WO2002016962A1 - Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna - Google Patents

Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna Download PDF

Info

Publication number
WO2002016962A1
WO2002016962A1 PCT/JP2001/003055 JP0103055W WO0216962A1 WO 2002016962 A1 WO2002016962 A1 WO 2002016962A1 JP 0103055 W JP0103055 W JP 0103055W WO 0216962 A1 WO0216962 A1 WO 0216962A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
antenna element
antenna
shield case
target frequency
Prior art date
Application number
PCT/JP2001/003055
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Fujiwara
Original Assignee
Cos Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cos Co., Ltd. filed Critical Cos Co., Ltd.
Priority to AU2001293353A priority Critical patent/AU2001293353A1/en
Publication of WO2002016962A1 publication Critical patent/WO2002016962A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole

Definitions

  • Electromagnetic wave radar antenna manufacturing method
  • the present invention relates to a method for manufacturing an electromagnetic wave radar antenna and an electromagnetic wave radar antenna, and more particularly, to a method suitable for an electromagnetic wave exploration machine for non-shattering exploration of underground objects and the like.
  • An electromagnetic wave probe has been developed that radiates electromagnetic waves from an antenna and receives and analyzes reflected waves from an object to perform exploration.It is used for landmine exploration, buried object exploration, or partial exploration of pillars in buildings, etc. Have been.
  • Such an electromagnetic wave probe determines the distance to an object based on the time required from the emission of the electromagnetic wave to the reception of the reflected wave, and determines the physical properties of the object based on the speed of the electromagnetic wave passing through the object.
  • a conventional electromagnetic wave probe when an electromagnetic wave radiated from a transmitting antenna is observed by a spectrum analyzer, as shown in a frequency spectrum diagram of FIG. 10, the electromagnetic wave includes an extremely wide band frequency component. That is, even if the products have the same specifications, the output frequency components fluctuate due to the very small component constants of the transmission circuit, errors in the antenna shape, or wiring arrangements, and as a result, disordered broadband electromagnetic waves are transmitted.
  • the frequency and output level of the radiated electromagnetic waves varied from product to product.
  • the frequency radiated from the transmitting antenna and the radiation level vary for each spacecraft and it is not possible to narrow down to a specific frequency. Therefore, the optimum receiving frequency (center frequency) and receiving bandwidth must be set for each device one by one. In some cases, the receiving frequency (center frequency) f0 of the spacecrafts may fluctuate by as much as 100 MHz.
  • the present invention proposes the frequency of electromagnetic waves radiated from an antenna to a target frequency and reduces unnecessary radiation components, thereby making it possible to easily perform accurate measurement.
  • the purpose of the present invention is to provide a lightweight, inexpensive electromagnetic radar antenna that can be manufactured, and at the same time, to provide a method of manufacturing the electromagnetic radar antenna. Disclosure of the invention
  • the present invention proposed to achieve the above object is a method for manufacturing an electromagnetic wave radar antenna, in which a transmitting antenna element that receives an inpulse output from a transmitting unit and radiates an electromagnetic wave is attached to a shield case. That is, a step of setting the dimensions of the transmission antenna element and the shield case in relation to the wavelength of the target frequency so that the frequency of the electromagnetic wave radiated from the transmission antenna element matches the target frequency, Forming the transmission antenna element and the shield case with the specified dimensions.
  • the target frequency in the present invention is a frequency determined in advance when designing an electromagnetic wave radar antenna, and the dimensional relationship of the present invention for radiating the target frequency is proposed. Therefore, the frequency is naturally different from the frequency determined by the adjustment of the receiving side as in the conventional antenna.
  • an electromagnetic wave having a target frequency within a band of approximately 300 MHz to 3 GHz is intermittently radiated by feeding an impulse to the transmitting antenna element.
  • the transmission antenna element alone, and the integrated structure consisting of the shield case, the feeder line, etc., that includes the transmission antenna element and is distributed around the transmission antenna element is distributed. It is necessary to analyze equivalently as a constant circuit.
  • the inductance component and capacitance component of such a distributed constant circuit fluctuate due to slight differences in the shape and material of the antenna element and shield case, etc. Increase.
  • it is difficult to analyze an equivalent distributed constant circuit because the electromagnetic wave itself is a transient phenomenon that is excited not by a repetitive signal but by an impulse.
  • the present inventors have made various changes in the shape of the antenna element and the shape of the shield case to make the frequency component of the electromagnetic wave radiated from the transmitting antenna coincide with the target frequency and to reduce the frequency component outside the target as much as possible. Consideration was added. As a result, It has been found that unnecessary radiation can be reduced while increasing the output level of the target frequency by providing a predetermined relationship between the shape and dimensions of the antenna element and the shield case.
  • a distributed constant circuit having an integral structure capable of amplifying the electromagnetic wave component of the target frequency and attenuating the electromagnetic wave component of the frequency other than the target was successfully formed by giving a predetermined relationship to the dimensions and shape.
  • a stable high output can be obtained by applying a DC bias to the transmitting antenna element in advance.However, a configuration is adopted in which the impulse is applied without applying a bias. It is also possible to do so.
  • the electromagnetic wave radar antenna of the present invention since unnecessary radiation components are extremely low, measures for unnecessary radiation for complying with the regulations of the Radio Law can be minor. In other words, it is not necessary to take measures against unnecessary radiation by dogs, such as increasing the thickness of the shield case or covering the outside of the shield case with a thicker housing. As a result, the cost can be reduced, and the weight of the antenna alone can be reduced to about 1Z10 as compared with the conventional one, so that the antenna can be suitably used for an exploration machine that requires portability and portability. Also, since the unnecessary radiation component is small, the signal-to-noise ratio (S / N ratio) of the received signal is improved. As a result, it is not necessary to use a high-gain logarithmic amplifier or the like to separate and extract signal components close to the noise level. Become simple and stable.
  • the S / N ratio of the received signal is high and the distortion of the received signal is reduced, the calibration of the receiving base point using the initial peak point of the received waveform can be performed accurately. Also, since the S / N ratio of the received signal is high and the small signal is not lost by being buried in the noise component, it is easy to process changes in frequency (period) over time of the entire received wave including the reflected wave. It is possible to accurately determine the physical properties of an object through which electromagnetic waves pass.
  • the principle of physical property discrimination is that the relative permittivity of an object through which an electromagnetic wave passes is proportional to the square of (light speed / electromagnetic wave propagation speed).
  • the electromagnetic wave component of the target frequency is enhanced, and the electromagnetic wave component of the frequency other than the target is attenuated.
  • the output level of subharmonic components and harmonic components such as 1/2 or 2 times the target frequency, increases in addition to the target frequency due to the resonance characteristics of the distributed constant circuit corresponding to the transmitting antenna element and the shield case. I do.
  • a conductive material for the transmitting antenna element, the grounding conductor, and the shield case that is, a material for conducting current with little power loss.
  • a conductive material copper, aluminum, an aluminum alloy, or the like is preferable in consideration of conductivity, mechanical strength, workability, economy, and the like.
  • a conductor formed by applying a conductive paint or the like to the surface of a non-conductive material can be used for the shield case ⁇ transmitting antenna element.
  • the transmitting antenna element preferably has a structure in which a conductor foil is provided on a substrate such as phenol resin or epoxy resin.
  • a transmitting antenna element made of a copper plate or the like is provided with an insulator near the opening side of the shield case. It is possible to adopt various modes such as a structure for supporting the space by using a hologram.
  • An electromagnetic wave radar antenna includes: an antenna substrate having a transmission antenna element that receives an impulse output from a transmission unit and radiates an electromagnetic wave; It is reasonable to adopt a configuration that includes a hollow-shaped shield case that covers the surface on the side where the communication antenna element is provided.
  • the transmitting antenna element is formed on an antenna substrate with a pair of isosceles triangular conductive foils facing each other in a bow tie shape, and the substrate has a rectangular ground conductive foil made of conductive foil having a predetermined width so as to surround the transmitting antenna element. They can be arranged in a loop so as to be symmetrical in the front-rear and left-right directions.
  • the length of the base or side of the isosceles triangle of the transmitting antenna element can be set to approximately ⁇ wavelength of the target frequency.
  • the isosceles triangle includes an equilateral triangle, and particularly preferably, the transmitting antenna element is formed of a pair of equilateral triangular conductive foils, and the side length of the equilateral triangle is set to approximately 1/2 of the target frequency. It is better to set the wavelength.
  • the dimensions of the shield case in a direction perpendicular to the direction in which the opposing isosceles triangle (regular triangle) elements of the transmitting antenna element are arranged are set to be substantially the same length as the wavelength of the target frequency, and the depth of the shield case The dimensions are set to an integral multiple of approximately four wavelengths of the target frequency.
  • the output level of the target frequency will change. It was found to have a peak near a certain depth dimension. This is because the stored energy (resonant energy) of the transmission antenna element, the shape of the shield case, and the shape of the ground conductor at a given depth dimension for the wavelength of the target frequency is determined by a distributed constant circuit composed of an integrated structure. It is considered that this is the maximum for the target frequency. Thereby, the optimum radiation level can be obtained by appropriately changing the depth dimension.
  • the present inventors have made a plurality of prototypes of transmission antennas having the same target frequency according to the above dimensional relationship, and have determined the purpose of electromagnetic waves radiated from each antenna regardless of variations in wiring layout such as a feed line. It was also found that there was almost no frequency difference and the reproducibility was excellent. This eliminates variations in the target frequency for each device, This eliminates the need to adjust the receiver for each device, simplifies the circuit configuration, stabilizes it, and facilitates manufacturing.
  • the frequency of the electromagnetic wave radiated from the transmitting antenna of the present invention is a specific frequency (target frequency) between about 300 MHz and 3 GHz as described above, and belongs to the microwave band. Therefore, for example, when aluminum or the like is used as the shield case, the thickness of the material affects the distribution constant.
  • the inductance component when the electromagnetic wave is distributed in the shield case increases as the material thickness decreases and decreases as the thickness increases. Therefore, for the antenna shape of the present invention, the dimensions calculated by the above-described design method can be used as they are, but the thickness of the shield case or the conductor of the transmitting antenna element is not larger than the calculated dimensions. It is desirable to correct according to the thickness of the foil. In other words, when using a shield case with a small material thickness, it is possible to easily adjust to the target frequency by increasing the correction value compared to using a thick shield case.
  • the present invention it is desirable to provide a suppression resistor for suppressing the parasitic radiation of electromagnetic wave components other than the target frequency between the transmitting antenna element of the antenna substrate and the ground conductor.
  • a suppression resistor for suppressing the parasitic radiation of electromagnetic wave components other than the target frequency between the transmitting antenna element of the antenna substrate and the ground conductor.
  • an electromagnetic wave absorbing material is disposed inside a shield case so as to absorb and attenuate an electromagnetic wave component having a specific polarization plane among electromagnetic wave components excited inside a shield case including a transmitting antenna element. be able to.
  • the present inventors consider that the direction of the electric field in the electromagnetic wave radiated from the transmitting antenna element is the direction in which the opposing isosceles triangle (regular triangle) element is arranged (the direction in which the pair of conductive pins oppose).
  • a certain electromagnetic wave component contains a relatively large number of unintended frequency components. Therefore, by attenuating the electromagnetic wave component having the polarization plane with the electromagnetic wave absorbing material, the radiated electromagnetic wave of the frequency component other than the intended purpose can be further reduced, The S / N ratio of the received wave can be further improved.
  • the electromagnetic wave absorbing material it is possible to use a general-purpose material in which a conductive electromagnetic wave reflecting material is attached to a foam material or the like, and it is possible to effectively attenuate and absorb by utilizing the attenuation at the time of reflection. .
  • the transmitting antenna element and the receiving antenna element may be formed as separate bodies, but may also be formed integrally.
  • the transmitting antenna element and the receiving antenna element having the same shape as the element are formed symmetrically on the antenna substrate, including the grounding conductor, and the shield case is formed between the transmitting antenna element and the receiving antenna element.
  • a configuration including a shield partition for shielding the coupling can be provided.
