JPS6363122B2 - - Google Patents

Info

Publication number
JPS6363122B2
JPS6363122B2 JP55093301A JP9330180A JPS6363122B2 JP S6363122 B2 JPS6363122 B2 JP S6363122B2 JP 55093301 A JP55093301 A JP 55093301A JP 9330180 A JP9330180 A JP 9330180A JP S6363122 B2 JPS6363122 B2 JP S6363122B2
Authority
JP
Japan
Prior art keywords
reflector
aperture
main reflector
small
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55093301A
Other languages
Japanese (ja)
Other versions
JPS5720002A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9330180A priority Critical patent/JPS5720002A/en
Publication of JPS5720002A publication Critical patent/JPS5720002A/en
Publication of JPS6363122B2 publication Critical patent/JPS6363122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/185Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は給電放射器の前後に立体的に、短い間
隔で主反射器及び小反射器を配設した、いわゆる
シヨートバツクフアイヤアンテナに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a so-called shot backfire antenna in which a main reflector and a small reflector are arranged three-dimensionally at short intervals before and after a feeding radiator. .

<従来技術> 従来からアンテナ軸方向の長さをエンドフアイ
ヤアレー(例えば八木・宇田アンテナ)より短く
構成でき、かつ開口能率の良いアンテナとして、
第1図にその構成要素を示した如きシヨートバツ
クフアイヤアンテナが考えられている。このシヨ
ートバツクフアイヤアンテナは、基本的には第1
図に示すように平面状の主反射器1と、その外周
に筒状に中心軸に平行に突設された側面反射器
2、小反射器3および給電放射器(図示ではダイ
ボール)4とで構成されている。
<Prior art> As an antenna, the length in the axial direction of the antenna can be configured to be shorter than that of an endfire array (for example, Yagi/Uda antenna), and the antenna has good aperture efficiency.
A short backfire antenna, the components of which are shown in FIG. 1, has been considered. This short fire antenna is basically the first antenna.
As shown in the figure, it consists of a planar main reflector 1, a side reflector 2, a small reflector 3, and a feeding radiator (die ball in the figure) 4, which are provided in a cylindrical shape on its outer periphery in parallel with the central axis. It is configured.

このアンテナの放射特性は、構成要素の諸元
(第1図に記号で併記)が相互に影響し合い、そ
の解析的な設計手法は未だ確立されていないが、
いま利得約14dBを得る場合の代表的な諸元とし
ては、 主反射器1の直径(DR) 2波長 側面反射器2の深さ(WB) 0.25波長 小反射器3の直径(Dr) 0.5波長 主反射器1と小反射器3との間隔(SR
0.5波長 給電ダイポール4と小反射器3との間隔(Sr
0.25波長 が採用されている。
The radiation characteristics of this antenna are influenced by the specifications of the constituent elements (also shown with symbols in Figure 1), and an analytical design method for this has not yet been established.
Typical specifications when obtaining a gain of about 14 dB are: Diameter of main reflector 1 (D R ) 2 wavelengths Depth of side reflector 2 (W B ) 0.25 wavelength Diameter of small reflector 3 (D r ) 0.5 wavelength Distance between main reflector 1 and small reflector 3 (S R )
Distance between 0.5 wavelength feeding dipole 4 and small reflector 3 (S r )
0.25 wavelength is used.

上記諸元で、もちろん主反射器1の直径DR
利得に対し最も支配的であるが、主反射器1と小
反射器3との間隔SRもこのアンテナの基本動作と
深い係わりがあり、このシヨートバツクフアイヤ
アンテナは1/2波長の整数(N)倍のうち、最も
間隔が狭い1/2波長(N=1)に選ばれている。
Among the above specifications, the diameter D R of the main reflector 1 is of course the most dominant factor in the gain, but the distance S R between the main reflector 1 and the small reflector 3 is also deeply related to the basic operation of this antenna. , this short-backfire antenna is selected to have the narrowest interval among 1/2 wavelengths (N) times an integer (N) of 1/2 wavelengths (N=1).

