WO2002015311A2 - Bipolarplatte für pem-brennstoffzellen - Google Patents

Bipolarplatte für pem-brennstoffzellen Download PDF

Info

Publication number
WO2002015311A2
WO2002015311A2 PCT/EP2001/009385 EP0109385W WO0215311A2 WO 2002015311 A2 WO2002015311 A2 WO 2002015311A2 EP 0109385 W EP0109385 W EP 0109385W WO 0215311 A2 WO0215311 A2 WO 0215311A2
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
metal
bipolar plate
bipolar
metal layer
Prior art date
Application number
PCT/EP2001/009385
Other languages
English (en)
French (fr)
Other versions
WO2002015311A3 (de
Inventor
Klaus Fischer
Willi Bartholomeyzik
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CA002419209A priority Critical patent/CA2419209A1/en
Priority to EP01967269A priority patent/EP1312129A2/de
Priority to JP2002520340A priority patent/JP2004507052A/ja
Priority to AU2001287683A priority patent/AU2001287683A1/en
Priority to KR10-2003-7002086A priority patent/KR20030024858A/ko
Publication of WO2002015311A2 publication Critical patent/WO2002015311A2/de
Publication of WO2002015311A3 publication Critical patent/WO2002015311A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Definitions

  • the invention relates to bipolar plates for PEM fuel cells, their manufacture and use in fuel cell stacks and their use for power supply in mobile and stationary devices.
  • PEFC Polymer electrolyte membrane fuel cells
  • a PEM fuel cell In a PEM fuel cell, the electrochemical reaction of hydrogen with oxygen to water is divided into the two sub-steps of reduction and oxidation by inserting a proton-conducting membrane between the anode and cathode electrodes. This separates the charge, which can be used as a voltage source.
  • Corresponding fuel cells are, for example, in "Fuel cell drive, innovative drive concepts, components and framework conditions", script for Specialist conference of IIR Deutschland GmbH, May 29-31, 2000 in Stuttgart.
  • a single PEM fuel cell has a symmetrical structure.
  • a polymer membrane is followed on both sides by a catalyst layer and a gas distribution layer, which are followed by a bipolar plate.
  • Current collectors are used to tap the electrical voltage, while end plates ensure the addition of the reaction gases and removal of the reaction products.
  • the bipolar plate connects two cells mechanically and electrically. Since the voltage of an individual cell is in the range of 1 N, it is necessary for practical applications to connect numerous cells in series. Often up to 150 cells, separated by bipolar plates, are stacked on top of one another. The cells are stacked so that the oxygen side of one cell is connected to the hydrogen side of the next cell via the bipolar plate.
  • the bipolar plate fulfills several functions. It is used for the electrical connection of the cells, for the supply and distribution of reactants (reaction gases) and coolants and for the separation of the gas spaces.
  • a bipolar plate must have the following properties:
  • bipolar plates Three different types are currently used.
  • metallic bipolar plates are used, which are made of stainless steel or coated other materials, such as aluminum or titanium, for example.
  • Metallic materials are characterized by high gas tightness, dimensional stability and high electrical conductivity.
  • Graphitic bipolar plates can be brought into the appropriate shape by pressing or milling. They are characterized by chemical resistance and low contact resistance, but in addition to being heavy, they have inadequate mechanical behavior.
  • Composite materials are made of special plastics that have conductive fillers, such as those based on carbon.
  • WO 98/33224 describes bipolar plates made of iron alloys which have high proportions of chromium and nickel.
  • bipolar plates made of plastic material which are made conductive by electrically conductive fillers, such as carbon powder.
  • electrically conductive fillers such as carbon powder.
  • a polymer resin is treated by introducing an electrically conductive powder and a hydrophilizing agent.
  • Polymer masses filled with silicon dioxide particles and graphite powder are used as bipolar plates. Phenolic resins are used in particular.
  • DE-A 196 02 315 relates to liquid-cooled fuel cells with distribution channels in the cell surface.
  • the cell area can consist of different materials, depending on their
  • the separators are e.g. made of graphite, titanium and / or metal alloys.
  • No. 5,776,624 discloses a bipolar plate made of metal layers soldered together.
  • Solder metal preferably Ni alloys, conductively coupled.
  • No. 6,071,635 relates to plates through which liquid or gas flows, for example bipolar plates, which are composed of conductive and non-conductive materials. Form these materials Parts of pads and / or channels on the surfaces of the plates.
  • the conductive materials form electrical lines on the surface of the plate and the non-conductive materials can form reinforcements and / or seals of the channels or parts of the periphery of the plate surface. They can be injection molded.
  • bipolar plates are critical functional elements of PEM fuel cell stacks, which contribute significantly to the cost and weight of the stacks, there is great demand for bipolar plates which meet the above-mentioned requirement profile and avoid the disadvantages of the known bipolar plates. In particular, an uncomplicated and inexpensive production of bipolar plates should be possible.
  • a bipolar plate for PEM fuel cells made of an inner metal layer and two non-conductive plastic layers lying on both sides of the metal layer and enclosing them, which form the surfaces of the bipolar plates, the metal layer having one or more electrically conductive connections with both surfaces and the plastic layers have superficial channels for gas transport.
  • a bipolar plate for PEM fuel cells made of non-conductive plastic, which has channels for gas transport on both surfaces and which is metal-coated with the exception of the edge region, the metal coatings on both sides being electrically conductively connected through the plastic through one or more metal contacts are.
  • the plastic layers can have metal coatings on both surfaces with the exception of the edge region, which are electrically conductively connected to the electrically conductive connections.
  • a functional separation between the geometry (design of the gas channels) and electrically conductive structures is carried out in the construction of the bipolar plate.
  • the conductivity function can be carried out either by overmolding a metal plate (inner metal layer) or by subsequent metallic coating of an injection molded part or part of the surface of the injection molded part. Due to the separation of functions according to the invention, the conductive bipolar plate can be manufactured much more economically.
  • the use of two components offers the possibility of optimizing each individual component with regard to its function and material properties.
  • the bipolar plate according to the invention is generally flat and thus has two opposite surfaces. In the edge area, the bipolar plates are pressed together with other components of the fuel cells to form stacks.
  • the bipolar plates according to the invention therefore do not have any metal coatings in these edge regions of the surface, but instead have suitable means for gas-tight connection of the bipolar plates to the other components of the cells or are designed to accommodate such means.
  • edge region precisely denotes the edge region of the surfaces which is required for the connection of the bipolar plates to the other components of the fuel cells.
  • the bipolar plate has an inner metal layer (circuit board) and two non-conductive plastic layers lying on both sides of the metal layer and enclosing it.
  • the inner metal layer (circuit board) can have any suitable geometry.