  • the left-right direction is a direction orthogonal to the direction in which the pair of conductive wires face each other.
  • electromagnetic shielding between the transmitting antenna and the receiving antenna is reduced by the shield partition provided in the shield case, so that the transmitting and receiving antenna can be reduced in size and weight while maintaining the above characteristics. It can be easily manufactured and is suitable for equipment that requires carrying. Further, as a result of the action of the electromagnetic wave absorbing material, the direction of the electric field of the electromagnetic wave radiated from the transmitting antenna element becomes the right and left direction, that is, the direction from the transmitting antenna element to the receiving antenna element, and the received signal strength and SZN The ratio is improved.
  • FIG. 1 is a top view of an antenna substrate of an electromagnetic wave radar antenna according to an embodiment of the present invention.
  • FIG. 2A and 2B show a shield case of the electromagnetic wave radar antenna according to the embodiment of the present invention, wherein FIG. 2A is a top view, FIG. 2B is a cross-sectional view taken along line AA of FIG. ) Of FIG.
  • Fig. 3 shows the antenna board shown in Fig. 1 attached to the shield case shown in Fig. 2.
  • A is a top view
  • (b) is a cross-sectional view taken along the line AA of (a)
  • (c) is a cross-sectional view taken along the line BB of (a).
  • FIG. 4 is an exploded perspective view showing an assembled state when the constituent members are placed in the shield case shown in FIG. 2 and the antenna substrate shown in FIG. 1 is mounted.
  • FIG. 5 is a schematic explanatory diagram showing a waveform of a signal fed to the transmission antenna.
  • FIG. 6 is a schematic diagram showing a state in which unnecessary electromagnetic waves radiated from the electromagnetic wave radar antenna are absorbed and attenuated.
  • FIG. 7 is a frequency spectrum diagram obtained by observing an electromagnetic wave radiated from an electromagnetic wave radar antenna with a frequency spectrum analyzer.
  • FIG. 8 is a waveform diagram of a received signal of an electromagnetic wave radiated from the electromagnetic wave radar antenna.
  • FIG. 9 is a waveform diagram of a received signal of a reflected wave radiated from an electromagnetic wave radar antenna and reflected by an object.
  • FIG. 10 is a frequency spectrum diagram obtained by observing an electromagnetic wave radiated from a conventional electromagnetic wave exploration device with a frequency spectrum analyzer.
  • FIG. 11 is a reception waveform diagram of an electromagnetic wave radiated from a conventional electromagnetic wave probe.
  • FIG. 12 is a reception waveform diagram of a reflected wave radiated from a conventional electromagnetic wave probe and reflected by an object.
  • the frequency (target frequency) of the electromagnetic wave to be radiated is: f. And that wavelength is the person. And
  • FIG. 1 is a top view showing an antenna substrate 1 according to the electromagnetic wave radar antenna of the present invention.
  • the antenna substrate 1 is formed by integrally integrating a transmitting antenna T and a receiving antenna R having the same shape.
  • the design procedure of this embodiment has the following steps (1) to (4).
  • the shape of the antenna element 10 is an equilateral triangle, and the side length L is the target frequency: e. Set to 1/2 of the wavelength input of 0 .
  • F be the width of the ground conductor 13 provided around the transmitting antenna ⁇ ⁇ ⁇ and the receiving antenna R.
  • the width F is set to a value smaller than LZ2.
  • the vertical length of the antenna substrate 1 is set to ⁇ , and the vertical length ⁇ is set to be longer than the total length of the opposing antenna elements 10 and 10 plus twice the width F of the ground conductor 13.
  • the correction coefficient is a value determined according to the thickness t of the shield case 2 and the thickness of the copper foil of the antenna element 10 and the ground conductor 13, and is a coefficient that depends particularly on the thickness of the shield case 2.
  • the correction coefficient is set to 1 mm.
  • the width and length of the shield case 2 are the same as those of the antenna substrate 1.
  • the side length L of the antenna element 10, the width F of the ground conductor 13, the horizontal length 2W, the vertical length H, and the depth D of the antenna substrate 1 are wavelengths; Set in relation to. Then, in each of the transmitting antenna T and the receiving antenna R, the antenna element 10 and the grounding conductor 13 are arranged on the antenna substrate 1 so as to be symmetrical in the front-rear direction and the left-right direction.
  • the design procedure of the dimensions of the main parts of the antenna substrate 1 and the shield case 2 has been described.
  • an embodiment according to the electromagnetic wave radar antenna of the present invention made according to this design procedure will be described with reference to the drawings. Further details will be described.
  • the antenna substrate 1 is formed by etching and removing unnecessary portions of the copper foil on the surface of the substrate 12 made of glass epoxy resin except for the transmitting antenna element 11 and the ground conductor 13 by etching.
  • a ground conductor (copper foil) 13 having a width F is provided in a rectangular loop along the side edge of the substrate 12 so as to surround the transmitting antenna element 11 so as to be symmetrical in the front-rear and left-right directions.
  • a small gap is provided between the tops 10 & and 10 a of the antenna elements 10 and 10 to insulate them, and a feeder described later is soldered to the tops 10 a and 10 a.
  • the length L of one side of the antenna element 10 is 1/2 of the width W of the substrate 12, that is, 1/2 of the wavelength 0 , and the top 1 Ob, 10 b and the top 10 c of the antenna element 10 are set. , 10c are soldered with a suppression resistor 14 between the ground conductor 13 for suppressing the parasitic vibration.
  • the width F of the ground conductor 12 is not particularly limited as long as the symmetry of the arrangement on the substrate 12 is maintained.However, in consideration of conductivity when the ground conductor 12 is mounted on a shield case described later, the width F is larger than the width of the shield case mounting bent surface. To make it wider.
  • the vertical length H of the transmitting antenna T is not particularly limited, but is set to be longer than the total length of the transmitting antenna element 11 in the vertical direction plus twice the width F of the ground conductor 13.
  • the opening 15 provided on the grounding conductor 13 is a screw insertion hole for attaching and fixing the antenna substrate 1 to the shield case 2 as described later.
  • the ground conductor 13 of the antenna substrate 1 is attached and fixed to the bent portion 20 in a conductive contact state.
  • the width F of the bent portion 20 is set to be smaller than the width F of the ground conductor 13. I have.
  • Depth D is the target frequency f. Wavelength ⁇ . Respect, an integral multiple of Z4, Sokuchi, tut 0 4, 2 input. / 4, 3 / 4, 4 people. / 4, ⁇ ⁇ - ⁇ / 4 ( ⁇ is an integer), which is the length of the target frequency f.
  • the dimension of the depth D can be set to any length so that the output level becomes maximum.
  • a shield plate (shield bulkhead) made of aluminum is used to reduce electromagnetic coupling between the transmitting antenna T and the receiving antenna R over the entire length in the vertical direction.
  • the shield plate 21 divides the shield case 2 into a transmission side T1 and a reception side R1.
  • a shield plate 21 having a thickness t1 of 2 mm is used.
  • the screw hole 22 is for inserting a screw for fixing the antenna substrate 1.
  • Fig. 3 (a) is a top view showing the electromagnetic wave radar antenna AT, that is, the antenna board 1 attached to the shield case 2, and Fig. 3 (b) is a cross-sectional view taken along the line A-A of (a).
  • Figure (c) is a cross-sectional view taken along the line BB of (a).
  • the antenna substrate 1 is attached and fixed to the screw holes 22 of the shield case 2 using three screws 23 so that the surface on which the transmitting antenna element 11 and the ground conductor 13 are provided faces downward.
  • the ground conductor 13 of the antenna substrate 1 is fixed in a state of being in conductive contact with the bent portion 20 and the shield plate 21.
  • the transmitting antenna T of the antenna board 1 is positioned so as to cover the opening of the transmitting side ⁇ 1 of the shield case 2, and the receiving antenna R of the antenna board 1 is connected to the receiving side R 1 of the shield case 2. It is located so as to cover the opening. That is, in the antenna A A, the electromagnetic wave excited by the antenna substrate 1 including the shield case 2 is transmitted through the antenna substrate 1 itself and radiated forward.
  • the transmission / reception unit, the electromagnetic wave absorbing material, the power supply line, and the like are incorporated at the same time before the antenna substrate 1 is fixed to the shield case 2.
  • the transmission case 40 and the reception unit 50 and the electromagnetic wave absorbers 30 and 30 are provided on the transmission side T 1 and the reception side R 1 shielded by the shield plate 21 in the shield case 2.
  • the antenna board 1 is stored and fixed so as to cover the antenna board 1.
  • feed lines 16 and 17 are connected to the tops 10a and 10a of the antenna element 10, respectively. That is, a coaxial cable is used for the feeder line 16, the core wire is soldered to the top 10a of one antenna element 10 and the top 10a of the antenna element 10 to which the shield wire faces. Soldered to a.
  • the other end of the feeder line 16 is provided with a high-frequency bin connector 16a.
  • the transmission unit 40a is provided.
  • the transmitting unit 40 is provided with a connector 4 Ob, and receives power and control signals from a signal processing unit (not shown) provided separately by connecting the connector 41.
  • a coaxial cable is also used for the feeder line 17, the core wire is soldered to the top 10 a of one antenna element 10, and the shield wire is connected to the top 10 a of the antenna element 10 facing the antenna element 10. Soldered.
  • a high-frequency pin connector 17a is provided at the other end of the feeder line 17, and by connecting this pin connector 17a to the connector 50a on the receiving unit 50 side, the receiving antenna R Received signal captured Is transmitted to the reception unit 50 side.
  • the receiving unit 50 is provided with a connector 50b. By connecting the connector 51, power is supplied from a separately provided signal processing unit (not shown), and a receiving signal and a trigger signal are provided. And so on.
  • the shield case 2 is provided with openings 2 a and 2 b, and is connected to the control unit side through wires derived from the transmission unit 40 and the reception unit 50.
  • the electromagnetic wave radar antenna AT according to the present invention is reduced in weight by mounting the antenna substrate 1 on the shield case 2 made of thin aluminum and housing the transmission unit 40 and the reception unit 50 inside. It has a structure that is extremely lightweight compared to conventional antennas that give priority to measures against unnecessary radiation.
  • FIG. 5 shows a signal transmitted from the transmission unit 40 to the transmission antenna element 11 via the feeder line 16 with time on the horizontal axis and voltage level on the vertical axis.
  • a DC bias is applied so that the core of the power supply line 16 has a voltage Vd with respect to the shield line. That is, a DC bias current is applied via the antenna element 10, the suppression resistor 14, and the ground conductor 13 facing each other.
  • an electromagnetic wave is radiated from the antenna substrate 1 including the shield case 2 by applying an impulse S between the antenna elements 10 at predetermined intervals To via the feeder line 16.
  • the transmission unit 40 can apply a pulse to the transmission antenna element 11 by controlling and driving the DC bias voltage in an impulse form, thereby simplifying the circuit configuration.
  • FIG. 6 schematically shows a state in which a specific electromagnetic wave component radiated from the transmitting antenna T is absorbed by the electromagnetic wave absorbing material 30.
  • the electromagnetic wave absorber 30 is a general-purpose thing made by sticking a conductive radio wave reflective material to a foam material, and effectively attenuates by utilizing the attenuation at the time of reflection by the reflective material. It exhibits a large attenuation characteristic with respect to electromagnetic waves of a specific polarization plane depending on the direction.
  • the polarization component Eo having an electric field in the width W direction of the shield case 2 is not absorbed, and the shield case 2 is shown as a broken line in FIG. 6 (b).
  • the electromagnetic wave absorber 30 is disposed so as to attenuate the polarization component E1 having an electric field in the longitudinal H direction to the polarization component EV indicated by a solid line. That is, since the electromagnetic wave having the polarization component E1 in the longitudinal H direction of the shield case 2 contains some unnecessary frequency components different from the target frequency fo, it is necessary to absorb and remove the unnecessary frequency components. Unnecessary radiation is further reduced.
  • FIG. 7 shows the result of measuring the electromagnetic wave radiated from the transmitting antenna T of the electromagnetic wave radar antenna AT of the present embodiment and captured by the receiving antenna R with a frequency spectrum analyzer.
  • Target frequency f. It can be seen that the component of (1) protrudes and other unnecessary frequency components are effectively attenuated.
  • the receiving unit side appropriately selects the receiving bandwidth to obtain, for example, the target frequency f. Different from f. ⁇ ⁇ 2 frequencies, or 2 f. It is also possible to perform necessary measurement processing by receiving the frequency of
  • FIG. 8 is a waveform diagram in which the reception unit 50 amplifies the reflection wave of the electromagnetic wave radiated from the electromagnetic wave radar antenna AT of the present embodiment at the antenna substrate 1 and receives and amplifies the reflected wave.
  • the target frequency f because the unnecessary frequency components are extremely reduced. It exhibits an approximately sinusoidal, distortion-free attenuation waveform based on, and is accurately demodulated down to minute amplitudes.
  • FIG. 9 shows a reception waveform of a reflected wave of an electromagnetic wave radiated from the electromagnetic wave radar antenna AT of the present embodiment by an object. Since the received signal does not have unnecessary frequency components superimposed on it as in the waveform of Fig. 8, it has an excellent S / N ratio and can clearly distinguish the base point, end point, and periodic fluctuation of the reflected wave RT. Peak point (1st (Peak point or second peak point, etc.) P can be easily determined, and accurate calibration and measurement can be performed.
  • emitted from a transmission antenna can be matched with a target frequency by a simple design method, and an unnecessary frequency component can be reduced.
  • unnecessary radiation measures for complying with the regulations of the Radio Law can be made small, and the antenna itself can be made extremely lightweight and low-cost, which is suitable for portable equipment.
  • the circuit configuration is simple and stable, and the calibration of the receiving base point can be performed accurately. Furthermore, it is possible to accurately determine the physical properties of the object through which the electromagnetic wave passes. It is possible to greatly expand the application of electromagnetic wave exploration for industrial use and consumer use.

Abstract

A lightweight, low-cost electromagnetic wave radar antenna is provided which enables a precise measurement by adjusting the frequency of an electromagnetic wave radiated from the antenna to an object frequency, while reducing unwanted radiated components. An electromagnetic wave radar antenna (AT) comprises an antenna board (1) having a transmitting antenna element (11) receptive of an impulse outputted from a transmitting unit for radiating an electromagnetic wave; and a hollow, rectangular shield case (2) overlying one surface of the antenna board (1); wherein the dimensions of the antenna board (1) and shield case (2) are so determined as to be in a predetermined relationship with each other in accordance with the wavelength of an object frequency so as to cause the electromagnetic wave of the object frequency to be radiated from the transmitting antenna element (11).

Description

明細書 電磁波レーダァンテナの製造方法おょぴ電磁波レーダァンテナ 技術分野  Description Electromagnetic wave radar antenna manufacturing method Electromagnetic wave radar antenna
本発明は電磁波レーダアンテナの製造方法および電磁波レーダアンテナに係り、 更に詳しくは、 地中埋設物などを非破壌探査するための電磁波探査機などに好適 なものに関する。 背景技術  The present invention relates to a method for manufacturing an electromagnetic wave radar antenna and an electromagnetic wave radar antenna, and more particularly, to a method suitable for an electromagnetic wave exploration machine for non-shattering exploration of underground objects and the like. Background art
アンテナから電磁波を輻射し、 物体からの反射波を受信解析して探査を行うよ うにした電磁波探査機が開発され、 地雷探査や埋設物探査あるいは建造物の柱な どの內部探査などを目的として用いられている。  An electromagnetic wave probe has been developed that radiates electromagnetic waves from an antenna and receives and analyzes reflected waves from an object to perform exploration.It is used for landmine exploration, buried object exploration, or partial exploration of pillars in buildings, etc. Have been.
このような電磁波探査機は、 電磁波を輻射してから反射波が受信されるまでの 所要時間によって物体までの距離を求めると共に、 当該物体を通過する電磁波の 速度によって物体の物性を判別するもので探査対象を非破壊測定するものである。 ところが、 従来の電磁波探査機では送信アンテナから輻射される電磁波をスぺ クトラムアナライザで観測すると、 図 1 0の周波数スぺクトル図に示すように、 極めて広帯域の周波数成分を含むものであった。 則ち、 同一仕様の製品であって も、 送信回路の極僅かな部品定数やアンテナ形状の誤差或いは配線の引き回しな どによって出力される周波数成分が変動し、 結果として無秩序な広帯域電磁波を 送信アンテナから輻射するものであり、 製品毎に輻射される電磁波の周波数およ び出力レベルがばらばらであつた。  Such an electromagnetic wave probe determines the distance to an object based on the time required from the emission of the electromagnetic wave to the reception of the reflected wave, and determines the physical properties of the object based on the speed of the electromagnetic wave passing through the object. Non-destructive measurement of the object to be searched. However, in a conventional electromagnetic wave probe, when an electromagnetic wave radiated from a transmitting antenna is observed by a spectrum analyzer, as shown in a frequency spectrum diagram of FIG. 10, the electromagnetic wave includes an extremely wide band frequency component. That is, even if the products have the same specifications, the output frequency components fluctuate due to the very small component constants of the transmission circuit, errors in the antenna shape, or wiring arrangements, and as a result, disordered broadband electromagnetic waves are transmitted. The frequency and output level of the radiated electromagnetic waves varied from product to product.
従って、 送信アンテナから輻射された電磁波を受信ァンテナで捕らえて所定の 周波数帯域幅を有する受信部 (不図示) で増幅すると、 図 1 1に示すように、 本 来正弦波に近い減衰波形に所定帯域の周波数成分が重畳して極めて歪んだ波形を 呈していた。 Therefore, when the electromagnetic wave radiated from the transmitting antenna is captured by the receiving antenna and amplified by the receiving unit (not shown) having a predetermined frequency bandwidth, as shown in FIG. 11, a predetermined attenuation waveform close to the original sine wave is obtained. A very distorted waveform with the frequency components of the band superimposed Was presenting.
このように探査機毎に送信アンテナから輻射される周波数および輻射レベルが ばらついて特定の周波数に絞ることができないため、 機器毎に最適な受信周波数 (中心周波数) および受信帯域幅を逐一設定しなければならず、 手間が掛かるう えに、 探査機相互の受信周波数 (中心周波数) f 0に 1 0 0 M H zものばらつきが 生じることもあった。  As described above, the frequency radiated from the transmitting antenna and the radiation level vary for each spacecraft and it is not possible to narrow down to a specific frequency. Therefore, the optimum receiving frequency (center frequency) and receiving bandwidth must be set for each device one by one. In some cases, the receiving frequency (center frequency) f0 of the spacecrafts may fluctuate by as much as 100 MHz.
また、 図 1 2に示すように物体で反射した反射波を復調すると、 図 1 0で示し た受信波形と同様に受信波全体に不要周波数成分が重畳して歪みを呈し、 信号対 雑音比 ( S/N比) が極端に悪化していた。 このため、 例えば受信波形の基点 (開始点) を第 1ピーク点 Pで校正するような場合、 歪みによってピーク点が不 明瞭になり正確な校正が困難であった。 また、 S/N比の悪化により反射波成分 R Tが雑音成分に埋もれて基点および周期が不明瞭になり、 計測結果の信頼性に 乏しいものであった。  When the reflected wave reflected by the object is demodulated as shown in Fig. 12, unnecessary frequency components are superimposed on the entire received wave to give a distortion, similar to the received waveform shown in Fig. 10, and the signal-to-noise ratio ( (S / N ratio) was extremely deteriorated. For this reason, for example, when the base point (start point) of the received waveform is calibrated at the first peak point P, the peak point becomes unclear due to distortion, and accurate calibration is difficult. In addition, the reflected wave component RT was buried in the noise component due to the deterioration of the S / N ratio, and the base point and the period became unclear, and the reliability of the measurement results was poor.
更に、 電波法の規制により、 輻射される電磁波成分のうち目的周波数を除く不 要輻射成分を規定値以下に低減しなければならず、 アンテナの輻射開口を除く周 囲を分厚いシールドケースで覆ったり、 更にハウジングを被せるような対策を施 さねばならなかった。 例えば、 従来のアンテナ単体の標準的な製品 (測定深度 1 . 5 m) にあっては不要輻射の抑圧を優先するがために 1 O k g f以上もの重量が あり、 携帯性、 可搬性を目的とする機器への適用が困難なうえにコストの増加を 招いていた。  In addition, due to the regulations of the Radio Law, unnecessary radiation components other than the target frequency among the radiated electromagnetic wave components must be reduced to a specified value or less, and the surroundings other than the radiation opening of the antenna may be covered with a thick shield case. However, measures had to be taken to cover the housing. For example, the standard product of a conventional antenna alone (measurement depth 1.5 m) weighs more than 1 Okgf in order to give priority to suppression of unnecessary radiation, and is intended for portability and portability. In addition, it was difficult to apply the system to the equipment and the cost increased.
このような事情に鑑みて提案される本発明は、 アンテナから輻射される電磁波 の周波数を目的とする周波数に合わせると共に不要輻射成分を低減させ、 これに よって、 正確な測定を容易に行うことができ、 しかも軽量で安価な電磁波レーダ アンテナを提供することを目的としており、 同時にこの電磁波レーダアンテナの 製造方法を提供することを目的としている。 発明の開示 The present invention, proposed in view of such circumstances, adjusts the frequency of electromagnetic waves radiated from an antenna to a target frequency and reduces unnecessary radiation components, thereby making it possible to easily perform accurate measurement. The purpose of the present invention is to provide a lightweight, inexpensive electromagnetic radar antenna that can be manufactured, and at the same time, to provide a method of manufacturing the electromagnetic radar antenna. Disclosure of the invention
前記目的を達成するために提案される本発明は、 送信ュニットから出力される ィンパルスを受けて電磁波を輻射する送信アンテナ素子をシールドケースに取り 付けて成る電磁波レーダアンテナの製造方法である。 則ち、 送信アンテナ素子か ら輻射される電磁波の周波数を目的周波数と一致させるように当該目的周波数の 波長に応じて前記送信アンテナ素子および前記シールドケースの寸法を関係づけ て設定する工程と、 設定された寸法で前記送信アンテナ素子およびシールドケー スを形成する工程とを有する製造方法である。  The present invention proposed to achieve the above object is a method for manufacturing an electromagnetic wave radar antenna, in which a transmitting antenna element that receives an inpulse output from a transmitting unit and radiates an electromagnetic wave is attached to a shield case. That is, a step of setting the dimensions of the transmission antenna element and the shield case in relation to the wavelength of the target frequency so that the frequency of the electromagnetic wave radiated from the transmission antenna element matches the target frequency, Forming the transmission antenna element and the shield case with the specified dimensions.
ここに、 本発明で言う目的周波数とは電磁波レーダアンテナの設計に際して事 前に定められる周波数のことであり、 この目的周波数を輻射させるベく本発明の 寸法関係が提案される。 従って、 従来アンテナのように受信側の調整などによつ て定まる周波数とはおのずと異なるものである。  Here, the target frequency in the present invention is a frequency determined in advance when designing an electromagnetic wave radar antenna, and the dimensional relationship of the present invention for radiating the target frequency is proposed. Therefore, the frequency is naturally different from the frequency determined by the adjustment of the receiving side as in the conventional antenna.
本発明の電磁波レーダアンテナでは、 ィンパルスを送信アンテナ素子に給電す ることにより、 概ね 3 0 0 M H zから 3 G H zの帯域内の目的周波数の電磁波を 間欠的に輻射させるものである。 このような超高周波帯域において輻射周波数成 分を解析するにあたっては送信アンテナ素子単体で論じることができず、 送信ァ ンテナ素子を含み周囲に配されるシールドケース、 給電線などで成る一体構造を 分布定数回路として等価的に解析する必要がある。  In the electromagnetic wave radar antenna according to the present invention, an electromagnetic wave having a target frequency within a band of approximately 300 MHz to 3 GHz is intermittently radiated by feeding an impulse to the transmitting antenna element. When analyzing the radiated frequency component in such an ultra-high frequency band, it is impossible to discuss the transmission antenna element alone, and the integrated structure consisting of the shield case, the feeder line, etc., that includes the transmission antenna element and is distributed around the transmission antenna element is distributed. It is necessary to analyze equivalently as a constant circuit.
しかし、 このような分布定数回路のィンダク夕ンス成分やキャパシタンス成分 はアンテナ素子やシールドケースなどの形状や材質の僅かな違いによって変動す るうえ、 給電線などによるストレーキャパシティが加わるために変動要素が増大 する。 また、 電磁波自体が繰り返し信号ではなくインパルスで励起される過渡現 象であるため等価的な分布定数回路を解析することは困難である。  However, the inductance component and capacitance component of such a distributed constant circuit fluctuate due to slight differences in the shape and material of the antenna element and shield case, etc. Increase. In addition, it is difficult to analyze an equivalent distributed constant circuit because the electromagnetic wave itself is a transient phenomenon that is excited not by a repetitive signal but by an impulse.
そこで本発明者らは、 送信アンテナから輻射される電磁波の周波数成分を目的 周波数に一致させ、 且つ、 目的外の周波数成分を極力低減させるベくアンテナ素 子の形状およびシールドケースの形状に種々の検討を加えた。 その結果、 送信ァ ンテナ素子およびシールドケースの形状寸法に所定の関係を持たせることで目的 周波数の出力レベルを増加させつつ不要輻射が低減することを知見した。 Therefore, the present inventors have made various changes in the shape of the antenna element and the shape of the shield case to make the frequency component of the electromagnetic wave radiated from the transmitting antenna coincide with the target frequency and to reduce the frequency component outside the target as much as possible. Consideration was added. As a result, It has been found that unnecessary radiation can be reduced while increasing the output level of the target frequency by providing a predetermined relationship between the shape and dimensions of the antenna element and the shield case.
言い換えれば、 目的周波数の電磁波成分を増幅し目的外の周波数の電磁波成分 を減衰させ得る一体構造で成る分布定数回路を寸法形状に所定の関係を持たせる ことによって構成することに成功した。  In other words, a distributed constant circuit having an integral structure capable of amplifying the electromagnetic wave component of the target frequency and attenuating the electromagnetic wave component of the frequency other than the target was successfully formed by giving a predetermined relationship to the dimensions and shape.
尚、 送信アンテナへインパルスを印加する場合、 予め送信アンテナ素子に直流 バイアスを加えた状態で印加することにより安定した高出力を得ることができる が、 バイアスを加えない状態でィンパルスを印加する構成とすることも可能であ る。  When applying an impulse to the transmitting antenna, a stable high output can be obtained by applying a DC bias to the transmitting antenna element in advance.However, a configuration is adopted in which the impulse is applied without applying a bias. It is also possible to do so.
本発明の電磁波レーダアンテナによれば、 不要輻射成分が極めて低いので電波 法の規制に準拠するための不要輻射対策が軽微で良い。 則ち、 シ一ルドケースの 厚さを増したり、 或いはシールドケースの外側から更に分厚いハウジングで覆う などの犬がかりな不要輻射対策を施す必要がなくなる。 これにより、 コストを削 減できるうえに従来に比べてアンテナ単体の重量を 1 Z 1 0程度まで削減するこ とができ、 携帯性、 可搬性を要する探査機などに好適に用いることができる。 また、 不要輻射成分が少ないので、 受信信号の信号対雑音比 (S /N比) が向 上する。 これにより、 雑音レベルに近い信号成分を分離抽出するために高利得の 対数増幅器などを用いる必要がなく、 通常のリニア増幅器を用いるだけで充分な 信号レベルと S /N比が確保され回路構成が単純且つ安定になる。  According to the electromagnetic wave radar antenna of the present invention, since unnecessary radiation components are extremely low, measures for unnecessary radiation for complying with the regulations of the Radio Law can be minor. In other words, it is not necessary to take measures against unnecessary radiation by dogs, such as increasing the thickness of the shield case or covering the outside of the shield case with a thicker housing. As a result, the cost can be reduced, and the weight of the antenna alone can be reduced to about 1Z10 as compared with the conventional one, so that the antenna can be suitably used for an exploration machine that requires portability and portability. Also, since the unnecessary radiation component is small, the signal-to-noise ratio (S / N ratio) of the received signal is improved. As a result, it is not necessary to use a high-gain logarithmic amplifier or the like to separate and extract signal components close to the noise level. Become simple and stable.
更に、 受信信号の S /N比が高く受信信号の歪みが低減するので、 受信波形の 初期ピーク点などを用いた受信基点の校正を正確に行うことができる。 また、 受 信信号の S /N比が高く微少信号が雑音成分に埋もれて失われることがないので、 反射波を含む受信波全体の時間経過に応じた周波数 (周期) 変化を容易に処理出 力でき、 電磁波が通過する物体の精密な物性判別を行うことができる。  Furthermore, since the S / N ratio of the received signal is high and the distortion of the received signal is reduced, the calibration of the receiving base point using the initial peak point of the received waveform can be performed accurately. Also, since the S / N ratio of the received signal is high and the small signal is not lost by being buried in the noise component, it is easy to process changes in frequency (period) over time of the entire received wave including the reflected wave. It is possible to accurately determine the physical properties of an object through which electromagnetic waves pass.
これにより、 使用者を問わずに正確な測定ができると共に、 従来行うことので きなかった物体や地層の判別、 漏水判別などの探査が可能となり、 産業用、 民生 用を問わず使用目的が拡大される。 This enables accurate measurement regardless of the user, and enables exploration of objects and formations that could not be performed conventionally, such as discrimination of water leakage, etc. The purpose of use is expanded regardless of use.
尚、 物性判別の原理について簡単に述べると、 電磁波が通過する物体の比誘電 率は (光速/電磁波伝搬速度) の平方に比例する。 これにより、 物体中を通過す る電磁波の速度 (電磁波の周期) を受信波から算出し通過物体の比誘電率を求め ることにより、 得られた比誘電率に基づいて物性判別および物体の特定を行うこ とが可能となる。  In brief, the principle of physical property discrimination is that the relative permittivity of an object through which an electromagnetic wave passes is proportional to the square of (light speed / electromagnetic wave propagation speed). By calculating the speed (period of the electromagnetic wave) of the electromagnetic wave passing through the object from the received wave and calculating the relative permittivity of the passing object, the physical properties are determined and the object is identified based on the obtained relative permittivity. Can be performed.
本発明の電磁波レーダアンテナによれば、 送信アンテナ素子に給電されるィン パルス成分のうち目的周波数の電磁波成分が増強され目的外の周波数の電磁波成 分が減衰される。 この場合、 送信アンテナ素子やシールドケースに対応した分布 定数回路の共振性により目的周波数以外にも目的周波数の 1 / 2倍、 或いは、 2 倍などの低調波成分、 高調波成分の出力レベルが増大する。  According to the electromagnetic wave radar antenna of the present invention, of the impulse components fed to the transmitting antenna element, the electromagnetic wave component of the target frequency is enhanced, and the electromagnetic wave component of the frequency other than the target is attenuated. In this case, the output level of subharmonic components and harmonic components, such as 1/2 or 2 times the target frequency, increases in addition to the target frequency due to the resonance characteristics of the distributed constant circuit corresponding to the transmitting antenna element and the shield case. I do.
そこで、 受信部でこれらの周波数のうちのいずれかの周波数成分のみを選択的 に受信するように周波数帯域幅を設定して信号処理を行う構成を採ることもでき る。  Therefore, it is possible to adopt a configuration in which the signal processing is performed by setting the frequency bandwidth so that the receiving unit selectively receives only one of these frequency components.
送信アンテナ素子、 接地導体およびシールドケースは導電材料、 則ち、 電力損 失が少ない状態で電流を導くことを目的とした材料を用いるのが望ましい。 このような導電材料は、 導電性、 機械的強度、 加工性、 経済性などを考慮して 銅やアルミニウム、 アルミニゥム合金などが好適である。  It is desirable to use a conductive material for the transmitting antenna element, the grounding conductor, and the shield case, that is, a material for conducting current with little power loss. As such a conductive material, copper, aluminum, an aluminum alloy, or the like is preferable in consideration of conductivity, mechanical strength, workability, economy, and the like.
また、 非導電材の表面に導電性塗料などを塗布して成した導電体をシールドケ —スゃ送信アンテナ素子に用いることも 能である。  Further, a conductor formed by applying a conductive paint or the like to the surface of a non-conductive material can be used for the shield case ゃ transmitting antenna element.
送信アンテナ素子は、 フエノール樹脂やエポキシ樹脂などの基板上に導体箔を 設けて形成する構造が好適であるが、 例えば、 銅板などで成した送信アンテナ素 子をシールドケースの開口側近傍に絶縁体を用いて空間支持するような構造など 種々の態様を採ることが可能である。  The transmitting antenna element preferably has a structure in which a conductor foil is provided on a substrate such as phenol resin or epoxy resin.For example, a transmitting antenna element made of a copper plate or the like is provided with an insulator near the opening side of the shield case. It is possible to adopt various modes such as a structure for supporting the space by using a hologram.
本発明の電磁波レーダアンテナは、 送信ユニットから出力されるインパルスを 受けて電磁波を輻射する送信アンテナ素子を有するアンテナ基板と、 該基板の送 信アンテナ素子が設けられた側の表面を覆う中空方形状のシ一ルドケースとを備 えた構成とするのが合理的である。 An electromagnetic wave radar antenna according to the present invention includes: an antenna substrate having a transmission antenna element that receives an impulse output from a transmission unit and radiates an electromagnetic wave; It is reasonable to adopt a configuration that includes a hollow-shaped shield case that covers the surface on the side where the communication antenna element is provided.
送信アンテナ素子は一対の二等辺三角形の導電箔を蝶ネクタイ状に対向させて アンテナ基板上に形成すると共に、 当該基板は送信アンテナ素子を取り囲むよう に所定幅の導電箔で成る接地導体箔を方形ループ状に配して前後左右対称となる ように形成することができる。 また、 送信アンテナ素子の二等辺三角形の底辺若 しくは側辺の長さを目的周波数の略 1 / 2波長に設定することができる。  The transmitting antenna element is formed on an antenna substrate with a pair of isosceles triangular conductive foils facing each other in a bow tie shape, and the substrate has a rectangular ground conductive foil made of conductive foil having a predetermined width so as to surround the transmitting antenna element. They can be arranged in a loop so as to be symmetrical in the front-rear and left-right directions. In addition, the length of the base or side of the isosceles triangle of the transmitting antenna element can be set to approximately 波長 wavelength of the target frequency.
ここに、 二等辺三角形には正三角形を含むものであり、 特に好ましくは、 送信 アンテナ素子を一対の正三角形の導電箔で形成し、 その正三角形の辺長を目的周 波数の略 1 / 2波長に設定するのが良い。  Here, the isosceles triangle includes an equilateral triangle, and particularly preferably, the transmitting antenna element is formed of a pair of equilateral triangular conductive foils, and the side length of the equilateral triangle is set to approximately 1/2 of the target frequency. It is better to set the wavelength.
一方、 送信アンテナ素子の対向する二等辺三角形 (正三角形) の素子が配され た方向と直交する方向における前記シールドケースの寸法を目的周波数の波長と 略同一長に設定すると共に、 シールドケースの奥行き寸法を目的周波数の略 4波長の整数倍の長さに設定している。  On the other hand, the dimensions of the shield case in a direction perpendicular to the direction in which the opposing isosceles triangle (regular triangle) elements of the transmitting antenna element are arranged are set to be substantially the same length as the wavelength of the target frequency, and the depth of the shield case The dimensions are set to an integral multiple of approximately four wavelengths of the target frequency.
これらの寸法関係のうち、 シールドケースの奥行き寸法を目的周波数の 1 Z 4 波長, 2 Z 4波長, 3 Z 4波長, 1波長 · · ·のように変化させると、 目的周波 数の出力レベルが特定の奥行き寸法の近傍でピークを有することが判明した。 これは、 目的周波数の波長に対して送信アンテナ素子の形状、 シールドケース の形状、 並びに接地導体の形状の一体構造で成る分布定数回路による蓄積エネル ギ一 (共振性エネルギー) が所定の奥行き寸法において目的周波数に対して最大 になるためと考えられる。 これにより、 奥行き寸法を適宜変更して最適な輻射レ ベルを得ることができる。  Of these dimensional relationships, if the depth of the shield case is changed to 1Z4 wavelength, 2Z4 wavelength, 3Z4 wavelength, 1 wavelength of the target frequency, the output level of the target frequency will change. It was found to have a peak near a certain depth dimension. This is because the stored energy (resonant energy) of the transmission antenna element, the shape of the shield case, and the shape of the ground conductor at a given depth dimension for the wavelength of the target frequency is determined by a distributed constant circuit composed of an integrated structure. It is considered that this is the maximum for the target frequency. Thereby, the optimum radiation level can be obtained by appropriately changing the depth dimension.
本発明者らは、 前記の寸法関係に従つて同一の目的周波数の送信アンテナを複 数試作したところ、 給電線などの配線の引き回しのばらつきにも拘わらず各々の アンテナから輻射される電磁波の目的周波数の差が殆ど生じず再現性に優れてい ることも分かった。 これにより、 機器毎の目的周波数のばらつきがなくなるので、 機器毎に受信部の調整を行うような手間が不要となり回路構成が単純化され安定 なうえに製造も容易になる。 The present inventors have made a plurality of prototypes of transmission antennas having the same target frequency according to the above dimensional relationship, and have determined the purpose of electromagnetic waves radiated from each antenna regardless of variations in wiring layout such as a feed line. It was also found that there was almost no frequency difference and the reproducibility was excellent. This eliminates variations in the target frequency for each device, This eliminates the need to adjust the receiver for each device, simplifies the circuit configuration, stabilizes it, and facilitates manufacturing.
本発明の送信アンテナから輻射される電磁波の周波数は、 前記したように概ね 3 0 0 M H zから 3 G H zの間の特定の周波数 (目的周波数) でありマイクロ波 帯に属する。 このため、 例えば、 シールドケースとしてアルミニウムなどを用い る場合、 材質の厚さが分布定数に影響を及ぼす。 シ一ルドケースに電磁波が分布 するときのインダク夕ンス成分は材厚が薄いほど増大し厚いほど低減する。 この ため、 本発明のアンテナ形状は、 上記した設計法により算出された寸法をそのま ま用いることも可能であるが、 この算出寸法に対し、 シールドケースの材厚ある いは送信アンテナ素子の導体箔の厚さに応じて補正することが望ましい。 則ち、 材厚の薄いシールドケ一スを用いる場合は厚いシールドケースを用いる場合に比 ベて補正値を大きくすることにより、 目的周波数へ容易に合わせることが可能と なる。  The frequency of the electromagnetic wave radiated from the transmitting antenna of the present invention is a specific frequency (target frequency) between about 300 MHz and 3 GHz as described above, and belongs to the microwave band. Therefore, for example, when aluminum or the like is used as the shield case, the thickness of the material affects the distribution constant. The inductance component when the electromagnetic wave is distributed in the shield case increases as the material thickness decreases and decreases as the thickness increases. Therefore, for the antenna shape of the present invention, the dimensions calculated by the above-described design method can be used as they are, but the thickness of the shield case or the conductor of the transmitting antenna element is not larger than the calculated dimensions. It is desirable to correct according to the thickness of the foil. In other words, when using a shield case with a small material thickness, it is possible to easily adjust to the target frequency by increasing the correction value compared to using a thick shield case.
前記本発明において、 アンテナ基板の送信アンテナ素子と接地導体との間に目 的周波数以外の電磁波成分の寄生輻射を抑制する抑制抵抗を設けることが望まし い。 抑制抵抗の値を適宜に設定することにより、 目的周波数の出力レベルの低下 を抑えつつ目的外の周波数帯域の出力レベルを効果的に低減できる。 これにより、 受信波における S /N比が一層改善される。  In the present invention, it is desirable to provide a suppression resistor for suppressing the parasitic radiation of electromagnetic wave components other than the target frequency between the transmitting antenna element of the antenna substrate and the ground conductor. By appropriately setting the value of the suppression resistor, it is possible to effectively reduce the output level of the frequency band other than the target while suppressing the decrease in the output level of the target frequency. This further improves the S / N ratio of the received wave.
前記本発明において、 送信アンテナ素子を含むシールドケース内部に励起され る電磁波成分のうち特定の偏波面を有する電磁波成分を吸収減衰させるようにシ —ルドケースの内部に電磁波吸収材を配した構成とすることができる。  In the present invention, an electromagnetic wave absorbing material is disposed inside a shield case so as to absorb and attenuate an electromagnetic wave component having a specific polarization plane among electromagnetic wave components excited inside a shield case including a transmitting antenna element. be able to.
本発明者らは、 送信アンテナ素子から輻射される電磁波のうち、 電界の方向が、 対向する二等辺三角形 (正三角形) の素子が配された方向 (対の導電泊が対向す る方向) である電磁波成分に目的外の周波数成分が比較的多く含まれることを知 見した。 このため、 当該偏波面を有する電磁波成分を電磁波吸収材で減衰させる ことにより、 輻射される目的外の周波数成分の電磁波を一層低減することができ、 受信波における S /N比を一層向上させることができる。 The present inventors consider that the direction of the electric field in the electromagnetic wave radiated from the transmitting antenna element is the direction in which the opposing isosceles triangle (regular triangle) element is arranged (the direction in which the pair of conductive pins oppose). We have found that a certain electromagnetic wave component contains a relatively large number of unintended frequency components. Therefore, by attenuating the electromagnetic wave component having the polarization plane with the electromagnetic wave absorbing material, the radiated electromagnetic wave of the frequency component other than the intended purpose can be further reduced, The S / N ratio of the received wave can be further improved.
尚、 電磁波吸収材としては発泡材などに導電性電波反射材を貼付した汎用のも のを用いることが可能であり、 反射時の減衰を利用して効果的に減衰吸収させる ことが可能である。  As the electromagnetic wave absorbing material, it is possible to use a general-purpose material in which a conductive electromagnetic wave reflecting material is attached to a foam material or the like, and it is possible to effectively attenuate and absorb by utilizing the attenuation at the time of reflection. .
本発明の電磁波レーダアンテナは、 送信アンテナ素子および受信アンテナ素子 を別体として成しても良いが、 一体的に成することも可能である。  In the electromagnetic wave radar antenna of the present invention, the transmitting antenna element and the receiving antenna element may be formed as separate bodies, but may also be formed integrally.
則ち、 アンテナ基板には送信アンテナ素子と当該素子と同形状を有する受信ァ ンテナ素子とが接地導体を含んで左右対称に形成されると共に、 シールドケース は送信アンテナ素子と受信アンテナ素子との電磁結合を遮蔽するためのシールド 隔壁を備えた構成とすることができる。 ここで、 上記左右方向は、 対の導電泊が 対向する方向と直交する方向である。  That is, the transmitting antenna element and the receiving antenna element having the same shape as the element are formed symmetrically on the antenna substrate, including the grounding conductor, and the shield case is formed between the transmitting antenna element and the receiving antenna element. A configuration including a shield partition for shielding the coupling can be provided. Here, the left-right direction is a direction orthogonal to the direction in which the pair of conductive wires face each other.
この送受一体型の電磁波レーダアンテナによれば、 シールドケースに設けられ たシールド隔壁によって送信アンテナ側と受信アンテナ側との電磁結合が低減さ れるので、 前記した特性を維持しつつ送受信アンテナを小型軽量化することがで き製造も容易で携帯を要する機器に好適である。 さらに、 送信アンテナ素子から 輻射される電磁波は、 上記電磁波吸収材の作用の結果、 その電界の方向が、 左右 方向、 即ち送信アンテナ素子から受信アンテナ素子に向かう方向となり、 受信信 号強度や S ZN比が改善される。 図面の簡単な説明  According to this integrated electromagnetic wave radar antenna, electromagnetic shielding between the transmitting antenna and the receiving antenna is reduced by the shield partition provided in the shield case, so that the transmitting and receiving antenna can be reduced in size and weight while maintaining the above characteristics. It can be easily manufactured and is suitable for equipment that requires carrying. Further, as a result of the action of the electromagnetic wave absorbing material, the direction of the electric field of the electromagnetic wave radiated from the transmitting antenna element becomes the right and left direction, that is, the direction from the transmitting antenna element to the receiving antenna element, and the received signal strength and SZN The ratio is improved. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係る電磁波レーダアンテナのアンテナ基板の上面 図である。  FIG. 1 is a top view of an antenna substrate of an electromagnetic wave radar antenna according to an embodiment of the present invention.
図 2は、 本発明の実施形態に係る電磁波レーダアンテナのシールドケースを示 し、 (a ) は上面図、 (b ) は (a ) の A— A矢視断面図、 (c ) は (a ) の B 一: B矢視断面図である。  2A and 2B show a shield case of the electromagnetic wave radar antenna according to the embodiment of the present invention, wherein FIG. 2A is a top view, FIG. 2B is a cross-sectional view taken along line AA of FIG. ) Of FIG.
図 3は、 図 1に示すアンテナ基板を図 2に示すシールドケースに取り付けた状 態を示し、 (a ) は上面図、 (b ) は (a ) の A— A矢視断面図、 (c ) は (a ) の B— B矢視断面図である。 Fig. 3 shows the antenna board shown in Fig. 1 attached to the shield case shown in Fig. 2. (A) is a top view, (b) is a cross-sectional view taken along the line AA of (a), and (c) is a cross-sectional view taken along the line BB of (a).
図 4は、 図 2に示すシールドケースに構成部材を納め、 図 1に示すアンテナ基 板を取り付ける場合の組み込み状態を示す分解斜視図である。  FIG. 4 is an exploded perspective view showing an assembled state when the constituent members are placed in the shield case shown in FIG. 2 and the antenna substrate shown in FIG. 1 is mounted.
図 5は、 送信アンテナに給電される信号波形を示す概略説明図である。  FIG. 5 is a schematic explanatory diagram showing a waveform of a signal fed to the transmission antenna.
図 6は、 電磁波レーダアンテナから輻射される不要電磁波を吸収減衰させる状 態を示す模式図である。  FIG. 6 is a schematic diagram showing a state in which unnecessary electromagnetic waves radiated from the electromagnetic wave radar antenna are absorbed and attenuated.
図 7は、 電磁波レーダアンテナから輻射される電磁波を周波数スぺクトラムァ ナライザで観測した周波数スぺクトル図である。  FIG. 7 is a frequency spectrum diagram obtained by observing an electromagnetic wave radiated from an electromagnetic wave radar antenna with a frequency spectrum analyzer.
図 8は、 電磁波レーダアンテナから輻射される電磁波の受信信号波形図である。 図 9は、 電磁波レーダアンテナから輻射され物体で反射した反射波の受信信号 波形図である。  FIG. 8 is a waveform diagram of a received signal of an electromagnetic wave radiated from the electromagnetic wave radar antenna. FIG. 9 is a waveform diagram of a received signal of a reflected wave radiated from an electromagnetic wave radar antenna and reflected by an object.
図 1 0は、 従来の電磁波探査機から輻射される電磁波を周波数スぺクトラムァ ナライザで観測した周波数スぺクトル図である。  FIG. 10 is a frequency spectrum diagram obtained by observing an electromagnetic wave radiated from a conventional electromagnetic wave exploration device with a frequency spectrum analyzer.
図 1 1は、 従来の電磁波探査機から輻射される電磁波の受信波形図である。 図 1 2は、 従来の電磁波探査機から輻射され物体で反射した反射波の受信波形 図である。 発明を実施するための最良の形態  FIG. 11 is a reception waveform diagram of an electromagnetic wave radiated from a conventional electromagnetic wave probe. FIG. 12 is a reception waveform diagram of a reflected wave radiated from a conventional electromagnetic wave probe and reflected by an object. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施形態に係る電磁波レーダアンテナの設計手順を図面を参 照して説明する。 以下の説明において、 輻射させようとする電磁波の周波数 (目 的周波数) を: f 。としその波長を人。とする。  Hereinafter, a design procedure of the electromagnetic wave radar antenna according to the embodiment of the present invention will be described with reference to the drawings. In the following description, the frequency (target frequency) of the electromagnetic wave to be radiated is: f. And that wavelength is the person. And
図 1は本発明の電磁波レーダアンテナに係るアンテナ基板 1を示す上面図、 図 FIG. 1 is a top view showing an antenna substrate 1 according to the electromagnetic wave radar antenna of the present invention.
2 ( a ) はそのシールドケース 2の上面図、 同図 (b ) は (a ) の A— A矢視断 面図、 同図 (c ) は (a ) の B— B矢視断面図である。 尚、 アンテナ基板 1は同 一形状の送信アンテナ Tと受信アンテナ Rとを一体ィ匕したものである。 本実施形態の設計手順は、 次の )〜 (4)のステップを有している。 2 (a) is a top view of the shield case 2, (b) is a cross-sectional view taken along the line A-A of (a), and FIG. is there. The antenna substrate 1 is formed by integrally integrating a transmitting antenna T and a receiving antenna R having the same shape. The design procedure of this embodiment has the following steps (1) to (4).
(1) アンテナ素子 10の形状を正三角形とし、 辺長 Lを目的周波数: e。の波長入0 の 1/2に設定する。(1) The shape of the antenna element 10 is an equilateral triangle, and the side length L is the target frequency: e. Set to 1/2 of the wavelength input of 0 .
Figure imgf000012_0001
Figure imgf000012_0001
(2)送信アンテナ Τの周囲および受信アンテナ Rの周囲に設ける接地導体 13の 幅を Fとする。 但し、 幅 Fは LZ2よりも小さい値に設定する。 (2) Let F be the width of the ground conductor 13 provided around the transmitting antenna お よ び and the receiving antenna R. However, the width F is set to a value smaller than LZ2.
F < 1/2  F <1/2
(3) アンテナ基板 1の横幅 2 Wを波長; の 2倍に設定する。  (3) Set the width 2 W of the antenna substrate 1 to twice the wavelength;
2 W = 2 Λο  2 W = 2 Λο
一方、 アンテナ基板 1の縦長を Ηとし、 縦長 Ηは対向するアンテナ素子 10, 10の全長に接地導体 13の幅 Fの二倍を加えた長さよりも長く設定する。  On the other hand, the vertical length of the antenna substrate 1 is set to Η, and the vertical length Η is set to be longer than the total length of the opposing antenna elements 10 and 10 plus twice the width F of the ground conductor 13.
Η > 2 -V"3 + 2 F  Η> 2 -V "3 + 2 F
(4) シールドケース 2の奥行き Dを波長入。の 1/4の整数倍に設定する。  (4) Insert the wavelength D at the depth D of the shield case 2. Set to an integral multiple of 1/4 of.
D = (λο/4) xn + 但し、 n= 1, 2, 3, 4 · · · ·  D = (λο / 4) xn + where n = 1, 2, 3, 4 · · · ·
a:補正係数  a: Correction coefficient
補正係数 はシールドケース 2の厚さ t、 アンテナ素子 10および接地導体 1 3の銅箔の厚さに応じて定まる値であり、 特にシールドケース 2の厚さに依存す る係数である。  The correction coefficient is a value determined according to the thickness t of the shield case 2 and the thickness of the copper foil of the antenna element 10 and the ground conductor 13, and is a coefficient that depends particularly on the thickness of the shield case 2.
本実施形態では、 アルミニウムを用いたシールドケース 2の厚さ tが 1. 2 m mのときに、 補正係数ひを lmmに設定している。  In the present embodiment, when the thickness t of the shield case 2 made of aluminum is 1.2 mm, the correction coefficient is set to 1 mm.
尚、 シールドケース 2の横幅および縦長はアンテナ基板 1と同一である。  The width and length of the shield case 2 are the same as those of the antenna substrate 1.
このように、 アンテナ素子 10の辺長 L、 接地導体 13の幅 F、 アンテナ基板 1の横長 2W、 縦長 Hおよび奥行き Dを波長; L。に関係づけて設定する。 そして、 送信アンテナ Tおよび受信アンテナ Rの各々においてアンテナ素子 10、 接地導 体 13をアンテナ基板 1上に前後左右対称となるように配した構成で、 基板 1を作成する。 以上の説明では、 アンテナ基板 1およびシールドケース 2の主要部分の寸法の 設計手順を述べたが、 以下に、 この設計手順に従って成した本発明の電磁波レー ダアンテナに係る実施例を図面を参照して更に詳述する。 Thus, the side length L of the antenna element 10, the width F of the ground conductor 13, the horizontal length 2W, the vertical length H, and the depth D of the antenna substrate 1 are wavelengths; Set in relation to. Then, in each of the transmitting antenna T and the receiving antenna R, the antenna element 10 and the grounding conductor 13 are arranged on the antenna substrate 1 so as to be symmetrical in the front-rear direction and the left-right direction. In the above description, the design procedure of the dimensions of the main parts of the antenna substrate 1 and the shield case 2 has been described.Hereinafter, an embodiment according to the electromagnetic wave radar antenna of the present invention made according to this design procedure will be described with reference to the drawings. Further details will be described.
図 1に示すように、 アンテナ基板 1は縦長 H、 横幅 2W (=2 λ0) の方形状で あり、 同一形状の送信アンテナ Τと受信アンテナ Rとを同一基板上に一体的に左 右対称に配した構造である。 そこで、 アンテナ基板 1の説明にあたっては半分の 大きさである送信アンテナ Τについて説明する。 尚、 アンテナ基板 1は、 ガラス エポキシ樹脂で成る基板 12の表面の銅箔のうち、 送信アンテナ素子 1 1や接地 導体 13を除く不要部分をエッチング処理によって腐食除去して成している。 送信アンテナ Τは縦長 Η、 横幅 W (=λο) の基板 12の中央に、 一辺の長さが Lの正三角形の銅箔で成るアンテナ素子 10, 10を蝶ネクタイ状に頂部 10 a, 10 aを対向させて送信アンテナ素子 1 1を形成している。 この送信アンテナ素 子 1 1を取り囲むように幅 Fの接地導体 (銅箔) 13を基板 12の側縁に沿って 方形ループ状に設けて前後左右対称な形状に成している。 尚、 アンテナ素子 10, 10の頂部10 &, 10 aの間には僅かな隙間を設けて絶縁されており、 この頂 部 10 a, 10 aに後述する給電線を半田付けする。 As shown in FIG. 1, the antenna substrate 1 has a rectangular shape with a vertical length of H and a width of 2 W (= 2λ 0 ), and a transmitting antenna Τ and a receiving antenna R of the same shape are symmetrically integrated left and right on the same substrate. It is the structure arranged in. Therefore, in describing the antenna substrate 1, the transmitting antenna で, which is half the size, will be described. The antenna substrate 1 is formed by etching and removing unnecessary portions of the copper foil on the surface of the substrate 12 made of glass epoxy resin except for the transmitting antenna element 11 and the ground conductor 13 by etching. The transmitting antenna Τ is an antenna element 10 made of an equilateral triangular copper foil with a side length L at the center of a substrate 12 having a vertical length Η and a width W (= λο). Are opposed to each other to form a transmission antenna element 11. A ground conductor (copper foil) 13 having a width F is provided in a rectangular loop along the side edge of the substrate 12 so as to surround the transmitting antenna element 11 so as to be symmetrical in the front-rear and left-right directions. A small gap is provided between the tops 10 & and 10 a of the antenna elements 10 and 10 to insulate them, and a feeder described later is soldered to the tops 10 a and 10 a.
アンテナ素子 10の一辺の長さ Lは、 基板 12の横幅 Wの 1/2、 則ち、 波長 入0の 1/2の長さとされ、 アンテナ素子 10の頂部 1 Ob, 10bおよび頂部 1 0 c, 10 cには接地導体 13との間に寄生振動を抑制するための抑制抵抗 14 が半田付けされている。 The length L of one side of the antenna element 10 is 1/2 of the width W of the substrate 12, that is, 1/2 of the wavelength 0 , and the top 1 Ob, 10 b and the top 10 c of the antenna element 10 are set. , 10c are soldered with a suppression resistor 14 between the ground conductor 13 for suppressing the parasitic vibration.
接地導体 12の幅 Fは基板 12上における配置の対象性を維持すれば特に制限 されないが、 後述するシールドケースへ取り付けた場合の導電性を考慮して、 シ ールドケースの取付折曲面よりも幅 Fが広くなるようにしている。  The width F of the ground conductor 12 is not particularly limited as long as the symmetry of the arrangement on the substrate 12 is maintained.However, in consideration of conductivity when the ground conductor 12 is mounted on a shield case described later, the width F is larger than the width of the shield case mounting bent surface. To make it wider.
また、 送信アンテナ Tの縦長 Hは特に制限されないが、 送信アンテナ素子 1 1 の縦方向全長に接地導体 13の幅 Fの 2倍の幅を加えた長さよりも長く設定され る。 尚、 接地導体 13上に設けられている開口 15は後述するようにアンテナ基板 1をシールドケース 2へ取付固定するためのネジの挿入口である。 The vertical length H of the transmitting antenna T is not particularly limited, but is set to be longer than the total length of the transmitting antenna element 11 in the vertical direction plus twice the width F of the ground conductor 13. The opening 15 provided on the grounding conductor 13 is a screw insertion hole for attaching and fixing the antenna substrate 1 to the shield case 2 as described later.
図 2に示すように、 シールドケース 2は厚さ tが 1. 2 mmのアルミニウムを 用い、 縦長 H、 横幅 2W (=2Λο)、 奥行き Dを有する方形箱状に成されており、 上部開口には開口側縁全周に渡って幅 F' の折曲部 20が設けられている。 この 折曲部 20にはアンテナ基板 1の接地導体 13が導電接触状態で取付固定される もので、 折曲部 20の幅 F, が接地導体 13の幅 Fよりも小さくなるように設定 している。  As shown in Fig. 2, the shield case 2 is made of aluminum with a thickness t of 1.2 mm, and is formed in a rectangular box shape with a height H, a width 2W (= 2Λο), and a depth D. Is provided with a bent portion 20 having a width F 'over the entire periphery of the opening side edge. The ground conductor 13 of the antenna substrate 1 is attached and fixed to the bent portion 20 in a conductive contact state. The width F of the bent portion 20 is set to be smaller than the width F of the ground conductor 13. I have.
奥行き Dは目的周波数 f。の波長 λ。に対して、 Z4の整数倍、 則ち、 ぇ0ズ 4、 2入。 /4、 3え。 /4、 4人。 /4、 · · - ηλο/4 (ηは整数) のいずれ かの長さに設定されるもので、 目的周波数 f。の出力レベルが最大となるように奥 行き Dの寸法をいずれかの長さに設定することができる。 Depth D is the target frequency f. Wavelength λ. Respect, an integral multiple of Z4, Sokuchi, tut 0 4, 2 input. / 4, 3 / 4, 4 people. / 4, · ·-ηλο / 4 (η is an integer), which is the length of the target frequency f. The dimension of the depth D can be set to any length so that the output level becomes maximum.
また、 シールドケース 2の中央には縦方向へ奥行き全長に渡って送信アンテナ Tと受信アンテナ Rとの間の電磁結合を低減するためのアルミニウムを用いたシ —ルド板 (シ一ルド隔壁) 21が設けられており、 このシ一ルド板 21によって シールドケース 2を送信側 T 1と受信側 R 1に区分している。  In the center of the shield case 2, a shield plate (shield bulkhead) made of aluminum is used to reduce electromagnetic coupling between the transmitting antenna T and the receiving antenna R over the entire length in the vertical direction. The shield plate 21 divides the shield case 2 into a transmission side T1 and a reception side R1.
尚、 本実施例ではシ一ルド板 21に厚さ t 1が 2 mmのものを用いている。 ま た、 ネジ穴 22はアンテナ基板 1を取付固定するネジを挿入するためのものであ る。  In this embodiment, a shield plate 21 having a thickness t1 of 2 mm is used. The screw hole 22 is for inserting a screw for fixing the antenna substrate 1.
図 3 (a) は、 電磁波レーダアンテナ AT、 則ち、 アンテナ基板 1をシールド ケース 2へ取り付けた状態を示す上面図、 同図 (b) は (a) の A— A矢視断面 図、 同図 (c) は (a) の B— B矢視断面図を示している。  Fig. 3 (a) is a top view showing the electromagnetic wave radar antenna AT, that is, the antenna board 1 attached to the shield case 2, and Fig. 3 (b) is a cross-sectional view taken along the line A-A of (a). Figure (c) is a cross-sectional view taken along the line BB of (a).
アンテナ基板 1を送信アンテナ素子 11および接地導体 13が設けられた面が 下方になるようにして 3本のネジ 23を用いてシールドケース 2のネジ穴 22へ 取付固定する。 これにより、 アンテナ基板 1の接地導体 13が折曲部 20および シールド板 21と導電接触した状態で固定される。 このように取り付けると、 アンテナ基板 1の送信アンテナ Tがシールドケース 2の送信側 Τ 1の開口部分を覆うように位置すると共に、 アンテナ基板 1の受信 アンテナ Rがシールドケース 2の受信側 R 1の開口部分を覆うように位置する。 則ち、 このアンテナ A Τではシールドケース 2を含むアンテナ基板 1で励起さ れた電磁波をアンテナ基板 1自体を透過させて前方に輻射するものである。 本実施例では、 シールドケース 2にアンテナ基板 1を取付固定する前に、 送受 信ュニット、 電磁波吸収材および給電線などが同時に組み込まれる。 The antenna substrate 1 is attached and fixed to the screw holes 22 of the shield case 2 using three screws 23 so that the surface on which the transmitting antenna element 11 and the ground conductor 13 are provided faces downward. As a result, the ground conductor 13 of the antenna substrate 1 is fixed in a state of being in conductive contact with the bent portion 20 and the shield plate 21. When mounted in this way, the transmitting antenna T of the antenna board 1 is positioned so as to cover the opening of the transmitting side Τ1 of the shield case 2, and the receiving antenna R of the antenna board 1 is connected to the receiving side R 1 of the shield case 2. It is located so as to cover the opening. That is, in the antenna A A, the electromagnetic wave excited by the antenna substrate 1 including the shield case 2 is transmitted through the antenna substrate 1 itself and radiated forward. In this embodiment, the transmission / reception unit, the electromagnetic wave absorbing material, the power supply line, and the like are incorporated at the same time before the antenna substrate 1 is fixed to the shield case 2.
