin composition can be formed into powder, granules, pellets, tablets, sheets, etc., and subjected to a final molding step.
  • the molding method of the curable resin composition of the present invention is not particularly limited, and examples thereof include generally known molding methods such as injection molding, transfer molding, and press molding (including compression molding). It can be formed into a desired shape using a method, and can be cured by radicals generated by heating or irradiation with high energy rays to generate a polymerization initiator. As the conditions for heat curing, it is important to select and search for the optimal temperature according to the type of radical polymerization initiator used. For example, if the thickness of the molded product is 4 mm, when using dicumyl peroxide, cure it at 150 ° C for 3 minutes, remove it from the mold, and leave it at 170 ° C for 1 hour. Complete curing can be obtained. In addition, for example, a curing step may be employed in which the curing is completed at a temperature of 175 ° C. for 3 minutes in a mold to such an extent that after-curing may be omitted.
  • the volume resistivity is less rather preferably 1. 0 Omega cm, more preferably 1. 0 X 1 0- i Q c in or less, 5 X 1 0- 2 in particular fuel cells separator for applications Q cm or less, more 9 X 1 0 one 3 Omega. cm or less is preferably used.
  • the thermal conductivity is preferably at least 1.0 WZm ⁇ K, more preferably at least 4.0 W / m * K, and particularly preferably at least 7.0 W / m * K.
  • air permeability is an important characteristic value as a separator for fuel cells is preferably 1 XI 0 "5 cm 2 / sec or less, good Ri preferably l X l O - not more than 6 cm 2 Z sec, and Riwake 1 X 1 0- 7 cm 2 / sec or less is preferable.
  • the curable resin composition of the present invention includes, in addition to the above-mentioned additives, an ultraviolet stabilizer, an antioxidant, an antifoaming agent, in order to improve hardness, durability, weather resistance, water resistance and the like. Additives such as leveling agents, release agents and water repellents may be added as needed.
  • the curable resin composition of the present invention has good workability and workability even in an embodiment containing no organic solvent. This point is extremely valuable in recent years, as safety for workers and protection of the global environment tend to be emphasized.
  • the curable resin composition of the present invention is added to the organic solvent.
  • the amount of the organic solvent to be added is 20% by mass or less, more preferably 10% by mass or less. It is preferable that the content is not more than mass%.
  • the curable resin composition of the present invention can be stably stored at room temperature for a long period of time at the actual molding site until it is subjected to the processing step, and the conventional condensation reaction type epoxy resin and phenol resin can be used. This is one of the features not found in thermosetting resin compositions.
  • the curable resin composition of the present invention is made of a material that can be easily obtained in large quantities and is extremely practical, and its cured product has conductivity and heat dissipation (heat resistance). ⁇ It has properties such as corrosion resistance and molding accuracy, and is useful in various applications such as electronics, electrical products, mechanical parts, and various parts such as vehicles. In particular, materials for fuel cell separators Is a suitable example.
  • the air permeability is a value measured at a temperature of 23 ° C and 1 atmosphere of helium gas (
  • the volume resistivity was measured by a 4-deep needle volume resistivity measurement method in accordance with JIS K 7194.
  • the flexural strength and flexural modulus are based on JISK6911, and the test piece (80 xi OX 4 mm) is spanned by 6 4 mm and the bending speed is 2.5 m It was measured by a three-point bending strength measurement method at m / min.
  • the molding shrinkage was measured according to JIS K6911 (curing shrinkage).
  • the specific gravity was measured according to the method A (underwater displacement method) of JIS K7112.
  • the thermal conductivity was measured using QTM-500 manufactured by Kyoto Electronics Co., Ltd., and evaluated according to the following four steps. At this time, the following conditions were used.
  • A-1 Nopolak type butyl ester resin (Lipox SP-5070 from Showa High Polymer Co., Ltd.)
  • A-2 Nopolak-type butyl ester resin (Lipoxy SP—41010 manufactured by Showa Polymer Co., Ltd.)
  • A- 3 phenol resin (Showa Kobunshi Co., Ltd. BL - 2 7 4; 2 5 Viscosity at ° C is 3. 2 X 1 0 CPS (3. 2 X 1 0 4 m P a • s)) use the Was.
  • D-1 Showa Denko's artificial graphite (trade name: Showa Riiza I) is crushed with a crusher Atomizer I (Fuji Padal Co., Ltd.), and furthermore, Marumeraiza I (Fuji Padal Co., Ltd.) The following graphite powder that had been classified after grinding was used.
  • D-2 Using artificial graphite powder (trade name: UFG) manufactured by Showa Denko KK as a raw material, pulverize using a pulverizer and attritor in the same manner as in D-1 above, and classify the following graphite powder. Using.
  • Average particle size 50 ⁇ m
  • D- 4 Vapor-grown carbon fiber manufactured by Showa Denko KK (trade name: VG CF) Fiber diameter: 0.1 to 0.5 ⁇ m (average fiber diameter: 0.15 m), fiber length: 1 ⁇ 100 ⁇ m (average fiber length: 15 ⁇ m)
  • the components shown below were kneaded using a kneader (Moriyama Seisakusho, trade name: Mix Lab, rotation speed 40 rpm) at 40 ° C for 45 minutes to form a resin composition. Obtained.
  • the obtained resin composition did not show any change in its properties even after being stored at 23 ° C. and 50% RH for 3 months, and was excellent in storage stability.
  • the obtained resin composition was cured by pressurizing (30 MPa) and heating (150 ° C.) for 5 minutes in a compression molding machine (trade name: high-pressure press, manufactured by Shoji Tekko Co., Ltd.) to obtain a thickness of 3 mm resin plate was molded.
  • the curing shrinkage at this time was 0.165%.
  • test piece was prepared from the resin plate obtained above, and the test piece was attached to the test piece.
  • Various physical property values were measured. The results obtained are shown below.
  • the components shown below were mixed in the same manner as in Example 1 to obtain a resin composition.
  • the obtained resin composition did not show any change in its properties even after being stored at 23 ° C. and 50% RH for 3 months, and was excellent in storage stability.
  • Example 2 the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the cure shrinkage at this time was 0.160%.
  • Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below. Specific gravity: 2.0 1 (-)
  • FIG. 1 Using the curable resin composition obtained as described above, a thin plate (FIG. 1) was prototyped in the same manner as in Example 1, and the characteristics were measured. The obtained results sufficiently satisfied the characteristics required for the fuel cell separator as shown below.
  • Ventilation rate 2 X 1 0 "8 cm 2 / sec
  • Example 2 the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the cure shrinkage at this time was 0.166%.
  • Test pieces were prepared from the resin plate obtained as described above, and various physical properties were measured. The results obtained are shown below. Specific gravity: 2.00 (—)
  • FIG. 1 Using the curable resin composition obtained as described above, a thin plate (FIG. 1) was prototyped in the same manner as in Example 1, and its characteristics were measured. The obtained results sufficiently satisfied the characteristics required for the fuel cell separator as shown below.
  • a resin composition was obtained in the same manner as in Example 1. Even after storing at 23 ° C. and 50% RH for 3 months, the obtained resin composition did not show any change in properties and was excellent in storage stability.
  • Example 2 the resin composition obtained as described above was cured in the same manner as in Example 1 to form a resin plate.
  • the curing shrinkage at this time was 0.1000%.
  • Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • FIG. 1 Using the curable resin composition obtained as described above, a thin plate (FIG. 1) was prototyped in the same manner as in Example 1, and its characteristics were measured. The obtained results sufficiently satisfied the characteristics required for the fuel cell separator as shown below.
  • Example 1 Using the following components, a resin composition was obtained in the same manner as in Example 1. The obtained resin composition was excellent in storage stability without any change in its properties even after being stored at 23 ° C. and 50% RH for 3 months.
  • Example 2 the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the curing shrinkage at this time was 0.412%.
  • Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • Example 1 the same as Example 1 except that the curing conditions were set at 140 ° C for 2 minutes.
  • a thin plate (FIG. 1) was prototyped from the resin composition obtained as described above.
  • the obtained thin plate had the following characteristics and sufficiently satisfied the characteristics required for a fuel cell separator.