  • it can be a sheet metal or a film that has electrically conductive connections to both surfaces. It can be, for example, a film or sheet in which protruding structures such as ridges, noses, knobs etc. are provided, which extend to the surface of the plastic layers.
  • the metal layer can also be designed as a lattice, knitted fabric, or as another geometry, provided that it enables an electrically conductive connection between the two surfaces of the plastic layers.
  • the thickness and nature of the metal layer can be chosen freely, provided sufficient conductivity is achieved to prevent the maximum desired contact resistance from being exceeded.
  • FIG. 1 Such a construction of the metal layer is shown in FIG. 1 in a perspective view and as a cross-sectional view.
  • the metal layer has protruding lugs on both sides, which extend to the surface of the later applied plastic layer.
  • the plastic structure has the necessary channels for gas transport in the surface area.
  • the bipolar plate is constructed from a non-conductive plastic, the plate having metal coatings on both surfaces.
  • the edge areas or edge areas of the plate do not have such metal coatings, so that the two surfaces are not conductively connected to one another across the edges of the plate.
  • the electrically conductive connection of the two surface coatings is ensured by metal contacts that connect the metal layers on both sides through the plastic. 2, such a bipolar plate is shown in perspective and partially as a cross-sectional view.
  • the plastic bipolar plate generally has a plate thickness of> 2 mm.
  • the plate thickness is preferably 2.1 mm to 5.0 mm, particularly preferably 2.5 mm to 3.5 mm.
  • the layer thickness of the metal coatings is generally 0.05 mm to 0.15 mm, preferably 0.12 to 0.15 mm.
  • the plate thicknesses of previously used bipolar plates are usually 5 mm.
  • the inner metal layer is designed as a perforated metal plate.
  • the plastic layer around the metal layer has gas channels on both surfaces.
  • FIGS. 1 to 3 are examples of a large number of possible design variants.
  • the reference symbols in the figures mean the following:
  • metal layer for example (perforated) metal plate
  • the number of electrically conductive connections present on the surface of the bipolar plate is freely chosen on the basis of practical requirements. For example, the size and number of connections are chosen so that the volume resistance of the bipolar plate does not become too large. In addition, a good electrically conductive connection with the gas distribution layers (for example graphite paper) lying on the bipolar plate should be ensured.
  • the gas distribution layers for example graphite paper
  • thermoplastic or thermosetting plastics which are chemically stable against moist oxidizing and reducing conditions such as those found in PEM fuel cells can be used as the plastic material. They should also be gas-tight and true to size.
  • suitable materials are polyamides, polybutylene terephthalate, polyoxymethylene, polysulfone, polyether sulfone, polyphenylene oxide, polyether ketone, polypropylene, polyester, ethylene-propylene copolymers, unsaturated polyester resins, phenol-formaldehyde resins and other technically used plastics.
  • Blends of the plastics mentioned are also suitable, as are fiber- or mineral-reinforced plastics.
  • All corrosion-resistant metals such as Cr, Ni, Cu, Mo, Pb, Ti, V or graphite are suitable for the metallic surface layer, for example. They can be applied by any suitable method, for example by vapor deposition, sputtering, electroplating, plasma coating or painting.
  • the internal metal layer and the electrically conductive connections can be formed from all conductive, corrosion-resistant metals or alloys.
  • Cr-Ni steels can be used.
  • Other suitable materials are known to the person skilled in the art.
  • the invention also relates to a method for producing bipolar plates by deforming a metal layer to form the electrically conductive connections and subsequently encapsulating or encapsulating the metal layer with the plastic.
  • the bipolar plate can be produced by injection molding or pressing the plastic into the desired shape and then coating the surfaces with the metal to form the metal contacts.
  • plastic plates are used to produce the bipolar plates, which have openings with a narrow constriction.
  • An example of such a plastic plate is shown in FIG. 4a.
  • Subsequent coating of this plastic plate with the desired metal in accordance with one of the abovementioned methods results in an increased material application at the constriction, so that a metal plug forms which closes the opening in the plastic plate and at the same time establishes electrical contact between the two surfaces ( Figure 4b).
  • FIGS. 4a and 4b An example of a suitable geometry of the plastic plate is shown in FIGS. 4a and 4b.
  • Figure 4a shows the plastic plate in the uncoated state.
  • Figure 4b shows the plastic plate in the coated state.
  • the reference symbols in the figures mean the following:
  • the spatial design using the plastic material allows the simple production of even complex geometric structures by injection molding.
  • the bipolar plates according to the invention are generally used in fuel cell stacks composed of several individual cells. Such fuel cell stacks are formed by repeatedly stacking the bipolar plate, gas distribution layer,
  • Catalyst layer, polymer membrane, catalyst layer and gas distribution layer manufactured. There is a single cell between two bipolar plates. Terminal current collectors and end plates are also added. The stacked elements of the fuel cell stack are connected and sealed. For sealing, elastomer seals can be applied in the edge region of the bipolar plates according to the invention, or a seam geometry for subsequent welding, gluing or spray welding can be formed directly from the plastic.
  • the sealing takes place by firmly pressing the panels together.
  • the plates can be welded or glued together.
  • the welding can be carried out by any suitable method, for example in the ultrasound, heating element, vibration or laser welding method.
  • the individual elements of the fuel cells can also be connected and sealed by gluing or spray welding.
  • the fuel cell stack can also be sealed and connected with suitable polymer materials by injection molding around the entire plate stack.
  • a molded elastomer seal can be formed, for example, in two-component injection molding at the same time as the plastic layer.
  • the fuel cell stacks according to the invention can be used, for example, for power supply in mobile and stationary facilities.
  • the power supply for vehicles such as land, water and aircraft as well as self-sufficient systems such as satellites can be considered.
  • the fuel cell stacks according to the invention are preferably in one
  • the working temperature range is in particular around 100 ° C.
  • the temperature control can be carried out using suitable Cooling media can be reached, which are connected to at least part of the stack.
  • the bipolar plates according to the invention combine an advantageous combination of low weight, good electrical conductivity, gas tightness, or sealability and design of gas channels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Beschrieben werden eine Bipolarplatte für PEM-Brennstoffzellen aus einer innenliegenden Metallschicht und zwei beidseitig auf der Metallschicht aufliegenden und diese umschließenden nicht leitfähigen Kunststoffschichten, die die Oberflächen der Bipolarplatten bilden, wobei die Metallschicht mit beiden Oberflächen eine oder mehrere elektrisch leitende Verbindungen aufweist und die Kunststoffschichten oberflächliche Kanäle zum Gastransport aufweisen, und eine Bipolarplatte für PEM-Brennstoffzellen aus nicht leitfähigem Kunststoff, die an beiden Oberflächen Kanäle zum Gastransport aufweist und die mit Ausnhame des Kantenbereichs metallbeschichtet ist, wobei die beidseitigen Metallbeschichtungen durch den Kunststoff hindurch durch eine oder mehrere Metallkontaktierungen elektrisch leitend verbunden sind.

Description

Bipolarplatte für PEM-Brennstoffzellen
Die Erfindung betrifft Bipolarplatten für PEM-Brennstoffzellen, ihre Herstellung und Verwendung in Brennstoffzellen-Stacks und deren Anwendung zur Stromversorgung in mobilen und stationären Einrichtungen.
Bislang werden in Kraftfahrzeugen überwiegend Verbrennungsmotoren zum Antrieb eingesetzt, die Erdölprodukte als Treibstoff erfordern. Da die Ressourcen an Erdöl begrenzt sind und die Nerbrennungsprodukte einen nachteiligen Umwelteinfluß haben können, wurden in den letzten Jahren verstärkt- Forschungen nach alternativen Antriebskonzepten betrieben.
Die Nutzung von elektrochemischen Brennstoffzellen für mobile und stationäre Energieversorgungen findet dabei zunehmendes Interesse.
Derzeit existieren unterschiedliche Typen von Brennstoffzellen, deren Wirkungsprinzip allgemein auf der elektrochemischen Rekombination von Wasserstoff und Sauerstoff zum Endprodukt Wasser basiert. Sie lassen sich nach Art des verwendeten leitfahigen Elektrolyten, dem Betriebstemperaturniveau und realisierbaren Leistungsbereichen einordnen. Für automobile Anwendungen sind Polymer-Elektrolyt-Membran- Brennstoffzellen (PEM-Brennstoffzellen, auch abgekürzt als PEFC) besonders geeignet. Sie werden üblicherweise bei einer Temperatur im Bereich von 50 bis 90°C betrieben und liefern zur Zeit im kompletten Stack elektrische Leistungen im Bereich von 1 bis 75 kW (PKW) und bis 250 kW (NFZ, Omnibus).
In einer PEM-Brennstoffzelle wird die elektrochemische Reaktion von Wasserstoff mit Sauerstoff zu Wasser durch die Einfügung einer protonenleitenden Membran zwischen die Anoden- und die Kathodenelektrode in die beiden Teilschritte Reduktion und Oxidation aufgeteilt. Hierbei erfolgt eine Ladungstrennung, die als Spannungsquelle genutzt werden kann. Entsprechende Brennstoffzellen sind beispielsweise in "Brennstoffzellen-Antrieb, innovative Antriebkonzepte, Komponenten und Rahmenbedingungen", Skript zur Fachkonferenz der IIR Deutschland GmbH, 29. bis 31. Mai 2000 in Stuttgart zusammengefaßt.
Eine einzelne PEM-Brennstoffzelle weist einen symmetrischen Aufbau auf. Auf eine Polymermembran folgen beidseitig je eine Katalysatorschicht und Gasverteilerschicht, an die sich eine bipolare Platte anschließt. Stromkollektoren dienen zum Abgreifen der elektrischen Spannung, während Endplatten die Zudosierung der Reaktionsgase und Abführung der Reaktionsprodukte sicherstellen.
Die Bipolarplatte verbindet dabei zwei Zellen mechanisch und elektrisch. Da die Spannung einer einzelnen Zelle im Bereich um 1 N liegt, ist es für praktische Anwendungen notwendig, zahlreiche Zellen hintereinander zu schalten. Häufig werden bis zu 150 Zellen, durch Bipolarplatten getrennt, aufeinander gestapelt. Die Zellen werden dabei so aufeinander gestapelt, daß die Sauerstoffseite der einen Zelle mit der Wasserstoffseite der nächsten Zelle über die Bipolarplatte verbunden ist. Die Bipolarplatte erfüllt dabei mehrere Funktionen. Sie dient zur elektrischen Verschaltung der Zellen, zur Zuführung und Verteilung von Reaktanten (Reaktionsgasen) und Kühlmittel und zur Trennung der Gasräume. Dabei muß eine Bipolarplatte folgende Eigenschaften erfüllen:
- chemische Beständigkeit gegen feuchte oxidierende und reduzierende Bedingungen
Gasdichtheit hohe Leitfähigkeit geringe Übergangswiderstände - Maßhaltigkeit niedrige Kosten in bezug auf Material und Fertigung
Gestaltungsfireiheit hohe mechanische Belastbarkeit
Korrosionsbeständigkeit - geringes Gewicht.
Derzeit werden drei unterschiedliche Arten von Bipolarplatten verwendet. Zum einen werden metallische Bipolarplatten eingesetzt, die beispielsweise aus Edelstahlen bzw. beschichteten anderen Werkstoffen, wie Aluminium oder Titan aufgebaut sind. Metallische Werkstoffe zeichnen sich durch hohe Gasdichtigkeit, Maßhaltigkeit und hohe elektrische Leitfähigkeit aus.
Graphitische Bipolarplatten können durch Pressen oder Fräsen in die geeignete Form gebracht werden. Sie zeichnen sich durch chemische Beständigkeit und geringe Übergangswiderstände aus, haben aber neben einem hohen Gewicht ein unzureichendes mechanisches Verhalten.
Komposit-Materialien sind aus speziellen Kunststoffen aufgebaut, die leitfähige Füllstoffe, etwa auf Basis von Kohlenstoff, aufweisen.
In der WO 98/33224 sind Bipolarplatten aus Eisenlegierungen beschrieben, die hohe Anteile an Chrom und Nickel aufweisen.
Aus der GB-A-2 326 017 sind Bipolarplatten aus Kunststoffinaterial bekannt, die durch elektrisch leitfahige Füllstoffe, wie Kohlepulver leitfähig gemacht werden. Zusätzlich kann eine oberflächliche Metallbeschichtung vorliegen, die über die Kanten der Bipolarplatte eine elektrisch leitfahige Verbindung zwischen zwei Zellen ermöglicht.
Gemäß WO 98/53514 wird ein Polymerharz durch Eintragen eines elektrisch leitfahigen Pulvers und eines Hydrophilisiermittels behandelt. Mit Siliciumdioxidteilchen und Graphitpulver gefüllte Polymermassen werden als Bipolarplatten eingesetzt. Insbesondere finden dabei Phenolharze Anwendung.
DE-A 196 02 315 betrifft flüssigkeitsgekühlte Brennstoffzellen mit Verteilungskanälen in der Zellfläche. Die Zellfläche kann aus verschiedenen Materialien bestehen, je nach ihrer
Funktion. Die Separatoren sind z.B. aus Graphit, Titan und/oder Metallegierungen. Zur
Vergleichmäßigung des Stromabgriffs werden Gewebe oder Netze aus Materialien verwendet, die ähnlich denen der Separatoren sind. Rahmenbereiche sind z.B. aus
Kunststoff gebildet.
In US 5,776,624 ist eine Bipolarplatte aus zusammengelöteten Metallschichten offenbart.
Zwischen den Metallschichten sind Kanäle für Kühlmittel. Die Schichten sind über
Lötmetall, bzveorzugt Ni-Legierungen, leitend gekoppelt.
US 6,071,635 betrifft von Flüssigkeit oder Gas durchströmte Platten, z.B. Bipolarplatten, die aus leitenden und nicht-leitenden Materialien aufgebaut sind. Diese Materialien bilden Teile von Anschlußflächen und/oder Kanälen auf den Oberflächen der Platten. Die leitenden Materialien bilden elektrische Leitungen auf der Oberfläche der Platte und die nicht-leitenden Materialien können Verstärkungen und/oder Abdichtungen der Kanäle oder Teile der Peripherie der Plattenoberfläche bilden. Sie können spritzgegossen werden.
Da Bipolarplatten kritische Funktionselemente von PEM-Brennstoffzellen-Stacks sind, die zu einem erheblichen Anteil zu den Kosten und dem Gewicht der Stacks beitragen, besteht große Nachfrage nach Bipolarplatten, die das vorstehend genannte Anforderungsprofil erfüllen und die Nachteile der bekannten Bipolarplatten vermeiden. Insbesondere soll eine unaufwendige und kostengünstige Fertigung von Bipolarplatten möglich sein.
Die Aufgabe wird erfindungsgemäß gelöst durch eine Bipolarplatte für PEM- Brennstoffzellen aus einer innenliegenden Metallschicht und zwei beidseitig auf der Metallschicht aufliegenden und diese umschließenden nicht leitfahigen Kunststoffschichten, die die Oberflächen der Bipolarplatten bilden, wobei die Metallschicht mit beiden Oberflächen eine oder mehrere elektrisch leitende Verbindungen aufweist und die Kunststoffschichten oberflächliche Kanäle zum Gastransport aufweisen.
Die Aufgabe wird weiterhin gelöst durch eine Bipolarplatte für PEM-Brennstoffzellen aus nicht leitfähigem Kunststoff, die an beiden Oberflächen Kanäle zum Gastransport aufweist und die mit Ausnahme des Kantenbereichs metallbeschichtet ist, wobei die beidseitigen Metallbeschichtungen durch den Kunststoff hindurch durch eine oder mehrere Metallkontaktierungen elektrisch leitend verbunden sind.
Dabei können in der erstgenannten Bipolarplatte die Kunststoffschichten an beiden Oberflächen mit Ausnahme des Kantenbereichs Metallbeschichtungen aufweisen, die mit den elektrisch leitenden Verbindungen elektrisch leitend verbunden sind.
Erfindungsgemäß wird bei der Konstruktion der Bipolarplatte eine Funktionstrennung zwischen Geometrie (Gestaltung der Gaskanäle) und elektrisch leitfahigen Strukturen vorgenommen. Die Leitfahigkeitsfunktion kann dabei entweder durch das Umspritzen einer Metallplatine (innenliegende Metallschicht) oder durch das nachträgliche metallische Beschichten eines Spritzgußteils oder eines Teils der Oberfläche des Spritzgußteils erfolgen. Durch die erfindungsgemäße Funktionstrennung läßt sich die leitfahige Bipolarplatte wesentlich wirtschaftlicher fertigen. Der Einsatz zweier Komponenten bietet die Möglichkeit, jede Einzelkomponente hinsichtlich ihrer Funktion und Materialeigenschaft zu optimieren.
Die erfϊndungsgemäße Bipolarplatte ist im allgemeinen flächig ausgestaltet und weist damit zwei gegenüberliegende Oberflächen auf. Im Kantenbereich werden die Bipolarplatten mit anderen Komponenten der Brennstoffzellen zu Stacks zusammengepreßt. Daher weisen die erfindungsgemäßen Bipolarplatten in diesen Randbereichen der Oberfläche keine Metallbeschichtungen auf, sondern weisen geeignete Mittel zur gasdichten Verbindung der Bipolarplatten mit den anderen Komponenten der Zellen auf oder sind zur Aufnahme derartiger Mittel eingerichtet. Der Ausdruck „Kantenbereich" bezeichnet gerade den Randbereich der Oberflächen, der für die Verbindung der Bipolarplatten mit den anderen Komponenten der Brennstoffzellen benötigt wird.
Gemäß einer ersten Aus_l_ührungsform der Erfindung weist die Bipolarplatte eine innenliegende Metallschicht (Platine) und zwei beidseitig auf der Metallschicht aufliegende und diese umschließende nicht leitfahige Kunststoffschichten auf. Die innenliegende Metallschicht (Platine) kann dabei eine beliebige geeignete Geometrie aufweisen. Es kann sich beispielsweise um ein Blech oder eine Folie handeln, die elektrisch leitende Verbindungen zu beiden Oberflächen aufweist. Es kann sich beispielsweise um eine Folie oder ein Blech handeln, in dem vorspringende Strukturen, wie Grate, Nasen, Noppen usw. vorgesehen sind, die bis an die Oberfläche der Kunststoffschichten reichen. Die Metallschicht kann auch als Gitter, Gewirk, Gewebe oder als eine andere Geometrie ausgeführt sein, sofern sie eine elektrisch leitende Verbindung zwischen den beiden Oberflächen der Kunststoffschichten ermöglicht. Die Dicke und Beschaffenheit der Metallschicht kann dabei frei gewählt werden, sofern eine ausreichende Leitfähigkeit erreicht wird, die das Überschreiten eines maximal gewünschten Übergangswiderstandes verhindert.
Eine derartige Konstruktion der Metallschicht ist in Figur 1 in perspektivischer Ansicht und als Querschnittsansicht dargestellt. Die Metallschicht weist zu beiden Seiten hervorspringende Nasen auf, die bis zur Oberfläche der später aufgebrachten Kunststoffschicht reichen. Die Kunststoffstruktur weist dabei im Oberflächenbereich die erforderlichen Kanäle zum Gastransport auf.
Gemäß der zweiten Ausführungsform der Erfindung ist die Bipolarplatte aus einem nicht leitfahigen Kunststoff aufgebaut, wobei die Platte an beiden Oberflächen Metallbeschichtungen aufweist. Die Randbereiche bzw. Kantenbereiche der Platte weisen dabei keine derartigen Metallbeschichtungen auf, so daß die beiden Oberflächen nicht über die Kanten der Platte hinweg miteinander leitend verbunden werden. Die elektrisch leitende Verbindung der beiden Oberflächenbeschichtungen wird durch Metallkontaktierungen sichergestellt, die durch den Kunststoff hindurch die beidseitigen Metallschichten verbinden. In Fig. 2 ist eine derartige Bipolarplatte perspektivisch und teilweise als Querschnittsansicht dargestellt.
Die Bipolarplatte aus Kunststoff weist im allgemeinen eine Plattendicke von > 2 mm auf. Bevorzugt beträgt die Plattendicke 2,1 mm bis 5,0 mm, besonders bevorzugt 2,5 mm bis 3,5 mm. Die Schichtdicke der Metallbeschichtungen beträgt im allgemeinen 0,05 mm bis 0,15 mm, bevorzugt 0,12 bis 0,15 mm. Die Plattendicken von bisher eingesetzten Bipolarplatten betragen überlicherweise 5 mm. Somit kann, bei der Vielzahl an Einzelplatten, die für einen Brennstoffzellen-Stack verwendet werden, über die mit den erfindungsgemäßen Bipolarplatten erreichte Reduzierung der Plattendicke sowie durch die Verwendung von Kunststoff anstelle von z.B. Graphit das Gesamtgewicht sowie der in Anspruch genommene Bauraum einer Brennstoffzelle erheblich verringert werden.
Es können auch beide Ausführungsformen der Bipolarplatte vereint werden, wie es in Fig. 3 dargestellt ist. Dabei wird die innenliegende Metallschicht als gelochte Metallplatte ausgeführt. Die um die Metallschicht liegende Kunststoffschicht weist an beiden Oberflächen Gaskanäle auf. Zudem liegt auf der Oberfläche eine leitfähige Beschichtung vor, die über Kontaktierungen mit der Metallschicht verbunden ist.
Die in den Figuren 1 bis 3 dargestellten Geometrien sind Beispiele einer Vielzahl möglicher Gestaltungsvarianten. Die Bezugszeichen in den Figuren bedeuten dabei folgendes:
Gaskanäle
leitfahige Beschichtung 3 Kunststoflmaterial
4 Metallschicht, beispielsweise (gelochte) Metallplatte
5 elektrisch leitende Verbindung (Kontaktierung).
Die Anzahl der an der Oberfläche der Bipolarplatte vorliegenden elektrisch leitfahigen Verbindungen wird anhand der praktischen Erfordernisse frei gewählt. Beispielsweise wird die Größe und Anzahl der Verbindungen so gewählt, daß der Durchgangswiderstand der Bipolarplatte nicht zu groß wird. Zudem sollte eine gute elektrisch leitfahige Verbindung mit den an der Bipolarplatte anliegenden Gasverteilerschichten (beispielsweise Graphitpapier) gewährleistet sein.
Als Kunststof&naterial können erfindungsgemäß alle verstärkten und unverstärkten thermoplastischen oder duroplastischen Kunststoffe eingesetzt werden, die gegen feuchte oxidierende und reduzierende Bedingungen, wie sie in PEM-Brennstoffzellen herrschen, chemisch stabil sind. Zudem sollten sie gasdicht und maßhaltig sein. Beispiele geeigneter Materialien sind Polyamide, Polybutylenterephthalat, Polyoxymethylen, Polysulfon, Polyethersulfon, Polyphenylenoxid, Polyetherketon, Polypropylen, Polyester, Ethylen- Propylen-Copolymere, ungesättigte Polyesterharze, Phenol-Formaldehyd-Harze und andere technisch eingesetzte Kunststoffe.
Des weiteren sind auch Blends der genannten Kunststoffe geeignet sowie faser- bzw. mineralverstärkte Kunststoffe.
Für die metallische Oberflächenschicht eignen sich beispielsweise alle korrosionsbeständigen Metalle, wie Cr, Ni, Cu, Mo, Pb, Ti, V oder auch Graphit. Sie können nach beliebigen geeigneten Verfahren aufgebracht werden, beispielsweise durch Bedampfen, Sputtern, Galvanisieren, Plasmabeschichten oder Lackieren.
Die innenliegende Metallschicht und die elektrisch leitenden Verbindungen können aus allen leitfahigen korrosionsbeständigen Metallen oder Legierungen gebildet werden. Beispielsweise können Cr-Ni-Stähle zum Einsatz kommen. Weitere geeignete Materialien sind dem Fachmann bekannt. Die Erfindung betrifft auch ein Verfahren zur Herstellung von Bipolarplatten durch Verformen einer Metallschicht zur Ausbildung der elektrisch leitenden Verbindungen und nachfolgendes Umspritzen oder Umpressen der Metallschicht mit dem Kunststoff. Außerdem kann die Bipolarplatte durch Spritzgießen oder Pressen des Kunststoffs in die gewünschte Form und nachfolgendes Beschichten der Oberflächen mit dem Metall unter Ausbildung der Metallkontaktierungen hergestellt werden.
In einer besonders bevorzugten Ausführungsform werden Kunststoffplatten zur Herstellung der Bipolarplatten eingesetzt, die Öffnungen mit einer spitzen Verengung aufweisen. In Figur 4a ist ein Beispiel einer solchen Kunststoffplatte dargestellt. Durch anschließendes Beschichten dieser Kunststoffplatte mit dem gewünschten Metall gemäß einem der vorstehend genannten Verfahren kommt es an der Verengung zu einem verstärkten Materialauftrag, so daß sich ein Metallpfropf bildet, der die Öffnung in der Kunststoffplatte verschließt und gleichzeitig einen elektrischen Kontakt zwischen den beiden Oberflächen herstellt (Figur 4b). Durch den Einsatz der beschriebenen Kunststoffplatten können in einem Arbeitsgang mit herkömmlichen Beschichtungsmethoden gebrauchsfertige Bipolarplatten hergestellt werden.
In Figur 4a und 4b ist ein Beispiel für eine geeignete Geometrie der Kunststofφlatte dargestellt. Dabei stellt Figur 4a die Kunststoffplatte im unbeschichteten Zustand Figur 4b die Kunststoffplatte im beschichteten Zustand dar. Die Bezugszeichen in den Figuren bedeuten folgendes:
1 Gaskanäle 2 leitfahige Beschichtung
3 Kunststoffmaterial
5 elektrisch leitende Verbindung (Kontaktierung)
Insbesondere die räumliche Gestaltung unter Verwendung des Kunststoffmaterials erlaubt durch das Spritzgießen die einfache Herstellung selbst komplexer geometrischer Strukturen.
Die erfindungsgemäßen Bipolarplatten werden im allgemeinen in Brennstoffzellen-Stacks aus mehreren Einzelzellen eingesetzt. Derartige Brennstoffzellen-Stacks werden durch wiederholtes Aufeinanderschichten von Bipolarplatte, Gasverteilerschicht,
Katalysatorschicht, Polymermembran, Katalysatorschicht und Gasverteilerschicht hergestellt. Zwischen jeweils zwei Bipolarplatten liegt dabei eine Einzelzelle vor. Zudem werden endständige Stromkollektoren und Endplatten angefügt. Die aufeinandergeschichteten Elemente des Brennstoffzellen-Stacks werden verbunden und abgedichtet. Zur Abdichtung können im Randbereich der erfindungsgemäßen Bipolarplatten Elastomerdichtungen aufgebracht sein, oder es kann eine Nahtgeometrie für das nachträgliche Schweißen, Kleben oder Spritzschweißen direkt aus dem Kunststoff angeformt werden.
Im ersteren Fall erfolgt die Abdichtung durch festes Aufeinanderpressen der Platten. Im zweiten Fall können die Platten untereinander verschweißt oder verklebt werden. Das Verschweißen kann nach beliebigen geeigneten Verfahren durchgeführt werden, beispielsweise im Ultraschall-, Heizelement-, Vibrations- oder Laserschweißverfahren. Die einzelnen Elemente der Brennstoffzellen können auch durch Verkleben oder Spritzschweißen verbunden und abgedichtet werden.
Der Brennstoffzellen-Stack kann auch durch Umspritzen des gesamten Plattenstapels im Spritzgußverfahren mit geeigneten Polymerwerkstoffen abgedichtet und verbunden werden.
Eine angeformte Elastomerdichtung kann beispielsweise im Zwei-Komponenten-Spritzguß gleichzeitig mit der Kunststoffschicht ausgebildet werden.
Insbesondere das Vorsehen eines erhöhten umlaufenden Randes mit angeformter Schweißnahtgeometrie erlaubt ein kostengünstiges gasdichtes Verbinden der Elemente zu einem Brennstoffzellen-Stack.
Die erfindungsgemäßen Brennstoffzellen-Stacks können beispielsweise zur Stromversorgung in mobilen und stationären Einrichtungen eingesetzt werden. Neben einer Hausversorgung kommen dabei insbesondere die Stromversorgung von Fahrzeugen, wie Land-, Wasser- und Luftfahrzeugen sowie autarken Systemen, wie Satelliten, in Betracht.
Die erfindungsgemäßen Brennstoffzellen-Stacks sind vorzugsweise in einem
Temperaturbereich von -40 bis +120°C stabil. Der Arbeitstemperaturbereich liegt dabei insbesondere im Bereich um 100°C. Die Temperierung kann dabei durch geeignete Kühlmedien erreicht werden, die zumindest mit einem Teil des Stacks in Verbindung stehen.
Die erfindungsgemäßen Bipolarplatten vereinen eine vorteilhafte Kombination von niedrigem Gewicht, guter elektrischer Leitfähigkeit, Gasdichtigkeit, bzw. Abdichtbarkeit und Gestaltung von Gaskanälen.

Claims

Patentansprüche
1. Bipolarplatte für PEM-Brennstoffzellen aus einer innenliegenden Metallschicht und zwei beidseitig auf der Metallschicht aufliegenden und diese umschließenden nicht leitfahigen Kunststoffschichten, die die Oberflächen der Bipolarplatten bilden, wobei die Metallschicht mit beiden Oberflächen eine oder mehrere elektrisch leitende Verbindungen aufweist und die Kunststoffschichten oberflächliche Kanäle zum Gastransport aufweisen.
2. Bipolarplatte für PEM-Brennstoffzellen aus nicht leitfahigem Kunststoff, die an beiden Oberflächen Kanäle zum Gastransport aufweist und die mit Ausnahme des Kantenbereichs metallbeschichtet ist, wobei die beidseitigen Metallbeschichtungen durch den Kunststoff hindurch durch eine oder mehrere Metallkontaktierungen elektrisch leitend verbunden sind.
Bipolarplatte nach Anspruch 1, dadurch gekennzeichnet, daß die Kunststoffschichten an beiden Oberflächen mit Ausnahme des Kantenbereichs Metallbeschichtungen aufweisen, die mit den elektrisch leitenden Verbindungen elektrisch leitend verbunden sind.
Bipolarplatte nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß im Randbereich mindestens einer der Oberflächen eine Elastomerdichtung aufgebracht ist ist oder eine Nahtgeometrie für das nachträgliche Schweißen, Kleben oder Spritzschweißen aus dem Kunststoff angeformt ist.
5. Bipolarplatte nach einem der Ansprüche 1 bis A, dadurch gekennzeichnet, daß Kunststoffe ausgewählt aus Polyamiden, Polybutylenterephthalat, Polyoxymethylen, Polysulfon, Polyethersulfon, Polyphenylenoxid, Polyetherketon, Polypropylen, Polyester, Ethylen-Propylen-Copolymeren, ungesättigten Polyesterharzen, Phenol- Formaldehyd-Harzen eingesetzt werden.
6. Verfahren zur Herstellung von Bipolarplatten gemäß Anspruch 1 durch Verformen einer Metallschicht zur Ausbildung der elektrisch leitenden Verbindungen und nachfolgendes Umspritzen der Metallschicht mit dem Kunststoff.
7. Verfahren zur Herstellung von Bipolarplatten gemäß Anspruch 2 durch Spritzgießen des Kunststoffs in die gewünschte Form und nachfolgendes Beschichten der Oberflächen mit dem Metall unter Ausbildung der Metallkontaktierungen.
8. Brennstoffzellen-Stack aus mehreren Brennstoffzellen, die Bipolarplatten gemäß einem der Ansprüche 1 bis 5 enthalten.
9. Verfahren zur Herstellung von Brennstoffzellen-Stacks gemäß Anspruch 8 durch wiederholtes Aufeinanderschichten von Bipolarplatten, Gasverteilerschicht, Katalysatorschicht, Polymermembran, Katalysatorschicht und Gasverteilerschicht, sowie jeweils endständigen Stromkollektoren und Endplatten, Verbinden und
Abdichten der Schichten zum Brennstoffzellen-Stack.
10. Verwendung von Brennstoffzellen-Stacks gemäß Anspruch 9 zur Stromversorgung in mobilen und stationären Einrichtungen.
PCT/EP2001/009385 2000-08-14 2001-08-14 Bipolarplatte für pem-brennstoffzellen WO2002015311A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002419209A CA2419209A1 (en) 2000-08-14 2001-08-14 Bipolar plate for pem fuel cells
EP01967269A EP1312129A2 (de) 2000-08-14 2001-08-14 Bipolarplatte für pem-brennstoffzellen
JP2002520340A JP2004507052A (ja) 2000-08-14 2001-08-14 Pem燃料電池用二極板
AU2001287683A AU2001287683A1 (en) 2000-08-14 2001-08-14 Bipolar plate for pem fuel cells
KR10-2003-7002086A KR20030024858A (ko) 2000-08-14 2001-08-14 Pem 연료전지용 분리판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10039674A DE10039674A1 (de) 2000-08-14 2000-08-14 Bipolarplatte für PEM-Brennstoffzellen
DE10039674.7 2000-08-14

Publications (2)

Publication Number Publication Date
WO2002015311A2 true WO2002015311A2 (de) 2002-02-21
WO2002015311A3 WO2002015311A3 (de) 2002-05-10

Family

ID=7652373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/009385 WO2002015311A2 (de) 2000-08-14 2001-08-14 Bipolarplatte für pem-brennstoffzellen

Country Status (9)

Country Link
US (1) US20030180598A1 (de)
EP (1) EP1312129A2 (de)
JP (1) JP2004507052A (de)
KR (1) KR20030024858A (de)
CN (1) CN1454397A (de)
AU (1) AU2001287683A1 (de)
CA (1) CA2419209A1 (de)
DE (1) DE10039674A1 (de)
WO (1) WO2002015311A2 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134135A (ja) * 2000-10-20 2002-05-10 Sony Corp 燃料電池用セパレータ
US6677071B2 (en) * 2001-02-15 2004-01-13 Asia Pacific Fuel Cell Technologies, Ltd. Bipolar plate for a fuel cell
WO2005053069A1 (en) * 2003-11-25 2005-06-09 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, manufacturing method of same, and fuel cell and vehicle using the separator
JP2005518652A (ja) * 2002-02-26 2005-06-23 セラミック・フューエル・セルズ・リミテッド 燃料電池ガスセパレータ
JP2005528742A (ja) * 2002-05-09 2005-09-22 本田技研工業株式会社 燃料電池及びそのセパレータ
WO2006125775A1 (de) * 2005-05-27 2006-11-30 Basf Aktiengesellschaft Bipolarplatte für brennstoffzellen
WO2007000218A2 (de) * 2005-06-27 2007-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Bipolarplatte, verfahren zur herstellung einer bipolarplatte und brennstoffzellenblock-anordnung
CN100388537C (zh) * 2003-09-05 2008-05-14 中国科学院大连化学物理研究所 燃料电池复合材料双极板及其制作方法
CN100423331C (zh) * 2006-11-30 2008-10-01 上海交通大学 基于辊压成形的质子交换膜燃料电池金属双极板制造方法
GB2472450A (en) * 2009-08-07 2011-02-09 Afc Energy Plc Cell Stack Plates
WO2020109436A1 (de) * 2018-11-28 2020-06-04 Robert Bosch Gmbh Verteilerstruktur für brennstoffzelle oder elektrolyseur

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10113001A1 (de) * 2001-03-17 2002-10-10 Bayerische Motoren Werke Ag Brennstoffzelle mit optimierter Reaktandenverteilung
US20030118888A1 (en) * 2001-12-05 2003-06-26 Gencell Corporation Polymer coated metallic bipolar separator plate and method of assembly
DE10243592A1 (de) 2002-09-19 2004-04-01 Basf Future Business Gmbh Bipolarplatte für PEM-Brennstoffzellen
US20050048346A1 (en) * 2003-08-28 2005-03-03 Fannon Megan A. Modular connections in a DMFC array
US7344798B2 (en) * 2003-11-07 2008-03-18 General Motors Corporation Low contact resistance bonding method for bipolar plates in a pem fuel cell
US7309540B2 (en) * 2004-05-21 2007-12-18 Sarnoff Corporation Electrical power source designs and components
DE102004028142B4 (de) * 2004-06-10 2009-01-08 Sartorius Stedim Biotech Gmbh Bipolarseparator
CN2791889Y (zh) * 2004-10-19 2006-06-28 胜光科技股份有限公司 用于燃料电池的流道板结构改良
US20060234109A1 (en) * 2005-04-14 2006-10-19 Datta Reena L Composite flow field plates and process of molding the same
CN100517832C (zh) * 2005-04-22 2009-07-22 鸿富锦精密工业(深圳)有限公司 双极板,其制造方法及具有该双极板的燃料电池
CN101375442B (zh) * 2005-08-12 2011-11-16 通用汽车环球科技运作公司 具有包括纳米颗粒的涂层的燃料电池部件
TWI311829B (en) * 2006-06-16 2009-07-01 Nan Ya Printed Circuit Board Corporatio Flow board of fuel cells
TWI311830B (en) * 2006-06-28 2009-07-01 Nan Ya Printed Circuit Board Corporatio Fuel cell module utilizing wave-shaped flow board
US7862936B2 (en) * 2007-01-12 2011-01-04 Gm Global Technology Operations, Inc. Water removal channel for PEM fuel cell stack headers
DE102008028358A1 (de) * 2008-06-10 2009-12-17 Igs Development Gmbh Separatorplatte und Verfahren zum Herstellen einer Separatorplatte
US8383280B2 (en) * 2008-08-12 2013-02-26 Amir Niroumand Fuel cell separator plate with integrated heat exchanger
JP5333727B2 (ja) * 2008-11-06 2013-11-06 トヨタ自動車株式会社 燃料電池用セパレータ
US8309274B2 (en) * 2009-05-15 2012-11-13 GM Global Technology Operations LLC Separator plates formed by photopolymer based processes
US8597858B2 (en) * 2010-04-22 2013-12-03 GM Global Technology Operations LLC Electroformed bipolar plates for fuel cells
KR101427481B1 (ko) * 2012-11-02 2014-08-08 주식회사 효성 멀티셀 분리판 제조 방법
JP6657974B2 (ja) * 2016-01-12 2020-03-04 トヨタ紡織株式会社 金属樹脂一体成形品及びその製造方法
CN110783597A (zh) * 2019-11-05 2020-02-11 陶霖密 质子交换膜燃料电池、电堆、制造方法和流场板复合系统
CN110649279B (zh) * 2019-11-05 2024-02-06 陶霖密 质子交换膜电极、燃料电池、电堆及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050138A1 (en) * 1996-06-25 1997-12-31 E.I. Du Pont De Nemours And Company Polymer electrolyte membrane fuel cell with bipolar plate having molded polymer projections
WO1998033224A1 (de) * 1997-01-22 1998-07-30 Siemens Aktiengesellschaft Brennstoffzelle und verwendung von legierungen auf der basis von eisen für die konstruktion von brennstoffzellen
WO1999060643A1 (en) * 1998-05-21 1999-11-25 The Dow Chemical Company Bipolar plates for electrochemical cells
WO2000005775A1 (fr) * 1998-07-21 2000-02-03 Sorapec Collecteur bipolaire pour pile a combustible
EP1009051A2 (de) * 1998-12-08 2000-06-14 General Motors Corporation Flüssigkeitsgekühlte Bipolarplatte aus geleimten Platten für PEM-Brennstoffzellen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7520197U (de) * 1975-06-25 1976-09-30 Varta Batterie Ag, 3000 Hannover Elektrischer akkumulator, insbesondere bleiakkumulator fuer fahrzeugbatterien
US5789093A (en) * 1996-12-10 1998-08-04 Texas Instruments Incorporated Low profile fuel cell
US5776624A (en) * 1996-12-23 1998-07-07 General Motors Corporation Brazed bipolar plates for PEM fuel cells
US6096450A (en) * 1998-02-11 2000-08-01 Plug Power Inc. Fuel cell assembly fluid flow plate having conductive fibers and rigidizing material therein
US6071635A (en) * 1998-04-03 2000-06-06 Plug Power, L.L.C. Easily-formable fuel cell assembly fluid flow plate having conductivity and increased non-conductive material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997050138A1 (en) * 1996-06-25 1997-12-31 E.I. Du Pont De Nemours And Company Polymer electrolyte membrane fuel cell with bipolar plate having molded polymer projections
WO1998033224A1 (de) * 1997-01-22 1998-07-30 Siemens Aktiengesellschaft Brennstoffzelle und verwendung von legierungen auf der basis von eisen für die konstruktion von brennstoffzellen
WO1999060643A1 (en) * 1998-05-21 1999-11-25 The Dow Chemical Company Bipolar plates for electrochemical cells
WO2000005775A1 (fr) * 1998-07-21 2000-02-03 Sorapec Collecteur bipolaire pour pile a combustible
EP1009051A2 (de) * 1998-12-08 2000-06-14 General Motors Corporation Flüssigkeitsgekühlte Bipolarplatte aus geleimten Platten für PEM-Brennstoffzellen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134135A (ja) * 2000-10-20 2002-05-10 Sony Corp 燃料電池用セパレータ
US6677071B2 (en) * 2001-02-15 2004-01-13 Asia Pacific Fuel Cell Technologies, Ltd. Bipolar plate for a fuel cell
JP2005518652A (ja) * 2002-02-26 2005-06-23 セラミック・フューエル・セルズ・リミテッド 燃料電池ガスセパレータ
JP2005528742A (ja) * 2002-05-09 2005-09-22 本田技研工業株式会社 燃料電池及びそのセパレータ
CN100388537C (zh) * 2003-09-05 2008-05-14 中国科学院大连化学物理研究所 燃料电池复合材料双极板及其制作方法
WO2005053069A1 (en) * 2003-11-25 2005-06-09 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, manufacturing method of same, and fuel cell and vehicle using the separator
US7806967B2 (en) 2003-11-25 2010-10-05 Toyota Jidosha Kabushiki Kaisha Fuel cell separator, manufacturing method of same, and fuel cell and vehicle using the separator
WO2006125775A1 (de) * 2005-05-27 2006-11-30 Basf Aktiengesellschaft Bipolarplatte für brennstoffzellen
WO2007000218A2 (de) * 2005-06-27 2007-01-04 Deutsches Zentrum für Luft- und Raumfahrt e.V. Bipolarplatte, verfahren zur herstellung einer bipolarplatte und brennstoffzellenblock-anordnung
WO2007000218A3 (de) * 2005-06-27 2007-04-19 Deutsch Zentr Luft & Raumfahrt Bipolarplatte, verfahren zur herstellung einer bipolarplatte und brennstoffzellenblock-anordnung
US7846606B2 (en) 2005-06-27 2010-12-07 Deutsches Zentrum Fuer Luft-Und Raumfahrt E. V. Bipolar plate, a method for the production of a bipolar plate and a fuel cell block arrangement
CN100423331C (zh) * 2006-11-30 2008-10-01 上海交通大学 基于辊压成形的质子交换膜燃料电池金属双极板制造方法
GB2472450A (en) * 2009-08-07 2011-02-09 Afc Energy Plc Cell Stack Plates
WO2020109436A1 (de) * 2018-11-28 2020-06-04 Robert Bosch Gmbh Verteilerstruktur für brennstoffzelle oder elektrolyseur

Also Published As

Publication number Publication date
EP1312129A2 (de) 2003-05-21
CA2419209A1 (en) 2003-02-12
AU2001287683A1 (en) 2002-02-25
CN1454397A (zh) 2003-11-05
JP2004507052A (ja) 2004-03-04
US20030180598A1 (en) 2003-09-25
KR20030024858A (ko) 2003-03-26
WO2002015311A3 (de) 2002-05-10
DE10039674A1 (de) 2002-03-07

Similar Documents

Publication Publication Date Title
WO2002015311A2 (de) Bipolarplatte für pem-brennstoffzellen
DE112005000978B4 (de) Hybridbipolarplattenanordnung und Vorrichtungen, die diese enthalten sowie deren Verwendung
EP1359633B1 (de) Galvanisches Element mit dünnen Elektroden
DE10261482A1 (de) Brennstoffzellenmodul
EP1401039A2 (de) Bipolarplatte für PEM-Brennstoffzellen
EP3679615B1 (de) Baugruppe für einen brennstoffzellenstapel, brennstoffzellenstapel und verfahren zur herstellung der baugruppe
DE102009024513A1 (de) Batteriezellenverbinder
EP2740177A1 (de) Einzelzelle für eine batterie und eine batterie
DE60305267T2 (de) Separatorplatte für Polymerelektrolytbrennstoffzelle und diese verwendende Polymerelektrolytbrennstoffzelle
EP1627445B1 (de) Elektrolyse- bzw. brennstoffzelle mit druckkissen und verbessertem übergangswiderstand
DE10261483A1 (de) Bipolarplatte und Verfahren zu ihrer Herstellung
DE102010055615A1 (de) Einzelzelle für eine Batterie und Verfahren zur Herstellung einer solchen Einzelzelle
WO2014040677A2 (de) Einzelzelle für eine batterie
DE102005024418A1 (de) Bipolarplatte für Brennstoffzellen
DE102017101515A1 (de) Brennstoffzellenstapel und Brennstoffzellensystem mit einem solchen
DE102020213434A1 (de) Deckelbaugruppe eines Batteriezellengehäuses und Verwendung einer solchen
DE102010012994A1 (de) Einzelzelle für eine Batterie und Verfahren zur Verstellung einer Einzelzelle
DE112020002050T5 (de) Leistungsspeichervorrichtung
DE102008032270A1 (de) Stromableiter für eine galvanische Zelle
DE102022202062B3 (de) Batteriezelle
DE102021120890A1 (de) Batteriezelle
DE102021114887A1 (de) Batteriezelle mit Deckelelement
DE102004028142B4 (de) Bipolarseparator
DE102022111386A1 (de) Batterie
DE102016208589A1 (de) Elektrodenanordnung einer Batteriezelle, Elektrodenschicht und Batteriezelle sowie Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2419209

Country of ref document: CA

Ref document number: 10344518

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037002086

Country of ref document: KR

Ref document number: 2002520340

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018154271

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001967269

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037002086

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001967269

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001967269

Country of ref document: EP