次に、 これらの部材の組み込み手順を図 4の分解斜視図を参照して説明する。 図 4に示すように、 シールドケース 2にはシールド板 2 1で遮蔽された送信側 T 1と受信側 R 1に送信ュニット 4 0および受信ュニット 5 0と電磁波吸収材 3 0, 3 0とが収納され、 アンテナ基板 1が蓋をするように取付固定される。 アンテナ基板 1の送信アンテナ Tおよび受信アンテナ: Rには、 アンテナ素子 1 0の頂部 1 0 a , 1 O aに給電線 1 6および給電線 1 7が接続されている。 則ち、 給電線 1 6には同軸ケーブルが用いられ、 芯線が一方のアンテナ素子 1 0の頂部 1 0 aに半田付けされると共に、 シ一ルド線が対向するアンテナ素子 1 0の頂部 1 0 aに半田付けされている。 給電線 1 6の他端には高周波用のビンコ ネク夕 1 6 aが設けられ、 このピンコネクタ 1 6 aを送信ュニット 4 0側のコネ クタ 4 0 aに接続することにより、 送信ュニヅト 4 0から送信アンテナ素子 1 1 へ直流バイアスおよびインパルスの給電を行う。 尚、 送信ユニット 4 0にはコネ クタ 4 O bが設けられており、 コネクタ 4 1を接続することにより別置された信 号処理ユニット (不図示) から電源や制御信号の供給を受ける。  Next, a procedure for assembling these members will be described with reference to an exploded perspective view of FIG. As shown in FIG. 4, the transmission case 40 and the reception unit 50 and the electromagnetic wave absorbers 30 and 30 are provided on the transmission side T 1 and the reception side R 1 shielded by the shield plate 21 in the shield case 2. The antenna board 1 is stored and fixed so as to cover the antenna board 1. To the transmitting antenna T and the receiving antenna: R of the antenna substrate 1, feed lines 16 and 17 are connected to the tops 10a and 10a of the antenna element 10, respectively. That is, a coaxial cable is used for the feeder line 16, the core wire is soldered to the top 10a of one antenna element 10 and the top 10a of the antenna element 10 to which the shield wire faces. Soldered to a. The other end of the feeder line 16 is provided with a high-frequency bin connector 16a. By connecting this pin connector 16a to the connector 40a on the transmission unit 40 side, the transmission unit 40a is provided. Supply DC bias and impulse to the transmitting antenna element 1 1 from. The transmitting unit 40 is provided with a connector 4 Ob, and receives power and control signals from a signal processing unit (not shown) provided separately by connecting the connector 41.
同様に、 給電線 1 7にも同軸ケーブルが用いられ、 芯線が一方のアンテナ素子 1 0の頂部 1 0 aに半田付けされると共に、 シールド線が対向するアンテナ素子 1 0の頂部 1 0 aに半田付けされている。 また、 給電線 1 7の他端にも高周波用 のピンコネクタ 1 7 aが設けられ、 このピンコネクタ 1 7 aを受信ユニット 5 0 側のコネクタ 5 0 aに接続することにより、 受信アンテナ Rで捕らえた受信信号 を受信ュニヅ ト 5 0側へ伝送する。 受信ュニヅ ト 5 0にはコネクタ 5 0 bが設け られており、 コネクタ 5 1を接続することにより別置された信号処理ュニヅ ト (不図示) から電源の供給を受けると共に、 受信信号やトリガ信号などを送出す る。 Similarly, a coaxial cable is also used for the feeder line 17, the core wire is soldered to the top 10 a of one antenna element 10, and the shield wire is connected to the top 10 a of the antenna element 10 facing the antenna element 10. Soldered. Also, a high-frequency pin connector 17a is provided at the other end of the feeder line 17, and by connecting this pin connector 17a to the connector 50a on the receiving unit 50 side, the receiving antenna R Received signal captured Is transmitted to the reception unit 50 side. The receiving unit 50 is provided with a connector 50b. By connecting the connector 51, power is supplied from a separately provided signal processing unit (not shown), and a receiving signal and a trigger signal are provided. And so on.
尚、 シールドケース 2には開口 2 a , 2 bが設けられ、 送信ュニヅ ト 4 0およ び受信ュニット 5 0から導出される配線を貫通させて制御部側へ接続している。 このように、 本発明の電磁波レーダアンテナ A Tは薄いアルミニウムで成され たシールドケース 2にアンテナ基板 1を取り付け、 内部に送信ュニヅト 4 0およ び受信ュニット 5 0を収納しただけの軽量化された構造であり、 従来の不要輻射 対策を優先したアンテナに比べて極めて軽量である。  The shield case 2 is provided with openings 2 a and 2 b, and is connected to the control unit side through wires derived from the transmission unit 40 and the reception unit 50. As described above, the electromagnetic wave radar antenna AT according to the present invention is reduced in weight by mounting the antenna substrate 1 on the shield case 2 made of thin aluminum and housing the transmission unit 40 and the reception unit 50 inside. It has a structure that is extremely lightweight compared to conventional antennas that give priority to measures against unnecessary radiation.
また、 アンテナ基板 1とシールドケース 2とで成る共振性を有した構造によつ て信号のカップリング不良 (自然波の検知不良) がなくなり、 安定した送受信を 行うことができる。  In addition, due to the resonant structure of the antenna substrate 1 and the shield case 2, signal coupling failure (natural wave detection failure) is eliminated, and stable transmission and reception can be performed.
図 5は、 送信ュニヅト 4 0から給電線 1 6を介して送信アンテナ素子 1 1へ伝 送される信号を、 横軸を時間、 縦軸を電圧レベルとして示したものである。 本実施例では、 給電線 1 6の芯線がシールド線に対して電圧 V dを有するよう に直流バイアスが加えられている。 則ち、 対向したアンテナ素子 1 0、 抑制抵抗 1 4および接地導体 1 3を介して直流バイアス電流が印加されている。  FIG. 5 shows a signal transmitted from the transmission unit 40 to the transmission antenna element 11 via the feeder line 16 with time on the horizontal axis and voltage level on the vertical axis. In the present embodiment, a DC bias is applied so that the core of the power supply line 16 has a voltage Vd with respect to the shield line. That is, a DC bias current is applied via the antenna element 10, the suppression resistor 14, and the ground conductor 13 facing each other.
この状態で、 給電線 1 6を介してインパルス Sをアンテナ素子 1 0同士の間に 所定周期 T o毎に印加することにより、 シールドケース 2を含むアンテナ基板 1 から電磁波を輻射させている。  In this state, an electromagnetic wave is radiated from the antenna substrate 1 including the shield case 2 by applying an impulse S between the antenna elements 10 at predetermined intervals To via the feeder line 16.
直流バイアスを印加することにより、 送信ュニット 4 0側では直流バイアス電 圧をィンパルス状に制御駆動することで送信アンテナ素子 1 1ヘインパルスを印 加することができ、 回路構成が簡単となる。  By applying a DC bias, the transmission unit 40 can apply a pulse to the transmission antenna element 11 by controlling and driving the DC bias voltage in an impulse form, thereby simplifying the circuit configuration.
図 6は、 電磁波吸収材 3 0によって送信アンテナ Tから輻射される特定の電磁 波成分を吸収させる状態を模式的に示したものである。 電磁波吸収材 3 0は発泡材に導電性電波反射材を貼付した汎用のものを用いて おり、 反射材における反射時の減衰を利用して効果的に減衰させるもので、 吸収 材 3 0の取付方向に応じて特定の偏波面の電磁波に対して大きな減衰特性を示す。 本実施例では、 図 6 ( a) に示すようにシールドケース 2の幅 W方向へ電界を 有する偏波成分 E oは吸収させず、 図 6 ( b ) に破線で示すようにシールドケ一 ス 2の縦 H方向へ電界を有する偏波成分 E 1を実線で示す偏波成分 E V まで減 衰させるように電磁波吸収材 3 0を配している。 則ち、 シールドケース 2の縦 H 方向の偏波成分 E 1を有する電磁波には、 目的周波数 f oとは異なる不要周波数 成分がある程度含まれることから、 この不要周波数成分を吸収除去することによ つて一層不要輻射を低減させるようにしている。 FIG. 6 schematically shows a state in which a specific electromagnetic wave component radiated from the transmitting antenna T is absorbed by the electromagnetic wave absorbing material 30. The electromagnetic wave absorber 30 is a general-purpose thing made by sticking a conductive radio wave reflective material to a foam material, and effectively attenuates by utilizing the attenuation at the time of reflection by the reflective material. It exhibits a large attenuation characteristic with respect to electromagnetic waves of a specific polarization plane depending on the direction. In this embodiment, as shown in FIG. 6 (a), the polarization component Eo having an electric field in the width W direction of the shield case 2 is not absorbed, and the shield case 2 is shown as a broken line in FIG. 6 (b). The electromagnetic wave absorber 30 is disposed so as to attenuate the polarization component E1 having an electric field in the longitudinal H direction to the polarization component EV indicated by a solid line. That is, since the electromagnetic wave having the polarization component E1 in the longitudinal H direction of the shield case 2 contains some unnecessary frequency components different from the target frequency fo, it is necessary to absorb and remove the unnecessary frequency components. Unnecessary radiation is further reduced.
図 7は、 本実施例の電磁波レーダアンテナ A Tの送信アンテナ Tから輻射され 受信アンテナ Rで捕らえられた電磁波を周波数スペクトラムアナライザで測定し た結果を示すもので、 図 1 0に示した結果に比べて目的周波数: f。の成分が突出し、 他の不要周波数成分が効果的に減衰していることが分かる。 また、 高レベルで輻 射される周波数成分が離散しているため、 受信ユニット側で受信帯域幅を適宜に 選定することにより、 例えば、 目的周波数 f 。とは異なる f。Ζ 2の周波数、 或い は、 2 f。の周波数を受信して必要な計測処理を行うことも可能である。  FIG. 7 shows the result of measuring the electromagnetic wave radiated from the transmitting antenna T of the electromagnetic wave radar antenna AT of the present embodiment and captured by the receiving antenna R with a frequency spectrum analyzer. Target frequency: f. It can be seen that the component of (1) protrudes and other unnecessary frequency components are effectively attenuated. In addition, since the frequency components radiated at a high level are discrete, the receiving unit side appropriately selects the receiving bandwidth to obtain, for example, the target frequency f. Different from f.周波 数 2 frequencies, or 2 f. It is also possible to perform necessary measurement processing by receiving the frequency of
図 8は、 本実施例の電磁波レーダアンテナ A Tから輻射された電磁波のアンテ ナ基板 1における反射波を受信ュニット 5 0で受信増幅した波形図である。 図か ら分かるように、 不要周波数成分が極めて低減されるので目的周波数 f。に基づい た略正弦波状の歪みのない減衰波形を呈し、 微少振幅に至るまで正確に復調され ている。  FIG. 8 is a waveform diagram in which the reception unit 50 amplifies the reflection wave of the electromagnetic wave radiated from the electromagnetic wave radar antenna AT of the present embodiment at the antenna substrate 1 and receives and amplifies the reflected wave. As can be seen from the figure, the target frequency f because the unnecessary frequency components are extremely reduced. It exhibits an approximately sinusoidal, distortion-free attenuation waveform based on, and is accurately demodulated down to minute amplitudes.
図 9は、 本実施例の電磁波レーダアンテナ A Tから輻射された電磁波の物体に よる反射波の受信波形を示したものである。 図 8の波形と同様に不要周波数成分 が重畳されない受信信号であるので、 S/N比に優れ反射波 R Tの基点、 終点お よび周期変動を明瞭に判別することができ、 また、 受信波形のピーク点 (第 1ピ ーク点或いは第 2ピーク点など) Pの判別が容易となり、 正確な校正および測定 を行うことが可能である。 FIG. 9 shows a reception waveform of a reflected wave of an electromagnetic wave radiated from the electromagnetic wave radar antenna AT of the present embodiment by an object. Since the received signal does not have unnecessary frequency components superimposed on it as in the waveform of Fig. 8, it has an excellent S / N ratio and can clearly distinguish the base point, end point, and periodic fluctuation of the reflected wave RT. Peak point (1st (Peak point or second peak point, etc.) P can be easily determined, and accurate calibration and measurement can be performed.
本発明によれば、 簡単な設計方法により送信アンテナから輻射される電磁波の 周波数成分を目的周波数に一致させ、 不要周波数成分を低減させることができる。 これにより、 電波法の規制に準拠するための不要輻射対策が軽微で良く、 アン テナ自体を極めて軽量化、 低コスト化でき携帯型の機器に好適である。  ADVANTAGE OF THE INVENTION According to this invention, the frequency component of the electromagnetic wave radiated | emitted from a transmission antenna can be matched with a target frequency by a simple design method, and an unnecessary frequency component can be reduced. As a result, unnecessary radiation measures for complying with the regulations of the Radio Law can be made small, and the antenna itself can be made extremely lightweight and low-cost, which is suitable for portable equipment.
また、 受信信号の SZN比が向上するので回路構成が単純且つ安定であると共 に受信基点の校正を正確に行うことができ、 しかも、 電磁波が通過する物体の精 密な物性判別が可能となり、 産業用、 民生用を問わず電磁波探査の適用用途を大 幅に拡大することが可能である。  Also, since the SZN ratio of the received signal is improved, the circuit configuration is simple and stable, and the calibration of the receiving base point can be performed accurately.Moreover, it is possible to accurately determine the physical properties of the object through which the electromagnetic wave passes. It is possible to greatly expand the application of electromagnetic wave exploration for industrial use and consumer use.

Claims

請求の範囲 . 送信ュニヅトから出力されるインパルスを受けて電磁波を輻射する送信アン テナ素子をシールドケースに取り付けて成る電磁波レーダアンテナの製造方法 であって、 Claims: A method for manufacturing an electromagnetic wave radar antenna, comprising: attaching a transmission antenna element that receives an impulse output from a transmission unit and radiates an electromagnetic wave to a shield case,
前記送信アンテナ素子から輻射される電磁波の周波数を目的周波数と一致さ せるように当該目的周波数の波長に応じて前記送信アンテナ素子および前記シ ールドケースの寸法を関係づけて設定する工程と、 設定された寸法で前記送信 アンテナ素子およびシールドケースを形成する工程とを有することを特徴とす る電磁波レーダアンテナの製造方法。 Setting the dimensions of the transmission antenna element and the shield case in association with the wavelength of the target frequency so that the frequency of the electromagnetic wave radiated from the transmission antenna element matches the target frequency; and Forming the transmitting antenna element and the shield case in dimensions.
. 送信ュニットから出力されるインパルスを受けて電磁波を輻射する送信アン テナ素子を有するアンテナ基板と、 該基板の一方の表面を覆う中空方形状のシ —ルドケースとを備え、 An antenna substrate having a transmitting antenna element for emitting an electromagnetic wave in response to an impulse output from a transmitting unit, and a hollow shield case covering one surface of the substrate,
前記送信アンテナ素子から目的とする周波数の電磁波を輻射させるように当 該目的周波数の波長に応じて、 前記アンテナ基板および前記シールドケースの 寸法が所定の関係で設定されていることを特徴とする電磁波レーダアンテナ。 . 前記送信アンテナ素子は一対の二等辺三角形の導電箔を蝶ネクタイ状に対向 させて前記アンテナ基板上に形成され、 当該基板は前記送信アンテナ素子を取 り囲むように導電箔で成る接地導体を方形ループ状に配して前後左右対称とな るように形成されており、  The dimensions of the antenna substrate and the shield case are set in a predetermined relationship according to the wavelength of the target frequency so that the transmission antenna element emits an electromagnetic wave of the target frequency. Radar antenna. The transmitting antenna element is formed on the antenna substrate with a pair of isosceles triangular conductive foils facing each other in a bow tie shape, and the substrate includes a ground conductor made of conductive foil so as to surround the transmitting antenna element. It is arranged in a square loop so that it is symmetrical around
前記送信アンテナ素子の二等辺三角形の底辺若しくは側辺の長さが、 目的周 波数の略 1 / 2波長に設定されていることを特徴とする請求項 2に記載の電磁 波レーダアンテナ。 3. The electromagnetic wave radar antenna according to claim 2, wherein a length of a base or a side of the isosceles triangle of the transmitting antenna element is set to approximately 波長 wavelength of a target frequency.
. 前記送信アンテナ素子の対向する二等辺三角形の寧子が配された方向と直交 する方向における前記シールドケースの寸法が前記目的周波数の波長と略同一 長に設定され、 当該シールドケースの奥行き寸法が前記目的周波数の略 1 / 4 波長の整数倍の長さに設定されていることを特徴とする請求項 2に記載の電磁 波レーダアンテナ。 The dimension of the shield case in a direction orthogonal to the direction in which the opposed isosceles triangles of the transmitting antenna element are arranged is set to be substantially the same length as the wavelength of the target frequency, and the depth dimension of the shield case is 1/4 of target frequency 3. The electromagnetic wave radar antenna according to claim 2, wherein the length is set to an integral multiple of the wavelength.
. 前記シールドケースおよび前記アンテナ基板に目的周波数の電磁波が分布す る実効長に応じて前記シールドケースの寸法が補正されていることを特徴とす る請求項 4に記載の電磁波レーダアンテナ。 5. The electromagnetic wave radar antenna according to claim 4, wherein the dimensions of the shield case are corrected in accordance with an effective length in which electromagnetic waves of a target frequency are distributed on the shield case and the antenna substrate.
. 前記アンテナ基板の送信アンテナ素子と接地導体との間に目的周波数以外の 電磁波成分の寄生輻射を抑制する抑制抵抗を設けたことを特徴とする請求項 2 に記載の電磁波レーダアンテナ。3. The electromagnetic wave radar antenna according to claim 2, wherein a suppression resistor for suppressing a parasitic radiation of an electromagnetic wave component other than a target frequency is provided between the transmission antenna element of the antenna substrate and a ground conductor.
. 前記送信アンテナ素子を含むシールドケース内部に励起される電磁波成分の うち、 電界の方向が対の導電泊が対向する方向である電磁波成分を吸収減衰さ せるように当該シールドケースの内部に電磁波吸収材が配されていることを特 徴とする請求項 2に記載の電磁波レーダアンテナ。 Among the electromagnetic wave components excited inside the shield case including the transmitting antenna element, the electromagnetic wave is absorbed inside the shield case so as to absorb and attenuate the electromagnetic wave component in which the direction of the electric field is opposite to the pair of conductive wires. 3. The electromagnetic wave radar antenna according to claim 2, wherein a material is provided.
. 前記アンテナ基板には送信アンテナ素子と当該素子と同形状を有する受信ァ ンテナ素子とが左右対称に形成されていると共に、 前記シールドケースは前記 送信アンテナ素子と受信アンテナ素子との電磁結合を遮蔽するためのシールド 隔壁が設けられており、 上記左右方向は、 対の導電泊が対向する方向と直交す ることを特徴とする請求項 7に記載の電磁波レーダアンテナ。 A transmitting antenna element and a receiving antenna element having the same shape as the element are formed on the antenna substrate symmetrically, and the shield case shields electromagnetic coupling between the transmitting antenna element and the receiving antenna element. 8. The electromagnetic wave radar antenna according to claim 7, wherein a shield partition wall is provided, and the left-right direction is orthogonal to a direction in which the pair of conductive wires face each other.
PCT/JP2001/003055 2000-08-23 2001-04-09 Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna WO2002016962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001293353A AU2001293353A1 (en) 2000-08-23 2001-04-09 Electromagnetic wave radar antenna manufacturing method and electromagnetic waveradar antenna

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000253084A JP2002076739A (en) 2000-08-23 2000-08-23 Manufacturing method for electromagnetic wave radar antenna and electromagnetic wave radar antenna
JP2000-253084 2000-08-23

Publications (1)

Publication Number Publication Date
WO2002016962A1 true WO2002016962A1 (en) 2002-02-28

Family

ID=18742233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003055 WO2002016962A1 (en) 2000-08-23 2001-04-09 Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna

Country Status (3)

Country Link
JP (1) JP2002076739A (en)
AU (1) AU2001293353A1 (en)
WO (1) WO2002016962A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111465306A (en) * 2020-04-24 2020-07-28 中国科学院苏州纳米技术与纳米仿生研究所 Filtering shielding device and quantum processing system for preventing stray light interference
CN114096878A (en) * 2019-06-28 2022-02-25 株式会社电装 Radar apparatus

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287568A (en) * 2002-03-28 2003-10-10 Denso Corp Radar apparatus, and radome
JP2004150966A (en) * 2002-10-31 2004-05-27 Fujitsu Ltd Array antenna
JP3786939B2 (en) * 2003-09-10 2006-06-21 大阪瓦斯株式会社 Exploration equipment
JP4252515B2 (en) * 2004-09-01 2009-04-08 三井造船株式会社 Embedded object detection sensor
JP2012109657A (en) * 2010-11-15 2012-06-07 Japan Radio Co Ltd Antenna device and antenna system
JP6844280B2 (en) * 2017-01-27 2021-03-17 株式会社大林組 Outer wall diagnostic method and outer wall diagnostic system
US20230417686A1 (en) * 2020-11-12 2023-12-28 Sony Group Corporation Sensor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447482B2 (en) * 1983-04-21 1992-08-04 Nippon Musen Kk
JP2527322Y2 (en) * 1988-02-03 1997-02-26 日本無線株式会社 Radar for exploration in concrete wall
JPH0993020A (en) * 1995-09-22 1997-04-04 Osaka Gas Co Ltd Antenna for underground probing radar and underground probing method using the same
JPH1183994A (en) * 1997-09-09 1999-03-26 Osaka Gas Co Ltd Obstacle detector and detecting method in underground propelling work

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0447482B2 (en) * 1983-04-21 1992-08-04 Nippon Musen Kk
JP2527322Y2 (en) * 1988-02-03 1997-02-26 日本無線株式会社 Radar for exploration in concrete wall
JPH0993020A (en) * 1995-09-22 1997-04-04 Osaka Gas Co Ltd Antenna for underground probing radar and underground probing method using the same
JPH1183994A (en) * 1997-09-09 1999-03-26 Osaka Gas Co Ltd Obstacle detector and detecting method in underground propelling work

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096878A (en) * 2019-06-28 2022-02-25 株式会社电装 Radar apparatus
CN111465306A (en) * 2020-04-24 2020-07-28 中国科学院苏州纳米技术与纳米仿生研究所 Filtering shielding device and quantum processing system for preventing stray light interference

Also Published As

Publication number Publication date
AU2001293353A1 (en) 2002-03-04
JP2002076739A (en) 2002-03-15

Similar Documents

Publication Publication Date Title
US4724443A (en) Patch antenna with a strip line feed element
US4132995A (en) Cavity backed slot antenna
CA2455068C (en) Printed circuit board antenna structure
US20130154887A1 (en) Antenna testing enclosures and methods for testing antenna systems therewith
JP2010245742A (en) Antenna device
US9431713B2 (en) Circularly-polarized patch antenna
WO2002016962A1 (en) Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna
JP5104131B2 (en) Radio apparatus and antenna provided in radio apparatus
US8502622B2 (en) Apparatus and methods for phase tuning adjustment of signals
JP2003037402A (en) Polarization isolation structure, converter for radio wave reception, and antenna apparatus
USH1219H (en) Electrically small cavity antenna
Wakabayashi et al. Circularly polarized log-periodic dipole antenna for EMI measurements
US6788244B1 (en) Inspection device for radar absorbing materials
JP2002196027A (en) Device for evaluating shielding effect and method for measuring shielding effect
JP3502945B2 (en) Radio wave sensor
Togawa et al. Reflectivity measurements in anechoic chambers in the microwave to millimeter range
JP2003287568A (en) Radar apparatus, and radome
JPH0418790B2 (en)
Bhattacharya et al. Analysis of rectangular waveguides and thick windows as EMI sensors
JP7246785B1 (en) Near-field air probe and inspection equipment
JPH066566Y2 (en) Antenna device for underground radar
Balzovsky et al. Dual-polarized antenna sub-array of 2× 2 elements for measurements of short electromagnetic pulses
JP3205295B2 (en) Underground object detection device
JP2001196839A (en) Microwave antenna
KR100695327B1 (en) Broadband Dipole Antenna for Measurement of Electromagnetic Fields

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CN KR NO RU SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase