JPH0447482B2 - - Google Patents

Info

Publication number
JPH0447482B2
JPH0447482B2 JP58070700A JP7070083A JPH0447482B2 JP H0447482 B2 JPH0447482 B2 JP H0447482B2 JP 58070700 A JP58070700 A JP 58070700A JP 7070083 A JP7070083 A JP 7070083A JP H0447482 B2 JPH0447482 B2 JP H0447482B2
Authority
JP
Japan
Prior art keywords
dipole antenna
antenna
triangular
triangular dipole
shield case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58070700A
Other languages
Japanese (ja)
Other versions
JPS59196607A (en
Inventor
Hisashi Ishikawa
Keiichi Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP58070700A priority Critical patent/JPS59196607A/en
Publication of JPS59196607A publication Critical patent/JPS59196607A/en
Publication of JPH0447482B2 publication Critical patent/JPH0447482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)

Description

【発明の詳細な説明】 本発明は時間幅の狭いパルスを利用して、近接
物体の計測を行うパルスレーダのアンテナに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulse radar antenna that measures a nearby object using pulses with a narrow time width.

一般に径の大きな棒状のダイポールアンテナ、
平板三角形ダイポールアンテナは広帯域にわたり
定インピーダンス特性をもつことが知られてお
り、広帯域なスペクトラムを有する信号の送受に
は上記アンテナが利用される。上記アンテナはア
ンテナ表面を給電点から開放端に向つて進行する
電流と開放端で反射して給電点に戻る後退波が同
時に混在し、定在波励振となる。このようなアン
テナにアンテナの給電点から開放端に向つて流れ
るのに要する時間が無視できない程度の時間幅の
狭いパルスを印加したときは、給電点から開放端
に向う進行波電流によつてパルスを放射し、残つ
たエネルギーが開放端で反射され後退波として給
電点に戻るときに再放射する現象が生じ、パルス
レーダ用アンテナとして上記アンテナを使用する
と擬似エコーとなる欠点があり、従来は、このよ
うな現象を抑圧するため、ダイポールアンテナを
1/2波長より長くし、アンテナの給電点から開放
端に向つて1/4波長の位置に適切な抵抗をローデ
イングし、1/4波長の位置で後退波となるはずの
電流の一部を前記抵抗で吸収し、残りの電流を一
旦1/4波長の位置を通過させて開放端で反射させ、
この後退波を前記抵抗でさらに吸収するようにし
て、給電点からローデイングの位置までを進行波
電流のみで励振させることにより解決していたが
アンテナの開口面積が大きくなること、アンテナ
の開放端とローデイング抵抗間では反射波が存在
し、それが放射に寄与することになる。また一方
向にのみ指向性をもたせ不要放射成分をなくすた
めにはアンテナから1/4波長の距離に反射板また
は反射板兼用シールドケースを必要とするので、
小型化するために反射板とアンテナ間の距離Rを
1/4波長より短くすると帯域が狭くなつてしまう
欠点があつた。
Generally a rod-shaped dipole antenna with a large diameter,
It is known that a flat triangular dipole antenna has constant impedance characteristics over a wide band, and the above antenna is used for transmitting and receiving signals having a wide band spectrum. In the antenna described above, a current that travels on the antenna surface from the feeding point toward the open end and a backward wave that is reflected at the open end and returns to the feeding point coexist, resulting in standing wave excitation. When a pulse with such a narrow time width that the time required for flowing from the feeding point of the antenna toward the open end of the antenna cannot be ignored is applied to such an antenna, the pulse is generated by the traveling wave current flowing from the feeding point toward the open end. , and the remaining energy is reflected at the open end and re-radiated when it returns to the feeding point as a backward wave.When the above antenna is used as a pulse radar antenna, it has the disadvantage of producing a false echo. In order to suppress this phenomenon, the dipole antenna is made longer than 1/2 wavelength, and an appropriate resistor is loaded at a position of 1/4 wavelength from the feed point of the antenna toward the open end. A part of the current that should become a backward wave is absorbed by the resistor, and the remaining current is passed through the 1/4 wavelength position and reflected at the open end.
This problem was solved by further absorbing this backward wave with the resistor and exciting the area from the feeding point to the loading position with only the forward wave current, but this problem resulted in an increase in the aperture area of the antenna, and an increase in the open end of the antenna. Reflected waves exist between the loading resistors, which contribute to radiation. In addition, in order to provide directivity in only one direction and eliminate unnecessary radiation components, a reflector or a shield case that also serves as a reflector is required at a distance of 1/4 wavelength from the antenna.
If the distance R between the reflector and the antenna is made shorter than 1/4 wavelength in order to reduce the size, there is a drawback that the band becomes narrower.