  • Ventilation rate 1 XI 0 "9 cm 2 / sec
  • Example 1 Using the following components, a resin composition was obtained in the same manner as in Example 1. The obtained resin composition did not show any change in its properties even after being stored at 23 ° C. and 50% RH for 3 months, and was excellent in storage stability.
  • a resin plate was molded by curing in the same manner as in Example 1 except that the curing conditions were set at 170 ° C. for 3 minutes. The cure shrinkage at this time was 0.170%. Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • FIG. 1 a thin plate (FIG. 1) was prototyped from the resin composition obtained in the same manner as in Example 1, except that the curing conditions were set at 170 ° C. for 4 minutes.
  • the obtained thin plate had the following characteristics and sufficiently satisfied the characteristics required for a fuel cell separator. Specific gravity: 2.0 1 (-)
  • Ventilation rate 2 X 1 0- 8 cm 2 / sec
  • a resin composition was obtained in the same manner as in Example 1.
  • the properties of the obtained resin composition did not change even after being stored at 23 ° C. and 50% RH for 3 months, and were excellent in storage stability.
  • Example 2 the resin composition obtained as described above was cured to form a resin plate in the same manner as in Example 1 except that the curing conditions were set at 160 ° C. for 5 minutes. The curing shrinkage at this time was 0.171%. Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • a thin plate (FIG. 1) was prototyped from the resin composition obtained in the same manner as in Example 1 except that the curing conditions were set to 120 ° C. for 5 minutes.
  • the obtained thin plate had the following characteristics and sufficiently satisfied the characteristics required for a fuel cell separator.
  • volume resistivity 5 m ⁇ cm 'Ventilation rate: 9 X 0 9 cm 2 / sec
  • a resin composition was obtained in the same manner as in Example 1.
  • the properties of the obtained resin composition did not change even after being stored at 23 ° C. and 50% RH for 3 months, and were excellent in storage stability.
  • Example 2 the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the curing shrinkage at this time was 0.164%.
  • Test pieces were prepared from the resin plate obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • a thin plate (FIG. 1) was prototyped from the resin composition obtained in the same manner as in Example 1 except that the curing conditions were set at 160 at 3 minutes.
  • the obtained thin plate had the following characteristics and sufficiently satisfied the characteristics required for a fuel cell separator.
  • the following components were mixed in the same manner as in Example 1 to obtain a resin composition.
  • the obtained resin composition was excellent in storage stability without any change in its properties even after storage at 23 ° C. and 50% RH for 3 months.
  • the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the cure shrinkage at this time was 0.10%.
  • Test pieces were prepared from the resin plate obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • Example 2 the same thin plate as in Example 1 was prototyped, and the results of measuring its characteristics are shown below. This thin plate sufficiently satisfied the characteristics required for a fuel cell separator.
  • Ventilation rate 2 X 1 0- 8 cm 2 / sec
  • a resin composition was prepared in the same manner as in Example 1. Obtained.
  • the obtained resin composition had a strong odor and a very high degree of monomer diffusion, had a problem in storage stability, and was poor in practicality. More specifically, after storage at 5 ° C for 2 days, the mass was reduced and it could not be used.
  • the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the odor was very strong and there was a problem in the working environment.
  • a resin composition was obtained in the same manner as in Example 1.
  • the properties of the obtained resin composition did not change even after being stored at 23 ° C. and 50% RH for 3 months, and were excellent in storage stability.
  • A-2 resin 77 parts by mass (47.7% by mass)
  • Example 2 the obtained resin composition was cured in the same manner as in Example 1 to form a resin plate.