そして、第1図において、例えば1/2波長ダイ
ポールで構成された給電放射器4から放射された
電磁波は、主反射器1、小反射器3と側面反射器
2とから構成される漏れキヤビデイの内部で、主
反射器1と小反射器3との間で、両者間の間隔SR
が上記のように1/2波長に選定されているので、
給電放射器4より放射された電磁波は多数回反射
を行ない、その結果、側面反射器2の先端部と小
反射器3との間の開口面で定在波励起されて、ア
ンテナ軸方向に単向性のビームが放射される。
In FIG. 1, the electromagnetic waves radiated from the feeding radiator 4, which is made up of, for example, a 1/2 wavelength dipole, are transmitted through a leakage cavity made up of a main reflector 1, a small reflector 3, and a side reflector 2. Internally, between the main reflector 1 and the small reflector 3, the distance between them S R
is selected as 1/2 wavelength as above, so
The electromagnetic waves emitted from the feeding radiator 4 are reflected many times, and as a result, a standing wave is excited at the aperture between the tip of the side reflector 2 and the small reflector 3, and a single wave is generated in the antenna axis direction. A tropic beam is emitted.

<本発明が解決しようとする問題点> しかしながらこのような構成の従来技術による
シヨートバツクフアイヤアンテナの動作周波数
は、上述の基本動作原理上、当然のことながら、
平面状の主反射器1と、その外周の側面反射器2
と、平面主反射器1に平行な小反射器3、および
給電放射器4とから成る漏れキヤビデイ共振現象
による放射アンテナであるので、主反射器1と小
反射器3との間隔SRが1/2波長となる基本動作周
波数近傍の狭い周波数帯となり、また、給電放射
器4の入力インピーダンスも、基本動作周波数の
近傍で、急激な変化を呈し、実用上、更にこのア
ンテナの使用可能周波数帯は狭いものとなる。
<Problems to be Solved by the Present Invention> However, the operating frequency of the short-backfire antenna according to the prior art with such a configuration is, as a matter of course, based on the above-mentioned basic operating principle.
A planar main reflector 1 and a side reflector 2 on its outer periphery
, a small reflector 3 parallel to the planar main reflector 1, and a feeding radiator 4. Since this is a radiation antenna based on the leakage cavity resonance phenomenon, the distance S R between the main reflector 1 and the small reflector 3 is 1. /2 wavelength, which is a narrow frequency band near the basic operating frequency, and the input impedance of the feeding radiator 4 also exhibits a rapid change near the basic operating frequency, which makes it difficult to use this antenna in practical terms. becomes narrow.

第2図に上記の諸元で構成した従来のシヨート
バツクフアイヤアンテナについて、入力定在比
(VSWR)の周波数特性の実測例を示す。
FIG. 2 shows an example of actually measured frequency characteristics of the input standing ratio (VSWR) for a conventional short-backfire antenna configured with the above specifications.

このアンテナは1535MHz〜1644MHz間の海上移
動衛星業務に割り当てられた周波数帯での使用を
意図したものであり、給電放射器4としてはあら
かじめ広帯域化を図つたスリーブダイポールが採
用されているが、第2図に示したVSWR特性で
は極めて狭い周波数帯域となり、実用に供し難い
ことは明らかである。
This antenna is intended for use in the frequency band allocated to the maritime mobile satellite service between 1535MHz and 1644MHz, and a sleeve dipole designed to widen the band has been adopted as the feeding radiator 4. It is clear that the VSWR characteristics shown in Figure 2 result in an extremely narrow frequency band and are difficult to put into practical use.

このため入力VSWRの周波数特性をある程度
広帯域化するには、主反射器1と小反射器3との
間隔SRを1/2波長より広く0.6波長程度に配設する
か、あるいは小反射器3の直径Drを0.3〜0.4波長
に小さくする必要がある。しかし、このようにす
ると、これに伴つて、アンテナの動作が基本動作
から外れて開口能率が低下する。このため、所要
の利得を得るためには、主反射器1の直径を当初
の寸法より20〜30%大きくすることが必要とな
る。
Therefore, in order to widen the frequency characteristics of the input VSWR to some extent, the distance S R between the main reflector 1 and the small reflector 3 should be set to about 0.6 wavelength, which is wider than 1/2 wavelength, or It is necessary to reduce the diameter D r of 0.3 to 0.4 wavelength. However, if this is done, the operation of the antenna deviates from the basic operation and the aperture efficiency decreases. Therefore, in order to obtain the required gain, it is necessary to increase the diameter of the main reflector 1 by 20 to 30% from its original size.

また、逆に、主反射器1の直径は変えずに、小
反射器3の直径を0.5波長より大きくし、側面反
射器2の深さWBを0.4〜0.7波長にすると、利得
を高めることができるが、主反射器1、側面反射
器2、小反射器3で形成される漏れキヤビデイ共
振現象は一層強められるので、動作周波数帯域が
さらに狭くなつてしまう。
Conversely, the gain can be increased by making the diameter of the small reflector 3 larger than 0.5 wavelength and making the depth WB of the side reflector 2 0.4 to 0.7 wavelength without changing the diameter of the main reflector 1. However, since the leakage cavity resonance phenomenon formed by the main reflector 1, side reflector 2, and small reflector 3 is further strengthened, the operating frequency band is further narrowed.

本発明は以上のような問題点を解決したシヨー
トバツクフアイヤアンテナを提供することを目的
としている。
An object of the present invention is to provide a short-backfire antenna that solves the above-mentioned problems.

<前記問題点を解決するための手段> 前記問題点を解決するために本発明のシヨート
バツクフアイヤアンテナは、 開口径が1〜3波長で、開口面を開口角120゜〜
160゜の円錐状にした主反射器と、 前記主反射器の開口面の周縁に沿つて前記主反
射器の開口面の中心軸に平行な前方に筒状に突設
された側面反射器と、 前記主反射器の開口面の中心軸上の前方に配置
された給電放射器と、 前記主反射器の開口面の中心軸上に、中心軸に
対して垂直に、且つ前記給電放射器の前方に、前
記主反射器の開口中心部から0.5〜1波長の間隔
で配置された小反射器と を備えている。
<Means for solving the above-mentioned problems> In order to solve the above-mentioned problems, the short-backfire antenna of the present invention has an aperture diameter of 1 to 3 wavelengths and an aperture angle of 120° to 120°.
a main reflector having a conical shape of 160°; and a side reflector projecting forward in a cylindrical shape parallel to the central axis of the aperture of the main reflector along the periphery of the aperture of the main reflector; , a feeding radiator disposed in front on the central axis of the aperture surface of the main reflector, and a feeding radiator disposed on the central axis of the aperture surface of the main reflector, perpendicular to the central axis, A small reflector is provided in front of the main reflector, which is arranged at an interval of 0.5 to 1 wavelength from the center of the aperture of the main reflector.

<作用> このように主反射器の開口径が1〜3波長で、
開口角120゜〜160゜の円錐状をし、小反射器が主反
射器の開口中心部から0.5〜1波長の間隔で開口
面の中心軸に垂直となつているため、主反射器1
と小反射器との対向間隔が一定でなくなるので、
キヤビデイ共振現象が緩和されて広帯域特性とな
り、また側面反射器の軸方向の長さが長くなるこ
となしに、主反射器の中心軸に垂直な平面上での
側面反射器の前端部の位置が小反射器の配置面に
近ずけられるので、前記キヤビデイ共振現象を強
くすることなしに、小反射器との間の開口面の定
在波励起による電界照射分布が均一化され、開口
能率が高くなる。
<Function> In this way, the aperture diameter of the main reflector is 1 to 3 wavelengths,
Main reflector 1
Since the facing distance between the small reflector and the small reflector is not constant,
The cavity resonance phenomenon is alleviated, resulting in a broadband characteristic, and the position of the front end of the side reflector on the plane perpendicular to the central axis of the main reflector can be adjusted without increasing the length of the side reflector in the axial direction. Since the small reflector can be placed close to the arrangement surface, the electric field irradiation distribution due to standing wave excitation on the aperture surface between the small reflector and the small reflector can be made uniform without intensifying the cavity resonance phenomenon, and the aperture efficiency can be improved. It gets expensive.

<本発明の実施例> 次に本発明の一実施例を第3図に示す。<Example of the present invention> Next, an embodiment of the present invention is shown in FIG.

主反射器1は給電放射器4の方向に開口角αで
円錐状に開口した構造を有している。
The main reflector 1 has a conical opening in the direction of the feeding radiator 4 at an aperture angle α.

主反射器1の開口角αは他の諸元、特に主反射
器1の直径DRとの関連で選定する必要があり、
直径DRが1〜3波長程度に対しては、開口角α
は120゜〜160゜が適当である。
The aperture angle α of the main reflector 1 must be selected in relation to other specifications, especially the diameter D R of the main reflector 1.
For a diameter D R of 1 to 3 wavelengths, the aperture angle α
A suitable angle is 120° to 160°.

側面反射器2、給電放射器4は第1図のものと
同様である。
The side reflector 2 and the feed radiator 4 are similar to those shown in FIG.

この構造においても、給電放射器4から放射さ
れた電磁波は主反射器1と小反射器3との間で数
回反射を行なうことにより、定在波を励起させ
て、放射を行なう。
Also in this structure, the electromagnetic waves radiated from the feeding radiator 4 are reflected several times between the main reflector 1 and the small reflector 3, thereby exciting a standing wave and radiating the electromagnetic waves.

しかるに、このように主反射器1を簡単な幾何
的形状でもつてアンテナの前方、すなわち電波の
放射あるいは入射方向に適当な開口角αで傾斜さ
せることにより、特に主反射器1と小反射器3と
の対向間隔が一定でなくなるので、定在波励振放
射をするにもかかわらず、従来の平面状の主反射
器1と小反射器3とが平行なシヨートバツクフア
イヤアンテナに見られたような、キヤビデイ共振
現象が緩和されて、良好な広帯域特性が得られ
る。
However, by making the main reflector 1 have a simple geometric shape and tilting it at an appropriate aperture angle α in front of the antenna, that is, in the radiation or incidence direction of radio waves, the main reflector 1 and the small reflector 3 can be Since the facing distance between the reflector and the reflector is no longer constant, even though the standing wave excitation radiation is carried out, the main reflector 1 and the small reflector 3 are parallel to each other as seen in conventional short backfire antennas. Cavity resonance phenomena such as this are alleviated, and good broadband characteristics can be obtained.

また、従来の平面状の主反射器の場合に比し
て、主反射器1が開口角αで円錐状とした結果、
側面反射器2を深く形成することなしに側面反射
器2の前端部が小反射器3の配置面に近づくた
め、主反射器1の周辺部分に対する給電放射器4
と小反射器3とによる電界照射分布が最適化さ
れ、結果的に開口能率が向上するとともに、低サ
イドローブの優れた放射パターンが得られる。
In addition, compared to the case of a conventional planar main reflector, the main reflector 1 has a conical shape with an aperture angle α;
Since the front end of the side reflector 2 approaches the placement surface of the small reflector 3 without forming the side reflector 2 deeply, the feeding radiator 4 for the peripheral part of the main reflector 1 is
The electric field irradiation distribution by the small reflector 3 is optimized, and as a result, the aperture efficiency is improved and an excellent radiation pattern with low side lobes is obtained.

次に、このことを更に詳しく説明する。 Next, this will be explained in more detail.

即ち、従来技術によるシヨートバツクフアイヤ
アンテナにおいて、主反射器1の寸法を一定にし
た状態で反射主ローブのビーム角を狭くし、利得
を高めるには (i) 小反射器3の直径Drを0.5〜0.6波長と大きく
する、 (ii) 側面反射器2の深さWBを0.4〜0.7波長と深
くすることが有効であること が実験結果から明らかである。
That is, in the conventional short-backfire antenna, in order to narrow the beam angle of the reflected main lobe and increase the gain while keeping the dimensions of the main reflector 1 constant, (i) the diameter D of the small reflector 3; It is clear from the experimental results that it is effective to increase r to 0.5 to 0.6 wavelengths and (ii) to increase the depth WB of the side reflector 2 to 0.4 to 0.7 wavelengths.

特に、側面反射器2の深さWBを深くすること
は、第7図に示すように先端部PをP′にもつてい
くことになり、小反射器3の周縁部QとP′との間
の開口面の、定在波励起による電界照射分布が均
一化され、P′からの放射が強められるとともに、
その放射位相が遠方電界において、他の開口面か
らの放射(例えば小反射器3の周縁Q近傍からの
放射)の位相と合うように作用するものである。
しかし、上記(i)(ii)項のように小反射器3の直径を
大きくし、側面反射器2の深さWBを深くした形
状にすると、主反射器1、側面反射器2、小反射
器3で形成される漏れキヤビテイ共振現象は、一
層強められる結果となり、アンテナの動作帯域が
更に狭くなることは避けられない。
In particular, increasing the depth WB of the side reflector 2 means moving the tip P to P' as shown in FIG. The electric field irradiation distribution due to standing wave excitation on the aperture between P′ is made uniform, the radiation from P′ is strengthened,
It acts so that the phase of the radiation matches the phase of radiation from other apertures (for example, radiation from near the periphery Q of the small reflector 3) in a far-field electric field.
However, if the diameter of the small reflector 3 is increased and the depth WB of the side reflector 2 is increased as described in (i) and (ii) above, the main reflector 1, the side reflector 2, and the small reflector The leaky cavity resonance phenomenon formed in the antenna 3 is further strengthened, and it is inevitable that the operating band of the antenna will be further narrowed.

しかるに、本願発明によるシヨートバツクフア
イヤアンテナでは、第8図に点線で示すように、
側面反射器2は深さが変わらずに、その前端部
P′は、従来技術による側面反射器の先端部Pよ
り、約0.25波長前方(従来技術による側面反射器
2の深さ約0.5波長に相当する位置、第8図にお
いてP′点近傍)に配置されている。また、小反射
器3の直径も0.5波長に保たれている。
However, in the short-backfire antenna according to the present invention, as shown by the dotted line in FIG.
The side reflector 2 remains at its front end without changing its depth.
P' is placed approximately 0.25 wavelength ahead of the tip P of the side reflector 2 according to the conventional technology (a position corresponding to approximately 0.5 wavelength in depth of the side reflector 2 according to the conventional technology, near point P' in Fig. 8). has been done. Furthermore, the diameter of the small reflector 3 is also kept at 0.5 wavelength.

このため、漏れキヤビテイ共振現象が強められ
ることなしに、前記したように、小反射器3の周
縁部QとP′との間の開口面の、定在波励起による
電界照射分布が均一化され、P′からの放射が強め
られるとともに、その放射位相が遠方電界におい
て、他の開口面からの放射(例えば小反射器3の
周縁Q近傍からの放射)の位相と合うように作用
する。
Therefore, the electric field irradiation distribution due to the standing wave excitation on the aperture between the peripheral edge Q and P' of the small reflector 3 is made uniform, as described above, without intensifying the leakage cavity resonance phenomenon. , P' is intensified, and its radiation phase acts to match the phase of radiation from other apertures (for example, radiation from near the periphery Q of the small reflector 3) in the far electric field.

そして、主反射器1を開口角αをもつた円錐状
にすることにより、主反射器1、側面反射器2と
小反射器3で形成される漏れキヤビテイの共振特
性は、従来技術による、漏れキヤビテイ部分の共
振特性より、共振の尖鋭度は格段に低下されて、
従来技術における側面反射器2の深さが0.5〜0.6
波長の場合より広帯域特性を得ることが可能とな
る。
By forming the main reflector 1 into a conical shape with an aperture angle α, the resonance characteristics of the leakage cavity formed by the main reflector 1, side reflectors 2, and small reflectors 3 can be improved compared to the conventional technology. Due to the resonance characteristics of the cavity part, the sharpness of resonance is significantly reduced,
The depth of the side reflector 2 in the conventional technology is 0.5 to 0.6
It is possible to obtain broader band characteristics than in the case of wavelength.

また、主反射器1を円錐状に形成することによ
り、側面反射器2による作用と複合的に作用する
結果として、第9図イ,ロに示すように、主反射
器1の周辺部の開口面電界分布(図中矢印で示
す)は、従来技術における平面板状の主反射器で
形成するときより、照射が強められるとともに、
平面板状でなく円錐状にすることによる位相の最
適化も行なわれるので、サイドローブを抑圧し、
開口能率を高めることになる。
In addition, by forming the main reflector 1 in a conical shape, as a result of the effect acting in combination with the effect of the side reflector 2, an opening in the peripheral part of the main reflector 1 is formed as shown in FIG. The surface electric field distribution (indicated by arrows in the figure) is such that the irradiation is stronger than when it is formed using a flat plate-shaped main reflector in the conventional technology, and
The phase is also optimized by making it conical rather than a flat plate, so side lobes are suppressed,
This increases the aperture efficiency.

ここで、一例として、海事衛星通信用アンテナ
に対する諸元を下記に示す。
Here, as an example, the specifications for a maritime satellite communication antenna are shown below.

主反射器1の開口径(DR) 400mm (1.54GHzにおいて2.05波長) 側面反射器2の深さ(WB) 48mm (1.54GHzにおいて0.25波長) 小反射器3の直径(Dr) 90mm (1.54GHzにおいて0.46波長) 主反射器1の中心部と小反射器3との間隔
(SR) 120mm (1.54GHzにおいて0.62波長) 給電ダイポール4と小反射器3との間隔(Sr
60mm (1.54GHzにおいて0.26波長) 主反射器1の開口角(α) 150゜ この実例におけるアンテナ(実際は給電放射器
4を交さダイポールで構成した円偏波用)の
1.54GHzにおける指向性利得は15.5dB、サイドロ
ーブレベルは20dB以下であり、主反射器1の開
口能率としては85%の高能率が実現されている。
Aperture diameter of main reflector 1 (D R ) 400 mm (2.05 wavelength at 1.54 GHz) Depth of side reflector 2 (W B ) 48 mm (0.25 wavelength at 1.54 GHz) Diameter of small reflector 3 (D r ) 90 mm ( (0.46 wavelength at 1.54GHz) Distance between the center of main reflector 1 and small reflector 3 (S R ) 120mm (0.62 wavelength at 1.54GHz) Distance between feeding dipole 4 and small reflector 3 (S r )
60mm (0.26 wavelength at 1.54GHz) Aperture angle (α) of main reflector 1 150° The antenna in this example (actually for circularly polarized waves composed of dipoles with intersecting feeding radiators 4)
The directivity gain at 1.54 GHz is 15.5 dB, the side lobe level is 20 dB or less, and the aperture efficiency of the main reflector 1 is as high as 85%.

本アンテナの入力VSWR対周波数特性を第4
図における実線曲線イに示す。第2図に示す従来
のシヨートバツクフアイヤアンテナの場合と比較
して、格段に改善された広帯域特性を示してお
り、本アンテナの所望使用周波数帯、すなわち
1.54/1.64GHzの受信/送信用周波数帯にわたつ
て実用上十分なVSWR値となつている。
The input VSWR vs. frequency characteristics of this antenna are shown in the fourth section.
This is shown by the solid line curve A in the figure. Compared to the conventional short-backfire antenna shown in Fig. 2, it shows significantly improved wideband characteristics, and the desired frequency band of this antenna, i.e.
The VSWR value is sufficient for practical use across the 1.54/1.64 GHz reception/transmission frequency band.

なお、主反射器1の直径が、約3波長の場合に
おける本発明と第1図による従来のシヨートバツ
クフアイヤアンテナの放射パターン特性の実測比
較例を第6図に示す。同図において、イの点線で
示したパターンは従来のシヨートバツクフアイヤ
アンテナによる場合、ロの実線で示したパターン
は本発明による場合である。いずれも主反射器の
開口径は2.6波長とし、他の構成諸元をそれぞれ
利得が最大となるよう種々に変化させた後に得ら
れたものである。
FIG. 6 shows a comparative example of the radiation pattern characteristics of the present invention and the conventional short-backfire antenna shown in FIG. 1 when the diameter of the main reflector 1 is approximately three wavelengths. In the figure, the pattern shown by the dotted line in A is the case of the conventional short-backfire antenna, and the pattern shown by the solid line in B is the case according to the present invention. In both cases, the aperture diameter of the main reflector was 2.6 wavelengths, and the other structural parameters were variously changed to maximize the gain.

従来のシヨートバツクフアイヤアンテナでは、
指向性利得15.6dB、開口面能率54%となるが、
主反射器の開口角(α)を150゜とした本発明の実
施例では、指向性利得17.1dB、開口面能率70%
となり、この実施例では、前記主反射器の直径
DRを前記したように2.05波長とした場合よりは、
若干開口能率は低下しているもののまだ良好な放
射特性を示している。
In the conventional short backfire antenna,
The directivity gain is 15.6dB and the aperture efficiency is 54%.
In the embodiment of the present invention in which the aperture angle (α) of the main reflector is 150°, the directional gain is 17.1 dB and the aperture efficiency is 70%.
In this example, the diameter of the main reflector is
Compared to the case where D R is set to 2.05 wavelength as mentioned above,
Although the aperture efficiency has decreased slightly, it still shows good radiation characteristics.

第5図は本発明の他の実施例を示している。こ
の実施例では、小反射器3の前方(電波の放射方
向)に、その直径が僅か(約5%程度)小さい第
2の小反射器3′を、従来の小反射器3と同心状
に、約0.1波長の間隔をもつて平行に配列してい
る。
FIG. 5 shows another embodiment of the invention. In this embodiment, a second small reflector 3' whose diameter is slightly smaller (approximately 5%) is placed in front of the small reflector 3 (radiation direction of radio waves) and is placed concentrically with the conventional small reflector 3. , are arranged in parallel with an interval of about 0.1 wavelength.

このように2つの小反射器3,3′を設けるこ
とにより、放射パターンにはほとんど変化を及ぼ
すことなしに、更に入力VSWRの広帯域化が可
能となる。
By providing the two small reflectors 3 and 3' in this way, it is possible to further widen the input VSWR band without substantially changing the radiation pattern.

即ち、第4図に点線ロで示したVSWRの周波
数特性は、前記の主反射器1の直径DRを2.05波長
とした本発明のシヨートバツクフアイヤアンテナ
において、直径0.43波長の第2の小反射器3′を
0.09波長の間隔で、小反射器3の前方に付加した
ときの実施例であつて、同図のイの第2の小反射
器3′を有さない場合より一層優れている。
That is, the frequency characteristics of VSWR shown by the dotted line B in FIG. Small reflector 3'
This is an embodiment in which the reflectors are added in front of the small reflectors 3 at intervals of 0.09 wavelength, and is even better than the case in which the second small reflectors 3' are not provided in A of the figure.

<本発明の効果> 以上述べたように、本発明のシヨートバツクフ
アイヤアンテナでは、動作周波数帯の広帯域化と
開口能率の高効率化が実現できる。
<Effects of the Present Invention> As described above, the short-backfire antenna of the present invention can achieve a wide operating frequency band and a high aperture efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図イは従来の代表的なシヨートバツクフア
イヤアンテナの構成を示す断面図、同図ロはその
正面図、第2図は第1図に示す従来のアンテナの
VSWR対周波数特性図を示す図である。第3図
イは本発明の一実施例を示す断面図、同図ロはそ
の正面図である。第4図は第3図の実施例および
第5図の実施例の場合のVSWR対周波数特性図
である。第5図イは本発明の他の実施例を示す断
面図、同図ロはその正面図である。第6図は第1
図の従来例および第3図の実施例の場合の放射パ
ターン図である。第7図は従来の動作説明のため
の説明図、第8図は従来例と本発明の実施例との
違いを示すための説明図、第9図イ,ロはそれぞ
れ従来例と本発明の実施例との構造と開口面電界
分布とを対比して示す説明図である。 1……主反射器、2……側面反射器、3……小
反射器、4……給電放射器。
Figure 1A is a sectional view showing the configuration of a typical conventional short-backfire antenna, Figure 1B is its front view, and Figure 2 is the conventional antenna shown in Figure 1.
FIG. 3 is a diagram showing a VSWR vs. frequency characteristic diagram. FIG. 3A is a sectional view showing one embodiment of the present invention, and FIG. 3B is a front view thereof. FIG. 4 is a VSWR vs. frequency characteristic diagram for the embodiment of FIG. 3 and the embodiment of FIG. 5. FIG. 5A is a sectional view showing another embodiment of the present invention, and FIG. 5B is a front view thereof. Figure 6 is the first
FIG. 4 is a radiation pattern diagram for the conventional example shown in the figure and the embodiment shown in FIG. 3; Fig. 7 is an explanatory diagram for explaining the conventional operation, Fig. 8 is an explanatory diagram for showing the difference between the conventional example and the embodiment of the present invention, and Fig. 9 A and B are respectively the conventional example and the present invention. FIG. 3 is an explanatory diagram showing a structure and aperture surface electric field distribution in comparison with an example. 1...Main reflector, 2...Side reflector, 3...Small reflector, 4...Feeding radiator.

Claims (1)

【特許請求の範囲】 1 開口径が1〜3波長で、開口面を開口角120゜
〜160゜の円錐状にした主反射器と、 前記主反射器の開口面の周縁に沿つて前記主反
射器の開口面の中心軸に平行な前方に筒状に突設
された側面反射器と、 前記主反射器の開口面の中心軸上の前方に配置
された給電放射器と、 前記主反射器の開口面の中心軸上に、中心軸に
対して垂直に、且つ前記給電放射器の前方に、前
記主反射器の開口中心部から0.5〜1波長の間隔
で配置された小反射器とを備えたシヨートバツク
フアイヤアンテナ。
[Scope of Claims] 1. A main reflector having an aperture diameter of 1 to 3 wavelengths and a conical aperture surface with an aperture angle of 120° to 160°; a side reflector protruding forward in a cylindrical shape parallel to the central axis of the aperture of the reflector; a feeding radiator disposed in front of the central axis of the aperture of the main reflector; and the main reflector. a small reflector arranged on the central axis of the aperture surface of the vessel, perpendicular to the central axis and in front of the feeding radiator at an interval of 0.5 to 1 wavelength from the aperture center of the main reflector; A short back fire antenna with
JP9330180A 1980-07-10 1980-07-10 Short backfire antenna Granted JPS5720002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9330180A JPS5720002A (en) 1980-07-10 1980-07-10 Short backfire antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9330180A JPS5720002A (en) 1980-07-10 1980-07-10 Short backfire antenna

Publications (2)

Publication Number Publication Date
JPS5720002A JPS5720002A (en) 1982-02-02
JPS6363122B2 true JPS6363122B2 (en) 1988-12-06

Family

ID=14078520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9330180A Granted JPS5720002A (en) 1980-07-10 1980-07-10 Short backfire antenna

Country Status (1)

Country Link
JP (1) JPS5720002A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2655852B2 (en) * 1987-11-14 1997-09-24 望 長谷部 Microwave antenna
JP2655853B2 (en) * 1987-11-14 1997-09-24 望 長谷部 Microwave antenna
KR100441146B1 (en) 2001-11-16 2004-07-22 (주)하이게인안테나 Notch type antenna in a mobile communication service repeater
US7489282B2 (en) 2005-01-21 2009-02-10 Rotani, Inc. Method and apparatus for an antenna module
EP2469728A1 (en) 2006-02-28 2012-06-27 Rotani Inc. Methods and apparatus for overlapping mimo antenna physical sectors
FR2980647B1 (en) * 2011-09-22 2014-04-18 Alcatel Lucent ULTRA-LARGE BAND ANTENNA

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282056A (en) * 1975-12-05 1977-07-08 Hughes Aircraft Co Small waveelength efficiency antenna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5360740U (en) * 1976-10-27 1978-05-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282056A (en) * 1975-12-05 1977-07-08 Hughes Aircraft Co Small waveelength efficiency antenna

Also Published As

Publication number Publication date
JPS5720002A (en) 1982-02-02

Similar Documents

Publication Publication Date Title
Zucker et al. Surface-wave antennas
Cutler Parabolic-antenna design for microwaves
Chlavin A new antenna feed having equal E-and H-plane patterns
US8810468B2 (en) Beam shaping of RF feed energy for reflector-based antennas
JP3867713B2 (en) Radio wave lens antenna device
CN109950707B (en) Conical conformal end-fire array antenna
US3995275A (en) Reflector antenna having main and subreflector of diverse curvature
KR100964623B1 (en) Waveguide slot array antenna and planar slot array antenna
Sushko et al. Symmetrically fed 1–10 GHz log-periodic dipole antenna array feed for reflector antennas
JP2001284946A (en) Wide band antenna and array antenna device
JP2002500835A (en) Antenna for radiating high frequency radio signals
US3757345A (en) Shielded end-fire antenna
JP2536996B2 (en) Hollow body antenna with notch
Qudrat-E-Maula et al. Low-cost, microstrip-fed printed dipole for prime focus reflector feed
JPS6363122B2 (en)
JP4025499B2 (en) Circularly polarized antenna and circularly polarized array antenna
US3216018A (en) Wide angle horn feed closely spaced to main reflector
US10454177B2 (en) Transverse electromagnetic horn antenna having a curved surface
US3212095A (en) Low side lobe pillbox antenna employing open-ended baffles
Nguyen et al. Study of folded reflector multibeam antenna with dielectric rods as primary source
CN114759354A (en) Miniaturized broadband stable beam horn feed source antenna
Nuangwongsa et al. Design of symmetrical beam triple-aperture waveguide antenna for primary feed of reflector
US4516129A (en) Waveguide with dielectric coated flange antenna feed
JP2655853B2 (en) Microwave antenna
KR102299534B1 (en) A Small RFID Antenna System with Plenar Reflectarray for High Antenna Gain