本発明は、この欠点を解消し、小型で構造が簡
単であり、広帯域な定インピーダンス特性をそこ
なわず、三角形ダイポールアンテナ開放端からの
反射波を抑圧することができるパルスレーダ用ア
ンテナを提供するもので、以下にこれを図面に基
づき詳細に説明する。
The present invention eliminates this drawback and provides a pulse radar antenna that is small and simple in structure, does not impair broadband constant impedance characteristics, and can suppress reflected waves from the open end of a triangular dipole antenna. This will be explained in detail below based on the drawings.

第1図及び第2図は、本発明アンテナの一実施
例を示す縦断面図及びそのA−A′断面図で、1
は給電コネクタ、2は平衡不平衡変換器としての
広帯域バラン、3は誘電体基板、4は基板3上に
固定した金属板体を例えばエツチング処理により
形成した三角形ダイポールアンテナ、5は導電性
兼備の逆凹形誘電体で例えば発泡ポリスチロール
の粒子にグラフアイトをコーテイングし逆凹形状
とした誘電体、6は金属板と反射板に兼用するよ
うにした金属板シールドケース、7は三角形ダイ
ポールアンテナ4と金属板シールドケースにより
囲まれて形成された空間部である。送信機(図示
していない)から給電コネクタ1を通して送られ
た幅の狭いパルスは、広帯域バラン2を通して、
パルス基本波の1/2波長の長さの三角形ダイポー
ルアンテナ4の中央の給電端子に加えられ、電流
は給電点から三角形ダイポールアンテナ4の外側
に向つて進行する。基本波成分が1/4波長進行す
ると、そこからは例えば発泡ポリスチロール粒子
にグラフアイトをコーテイングした逆凹形の誘電
体5に電流が吸収される。上記誘電体5は三角形
ダイポールアンテナ4の両方の開放端の全部で接
続されたもので、一方の開放端から反射板(6に
相当)に向つて垂直に伸ばされアンテナ4と反射
板の間で逆凹形に折り返され、他方の開放端に接
続されており、誘電体5とアンテナ中央部との間
には空間7がある。例えばグラフアイトを流れる
電流は三角形ダイポールアンテナ4の一端から他
端へ向つて進行するが、当該グラフアイトの抵抗
率が大きいため進行波電流は熱エネルギーに変換
され、この誘電体5によつて吸収される。したが
つて三角形ダイポールアンテナ4の開放端から給
電点に戻るパルス電流は開放端と誘電体5の接続
部のミスマツチによるだけとなりこの量は微少と
なる。また、三角形ダイポールアンテナ4から金
属板シールドケース6に向つて放射されたパルス
は上記誘電体5が広帯域にわたり電波を吸収する
特性を有し、シールドケース6への入射、反射時
に減衰され、反射波がアンテナのインピーダンス
に与える影響の度合は小さく、三角形ダイポール
の広帯域特性を生かすことができる。
1 and 2 are a longitudinal cross-sectional view and an A-A' cross-sectional view of an embodiment of the antenna of the present invention.
2 is a feeding connector, 2 is a broadband balun as a balanced/unbalanced converter, 3 is a dielectric substrate, 4 is a triangular dipole antenna formed by etching a metal plate fixed on the substrate 3, and 5 is a conductive antenna. A dielectric material having an inverted concave shape, such as a dielectric material made by coating particles of foamed polystyrene with graphite, 6 a metal plate shield case which is used both as a metal plate and a reflection plate, 7 a triangular dipole antenna 4 This is a space surrounded by a metal plate shield case. Narrow pulses sent from a transmitter (not shown) through the feed connector 1 are passed through the broadband balun 2 to
The current is applied to the central feeding terminal of the triangular dipole antenna 4 having a length of 1/2 wavelength of the pulse fundamental wave, and the current travels toward the outside of the triangular dipole antenna 4 from the feeding point. When the fundamental wave component travels by 1/4 wavelength, the current is absorbed by the inverted concave dielectric 5 made of, for example, expanded polystyrene particles coated with graphite. The dielectric 5 is connected to both open ends of the triangular dipole antenna 4, and extends vertically from one open end toward the reflector (corresponding to 6), and is recessed between the antenna 4 and the reflector. It is folded back into a shape and connected to the other open end, and there is a space 7 between the dielectric 5 and the central part of the antenna. For example, a current flowing through graphite travels from one end of the triangular dipole antenna 4 to the other end, but because the resistivity of the graphite is large, the traveling wave current is converted into thermal energy, which is absorbed by the dielectric 5. be done. Therefore, the pulse current returning from the open end of the triangular dipole antenna 4 to the feeding point is only due to the mismatch between the open end and the dielectric 5, and the amount thereof is very small. In addition, the dielectric material 5 has the property of absorbing radio waves over a wide band, and the pulses radiated from the triangular dipole antenna 4 toward the metal plate shield case 6 are attenuated when they are incident on the shield case 6 and reflected, and the reflected waves are has a small effect on the antenna impedance, making it possible to take advantage of the wideband characteristics of the triangular dipole.

以上説明したように、三角形ダイポールアンテ
ナ4とシールドケース6の空間を利用して、例え
ばグラフアイトをコーテイングした逆凹形をした
誘電体5で、三角形ダイポールアンテナ4の両端
を短絡するようにしたことにより、小型で構造が
簡単であり、このような簡単な構成でアンテナ開
放端からの反射が抑圧され、またシールドケース
6側に放射されたパルスは上記誘電体5により吸
収されることにより反射板とアンテナ間の距離R
を小さくしてかつ広帯域特性を維持することがで
き、上記アンテナ4をパルスレーダ用アンテナと
して使用すると擬似エコーが抑圧されるという効
果がある。
As explained above, by utilizing the space between the triangular dipole antenna 4 and the shield case 6, both ends of the triangular dipole antenna 4 are short-circuited with, for example, an inverted concave dielectric material 5 coated with graphite. The structure is small and simple, and reflection from the open end of the antenna is suppressed with such a simple structure, and the pulses radiated to the shield case 6 side are absorbed by the dielectric 5, so that the reflection plate and the distance R between the antenna
can be made small while maintaining broadband characteristics, and when the antenna 4 is used as a pulse radar antenna, it has the effect of suppressing pseudo echoes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明アンテナの
一実施例を示す縦断面図及びそのA−A′断面図
である。 1……給電コネクタ、2……広帯域バラン、3
……誘電体基板、4……三角形ダイポールアンテ
ナ、5……導電性兼備の逆凹形誘電体、6……金
属板シールドケース、7……空間部。
FIGS. 1 and 2 are a longitudinal cross-sectional view and an A-A' cross-sectional view, respectively, showing an embodiment of the antenna of the present invention. 1...Power supply connector, 2...Broadband balun, 3
... Dielectric substrate, 4 ... Triangular dipole antenna, 5 ... Reverse concave dielectric with conductivity, 6 ... Metal plate shield case, 7 ... Space part.

Claims (1)

【特許請求の範囲】[Claims] 1 誘電体基板の片面に三角形状金属板体の頂角
を対向させて配置し固定した三角形ダイポールア
ンテナと、該三角形ダイポールアンテナからの電
磁波を単一方向に放射させるため該三角形ダイポ
ールアンテナと平行に配置した金属板シールドケ
ースと、該三角形ダイポールアンテナ及び該金属
板シールドケースにより形成される空間部に配置
し該三角形ダイポールアンテナの両開放端の全部
にそれぞれ当接して電気的に短絡させる両脚部端
を備えた導電性兼備の逆凹形誘電体とを有して該
三角形ダイポールアンテナの両開放端からの反射
波を抑圧することを特徴としたパルスレーダ用ア
ンテナ。
1. A triangular dipole antenna fixed on one side of a dielectric substrate with the apex angles of triangular metal plates facing each other, and a triangular dipole antenna arranged parallel to the triangular dipole antenna in order to radiate electromagnetic waves from the triangular dipole antenna in a single direction. the arranged metal plate shield case; and both leg ends disposed in a space formed by the triangular dipole antenna and the metal plate shield case and abutting both open ends of the triangular dipole antenna to electrically short-circuit each other; What is claimed is: 1. A pulse radar antenna characterized in that it has an inverted concave dielectric material that is both electrically conductive and suppresses reflected waves from both open ends of the triangular dipole antenna.
JP58070700A 1983-04-21 1983-04-21 Antenna for pulse radar Granted JPS59196607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58070700A JPS59196607A (en) 1983-04-21 1983-04-21 Antenna for pulse radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58070700A JPS59196607A (en) 1983-04-21 1983-04-21 Antenna for pulse radar

Publications (2)

Publication Number Publication Date
JPS59196607A JPS59196607A (en) 1984-11-08
JPH0447482B2 true JPH0447482B2 (en) 1992-08-04

Family

ID=13439145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58070700A Granted JPS59196607A (en) 1983-04-21 1983-04-21 Antenna for pulse radar

Country Status (1)

Country Link
JP (1) JPS59196607A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016962A1 (en) * 2000-08-23 2002-02-28 Cos Co., Ltd. Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534160B2 (en) * 1990-06-29 1996-09-11 三井造船株式会社 Underground buried object exploration radar
JPH10215105A (en) * 1996-11-29 1998-08-11 Kazuo Kono Underground/underwater antenna
WO2014092644A1 (en) * 2012-12-14 2014-06-19 Decod Science & Technology Pte Ltd Antenna system for ultra-wideband radar applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55159599U (en) * 1979-05-04 1980-11-15
JPS57176710U (en) * 1981-04-30 1982-11-09

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002016962A1 (en) * 2000-08-23 2002-02-28 Cos Co., Ltd. Electromagnetic wave radar antenna manufacturing method and electromagnetic wave radar antenna

Also Published As

Publication number Publication date
JPS59196607A (en) 1984-11-08

Similar Documents

Publication Publication Date Title
US5748153A (en) Flared conductor-backed coplanar waveguide traveling wave antenna
US5959591A (en) Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces
US4514734A (en) Array antenna system with low coupling elements
JPH11168323A (en) Multi-frequency antenna device and multi-frequency array antenna device using multi-frequency sharing antenna
US20090195459A1 (en) ultra wideband antenna
US5973653A (en) Inline coaxial balun-fed ultrawideband cornu flared horn antenna
US2479227A (en) Dual frequency antenna
GB2453778A (en) An ultra wideband antenna with a high impedance surface reflector
JP2007266509A (en) Radio wave absorber
CN108172992B (en) Novel Archimedes spiral antenna for stepping frequency ground penetrating radar
JPH0447482B2 (en)
US2825062A (en) Antenna
US4965869A (en) Aperture antenna having nonuniform resistivity
US2591486A (en) Electromagnetic horn antenna
JPH0946129A (en) Phased array antenna system
US2421988A (en) Directive antenna
US5793337A (en) Antennas disposed on separate ground planes
JP4358885B2 (en) Compact broadband antenna
US2594839A (en) Electrical apparatus
US3212095A (en) Low side lobe pillbox antenna employing open-ended baffles
Eide Ultra-wideband transmit/receive antenna pair for ground penetrating radar
US3447158A (en) Low profile aircraft antenna with dielectric reflector to reduce destructive interference
US3771161A (en) Printed-circuit feed for reflector antennas
JP2003516010A (en) Broadband scissor antenna
JPS6363122B2 (en)