  • the curing shrinkage at this time was 1.14%.
  • Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • Flexural modulus 5. 2 X 1 0 3 MP a Ventilation rate: 2 X 1 0 - 7 cm 2 / sec
  • the components shown below were kneaded and kneaded at room temperature to obtain a resin composition.
  • the obtained resin was blocked even after storage for 1 month at 5 ° C and 50% RH, and storage stability was remarkably lacking.
  • Example 2 the resin composition obtained as described above was cured to form a resin plate in the same manner as in Example 1 except that the curing conditions were set at 160 ° C. for 60 minutes. The curing shrinkage at this time was 0.313%. Test pieces were prepared from the resin plates obtained as described above, and various physical properties were measured. The results obtained are shown below.
  • a thin plate (FIG. 1) was prototyped from the resin composition obtained in the same manner as in Example 1 except that the curing conditions were set at 160 ° C. for 60 minutes.
  • the obtained thin plate had the following characteristics.
  • volume resistivity 3 4 ⁇ cm Permeability: Baratsukigadai heard at 1 XI 0- 4 ⁇ 3 X 1 0- 6 cm 2 / sec.
  • the obtained thin plate has poor air permeability, lacks molding stability, has poor storage stability of the cured composition, and requires a very long curing time, and thus is not suitable for the application field of the present invention.
  • the curable resin composition of the present invention has a cured body having excellent conductivity, and excellent heat resistance, heat dissipation, and corrosion resistance. Therefore, the curable resin composition of the present invention can be widely applied to materials in areas that have been difficult to realize in the past, for example, various applications and parts such as electronics, electric products, mechanical parts, and vehicle parts. Yes, it is very useful especially as a separator material for solid fuel cells.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

明 細 書 導電性の硬化性樹脂組成物およびその硬化体 技術分野
本発明は、 硬化性樹脂組成物に関するものであり、 さらに詳しく は、 導電性に加えて放熱性、 耐熱性と耐蝕性に優れた硬化性樹脂組 成物及びその硬化体に関するものである。 背景技術
エレク トロ二タス産業を始め、 近年の技術革新は目覚しいものが あり、 これを支えている材料技術も急速な進歩を遂げている。 同様 に、 高分子材料の開発についても、 新規あるいは高性能の高分子材 料が新たに多数開発され、 その応用が期待されている。
エレク トロニクス分野において、 高分子材料に求められる主要な 特性は、 製品や用途によって様々であるが、 成形性、 耐熱性、 耐久 性、 電気特性 (高絶縁性、 高導電性等) 、 耐蝕性、 放熱性等であり 、 これらの要求を一応満たす樹脂と して、 例えば、 エポキシ樹脂、 フエノール樹脂等に代表される熱または光硬化性樹脂や、 ポ'リイ ミ ド、 ポリカーボネー ト、 ポリ フエ二レンオキサイ ド、 液晶ポリマー 等に代表される各種ェンジ二'ァリ ングプラスチック等に代表される 熱可塑性樹脂が用いられている。
ところで、 上記に列挙した様な各種性能を総合的に具備した材料 に対する要請もむろん強いものがあるが、 技術的に極めて困難な側 面もあり、 また、 価格面でも不利となることが多い。 そのよ うな技 術課題の一つに高導電性があり、 かつ、 放熱性、 耐熱性と耐蝕性を 兼ね備えた高分子材料の開発が挙げられ、 本発明の目的とする材料 開発もこの点にある。
炭素系充填材と熱硬化性樹脂とからなる高導電性素材は、 過去に 多くの検討が成されている。 たとえば、 特公昭 5 0— 1 1 3 5 5号 公報及び特開昭 5 9— 2 1 3 6 1 0号公報には、 黒鉛とフヱノール 樹脂との組み合わせが開示されているが、 フエノール樹脂を用いた 場合、 製造時の硬化時間が長く生産性に問題があるばかりでなく、 硬化時に低分子物がガスとなって遊離し、 成形品中に泡が発生する 場合があるなど、 この組み合わせは、 特性的にもエレク トロニクス 分野の用途の一部では問題がある。
一方、 不飽和ポリエステル樹脂をベース樹脂と して用いた場合、 得られる組み合わせは、 耐ァルカリ性に劣るという本質的な問題を 有しているばかりでなく、 耐プレッシャーク ッカー性 (例えば 1 2 1 °C、 2気圧での飽和水蒸気での耐久試験) で改良要求されること が多い。 発明の開示
本発明の目的は、 導電性に優れ、 且つ放熱性、 耐熱性及び耐腐食 性にも優れた硬化性樹脂組成物及びその硬化体を提供することにあ る。
本発明者らは、 かかる状況に鑑み、 ビニルエステル樹脂と炭素系 充填材を主原料と して、 その硬化体が優れた電気導電性を有し、 か つ、 放熱性、 耐熱性及び耐腐食性を示す硬化性榭脂組成物の開発に 鋭意取り組み、 本発明の目的に合致した硬化性樹脂組成物を完成す るに至った。
すなわち、 本発明は、 (A ) ビニルエステル樹脂、 (B ) ァリ ル エステルモノマー、 ァク リル酸エステルモノマー及びメタク リル酸 エステルモノ マーからなる群から選ばれた少なく とも 1種のモノ マ 一、 (C) ラジカル重合開始剤、 並びに (D) 少なく とも 4 0質量 % ( (A) + (B) + (C) + (D) の合計質量を基準として) の 炭素系充填材を含む導電性の硬化性樹脂組成物及びその硬化体を提 供するものである。 図面の簡単な説明
図 1は、 後述する実施例で試作した薄板の模式平面図である。 図 2は、 図 1 に示す薄板の模式正面図である。 発明を実施するための最良の形態
以下、 必要に応じて図面を参照しつつ、 本発明を詳細に説明する 。 以下の記載において量比を表す 「部」 および 「%」 は、 特に断ら ない限り質量基準とする。
( (A) ビニルエステル樹脂)
本発明における (A) ビニルエステル樹脂は特に制限されないが 、 例えば、 ビスフエノール Aのグリ シジルエーテルとアク リル酸ま たはメタク リル酸とを反応させて得られるものが挙げられる。 本発 明に好適に使用可能なビュルエステル樹脂の具体例としては、 ノポ ラック型ビュルエステル樹脂が挙げられる。 該榭脂は、 ノポラック 型のグリ シジルエーテルを原料と して製造することができる。
本発明の硬化性樹脂組成物において、 (A) ビニルエステル樹脂 は、 ( (A) + (B) + (C) + (D) の合計質量を基準 ( 1 0 0 質量0 /0) と して、 3〜5 0質量%、 更には 8〜4 0質量0 /0、 よ り好 ましく は 1 0〜3 0質量%の量で含まれることが好ましい。
( ( B ) ァ リルエステルモノマー)
本発明における (B) ァリルエステルモノマーは特に制限されな いが、 例えば、 フタル酸ジァリル、 シクロへキサンジカルボン酸ジ ァリル等を例示することができる。 これらの中でもフタル酸ジァリ ルが好ましい。
( (B) (メ タ) アク リル酸エステルモノマー)
( B ) の他の態様である (メタ) アク リル酸エステルモノマーは 特に制限されないが、 具体的例と しては、 フエノキシェチルメタク リ レー ト 、 イ ソポ /レニノレメ タク リ レー ト 、 ベンジノレメ タタ リ レー ト 、 ジシク ロペンテニルォキシェチル (メ タ) アタ リ レー ト、 ト リ メ チロールプロノヽ0ンジ (メタ) アタ リ レー ト、 ト リ メチロールプロパ ン ト リ (メ タ) ァク リ レー ト、 ト リ メチロールプロパント リ ス一ォ キシ (メ タ) アタ リ レー ト、 ペンタエリ ス リ トールテ トラ (メ タ) アタ リ レー ト、 グリ セリ ンジ (メタ) アタ リ レー ト、 1, 6—へキ サンジオールジアタ リ レー ト等を挙げるこ とができる。 さ らに、 難 燃性を付与する 目的で、 これらのハロゲン置換化合物を利用するこ と等もできる。
本発明の硬化性樹脂組成物において、 (B) ァリルエステルモノ マー、 ァク リノレ酸エステルモノマー及びメ タク リル酸エステルモノ マーからなる群から選ばれた少なく と も 1種のモノマーは、 ( ( A ) + (B) + (C) + (D) の合計質量を基準 ( 1 0 0質量%) と して、 0. 5〜 4 0質量%、 更には 2〜 2 0質量0 /。、 よ り好ましく は 2. 5〜 1 0質量%の量で含まれるこ とが好ま しい。
( (C) ラジカル重合開始剤)
本発明における (C) ラジカル重合開始剤は特に制限されない。 この成分と しては例えば、 有機過酸化物、 光重合開始剤等が挙げら れるが、 本発明においては有機過酸化物がよ り好ましい。
有機過酸化物と しては、 ジアルキルパーオキサイ ド、 ァシルパー ォキサイ ド、 ハイ ドロパーォキサイ ド、 ケ ト ンパーォキサイ ド、 パ 一ォキシエステル等の公知のものを用いる.こ とができる。 具体例と しては、 ベンゾィルパーオキサイ ド、 t 一ブチルパーォキシ一 2— ェチルへキサノエー ト、 2, 5—ジメチル一 2 , 5—ジ ( 2—ェチ ノレへキサノィノレ) パーォキシへキサン、 t ーブチノレパーォキシベン ゾエート、 t ーブチノレハイ ド口パーオキサイ ド、 クメ ンハイ ドロ ノ 一オキサイ ド、 ジク ミルパ一オキサイ ド、 ジー t 一ブチルパーォキ サイ ド、 2 , 5 —ジメチルー 2 , 5 _ジブチルパーォキシへキサン 等が挙げられる。
また、 光重合開始剤と しては、 例えば 2, 2—ジメ トキシー 1 , 2 —ジフエニルェタ ン一 1 一オン、 1 — ヒ ドロ キシーシク ロへキシ ノレ一フエニノレーケ ト ン、 ベンゾフエノ ン、 2—メチルー 1— ( 4一 メ チノレチォフエ二ノレ) 一 2 — モノレフオ リ ノ プロパン一 1、 2 —ベン ジルー 2 —ジメ チルア ミ ノ ー 1 一 ( 4一モルフォ リ ノ フエ二ル) 一 ブタノ ン一 1、 2 — ヒ ドロ キシ一 2—メチノレー 1 —フエ二ノレプロパ ン一 1 一オン、 2 , 4 , 6 — ト リ メ チ/レベンゾイノレジフエ二ノレ一フ ォスフィ ンォキサイ ド等が挙げられる。
これらの (C ) ラジカル重合開始剤は 1種でもよく、 2種以上を 混合して用いてもよい。 本発明の硬化性樹脂組成物において、 (C ) ラジカル重合開始剤の配合割合は、 ( (A ) + ( B ) + ( C ) +
( D ) の合計質量を基準として) 0 . 0 5〜 1 0質量%が好ましく 、 と りわけ 0 . 1〜 5質量%が好適である。
( ( D ) 炭素系充填材)
本発明における (D ) 炭素系充填材は特に制限されないが、 例え ば、 カーボンブラック (ケッチェンブラック、 アセチレンブラック 、 ファーネスブラック、 オイルファーネスブラック等) 、 人造黒鉛 、 天然黒鉛 (キッシュグラフアイ ト、 分解黒鉛等) 、 カーポンファ ィパー、 カーボン短繊維、 グラッシ一カーボン等、 及びこれらの 2 種類またはそれ以上の組合せまたは複合物を用いることができる。 これらの中でも黒鉛を用いることが好ましい。 本発明の硬化性樹脂 組成物において、 (D) 炭素系充填材は、 ( (A) + (B) + (C ) + (D) の合計質量を基準として) 少なく とも 4 0質量%含まれ るが、 5 0〜 9 5質量%、 更には 6 0〜 9 0質量%、 よ り好ましく は 6 5〜 8 5質量%含まれることが好ましい。
(黒鉛)
黒鉛としては、 焼成温度が 2 5 0 0 °C以上、 好ましくは 2 7 0 0 °C以上、 更に好ましく は 2 9 0 0 °C以上で製造されたものが好まし い。 この黒鉛の平均粒径は、 3〜 2 0 0 μ m, 更には 5〜 1 0 0 μ m (特に 5〜 8 0 /z m) のものが好ましい。 この平均粒径の測定は 例えば、 以下のよ うにして行う ことができる。
(粒径の測定方法)
平均粒径は、 レーザー回折散乱法で測定した。 具体的には、 サン プル 5 0 m gを秤量し、 5 0 m 1 の蒸留水に添加し、 更に 2 %T r i t o n (界面活性剤) 水溶液 0. 2 m 1 を加えて 3分間超音波分 散させた後、 日機装 (株) 製のマイクロ トラック HRA装置で測定 したものである。
必要に応じて、 人造黒鉛を主成分に天然黒鉛をプレンドして使用 してもよい。
本発明において、 黒鉛のァスぺク ト比は 5以下であることが好ま しく、 更には 3. 5以下が好ましく、 と りわけ 2. 0以下が好まし い。
黒鉛のァスぺク ト比と平均粒径との組合せに関しては、 ァスぺク ト比 5以下で、 平均粒径 5〜 1 0 0 μ mである性状を有するものが 好ましく、 更にはアスペク ト比 3. 5以下 (と りわけ 2. 0以下) で、 平均粒径 5〜 8 0 μ mである性状を有するものが更に好ましい (黒鉛と他の炭素系充填材との組合せ)
硬化性樹脂組成物または硬化体の用途によっては、 主成分として 黒鉛を用い、 炭素系充填材全体をカーボンブラックおよび/又は力 一ボン短繊維 (好ましく はカーボン短繊維) との組合せないし複合 系が好ましい場合もあり得る。 このような態様において、 炭素系充 填材全体を 1 0 0質量%と した場合に、 多く とも 4 0質量% (更に は多く とも 2 0質量%) のカーボンブラックおよび/又はカーボン 短繊維を用いることが好ましい。
カーボン短繊維と しては、 例えば、 ミル ドカーボンファイバー、 気相法炭素繊維やカーボンナノチューブ等が挙げられる。 電気特性 や力学的特性の向上の点からは、 カーボン短繊維としては、 繊維径 が 0 . 0 5〜: であり繊維長が 1 μ m〜 5 m mの気相法炭素 繊維、 及び/または、 繊維径が 0 . 0 0 5〜 5 μ mであり繊維長が 1〜 1 0 0 μ πιのカーボンナノチューブを用いることが更に好まし い
(ァスぺク ト比)
アスペク ト比とは、 粒子の長径と短径との比であり、 これが大き いほど扁平状である。 アスペク ト比の最小値は 1であり、 これは球 あるいは球状多面体である。 本発明におけるァスぺク ト比の測定に は走査型電子顕微鏡法を用いた。 具体的には、 走査型電子顕微鏡に よ り、 粉体の外観撮影を行い、 各粒子の長径及び短径を、 粒子数 3 0 0程度を計測して、 その算術平均を求めた。
一般的に、 黒鉛のアスペク ト比は、 通常の天然黒鉛の場合は、 5 0前後であり、 人造黒鉛の粉砕品で 6〜1 2程度である。 この様に ァスぺク ト比が大きく扁平な粒子では、 用途、 成形品形状、 求める 導電性のレベルによっては、 ビニルエステル樹脂への充填性や流動 性に代表される成形性が不充分であったり、 成形品の密度が上がら なかったり、 通気率が大きくなつたり等充分満足できるものになら ない場合もあり得る。
(硬化性樹脂組成物の製法)
本発明の硬化性樹脂組成物の製法は特に制限されないが、 例えば 、 上記各成分をローノレ、 エーダー、 ノ ンパリ ーミキサー、 .ヘンシェ ルミキサー、 プラネタリーミキサー押出機等の樹脂分野で一般的に 用いられている混合機を使用し、 なるべく均一に混合させることが 好ましい。 また、 硬化性樹脂組成物の硬化の際には、 ラジカル重合 開始剤を除く全ての成分を均一に混合してから、 最後にラジカル重 合開始剤を加えて混合することが好ましい。 必要に応じて、 ラジカ ル重合開始剤と炭素系充填材を除く全ての成分を均一に混合してか ら、 ラジカル重合開始剤を加えて均一に混合し、 最後に、 炭素系充 填材を加えて混合してもよい。
得られた熱硬化性樹脂組成物は、 粉末、 顆粒、 ペレッ ト、 タブレ ッ ト、 シート等の形状にして、 最終的な成形工程に供することがで さる。
(成形方法)
本発明の硬化性樹脂組成物の成形方法は特に制限されないが、 例 えば、 イ ンジェク シ ョ ン成形、 ト ラ ンスフ ァー成形、 プレス成形 ( 含圧縮成形) など一般的に知られている成形方法を用いて所望の形 状に賦形すると ともに、 加熱または高エネルギー線を照射して重合 開始剤が生成するラジカルにより、 硬化させることができる。 加熱 硬化の条件と しては、 用いたラジカル重合開始剤の種類に応じて最 適温度を選定 ' 探索することが重要である。 一例としては、 成形品 厚みが 4 m mの場合、 ジク ミルパーオキサイ ドを使用するとき、 1 5 0 °Cで 3分間キュア一して脱型し、 1 7 0 °Cで 1時間アフターキ ユア一することで完全な硬化を得ることができる。 また、 例えば 1 7 5 °Cで、 3分間型内に止めることでアフターキ ユア一を省略しても差し支えない程度に硬化を完結させるといった 硬化工程を採用することもできる。
(導電性硬化体)
本発明の導電性硬化体と しては、 以下に述べる特性を有するもの が好ましい。 すなわち、 体積固有抵抗は 1. 0 Ω c m以下が好まし く、 より好ましくは 1 . 0 X 1 0— i Q c in以下であり、 特に燃料電 池用セパレーター用途には 5 X 1 0— 2 Q c m以下、 更には 9 X 1 0一3 Ω . c m以下が好適に用いられる。
熱伝導率は 1 . 0 WZm · K以上が好ましく、 より好ましく は 4 . 0W/m * K以上であり、 と りわけ 7. 0W/m * K以上が好適 である。 また、 燃料電池用セパレーターとして重要な特性値である 通気率は 1 X I 0 "5 c m2/ s e c以下が好ましく、 よ り好ましく は l X l O -6 c m2Z s e c以下であり、 と りわけ 1 X 1 0— 7 c m2 / s e c以下が好適である。
(他の添加剤)
さ らに、 本発明の硬化性樹脂組成物には、 硬度、 耐久性、 耐候性 、 耐水性等を改良する 目的で前述の添加剤以外に、 紫外線安定剤、 酸化防止剤、 消泡剤、 レべリ ング剤、 離型剤、 撥水剤等の添加剤を 必要に応じて加えてもよい。
(有機溶剤)
本発明の硬化性樹脂組成物は、 有機溶剤を含有しない態様におい ても、 良好な加工性、 作業性を有している。 この点は、 近年、 作業 者への安全性及び地球環境の保全が重要視される傾向にある中で非 常に価値がある。 無論、 本発明の硬化性樹脂組成物の成形加工性を 一層高めるために、 溶剤の添加による流動性の一段の向上を図るこ とも可能である。 このよ うに本発明の硬化性樹脂組成物に有機溶剤 を添加する態様においては、 有機溶剤の添加量は、 本発明の硬化性 樹脂組成物の固形分を 1 0 0質量%として、 2 0質量%以下、 更に は 1 0質量%以下と りわけ 5質量%以下であることが好ましい。 (硬化性樹脂組成物の保存性等)
また、 本発明の硬化性樹脂組成物は実際の成形加工現場において は加工工程に供するまで常温で長期にわたって安定して保存できる ことも、 従来型の縮合反応タイプのエポキシ樹脂やフヱノ一ル榭脂 等の熱硬化榭脂組成物には見られない特徴の一つである。
本発明の硬化性樹脂組成物は、 材料的にも容易にかつ大量に入手 しうるもので構成されており、 極めて実用性が高く、 また、 その硬 化体は導電性および放熱性 (耐熱性 · 耐腐食性 ·成形精度) 等の特 性を併せ持つているため、 エレク ト ロニクス分野、 電気製品、 機械 部品、 車輛等の各種部品等の各用途に有用であり、 特に、 燃料電池 セパレーター用素材としては、 好適な一例である。
実施例 '
以下に本発明を実施例によ り さらに詳細に説明するが、 本発明は 実施例になんら限定されるものではない。
これらの実施例においては、 以下の測定方法を用いた。
通気率は温度 2 3 °C、 ヘリ ウムガス 1気圧で測定した値である (
5サンプルの平均値) 。 このよ うな通気率測定方法の詳細について は、 例えば、 文献 J I S K 7 1 2 6 ( Α法) を参照することがで きる。
体積固有抵抗は J I S K 7 1 9 4に準拠し、 4深針法体積固有 抵抗測定法によ り測定した。
曲げ強度及び曲げ弾性率は J I S K 6 9 1 1 に準拠し、 試験片 ( 8 0 x i O X 4 mm) をスパン間隔 6 4 mm、 曲げ速度 2. 5 m m/m i nの条件で 3点式曲げ強度測定法によ り測定した。
成形収縮率は J I S K 6 9 1 1 (硬化収縮率) に準じて測定し た。
比重は J I S K 7 1 1 2の A法 (水中置換法) に準じて測定し た。
熱伝導率は京都電子社製 Q TM— 5 0 0を用いて測定し、 次の 4 段階で評価した。 この際、 下記の条件を用いた。
優 · … 7 W/mK以上
良 · … 4 W/mK以上、 且つ 7 WZm K未満 可 ' … 1 K以上、 且つ 4 WZmK未満
不可 · … 1 W/mK未満
<条件 >
プローブ : P D _ 1 1
測定方法 : 比較法
2 3 °C、 5 0 % R H
実施例で用いた材料は、 以下の通りである。
(A) 成分として、
A— 1 : ノポラック型ビュルエステル樹脂 (昭和高分子株式会社 製リポキシ S P— 5 0 7 0 )
A - 2 : ノポラック型ビュルエステル樹脂 (昭和高分子株式会社 製リポキシ S P— 4 0 1 0 )
比較例用と して、
A— 3 : フエノール樹脂 (昭和高分子株式会社製 B L - 2 7 4 ; 2 5 °Cにおける粘度は 3. 2 X 1 0 C P S ( 3. 2 X 1 04 m P a • s ) ) を用いた。
(B) 成分と して、
B— 1 : ト リ メチロールプロパント リ スォキシエチレンメ タク リ レート
B - 2 : ベンジルメ タタ リ レー ト
B - 3 : ジァ リルテレフタ レ一 ト
比較例用として、
B - 4 : スチレンモノマーを用いた。
(C) 成分と して、
C - 1 : 日本油脂株式会社製パーク ミル D (ジクミルパーォキサ ィ ド)
C - 2 : 日本油脂株式会社製パーブチル Z ( t —プチルパーォキ シベンゾエート)
比較例用と して、
C一 3 : 水酸化ナト リ ウムの 2 5 %水溶液を用いた。
(D) 成分と して、
D - 1 : 昭和電工株式会社製人造黒鉛 (商品名 : ショー力ライザ 一) を粉砕機ア トマイザ一 (不二パゥダル株式会社製) で粉砕し、 さらに、 マルメライザ一 (不二パゥダル株式会社製) で磨砕した後 、 分級した下記黒鉛粉末を用いた。
平均ァスぺク ト比 : 2. 8
平均粒径 : 8 0 /X m
固定炭素 (石灰試験法 (工業分析法) 、 化学大辞典 (第 5卷
) 第 3 0 3頁 ( 1 9 6 3年) 共立出版) : 9 9. 8 %
D- 2 : 昭和電工株式会社製人造黒鉛粉末 (商品名 : U F G) を 粗原料として、 上記 D— 1 の場合と同様に粉砕機及び磨砕機を用い て粉碎した後、 分級した下記黒鉛粉末を用いた。
平均ァスぺク ト比 : 3. 7
平均粒径 : 1 0 μ m
固定炭素 : 9 9. 8 % D - 3 : 昭和電工株式会社製人造黒鉛粉末 (商品名 : ショーカラ ィザ一)
平均ァスぺク ト比 : 3. 8
平均粒径 : 5 0 μ m
固定炭素 : 9 9. 9 %
D- 4 : 昭和電工株式会社製気相法炭素繊維 (商品名 : VG C F) 繊維径 : 0. 1〜 0. 5 μ m (平均繊維径 : 0. 1 5 m) 、 繊 維長 : 1〜 1 0 0 μ m (平均繊維長 : 1 5 μ m)
実施例 1
以下に示す各成分を、 ニーダー (森山製作所製、 商品名 : ミ ック スラボ、 回転数 4 0 r p m) を用いて 4 0 °Cで 4 5分間混練しなが ら配合して樹脂組成物を得た。 得られた樹脂組成物は、 2 3 °C、 5 0 %RHで 3ヶ月間保存した後でもその性状に変化が見られず保存 安定性に優れていた。
A 2樹脂 7 7質量部 ( 1 2. 8質量%)
B 1モノマ 2 3質量部 ( 3. 8質量%)
C 2開始剤 1. 5質量部 ( 0. 3質量%)
D 1黒鉛 5 0 0質量部 ( 8 3. 1質量%)
なお、 榭脂組成物の総量に対し、 重合禁止剤としてハイ ド口キノ ンを 0. 0 5質量部添加した (個々の記載は省略するが、 以下の樹 脂組成物に関しても、 重合禁止剤と して同様にハイ ドロキノンを添 加した) 。
得られた樹脂組成物を圧縮成形機 (庄司鉄工社製、 商品名 : 高圧 プレス) 中で 5分間加圧 ( 3 0MP a ) および加熱 ( 1 5 0 °C) し て硬化させ、 厚さ 3 mmの樹脂板を成形した。 このときの硬化収縮 率は 0. 1 6 5 %であった。
更に、 上記で得た樹脂板から試験片を作製し、 この試験片につい て各種物性値を測定した。 得られた結果を以下に示す。
比重 : 2. 0 2 (—)
体積固有抵抗 : 4 πιΩ c m
曲げ強度 : 2 8 MP a
曲げ弾性率 : 1 . 1 5 X l 04MP a
熱伝導率 : 優
上記で得た硬化性樹脂組成物を用いて、 図 1 に模式平面図、 図 2 に模式断面図を示すように、 最大厚み 2. O mm, 最小厚み 1 . 0 mm、 溝深さ 1 . O mmの薄板を試作した (圧縮成形法) 。 硬化条 件は 1 5 0 °Cで 5分間であり、 アフターキュア一は行わなかった。 こ'こで得られた薄板は以下の様な特性を有しており、 燃料電池用セ パレーターに要求される特性を充分満足していた。
比重 : 2. 0 0 (—)
体積固有抵抗 : 5 m Ω c m
通気率 : 1 X 1 0— 8 c m2ノ s e c
実施例 2
以下に示す各成分を実施例 1 と同様にして混合して樹脂組成物を 得た。 得られた樹脂組成物は、 2 3 °C、 5 0 %RHで 3ヶ月間保存 した後でもその性状に変化が見られず保存安定性に優れていた。
A_ 2樹脂 7 7質量部 ( 1 2. 8質量%)
B— 1モノマー 2 3質量部 ( 3. 8質量0 /0)
C一 2開始剤 1 . 5質量部 ( 0. 3質量%)
D - 2黒鉛 5 0 0質量部 ( 8 3. 1質量%)
次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させ樹脂 板を成形した。 このときの硬化収縮率は 0. 1 6 0 %であった。 上記によ り得られた樹脂板から試験片を作製し、 各種物性値を測 定した。 得られた結果を以下に示す。 比重 : 2. 0 1 (-)
体積固有抵抗 : 6 ιηΩ c m
曲げ強度 : 3 4 M P a
曲げ弾性率 : 1. 2 x l 04MP a
熱伝導率 : 優
上記によ り得られた硬化性榭脂組成物を用いて実施例 1 と同様に 薄板 (図 1 ) を試作し、 その特性を測定した。 得られた結果は、 以 下に示すように、 燃料電池用セパレーターに要求される特性を充分 満足していた。
比重 : 2. 0 0 (―)
体積固有抵抗 : 7 m Ω c m
通気率 : 2 X 1 0 "8 c m2 / s e c
実施例 3
攪拌翼が自転、 公転する機構の万能混合攪拌機 (愛ェ舎製作所製 、 商品名 : A CM) を用いて、 以下に示す各成分を 4 0 °Cで常に粉 体の状態を保つように留意して、 高速攪拌 ( 3 0 0 r p m) しなが ら 4 5分間'混合して顆粒状のコンパゥンド榭脂組成物を得た。 得ら れた樹脂組成物は 2 3 °C、 5 0 % R Hで 3ヶ月間保存した後でもそ の性状に変化が見られず保存安定性は充分であった。
A— 2樹脂 7 7質量部 ( 1 2. 8質量%)
B— 1モノマー 2 3質量部 ( 3. 8質量0 /0)
C一 2開始剤 1. 5質量部 ( 0. 3質量%)
D— 1黒鉛 5 0 0質量部 ( 8 3. 1質量%)
次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させて、 樹脂板を成形した。 このときの硬化収縮率は 0. 1 6 6 %であった 。 上記によ り得られた樹脂板から試験片を作製し、 各種物性値を測 定した。 得られた結果を以下に示す。 比重 : 2. 0 0 (—)
体積固有抵抗 : 6 πιΩ c m
曲げ強度 : 2 6 M P a
曲げ弾性率 : 1. 0 X l 04MP a
熱伝導率 : 優
上記によ り得られた硬化性樹脂組成物を用いて実施例 1 と同様に 薄板 (図 1 ) を試作し、 その特性を測定した。 得られた結果は、 以 下に示すように、 燃料電池用セパレーターに要求される特性を充分 満足していた。
比重 : 2. 0 0 (—)
体積固有抵抗 : 6 m Ω c m
通気率 : 3 X 1 0— 8 c m2 / s e c
実施例 4
以下に示す各成分を用いて、 実施例 1 と同様にして樹脂組成物を 得た。 得られた樹脂組成物は 2 3 °C、 5 0 %R Hで 3ヶ月間保存し た後でもその性状に変化が見られず保存安定性に優れていた。
A— 2樹脂 7 7質量部 ( 9. 6質量%)
B— 1モノマー 2 3質量部 ( 2. 9質量0 /0)
C一 2開始剤 1. 5質量部 ( 0. 2質量%)
D— 1黒鉛 7 0 0質量部 ( 8 7. 3質量%)
次に、 上記によ り得られた樹脂組成物を実施例 1 と同様にして硬 化させて、 樹脂板を成形した。 このときの硬化収縮率は 0. 1 0 0 %であった。 上記により得られた樹脂板から試験片を作製し、 各種 物性値を測定した。 得られた結果を以下に示す。
比重 : 2. 0 6 (―)
体積固有抵抗 : 2 m Ω c m
曲げ強度 : 3 0 M P a 曲げ弾性率 : l . 2 X l 04MP a
熱伝導率 : 優
上記により得られた硬化性樹脂組成物を用いて実施例 1 と同様に 薄板 (図 1 ) を試作し、 その特性を測定した。 得られた結果は、 以 下に示すように、 燃料電池用セパレーターに要求される特性を充分 満足していた。
比重 : 2. 0 4 (—)
体積固有抵抗 : 3 m Ω c m
通気率 : 1 X 1 0— 8 c m2Z s e c
実施例 5
以下に示す各成分を用いて、 実施例 1 と同様にして樹脂組成物を 得た。 得られた樹脂組成物は 2 3 °C、 5 0 %RHで 3ヶ月間保存し た後でもその性状に変化が見られず保存安定性に優れていた。
A— 2樹脂 7 7質量部 ( 1 9. 2質量%)
B— 1モノマー 2 3質量部 ( 5. 7質量0 /0)
C一 2開始剤 1 . 5質量部 ( 0. 4質量%)
D— 1黒鉛 3 0 0質量部 ( 7 4. 7質量%)
次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させて、 樹脂板を成形した。 このときの硬化収縮率は 0. 4 1 2 %であった 。 上記により得られた樹脂板から試験片を作製し、 各種物性値を測 定した。 得られた結果を以下に示す。
比重 : 1. 9 4 (一)
体積固有抵抗 : 1 0 m Ω c m
曲げ強度 : 2 8 MP a
曲げ弾性率 : 9. 0 X 1 03MP a
熱伝導率 : 優
さ らに、 硬化条件を 1 4 0 °Cで 2分間とした以外は実施例 1 と同 様にして、 上記により得られた樹脂組成物から薄板 (図 1 ) を試作 した。 得られた薄板は以下の様な特性を有しており、 燃料電池用セ パレーターに要求される特性を充分満足していた。
比重 : 1 . 9 2 (-)
体積固有抵抗 : 1 2 ηιΩ c m
通気率 : 1 X I 0 "9 c m2/ s e c
実施例 6
以下に示す各成分を用いて、 実施例 1 と同様にして樹脂組成物を 得た。 得られた樹脂組成物は、 2 3 °C、 5 0 %RHで 3ヶ月間保存 した後でもその性状に変化が見られず保存安定性に優れていた。
A- 1樹脂 7 7質量部 ( 1 2. 8質量%)
B— 2モノマー 2 3質量部 ( 3. 8質量0 /0)
C— 1開始剤 1. 5質量部 ( 0. 3質量%)
D— 1黒鉛 5 0 0質量部 ( 8 3. 1質量%)
次に、 硬化条件を 1 7 0 °Cで 3分間と した以外は実施例 1 と同様 にして、 硬化させ樹脂板を成形した。 このときの硬化収縮率は 0. 1 7 0 %であった。 上記により得られた樹脂板から試験片を作製し 、 各種物性値を測定した。 得られた結果を以下に示す。
比重 : 2. 0 3 (—)
体積固有抵抗 : 4 m Ω c m
曲げ強度 : 3 1 M P a
曲げ弾性率 : 1. 3 X l 04MP a
熱伝導率 : 優
さ らに、 硬化条件を 1 7 0 °Cで 4分間とした以外は実施例 1 と同 様にして、 上記により得られた樹脂組成物から薄板 (図 1 ) を試作 した。 得られた薄板は以下の様な特性を有しており、 燃料電池用セ パレーターに要求される特性を充分満足していた。 比重 : 2. 0 1 (― )
体積固有抵抗 : 5 πιΩ c m
通気率 : 2 X 1 0— 8 c m2 / s e c
実施例 7
以下に示す各成分を用いて、 実施例 1 と同様にして樹脂組成物を 得た。 得られた樹脂組成物は、 2 3 °C、 5 0 %RHで 3ヶ月間保存 した後でもその性状に変化が見られず、 保存安定性に優れていた。
A— 1樹脂 7 7質量部 ( 1 2. 8質量%)
B— 3モノマー 2 3質量部 ( 3. 8質量0 /0)
C一 1開始剤 1. 5質量部 ( 0. 3質量%)
D— 1黒鉛 5 0 0質量部 ( 8 3. 1質量%)
次に、 硬化条件を 1 6 0 °Cで 5分間と した以外は実施例 1 と同様 にして、 上記により得られた樹脂組成物を硬化させて、 樹脂板を成 形した。 このときの硬化収縮率は 0. 1 7 1 %であった。 上記によ り得られた樹脂板から試験片を作製し、 各種物性値を測定した。 得 られた結果を以下に示す。
比重 : 2. 0 4 (—)
体積固有抵抗 : 3 πιΩ c m
曲げ強度 : 2 9 M P a
曲げ弾性率 : 1. 3 X l 04MP a
熱伝導率 : 優
さ らに、 硬化条件を 1 2 0 °Cで 5分間とした以外は実施例 1 と同 様にして、 上記により得られた樹脂組成物から薄板 (図 1 ) を試作 した。 得られた薄板は以下の様な特性を有しており、 燃料電池用セ パレーターに要求される特性を充分満足していた。
比重 : 2. 0 2 (—)
体積固有抵抗 : 5 m Ω c m '通気率 : 9 X 0 9 c m 2 / s e c
実施例 8
以下に示す各成分を用いて、 実施例 1 と同様にして樹脂組成物を 得た。 得られた樹脂組成物は、 2 3 °C、 5 0 %RHで 3ヶ月間保存 した後でもその性状に変化が見られず、 保存安定性に優れていた。
A_ 2樹脂 7 7質量部 ( 1 2. 8質量%)
B— 1 モノ マー 2 3質量部 ( 3 . 8質量0 /0)
C 2開始剤 1 . 5質量部 ( 0. 3質量%)
D 1黒 口 1 5 0質量部 ( 2 4. 9質量%)
D 2黒鉛 2 0 0質量部 ( 3 3. 3質量%)
D 3黒鉛 1 5 0質量部 ( 2 4. 9質量%)
次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させて、 樹脂板を成形した。 このときの硬化収縮率は 0. 1 6 4 %であった 。 上記によ り得られた樹脂板から試験片を作製し、 各種物性値を測 定した。 得られた結果を以下に示す。
比重 : 2. 0 3 (―)
体積固有抵抗 : 4 m Ω c m
曲げ強度 : 3 1 M P a
曲げ弾性率 : 1 . 3 X 1 04 M P a
熱伝導率 : 優
さらに、 硬化条件を 1 6 0でで 3分間とした以外は実施例 1 と同 様にして、 上記により得られた樹脂組成物から薄板 (図 1 ) を試作 した。 得られた薄板は以下の様な特性を有しており、 燃料電池用セ パレーターに要求される特性を充分満足していた。
比重 : 2. 0 1 (-)
体積固有抵抗 : 5 m Ω c m
通気率 : 2 X 1 0 -10 c m s e c 実施例 9
以下に示す各成分を用いて、 実施例 1 と同様にして混合して樹脂 組成物を得た。 得られた樹脂組成物は 2 3 °C、 5 0 %RHで 3ヶ月 保存した後でもその性状に変化が見られず保存安定性に優れていた
A— 2樹脂 7 7質量部 ( 1 2. 8質量%)
B— 1モノマー 2 3質量部 ( 3. 8質量0 /0)
C一 2開始剤 1. 5質量部 ( 0. 3質量%)
D— 1黒鉛 4 5 0質量部 ( 7 4. 7 9質量%)
D— 4カーボン短繊維 5 0質量部 ( 8. 3 1質量%) 次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させて、 樹脂板を成形した。 このときの硬化収縮率は 0. 1 0 %であった。 上記によ り得られた樹脂板から試験片を作製し、 各種物性値を測 定した。 得られた結果を以下に示す。
比重 : 2. 0 2 (—)
体積固有抵抗 : 3 m Ω c m
曲げ強度 : 4 0 M P a
曲げ弾性率 : 1. 6 X l 04MP a
熱伝導率 : 優
さ らに、 実施例 1 と同様の薄板を試作し、 その特性を測定した結 果を以下に示す。 この薄板は、 燃料電池用セパレーターに要求され る特性を充分満足していた。
比重 : 2. 0 0 (—)
体積固有抵抗 : 5 πιΩ c m
通気率 : 2 X 1 0— 8 c m2 / s e c
比較例 1
以下に示す各成分を用いて、 実施例 1 と同樣にして樹脂組成物を 得た。 得られた樹脂組成物は、 臭気が激しく、 また、 モノマーの気 散が激しく、 保存性に問題があり、 実用性に乏しいものであった。 より具体的には、 5 °Cで 2 日間保存した後には、 質量の減少が見ら れ使用できない状況であった。
A _ 2樹脂 7 7質量部 ( 1 2. 8質量%)
B— 4モノマー 2 3質量部 ( 3. 8質量0 /0)
C— 2開始剤 1. 5質量部 ( 0. 3質量%)
D— 2黒鉛 5 0 0質量部 ( 8 3. 1質量%)
次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させて、 樹脂板を成形した。 硬化性組成物を作る際、 また、 圧縮成形の際、 臭気が非常に強く、 作業環境に問題があった。
比較例 2
以下に示す各成分を用いて、 実施例 1 と同様にして樹脂組成物を 得た。 得られた樹脂組成物は、 2 3 °C、 5 0 %RHで 3ヶ月間保存 した後でもその性状に変化が見られず、 保存安定性に優れていた。
A— 2樹脂 7 7質量部 ( 4 7. 7質量%)
B— 1モノマー 2 3質量部 ( 1 4. 2質量0 /0)
C一 2開始剤 1. 5質量部 ( 0. 9質量%)
D— 2黒鉛 6 0質量部 '( 3 7. 1質量%)
次に、 得られた樹脂組成物を実施例 1 と同様にして硬化させて、 樹脂板を成形した。 このときの硬化収縮率は 1. 1 4 %であった。 上記によ り得られた樹脂板から試験片を作製し、 各種物性値を測定 した。 得られた結果を以下に示す。
比重 : 1. 4 7 (—)
体積固有抵抗 : 1 7 Ω c m
曲げ強度 : 2 6 M P a
曲げ弾性率 : 5. 2 X 1 03M P a 通気率 : 2 X 1 0 - 7 c m2 / s e c
熱伝導率 : 不可
体積固有抵抗値が大きく、 一方、 熱伝導率は小さいため、 本発明 の用途材料と しては適さない。
比較例 3
以下に示す各成分を常温で混練しながら配合して樹脂組成物を得 た。 得られた樹脂は、 5 °C、 5 0 %RHで 1 ヶ月間保存でもブロ ッ キングしてしまい、 保存安定性に著しく欠けるものであった。
A— 3樹脂 7 7質量部 ( 1 2. 8質量%)
B— 1モノマー 2 3質量部 ( 3. 8質量%)
C - 3 0. 4質量部 ( 0. 1質量%)
D— 2黒鉛 5 0 0質量部 ( 8 3. 3質量%)
次に、 硬化条件を 1 6 0 °Cで 6 0分間と した以外は実施例 1 と同 様にして、 上記によ り得られた樹脂組成物を硬化させて、 樹脂板を 成形した。 このときの硬化収縮率は 0. 3 1 3 %であった。 上記に より得られた樹脂板から試験片を作製し、 各種物性値を測定した。 得られた結果を以下に示す。
比重 : 1. 9 5 (—)
体積固有抵抗 : 2 0 m Ω c m
曲げ強度 : 2 2 M P a
曲げ弾性率 : 9. 5 X 1 03M P a
熱伝導性 : 優
さらに、 硬化条件を 1 6 0 °Cで 6 0分間と した以外は実施例 1 と 同様にして、 上記によ り得.られた樹脂組成物から薄板 (図 1 ) を試 作した。 得られた薄板は以下の様な特性を有していた。
比重 : 1. 9 0 (—)
体積固有抵抗 : 3 4 πιΩ c m 通気率 : 1 X I 0— 4〜 3 X 1 0— 6 c m2/ s e cでばらつきが大 きい。
得られた薄板は、 通気率が悪く、 さらに成形安定性に欠け、 また 、 硬化組成物の保存性が悪く、 硬化時間も非常に長くかかるため、 本発明の用途分野には適さない。 産業上の利用可能性
本発明の硬化性樹脂組成物は、 その硬化体が導電性に優れ、 耐熱 性、 放熱性及び耐腐食性にも優れる。 したがって、 本発明の硬化性 樹脂組成物は、 従来では実現が困難であった領域の材料、 例えば、 エレク ト ロニクス分野、 電気製品、 機械部品、 車輛部品などの各種 用途 · 部品に広く適用可能であり、 特に、 固体燃料電池用のセパレ 一ター用素材と して非常に有用である。

Claims

求 の 範 囲
1. (A) ビニルエステル樹脂、 (B) ァ リ ルエステルモノマー 、 ァク リル酸エステルモノ マー及びメ タク リ ル酸エステルモノマー からなる群から選ばれた少なく とも 1種のモノ マー、 (C) ラジカ ル重合開始剤、 並びに (D) 少なく とも 4 0質量% ( (A) + (B 青
) + (C) + (D) の合計質量を基準と して) の炭素系充填材を含 む導電性の硬化性樹脂組成物。
2. (A) + (B) + (C) + (D) の合計質量を基準と して、 ( A) 成分 3〜 5 0質量%、 (B ) 成分 0. 5〜4 0質量%、
( C) 成分 0. 0 5〜 1 0質量%並びに (D) 成分 4 0〜 9 5 質量%を含む請求項 1記載の導電性の硬化性樹脂組成物。
3. ( A) ビニルエステル樹脂が、 ノポラック系ビュルエステル 樹脂であることを特徴とする請求項 1または 2に記載の導電性の硬 化性樹脂組成物。
4. (B) 成分が、 フタル酸ジァリルであることを特徴とする請 求項 1または 2に記載の導電性の硬化性樹脂組成物。 、
5. (C) ラジカル重合開始剤が、 有機過酸化物もしくは光重合 開始剤であり、 かつ (D) 炭素系充填材が黒鉛を含むことを特徴と する請求項 1 または 2に記載の導電性の硬化性樹脂組成物。
6. ( D ) 炭素系充填材が、 アスペク ト比が 5以下であり、 かつ 、 平均粒径が 5〜 1 0 0 mである黒鉛を含むことを特徴とする請 求項 1 または 2に記載の導電性の硬化性樹脂組成物。
7. (D) 炭素系充填材が、 アスペク ト比が 5以下であり、 かつ 、 平均粒径が 5〜 1 0 0 μ mである黒鉛、 並びに (D) 炭素系充填 材全体 ( 1 0 0質量%) 中の 4 0質量%以下の量で、 繊維径が 0. 0 5〜 1 0 μ ηιであり繊維長が 1 μ π!〜 5 mmの気相法炭素繊維、 及び/または、 繊維径が 0. 0 0 5〜 5 μ mであり繊維長が 1〜 1 0 0 μ πιのカーボンナノチューブを含むことを特徴とする請求項 1 〜 6のいずれかに記載の導電 f生の硬化性樹脂組成物。
8. 請求項 1〜 7のいずれか 1項に記載の硬化性樹脂組成物を硬 化して得られる導電性硬化体。
9. 体積固有抵抗が 1 . 0 Ω c m以下であることを特徴とする請 求項 8記載の導電性硬化体。
1 0. 熱伝導率が 1 . 0 W/m · K以上であることを特徴とする 請求項 8記載の導電性硬化体。
1 1 . 請求項 9または請求項 1 0に記載の導電性硬化体から得ら れる、 体積固有抵抗が 5 X 1 0— 2 Ω c m以下であり、 かつ、 通気率 が 1 X I 0— 5 c m2/ s e c以下であることを特徴とする燃料電池 用セパレーター。
PCT/JP2001/001920 2000-09-11 2001-03-12 Composition de resine polymerisable conductible et objet polymerise obtenu a partir de cette composition WO2002022699A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001241104A AU2001241104A1 (en) 2000-09-11 2001-03-12 Conductive curable resin composition and cured object obtained therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-274868 2000-09-11
JP2000274868A JP2001151833A (ja) 1999-09-13 2000-09-11 導電性に優れた硬化性樹脂組成物及びその硬化体

Publications (1)

Publication Number Publication Date
WO2002022699A1 true WO2002022699A1 (fr) 2002-03-21

Family

ID=18760567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001920 WO2002022699A1 (fr) 2000-09-11 2001-03-12 Composition de resine polymerisable conductible et objet polymerise obtenu a partir de cette composition

Country Status (2)

Country Link
AU (1) AU2001241104A1 (ja)
WO (1) WO2002022699A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160661A (ja) * 1986-01-09 1987-07-16 Kawasaki Steel Corp 燃料電池セパレ−タ−用炭素薄板の製造方法
JPH04284363A (ja) * 1991-03-12 1992-10-08 Osaka Gas Co Ltd 炭素板の製造方法
JPH04293915A (ja) * 1991-03-25 1992-10-19 Tatsuta Electric Wire & Cable Co Ltd 紫外線硬化型導電性樹脂組成物
JPH0996718A (ja) * 1995-09-28 1997-04-08 Sanyo Chem Ind Ltd 光重合性黒色塗液
JPH1184126A (ja) * 1997-09-03 1999-03-26 Mitsubishi Chem Corp カラーフィルター用光重合性組成物及びカラーフィルター
JPH11133599A (ja) * 1997-10-29 1999-05-21 Hitachi Chem Co Ltd 着色画像形成用感光材、感光性エレメント、これを用いたカラーフィルターの製造法及びカラーフィルター
JPH11199639A (ja) * 1998-01-14 1999-07-27 Japan U Pica Co Ltd 軟質樹脂組成物及び成形品
EP0933825A2 (en) * 1998-01-19 1999-08-04 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and manufacturing method for the same
JP2000056454A (ja) * 1998-08-04 2000-02-25 Toppan Printing Co Ltd 感光性ペースト組成物及びそれを用いた構造物の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62160661A (ja) * 1986-01-09 1987-07-16 Kawasaki Steel Corp 燃料電池セパレ−タ−用炭素薄板の製造方法
JPH04284363A (ja) * 1991-03-12 1992-10-08 Osaka Gas Co Ltd 炭素板の製造方法
JPH04293915A (ja) * 1991-03-25 1992-10-19 Tatsuta Electric Wire & Cable Co Ltd 紫外線硬化型導電性樹脂組成物
JPH0996718A (ja) * 1995-09-28 1997-04-08 Sanyo Chem Ind Ltd 光重合性黒色塗液
JPH1184126A (ja) * 1997-09-03 1999-03-26 Mitsubishi Chem Corp カラーフィルター用光重合性組成物及びカラーフィルター
JPH11133599A (ja) * 1997-10-29 1999-05-21 Hitachi Chem Co Ltd 着色画像形成用感光材、感光性エレメント、これを用いたカラーフィルターの製造法及びカラーフィルター
JPH11199639A (ja) * 1998-01-14 1999-07-27 Japan U Pica Co Ltd 軟質樹脂組成物及び成形品
EP0933825A2 (en) * 1998-01-19 1999-08-04 Toyota Jidosha Kabushiki Kaisha Separator for fuel cell and manufacturing method for the same
JP2000056454A (ja) * 1998-08-04 2000-02-25 Toppan Printing Co Ltd 感光性ペースト組成物及びそれを用いた構造物の製造方法

Also Published As

Publication number Publication date
AU2001241104A1 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
JP2001151833A (ja) 導電性に優れた硬化性樹脂組成物及びその硬化体
KR100458797B1 (ko) 도전성 경화성 수지조성물과 그 경화체 및 그를 이용한성형물
Bairan et al. Effect of carbon nanotubes loading in multifiller polymer composite as bipolar plate for PEM fuel cell
US20020086198A1 (en) Electrically conducting curable composition and cured product thereof
CN101155871A (zh) 导电可固化树脂组合物,其固化产品及其模塑制品
US20050001352A1 (en) Preparation of fuel cell composite bipolar plate
Asif et al. Nanoclay reinforced thermoplastic toughened epoxy hybrid syntactic foam: Surface morphology, mechanical and thermo mechanical properties
CN113185646A (zh) 导电3d打印材料及其制备方法
JP4883361B2 (ja) 導電性硬化性樹脂組成物、その硬化体、及びその成形体
Ahmadi et al. Rubber modification of unsaturated polyester resin with core–shell rubber particles: effect of shell composition
JP5954171B2 (ja) ガラスを含有する熱可塑性アクリル樹脂組成物及びその成形体
Wang et al. Digital light processing of highly filled polymer composites with interface-mediated mechanical properties
US7604755B2 (en) Electroconductive resin composition and separator for fuel cell
CA2768958C (en) Fuel cell separator
CN102124054B (zh) 不饱和酯系树脂组合物、不饱和酯系固化物以及它们的制造方法
Pashaei et al. Investigation on mechanical, thermal and morphological behaviors of turmeric spent incorporated vinyl ester green composites
WO2002022699A1 (fr) Composition de resine polymerisable conductible et objet polymerise obtenu a partir de cette composition
JP4727441B2 (ja) 黒色ビニルエステル樹脂成形材料
Bairan et al. Effect of CNTS on the electrical and mechanical properties of polymeric composite as pem fuel cell bipolar plate
JP7532636B2 (ja) 導電率が増加した組成物
JP5636169B2 (ja) 熱硬化性樹脂組成物及び電気電子部品
Austine Thermo-Mechanical Characterization of CNT and Basalt Hybrid Reinforced Photopolymer Composite Via 3D DLP Printing
Rojanathavorn et al. Wood Plastic Composites (WPC) from Ironwood (Xylia xylocarpa) for Wood Floor Applications
JPS6157644A (ja) 不飽和ポリエステル樹脂組成物
Karunakaran et al. Impact of Graphite on Unsaturated Polyester/graphite Composites for the Fabrication of Bipolar Plates.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase