WO2002011075A1 - Personenzählvorrichtung - Google Patents

Personenzählvorrichtung Download PDF

Info

Publication number
WO2002011075A1
WO2002011075A1 PCT/EP2001/008806 EP0108806W WO0211075A1 WO 2002011075 A1 WO2002011075 A1 WO 2002011075A1 EP 0108806 W EP0108806 W EP 0108806W WO 0211075 A1 WO0211075 A1 WO 0211075A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
distance measuring
housing
flat
person
Prior art date
Application number
PCT/EP2001/008806
Other languages
English (en)
French (fr)
Inventor
Hans-Theo Wienand
Original Assignee
Wienand Hans Theo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wienand Hans Theo filed Critical Wienand Hans Theo
Priority to EP01971816A priority Critical patent/EP1305777A1/de
Priority to AU2001291702A priority patent/AU2001291702A1/en
Publication of WO2002011075A1 publication Critical patent/WO2002011075A1/de

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C9/00Individual registration on entry or exit

Definitions

  • counting devices with distance used measuring sensors that work according to the radar principle, the distance measuring sensors having an antenna, which preferably electromagnetic waves, for. B. microwaves or infrared light. The signal reflected by a person or object is picked up by the same or different antennas and passed on to the evaluation device.
  • the evaluation device analyzes the signal and determines the distance between the time a signal is sent and received.
  • the direction and speed of movement of the measured object can also be determined via the change in the distance which results in a change in the intensity of the received signal or via a frequency shift due to the Doppler effect.
  • the distance measuring sensor is usually arranged above the heads of the people passing through the passage. Examples include the documents US-A-4, 111, 419, DE-A-33 01 763, US-A-4, 528,679, US-A-5, 138,638, US-A-5, 187,688. In the aforementioned documents, the sensors are generally mounted exactly above the passage to count the people passing through a passage, the radiation cones running vertically downward.
  • the applicant's European patent application EP-0 718 806 A2 discloses such a device in which the radiation cones are oriented obliquely to the direction of movement at an angle of 20 to 25 ° to the vertical. Through this inclination, each of the sensors can determine the direction of movement due to the change in distance when a person moves through the passage, so that the information can be obtained via the evaluation device as to whether a person is in or out of this area through the passage moved out.
  • the senor is either arranged overhead (Fig. 1), or a sensor designed as an antenna with a funnel is attached to a step (Fig. 3) of a vehicle entrance.
  • the sensor which forms a projection and is fastened in the stairway area, is readily perceptible to those entering the vehicle. If you step in front of this sensor, it can be damaged or destroyed.
  • the object of the invention is to further develop a people counting device such that it can be arranged as inconspicuously as possible with a simple design and unnoticed by the people passing through the passage.
  • At least one distance measuring sensor is arranged in a preferably flat housing arranged on the floor.
  • a directional antenna for microwave beams which forms the distance measuring sensor.
  • a patch array antenna which has a large number of centrally fed individual antennas, so-called patch resonators, on a flat carrier plate
  • patch resonators on a flat carrier plate
  • An inclination of the radiation field of the antenna, here called radiation cone is achieved by feeding the different patch resonators with signals of different amplitudes and different phase positions.
  • the construction of patch array antennas with asymmetrical radiation characteristics is known, for example, from communication technology and is described in the book “Broadband Patch Antennas" by Zürcher at al. , ISBN 0- 89006-777-5, pp. 152 to 159.
  • the patch resonators are mounted on a circuit board, so that the antenna itself is only a few millimeters high.
  • the width of the housing can be well below 100 mm.
  • a practically used design has a width, i.e. an extension in the longitudinal direction of the passage, of 70 mm.
  • the width of the housing for the new patch array antenna can be less than 50 mm.
  • flat patch antennas with a symmetrical radiation characteristic ie with a radiation field which runs symmetrically to the surface normal on the carrier plate of the antenna and which are inclined to achieve the inclination of the radiation cone.
  • a symmetrical radiation characteristic ie with a radiation field which runs symmetrically to the surface normal on the carrier plate of the antenna and which are inclined to achieve the inclination of the radiation cone.
  • the length of the circuit board carrying the patch resonators is approximately 70 mm. If the antenna is tilted by about 10 ° around its transverse axis The distance between the planes in which the front and rear transverse edges of the antenna lie is less than 12.5 mm. It is therefore possible to install inclined patch array antennas with symmetrical radiation characteristics in flat housings that are less than 20 mm thick.
  • the usual widths of the passages between two security antennas are about 1 to 2.5 m. This passage width is ideal for the use of the patch array antennas described, which due to their design and the relatively weak electromagnetic signals also have a limited range.
  • the flat housings of the goods security systems which have surfaces extending in the longitudinal direction of the passage, ie parallel to the movement of the people passing through them, can also accommodate the distance measuring sensors of the people counting device according to the invention.
  • the sensors are not visible to people passing through.
  • the mounting of the sensors in these housings is much easier than the mounting above the passage, which in the Usually associated with special structural measures and with the attachment of additional power lines and signal lines. If the housings of the anti-theft antennas are also used, the necessary power supply is usually already available. Data and signal lines of the anti-theft system can either be used or relocated with little effort due to the proximity of the sensors for the people counting device.
  • the device according to the invention with distance measuring sensors in particular radar sensors, has significant advantages.
  • the direction of movement of a person passing through cannot usually be determined with the light barrier.
  • a second light barrier would have to be installed just behind a first light barrier.
  • the counting process is disturbed if a person stops in the passage.
  • the functionality of the second sensor is still given if the first sensor is covered by a person who is standing still. Due to the inclination of the radiation cone of the sensors to the direction of movement, the detection of the direction of movement of a person is possible by evaluating the signal of a single distance measuring sensor of the device according to the invention.
  • the width of the passage between the two housings of the anti-theft systems should be in the range of 1 to 2.5 m.
  • several such passageways can be arranged side by side to achieve a wider input or output, each of which has its own article surveillance system and thus also has two lateral distance sensors in the housings of the article surveillance antennas of the sensor system according to the invention. All distance measuring sensors of the side by side Passages are connected via data or signal lines to the same evaluation device, which evaluates the signals from the sensors and determines the number of people passing through the passage.
  • the signals of the sensors arranged on the opposite sides of a passage, whose radiation cones are directed towards one another and towards the center of the passage, are compared with one another by the evaluation device in order to avoid double counting of a person who generates a sensor signal on both lateral sensors .
  • All distance measuring sensors of a monitored building or of a monitored, blocked off area are preferably connected to the same evaluation device, which determines the total number of people within the building or area by analyzing all signals. It is suitable for the signal evaluation of a conventional personal computer, with analog-digital converters converting the signals from the distance measuring sensors (patch array antennas) into digital signals, which are evaluated by evaluation software on the computer.
  • the personal computer used as an evaluation unit can simultaneously be used for other functions in building monitoring and security, e.g. B. for digital storage of image sequences from surveillance cameras, for control and monitoring of the anti-theft system.
  • the computer can still be used for general data traffic (control of the individual cash register terminals of a central cash register computer, etc.).
  • the flat housing can be placed on the floor, the radiation cone extending essentially upwards. Since the housing is preferably less than 10 mm high, inclined surfaces which run in the transverse direction of the passage and form a beveled transition to the plane of the floor can be sufficient to avoid the risk that the people passing through the passage over the transverse housing stumble.
  • a transversely extending recess can be provided in the passage, into which the housing is inserted, so that its surface is flush with the plane of the bottom.
  • the upward-radiating distance measuring sensors detect a signal as soon as a person walks over them.
  • a very reliable detection of the people passing through the passage can take place.
  • the radiation cone is inclined in the direction of movement, ie it has an angle of preferably 10 to 20 ° to the vertical plane running in the transverse direction of the passage.
  • Such a device can be attached to any location without great effort, for example in the entrance areas to sports stadiums, concert halls or open-air event venues.
  • a plurality of distance measuring sensors are preferably arranged in elongated flat housings which extend over a certain width, for example 1 or 2 m.
  • the flat housings can have connecting elements at their ends, which can be positively connected to one another.
  • Several flat housings, each with several measuring sensors, can be arranged next to one another and firmly connected to one another in order to monitor the entire width of a passage.
  • Plastic is particularly suitable for the production of the flat housing, since this does not interfere with the reception when using radar.
  • patch array antennas are preferably used as distance measuring sensors. These antennas can either be provided with transmit antenna elements and receive antenna elements or, at the same time, receive a superimposed received signal when transmitting the radar signal, which signal is separated from the transmit signal by a suitable electrical circuit.
  • the frequency range that is usually reserved for such applications is 24, 125 GHz, i.e. in the micro wave range.
  • the antennas must be designed on this frequency band.
  • the invention also includes a combination of at least one housing arranged on one side of the passage and a housing placed on the floor, each of which has at least one distance measuring sensor, in particular a patch array antenna described above.
  • the invention also provides for the housing to be arranged with at least one distance measuring sensor in a ceiling of the passage, that is to say above the heads of the people who pass through the passage.
  • This housing and the at least one distance measuring sensor preferably have at least one of the technical features described above.
  • FIG. 2 is a plan view of the passage from FIG. 1,
  • FIG. 4 shows a side view of the counting device from FIG. 3,
  • Fig. 5 is a perspective view of a housing for a
  • FIG. 6 shows a plan view of a variant of the housing from FIG. 5 with form-fitting connecting elements at the ends
  • Fig. 8 is a front view of the antenna of Fig. 7 and
  • FIG. 9 shows a side view of the antenna from FIG. 7.
  • a usual passage for a department store is shown, on the sides of which two flat antenna housings 1 and 2 made of plastic for receiving the antennas of the security or anti-theft systems (not shown) are located.
  • the distance measuring sensors 3 and 4 of the person counting device according to the invention are arranged approximately at waist height. They consist of new types, below described patch array antennas.
  • Its radiation cone 5, 6 extends essentially symmetrically to a horizontal plane.
  • the radiation cone 5, 6 of each sensor 3, 4 is inclined by approximately 20 ° to the transverse direction of the passage that runs between the two antenna housings 1, 2 (see FIG. 2).
  • the evaluation device determines from the intensity of the reflected signals the distance of the people 7 passing through to the respective distance measuring sensor 3 or 4. Since the radiation cones 5, 6 run obliquely to the direction of movement of the people 7, a continuously increasing or decreasing distance value arises depending on the direction of movement. Each individual measuring sensor 3, 4 is thus suitable for detecting the direction of movement of the person passing through. On the basis of the measured distance value, it can be determined whether two people pass through the passage next to each other or whether both distance measuring sensors 3, 4 detect the signal of a single person 7 passing through the passage.
  • the signal evaluation is preferably carried out digitally by means of a central computer, interference signals can be effectively identified and filtered out and a reliable count of the people passing through the passage, possibly with a statistical evaluation of the movements of people over a certain period of time.
  • the distance measuring sensors 3, 4 at different passages can be connected to a central evaluation device.
  • the distance measuring sensors 8 are not arranged on the side of the passage, but on the bottom thereof in the transverse direction of the passage.
  • the radiation cones 9 are the distance measuring sensors 8 inclined at an angle of approximately 10 ° to the running direction (see FIG. 4), ie they run symmetrically to a plane which is inclined at an angle of 10 ° to the vertical plane running in the transverse direction of the passage.
  • a plurality of distance measuring sensors 8 are arranged at regular intervals of about 10 to 50 cm across the width of the passage, the radiation cones 9 of which overlap, so that people passing through in each area of the passage are reliably detected.
  • FIG. 5 shows an embodiment of a housing 9 for the distance measuring sensors 8 according to the invention, which is placed on the floor.
  • the housing 10 has an essentially trapezoidal cross section, the inclined surfaces being slightly inclined to the mutually parallel surfaces.
  • the height of the housing 10 is approximately 10 mm, so that the housing 10 with the slightly inclined inclined surfaces does not form an obstacle for the people passing through the passage.
  • the housing 10 ' has a projection 11 at one end and a receptacle 12 at the other end, which can be fitted into one another in a form-fitting manner. In this way, a plurality of housings 10 'can be arranged next to one another and connected to one another if a passage of greater width is to be monitored.
  • the distance measuring sensors have to be wired in the housings 10 ', a connecting cable for the power supply and signal transmission coming out.
  • the cables can be provided with plugs and couplings, so that the connections of a plurality of housings 10 'connected via projection 11 and receptacle 12 can be coupled to one another and then connected together to the evaluation device.
  • FIG. 7 shows a new type of patch array antenna 13, which is preferably used as a distance measuring sensor in the device according to the invention.

Abstract

Die Erfindung betrifft eine Vorrichtung zum Zählen von mindestens einer Person (7), die einen einen Boden aufweisenden Durchgang passiert, mit mindestens einem Entfernungsmeßsensor (3,4), der einen Strahlungskegel (5,6) aus Radar- oder Ultraschallstrahlen aussendet, die reflektierten Strahlen empfängt und die empfangenen Signale einem Auswertegerät zuführt, wobei der oder die Strahlungskegel (5,6) die gesamte Breite des Durchgangs überdecken und schräg zur Bewegungsrichtung der den Durchgang passierenden Person (7) ausgerichtet sind. Um gegenüber herkömmlichen Personenzählvorrichtungen, deren Entfernungsmeßsensoren meist über Kopfhöhe angeordnet sind, eine Zählvorrichtung zu schaffen, die bei einfacher Ausgestaltung möglichst unauffällig und von den durch den Durchgang hindurchtretenden Personen unbemerkt angeordnet werden kann, ist der Entfernungsmeßsensor (3,4) in einem am Boden angeordneten Gehäuse (1,2) angeordnet.

Description

Personenzählvorrichtung
Beschreibung
Die Erfindung betrifft eine Vorrichtung zum Zählen von Personen, die einen Durchgang mit einem Boden passieren, mit mindestens einem Entfernungs- meß sensor, der Radar- oder Ultraschallstrahlen in Form eines Strahlungskegels aussendet, die von einer Person reflektierten Strahlen empfängt und die empfangenen Signale einem Auswertegerät zuführt, wobei der oder die Strahlungskegel die gesamte Breite des Durchgangs überdecken und schräg zur Bewegungsrichtung der den Durchgang passierenden Personen ausge- richtet sind.
Personenzählvorrichtungen sind in unterschiedlichen Ausführungen bekannt. Am häufigsten werden Lichtschranken, Trittmatten, Türkontakte oder Drehkreuze für diesen Zweck benutzt. Diese Geräte erfüllen den genannten Zweck nur unvollkommen. Lichtschranken haben eine große Fehlerquote, weil sie Personen, Tiere und Gegenstände nicht unterscheiden können. Auch Trittmatten sowie Türkontakte sind sehr unzuverlässig, weil diese die Bewegungsrichtung der zu zählenden Personen nicht unterscheiden können. Bei breiteren Durchgängen sind diese Geräte unbrauchbar. Drehkreuze werden als Hindernisse empfunden.
In öffentlichen Gebäuden wie Rathäusern, Schulen, Theatern, Festsälen, Museen, in Sportstadien, Kaufhäusern und dergleichen, ferner auf Verkehrsmitteln wie Schiffen, Flugzeugen und dergleichen, ist das zuverlässige Erfassen von Personen aus statistischen und sicherheitstechnischen Gründen von großer Bedeutung. Ferner kann mit Hilfe der ermittelten Personenzahl die Heizung, die Belüftung und/oder die Klimatisierung gesteuert werden, oder aus Sicherheitsgründen kann eine Überfüllung vermieden werden. Für ein genaues Zählergebnis werden Zählvorrichtungen mit Entfernungs- meßsensoren verwendet, die nach dem Radarprinzip arbeiten, wobei die Entfernungsmeßsensoren eine Antenne aufweisen, die vorzugsweise elektromagnetische Wellen, z. B. Mikrowellen oder Infrarot-Licht, abstrahlt. Das von einer Person oder Gegenstand reflektierte Signal wird von der gleichen oder von anderen Antennen aufgenommen und an das Auswertegerät weitergeleitet. Das Auswertegerät analysiert das Signal und ermittelt über die Laufzeit zwischen Senden und Empfangen eines Signals den Abstand. Über die Veränderung des Abstandes, die eine Veränderung der Intensität des empfangenen Signals zur Folge hat, oder über eine Frequenzverschiebung aufgrund des Dopplereffektes können auch Bewegungsrichtung und -geschwindigkeit des gemessenen Objektes ermittelt werden. Bei derartigen Zählsystemen ist in der Regel der Entfernungsmeßsensor über den Köpfen der den Durchgang passierenden Personen angeordnet. Beispiele hierfür sind die Dokumente US-A-4, 111 ,419, DE-A-33 01 763, US-A-4, 528,679, US-A- 5, 138,638, US-A-5, 187,688. Bei den vorgenannten Dokumenten werden zum Zählen der einen Durchgang passierenden Personen die Sensoren in der Regel genau oberhalb des Durchgangs angebracht, wobei die Strahlungskegel senkrecht nach unten verlaufen.
Die europäische Patentanmeldung EP-0 718 806 A2 des Anmelders offenbart eine derartige Vorrichtung, bei der die Strahlungskegel schräg zur Bewegungsrichtung mit einem Winkel von 20 bis 25° zur Senkrechten ausgerichtet sind. Durch diese Schrägstellung kann jeder einzelne der Sensoren aufgrund der Entfernung sänderung beim Hindurchbewegen einer Person durch den Durchgang die Bewegungsrichtung ermitteln, so daß über das Auswertegerät die Information gewonnen werden kann, ob sich eine Person durch den Durchgang in einen überwachten Bereich hinein oder aus diesem Bereich heraus bewegt.
Eine ähnliche Vorrichtung geht auch aus dem Dokument ÜS-A-3,997,866 hervor. Hier ist der Sensor entweder über Kopf (Fig. 1) angeordnet, oder ein als Antenne mit Trichter ausgebildeter Sensor ist an einer Treppenstufe (Fig. 3) eines Fahrzeugeingangs befestigt. Insbesondere der im Treppenbereich befestigte, einen Vorsprung bildende Sensor ist von den das Fahrzeug betretenden Personen ohne weiteres wahrzunehmen. Bei einem Fußtritt vor diesen Sensor kann er beschädigt oder zerstört werden. Aufgabe der Erfindung ist es, eine Personenzählvorrichtung derart weiterzu- entwickeln, daß sie bei einfacher Ausgestaltung möglichst unauffällig und von den durch den Durchgang hindurchtretenden Personen unbemerkt angeordnet werden kann.
Diese Aufgabe wird er findungs gemäß dadurch gelöst, daß mindestens ein Entfernungsmeßsensor in einem vorzugsweise flachen, am Boden angeordneten Gehäuse angeordnet ist.
Die Lösung dieser Aufgabe wird insbesondere durch den Einsatz einer Richtantenne für Mikrowellenstrahlen ermöglicht, welche den Entfernungsmeßsensor bildet. Nach dem Prinzip einer Patch-Array- Antenne, welche eine Vielzahl zentral gespeister Einzelantennen, sogenannter Patch-Resonatoren, auf einer ebenen Trägerplatte aufweist, wird ein besonders flacher Sensor konstruiert, der einen Einbau in ein Gehäuse von nur 10 mm Dicke ermöglicht. Eine Schrägstellung des Abstrahlfeldes der Antenne, hier Strahlungskegel genannt, wird durch Speisung der verschiedenen Patch-Resonatoren mit Signalen verschiedener Amplitude und verschiedener Phasenlage erreicht. Der Bau von Patch-Array-Antennen mit asymmetrischer Abstrahl- Charakteristik ist beispielsweise aus der Kommunikationstechnologie bekannt und in dem Buch "Broadband Patch Antennas" , von Zürcher at al. , ISBN 0- 89006-777-5, S. 152 bis 159 beschrieben. Die Patch-Resonatoren werden auf einer Platine aufgebracht, so daß die Antenne selbst nur eine Bauhöhe von wenigen Millimetern aufweist.
Die Breite des Gehäuses kann weit unter 100 mm liegen. Eine praktisch eingesetzte Bauform weist eine Breite, d.h. eine Erstreckung in Längsrichtung des Durchgangs, von 70 mm auf. Die Breite des Gehäuses zur Aufnahme der neuartigen Patch-Array-Antenne kann unter 50 mm liegen.
Es ist aber auch möglich, ebene Patch-Antennen mit symmetrischer Abstrahlcharakteristik, d.h. mit einem symmetrisch zur Flächennormalen auf die Trägerplatte der Antenne verlaufenden Abstrahlfeld, einzusetzen, welche zur Erzielung der Schrägstellung des Strahlungskegels geneigt werden. Bei üblichen Baugrößen der hier verwendeten Patch-Array-Antennen mit einer Reichweite für die Entfernungsmessung von weniger als 5 Metern, meist 1 bis 2 Metern, beträgt die Länge der die Patch-Resonatoren tragenden Platine etwa 70 mm. Bei einer Neigung der Antenne um etwa 10° um ihre Querach- se beträgt der Abstand zwischen den Ebenen, in denen die vordere und die hintere Querkante der Antenne liegen, weniger als 12,5 mm. Somit ist es möglich, auch geneigte Patch-Array-Antennen mit symmetrischer Abstrahlcharakteristik in ebene Gehäuse einzubauen, die eine Dicke von weniger als 20 mm aufweisen.
Die Integration des Entfernungsmeßsensors für die erfindungsgemäße Personenzählvorrichtung in ein derartig flaches und kleines Gehäuse bietet die Möglichkeit, den Sensor in bereits existierende Strukturen zu integrie- ren, ohne daß er von außen sichtbar ist. Bei der Überwachung von Kaufhäusern bietet sich beispielsweise die Integration des Sensors in die am Boden befestigten Antennen eines Diebstahlsicherungssystems an. Diebstahlsicherungssysteme erfassen in der Regel Signale von passiven Datenträgern, die zur Diebstahlssicherung an der im Kaufhaus ausliegenden Ware angebracht sind. Derartige Datenträger werden fest, aber von dem Verkaufspersonal lösbar an der Ware befestigt. Auch werden Magnetstreifen, die von den Antennen der Diebstahlsicherungssysteme erfaßt werden können, an der Ware angebracht. In modernen Kaufhäusern ist daher üblicherweise zu beiden Seiten eines Durchganges an einer oder mehreren Tragstangen ein Kunststoff gehäuse angebracht, in dem die Antennen von Diebstahlsicherungssystemen eingebaut sind. Beim Hindurchtreten der Personen mit gesicherter Ware durch diese Warensicherungsantennen erfolgt ein Alarmsignal.
Aufgrund der beschränkten Reichweite der Antennen der Warensicherungssysteme betragen die üblichen Breiten der Durchgänge zwischen zwei Warensicherungsantennen etwa 1 bis 2,5 m. Diese Durchgangsbreite eignet sich optimal für den Einsatz der beschriebenen Patch-Array-Antennen, welche aufgrund ihrer Bauart und der relativ schwachen elektromagnetischen Signale ebenfalls eine beschränkte Reichweite haben.
Die flachen Gehäuse der Warensicherungssysteme, welche sich in Längsrichtung des Durchgangs, d.h. parallel zur Bewegung der hindurchtretenden Personen, erstreckende Oberflächen aufweisen, können ebenfalls die Entfernungsmeßsensoren der erfindungsgemäßen Personenzählvorrichtung aufnehmen. Die Sensoren sind für die hindurchgehenden Personen nicht sichtbar. Ferner ist das Anbringen der Sensoren in diesen Gehäusen sehr viel einfacher als das Anbringen oberhalb des Durchgangs, welches in der Regel mit besonderen baulichen Maßnahmen sowie mit dem Anbringen zusätzlicher Stromleitungen und Signalleitungen verbunden ist. Bei Mitnutzung der Gehäuse der Diebstahlsicherungsantennen ist in der Regel bereits die erforderliche Stromzufuhr vorhanden. Daten- und Signalleitungen des Diebstahlsicherungssystems können entweder mitgenutzt oder aufgrund der Bodennähe der Sensoren für die Personenzählvorrichtung mit geringem Aufwand neu verlegt werden.
Im Gegensatz zu Lichtschranken, welche bereits heute vielfach in Verbin- düng mit Diebstahlsicherungssystemen zum Zählen von Personen verwendet werden, weist die erfindungsgemäße Vorrichtung mit Entfernungsmeßsensoren, insbesondere Radarsensoren, wesentliche Vorteile auf. Zum einen ist mit der Lichtschranke in der Regel nicht die Bewegungsrichtung einer hindurchtretenden Person zu ermitteln. Hierfür müßte eine zweite Licht- schranke kurz hinter einer ersten Lichtschranke angebracht werden. Zum anderen ist der Zählvorgang gestört, wenn eine Person in dem Durchgang stehenbleibt. Bei der Verwendung der erfindungsgemäßen Entfernung smeß- sensoren auf beiden Seiten des Durchgangs ist die Funktionsfähigkeit des zweiten Sensors nach wie vor gegeben, wenn der erste Sensor durch eine stehenbleibende Person abgedeckt ist. Aufgrund der Schrägstellung der Strahlungskegel der Sensoren zur Bewegungsrichtung ist die Erfassung der Bewegungsrichtung einer Person durch Auswertung des Signals eines einzigen Entfernungsmeßsensors der erfindungsgemäßen Vorrichtung möglich.
Die Strahlungskegel beider Sensoren erstrecken sich im wesentlichen symmetrisch zu einer vertikalen Ebene vom Rand des Durchgangs ausgehend zu dessen Mitte hin. Dabei beträgt die Schrägstellung jedes Strahlungskegels zur Querrichtung des Durchgangs vorzugsweise 10 bis 20°.
Wie erwähnt, sollte die Breite des Durchgangs zwischen den zwei Gehäusen der Diebstahlsicherungssysteme im Bereich von 1 bis 2,5 m liegen. Selbstverständlich können zur Verwirklichung eines breiteren Eingangs oder Ausgangs mehrere derartige Durchgänge nebeneinander angeordnet werden, welche jeweils über ein eigenes Warensicherungssystem verfügen und somit auch jeweils über zwei seitliche, in den Gehäusen der Warensicherungsantennen angeordnete Entfernungsmeßsensoren des erfindungsgemäßen Per sonenzählsy stems. Alle Entfernungsmeßsensoren der nebeneinander lie- genden Durchgänge sind über Daten- oder Signalleitungen mit dem gleichen Auswertegerät verbunden, welches die Signale der Sensoren auswertet und die Personenzahl der den Durchgang durchschreitenden Personen ermittelt. Insbesondere die Signale der an den einander gegenüberliegenden Seiten eines Durchgangs angeordneten Sensoren, deren Strahlungskegel aufeinander zu und zur Mitte des Durchgangs hin gerichtet sind, werden durch das Auswertegerät miteinander verglichen, um Doppelzählungen einer Person, die ein Sensorsignal auf beiden seitlichen Sensoren erzeugt, zu vermeiden. Vorzugsweise sind alle Entfernungsmeßsensoren eines überwachten Gebäu- des oder eines überwachten, abgesperrten Areals mit dem gleichen Auswertegerät verbunden, welches durch die Analyse aller Signale die Gesamtzahl der innerhalb des Gebäudes oder Areals befindlichen Personen ermittelt. Es eignet sich für die Signalauswertung ein üblicher Personal-Computer, wobei Analog-Digital-Wandler die Signale der Entfernungsmeßsensoren (Patch- Array-Antennen) in digitale Signale umwandeln, die von einer Auswertesoftware auf dem Computer ausgewertet werden. Da moderne Personal- Computer äußerst leistungsfähig sind, kann der als Auswerteeinheit verwendete Personal-Computer gleichzeitig für andere Funktionen in der Gebäudeüberwachung und -Sicherung verwendet werden, z. B. zur digitalen Speiche- rung von Bildsequenzen von Überwachungskameras, zur Steuerung und Überwachung des Diebstahlsicherungssystems. In Verkaufshäusern kann der Computer weiterhin für den allgemeinen Datenverkehr (Ansteuerung der einzelnen Kassenterminals eines zentralen Kassenrechners etc.) verwendet werden.
Alternativ zu der seitlichen Anordnung des Sensorgehäuses kann das flache Gehäuse auf den Boden aufgelegt werden, wobei sich der Strahlungskegel im wesentlichen nach oben erstreckt. Da das Gehäuse vorzugsweise weniger als 10 mm hoch ist, können Schrägflächen, die in Querrichtung des Durchgangs verlaufen und einen abgeschrägten Übergang zur Ebene des Bodens bilden, ausreichend sein, um das Risiko zu vermeiden, daß die den Durchgang durchschreitenden Personen über das quer verlaufende Gehäuse stolpern. Alternativ kann in dem Durchgang eine sich quer erstreckende Ausnehmung vorgesehen sein, in welche das Gehäuse eingefügt ist, so daß dessen Ober- fläche bündig mit der Ebene des Bodens abschließt.
Die nach oben strahlenden Entfernungsmeßsensoren detektieren ein Signal, sobald eine Person über sie hinwegschreitet. Durch digitale Signalverarbei- tung und den Vergleich der Signale, die von den Durchgang durchschreitenden Personen erzeugt werden, mit Signalen, die beispielsweise von Tieren oder Einkaufswagen erzeugt werden, kann eine sehr zuverlässige Erfassung der den Durchgang durchschreitenden Personen erfolgen. Wiederum ist der Strahlungskegel in der Bewegungsrichtung geneigt, d.h. er weist einen Winkel von vorzugsweise 10 bis 20° zu der in Querrichtung des Durchgangs verlaufenden vertikalen Ebene auf.
Eine derartige Vorrichtung ist ohne großen Aufwand an beliebigen Orten anzubringen, beispielsweise in den Eingangsbereichen zu Sportstadien, Konzerthallen oder Open-Air- Veranstaltungsplätzen. Vorzugsweise werden mehrere Entfernungsmeßsensoren in länglichen flachen Gehäusen angeordnet, die sich über eine bestimmte Breite, beispielsweise 1 oder 2 m erstrek- ken.
Zur Überwachung besonders breiter Durchgänge können die flachen Gehäuse an ihren Enden Verbindungselemente aufweisen, die formschlüssig miteinander verbindbar sind. So können mehrere flache Gehäuse mit jeweils mehreren Meßsensoren nebeneinander angeordnet und fest miteinander verbunden werden, um die gesamte Breite eines Durchgangs zu überwachen.
Zur Herstellung der flachen Gehäuse eignet sich insbesondere Kunststoff, da dieser bei Verwendung von Radar strahlen deren Empfang nicht stört.
Wie bereits erwähnt, werden als Entfernungsmeßsensoren vorzugsweise Patch-Array-Antennen verwendet. Diese Antennen können entweder mit Sende-Antennenelementen und Empfangs-Antennenelementen versehen sein oder gleichzeitig beim Absenden des Radarsignals ein sich überlagerndes empfangenden Signal aufnehmen, welches durch eine geeignete elektrische Schaltung von dem Sendesignal getrennt wird.
Der Frequenzbereich, der üblicherweise für derartige Anwendungen freigehalten ist, liegt bei 24, 125 GHz, d.h. im Mikro Wellenbereich. Auf dieses Frequenzband sind die Antennen auszulegen.
Es wird ausdrücklich darauf hingewiesen, daß die Erfindung durchaus auch eine Kombination von mindestens einem auf einer Seite des Durchgangs angeordneten Gehäuse und eines am Boden aufgelegten Gehäuses umfaßt, die beide jeweils mindestens einen Entfernungsmeß sensor aufweisen, insbesondere eine oben beschriebene Patch- Array- Antenne.
Alternativ zu den obengenannten Ausführungsbeispielen oder zusätzlich zu mindestens einem der obengenannten Ausführungsbeispiele ist erfindungsgemäß auch vorgesehen, das Gehäuse mit mindestens einem Entfernungsmeßsensor in einer Decke des Durchgangs, also oberhalb der Köpfe der Personen, die den Durchgang passieren, anzuordnen. Dieses Gehäuse und der mindestens eine Entfernungsmeßsensor weisen vorzugsweise mindestens eines der oben beschriebenen technischen Merkmale auf.
Bevorzugte Ausführungsformen der Erfindung werden nachfolgend unter
Bezugnahme auf die beigefügten Zeichnungen beschrieben. Die Zeichnungen zeigen in:
Fig. 1 eine Vorderansicht eines Durchgangs mit einer ersten Ausführungsform des erfindungsgemäßen Zählsensors und
Fig. 2 eine Draufsicht auf den Durchgang aus Fig. 1,
Fig. 3 eine Vorderansicht einer zweiten Ausführungsform der erfin- dungsgemäßen Zähl Vorrichtung und
Fig. 4 eine Seitenansicht der Zählvorrichtung aus Fig. 3,
Fig. 5 eine schaubildliche Darstellung eines Gehäuses für einen
Entfernungsmeßsensor der Zählvorrichtung aus den Fig. 3 und 4, Fig. 6 eine Draufsicht auf eine Variante des Gehäuses aus Fig. 5 mit formschlüssigen Verbindungselementen an den Enden,
Fig. 7 eine Draufsicht auf eine Patch- Array- Antenne, welche als
Entfernungsmeß sensor bei der erfindungsgemäßen Vorrichtung eingesetzt wird, Fig. 8 eine Vorderansicht der Antenne aus Fig. 7 und
Fig. 9 eine Seitenansicht der Antenne aus Fig. 7.
In den Fig. 1 und 2 ist ein üblicher Durchgang für ein Warenhaus dargestellt, an dessen Seiten sich zwei flache Antennengehäuse 1 und 2 aus Kunststoff für die Aufnahme der Antennen der Warensicherungs- oder Diebstahlsicherungssysteme (nicht dargestellt) befinden. Etwa in Hüfthöhe sind die Entfernungsmeßsensoren 3 und 4 der erfindungsgemäßen Personenzählvorrichtung angeordnet. Sie bestehen aus neuartigen, weiter unten beschriebenen Patch-Array-Antennen. Ihr Strahlungskegel 5,6 erstreckt sich im wesentlichen symmetrisch zu einer waagerechten Ebene. Dabei ist der Strahlungskegel 5,6 jedes Sensors 3,4 zur Querrichtung des Durchgangs, der zwischen den beiden Antennengehäusen 1 ,2 verläuft, um etwa 20° geneigt (siehe Fig. 2).
Sobald eine Person 7 durch den Durchgang hindurchtritt, werden die von den Entfernungsmeßsensoren 3,4 abgestrahlten, hochfrequenten elektromagnetischen Wellen reflektiert und die reflektierten Signale über die Entfer- nungsmeßsensoren 3,4 aufgenommen und zum Auswertegerät (nicht dargestellt) weiter geleitet. Das Auswertegerät ermittelt aus der Intensität der reflektierten Signale den Abstand der hindurchtretenden Personen 7 zu dem jeweiligen Entfernungsmeßsensor 3 oder 4. Da die Strahlungskegel 5,6 schräg zur Bewegungsrichtung der Personen 7 verlaufen, entsteht je nach Bewegungsrichtung ein kontinuierlich zunehmender oder abnehmender Abstandswert. Jeder einzelne Meßsensor 3,4 ist somit geeignet, die Bewegungsrichtung der hindurchtretenden Person zu erfassen. Aufgrund des gemessenen Entfernungswertes läßt sich feststellen, ob zwei Personen nebeneinander durch den Durchgang hindurchtreten oder beide Entfer- nungsmeßsensoren 3,4 das Signal einer einzelnen, den Durchgang durchschreitenden Person 7 erfassen.
Vorzugsweise erfolgt die Signalauswertung digital mittels eines Zentralrechners, wobei Störsignale wirksam identifiziert und herausgefiltert werden können und eine zuverlässige Zählung der durch den Durchgang hindurchtretenden Personen, ggf. mit einer statistischen Auswertung der Personenbewegungen über einen bestimmten Zeitraum erfolgen kann. Die Entfernungsmeßsensoren 3,4 an verschiedenen Durchgängen können mit einem zentralen Auswertegerät verbunden werden.
Die Reichweiten beider seitlich des Durchgangs angeordneten Sensoren 3,4 müssen einander überdecken, so daß eine vollständige Überwachung des gesamten Durchgangs gewährleistet ist.
Die Fig. 3 und 4 zeigen eine weitere Ausführungsform der erfindungsgemäßen Personenzählvorrichtung. Hier sind die Entfernungsmeßsensoren 8 nicht seitlich des Durchgangs, sondern auf dessen Boden in Querrichtung des Durchgangs angeordnet. Dabei sind die Strahlungskegel 9 der Entfernungs- meßsensoren 8 um einen Winkel von etwa 10° gegen die Laufrichtung geneigt (siehe Fig. 4), d.h. sie verlaufen symmetrisch zu einer Ebene, die zu der in Querrichtung des Durchgangs verlaufenden vertikalen Ebene um einen Winkel von 10° geneigt ist.
Über die Breite des Durchgangs sind mit regelmäßigen Abständen von etwa 10 bis 50 cm mehrere Entfernungsmeßsensoren 8 angeordnet, deren Strahlungskegel 9 sich überlappen, so daß in jedem Bereich des Durchgangs hindurchtretende Personen sicher erfaßt werden.
Die Fig. 5 zeigt eine Ausführungsform eines Gehäuses 9 für die erfindungsgemäßen Entfernungsmeßsensoren 8, welches auf den Boden aufgelegt wird. Das Gehäuse 10 hat einen im wesentlichen trapezförmigen Querschnitt, wobei die Schrägflächen eine geringe Neigung zu den zueinander parallelen Flächen aufweisen. Die Höhe des Gehäuses 10 beträgt etwa 10 mm, so daß das Gehäuse 10 mit den schwach geneigten Schrägflächen kein Hindernis für die den Durchgang durchschreitenden Personen bildet.
Die Fig. 6 zeigt die Enden zweier alternativer Gehäuse 10' . Das Gehäu- se 10' weist an einem Ende einen Vorsprung 11 und am anderen Ende eine Aufnahme 12 auf, welche formschlüssig ineinandergefügt werden können. So können mehrere Gehäuse 10' nebeneinander angeordnet und miteinander verbunden werden, wenn ein Durchgang größerer Breite überwacht werden soll.
Selbstverständlich müssen die Entfernungsmeßsensoren in den Gehäusen 10' verkabelt werden, wobei ein Anschlußkabel für die Stromzufuhr und Signalübertragung nach außen tritt. Die Kabel können mit Steckern und Kupplungen versehen werden, so daß die Anschlüsse mehrerer über Vor- sprung 11 und Aufnahme 12 verbundener Gehäuse 10' miteinander gekoppelt und dann gemeinsam an das Auswertegerät angeschlossen werden können.
Die Fig. 7 zeigt eine neuartige Patch-Array-Antenne 13, welche als Entfernungsmeßsensor bei der erfindungsgemäßen Vorrichtung bevorzugt einge- setzt wird.
Die Patch-Resonatoren 14 der Patch-Array-Antenne 13 sind in einer Matrix von vier Reihen und sechs Spalten angeordnet. Die Resonatoren 14 in jeder Spalte werden mit einem Signal gleicher Intensität und Phasenlage gespeist. In den Reihen wird den Patch-Resonatoren jeweils ein Signal unterschiedlicher Amplitude und Phasenlage zugeführt. Hieraus ergibt sich, daß der Strahlungskegel der Antenne in der Richtung der Erstreckung der Spalten mit jeweils vier Patch-Resonatoren 14, d.h. in der kurzen Querrichtung der Patch-Array-Antenne 13, einen symmetrischen Strahlungskegel 9 (siehe Fig. 8) aufweist. Der Strahlungskegel hat einen großen Öffnungswinkel, um eine möglichst große Breite des Durchgangs bei der Ausführungsform aus den Figuren 3 bis 6 abzudecken. In der Richtung der Reihen, d.h. in Richtung der langen Kanten der Patch-Array-Antenne 13, ist der Strahlungskegel 9 asymmetrisch, d.h. er verläuft zur Ebene der Flächennormalen auf die Oberfläche der Patch-Array-Antenne 13 geneigt.
Bezugszeichenliste
1 Antennengehäuse
2 Antennengehäus e
3 Entfernungsmeßsensor
4 Entfernung smeßsensor
5 Strahlungskegel
6 Strahlungskegel
7 Person
8 Entfernungsmeßsensor
9 Strahlungskegel
10 Gehäuse
10' Gehäuse
11 Vorsprung
12 Aufnahme
13 Patch-Array-Antenne
14 Patch-Resonator

Claims

Ansprüche
1. Vorrichtung zum Zählen von mindestens einer Person (7), die einen Durchgang mit einem Boden passiert, mit mindestens einem Entfer- nungsmeßsensor (3,4;8), der Radar- oder Ultraschallstrahlen in Form eines Strahlungskegels (5,6;9) aussendet, der die von der mindestens einen Person reflektierten Strahlen empfängt und die empfangenen Signale einem Auswertegerät zuführt, wobei der oder die Strahlungskegel (5, 6; 9) die gesamte Breite des Durchgangs überdecken und schräg zur Bewegungsrichtung der den Durchgang passierenden Person (7) ausgerichtet sind,
dadurch gekennzeichnet,
daß der Entfernungsmeßsensor (3, 4; 8) in einem am Boden angeordneten flachen Gehäuse (1,2; 10, 10') angeordnet ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß die Vorrichtung mehrere Entfernungsmeß sensoren (3,4;8) aufweist, die jeweils einen Strahlungskegel (5,6;9) aus Radar- oder Ultraschallstrahlen aussenden, die von der mindestens einen Person reflektierte Strahlen empfangen und die empfangenen Signale einem Auswertegerät zuführen, wobei die Strahlungskegel (5, 6; 9) die gesamte Breite des Durchgangs überdecken und schräg zur Bewegungsrichtung der den Durchgang passierenden Per- son (7) ausgerichtet sind, und daß ein einzelner Entfernungsmeßsensor
(3, 4; 8) oder mehrere Enfernungsmeß sensoren in dem Gehäuse angeordnet ist bzw. sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Gehäuse (1,2; 10, 10') am Boden befestigt ist.
4. Vorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das flache Gehäuse (1 ,2; 10, 10') weniger als 50 mm, vorzugsweise etwa 10 mm, dick ist.
Vorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß auf beiden Seiten des Durchgangs jeweils ein flaches Gehäuse (1 ,2) angeordnet ist, welches neben einem Entfernungsmeßsensor (3,4) einen Erfassungssensor eines Diebstahlsicherungssystems aufweist.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß die beiden flachen Gehäuse (1,2) einander zugewandte, sich in Längsrichtung des Durchgangs erstreckende Oberflächen aufweisen.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Strahlungskegel (5,6) der Entfernungsmeßsensoren (3,4) im wesentlichen waagerecht und in einem Winkel von mehr als 5° , vorzugsweise 10° bis 20° , zur Querrichtung des Durchgangs ausgerichtet sind.
8. Vorrichtung nach mindestens einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß die Breite des Durchgangs zwischen den zwei flachen Gehäusen (1 ,2) weniger als 5 m, vorzugsweise 1 bis 2,5 m, beträgt.
9. Vorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das flache Gehäuse (10) auf den Boden aufgelegt ist.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß das flache Gehäuse (10) in eine sich in Querrichtung des Durchgangs erstreckende Ausnehmung im Boden eingefügt ist.
11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß der oder die Strahlungskegel (9) im Winkel von mehr als 5 ° , vorzugsweise 10° bis 20°, zu einer in Querrichtung des Durchgangs verlaufenden vertikalen Ebene geneigt sind.
12. Vorrichtung nach mindestens einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das flache Gehäuse (10) länglich ausgebildet ist und mehrere Entfernungsmeßsensoren im Abstand zueinander aufweist.
13. Vorrichtung nach mindestens einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß über die gesamte Breite des Durchgangs mehrere flache Gehäuse (10') nebeneinander angeordnet sind, wobei jeder Endab- schnitt eines flachen Gehäuses (10') ein Verbindungselement (11, 12) aufweist, welches mit einem Endabschnitt eines benachbarten flachen Gehäuses (10') formschlüssig zusammenwirkt.
H.Vorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß das flache Gehäuse (1,2; 10, 10') aus Kunststoff besteht.
15. Vorrichtung nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß jeder Entfernungsmeß sensor (3,4;8) von einer flachen Patch-Array-Antenne (13) zum Senden und Empfangen elektromagnetischer Wellen gebildet wird.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, daß die Patch- Array-Antenne (13) mehrere Patch-Resonatoren (14) aufweist, welche in
Reihen angeordnet sind, die in Längsrichtung des Durchgangs verlaufen, wobei die aufeinanderfolgenden Patch-Resonatoren (14) in einer Reihe mit Signalen verschiedener Amplituden und Phasenlagen gespeist werden.
17. Vorrichtung nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß die Patch-Array-Antenne (13) elektromagnetische Radarstrahlen im Frequenzband von etwa 24 GHz abstrahlt.
PCT/EP2001/008806 2000-07-28 2001-07-30 Personenzählvorrichtung WO2002011075A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01971816A EP1305777A1 (de) 2000-07-28 2001-07-30 Personenzählvorrichtung
AU2001291702A AU2001291702A1 (en) 2000-07-28 2001-07-30 People counter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10037099A DE10037099A1 (de) 2000-07-28 2000-07-28 Personenzählvorrichtung
DE10037099.3 2000-07-28

Publications (1)

Publication Number Publication Date
WO2002011075A1 true WO2002011075A1 (de) 2002-02-07

Family

ID=7650724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/008806 WO2002011075A1 (de) 2000-07-28 2001-07-30 Personenzählvorrichtung

Country Status (5)

Country Link
US (1) US20030179127A1 (de)
EP (1) EP1305777A1 (de)
AU (1) AU2001291702A1 (de)
DE (1) DE10037099A1 (de)
WO (1) WO2002011075A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042043A1 (de) 2010-10-01 2012-04-05 Fastcom Technology Sa System und verfahren zur individualisierung von personen
WO2013151679A1 (en) * 2012-04-04 2013-10-10 3M Innovative Properties Company Virtual gate and alarm system
EP3629307A1 (de) 2018-09-27 2020-04-01 Aereco Personenzählvorrichtung und -verfahren

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7626608B2 (en) * 2003-07-10 2009-12-01 Sony Corporation Object detecting apparatus and method, program and recording medium used therewith, monitoring system and method, information processing apparatus and method, and recording medium and program used therewith
DE10338536A1 (de) * 2003-08-19 2005-04-07 Bircher Reglomat Ag Verfahren zum Betreiben eines Radarsensors
US20060132312A1 (en) * 2004-12-02 2006-06-22 Tavormina Joseph J Portal antenna for radio frequency identification
US7448548B1 (en) * 2006-01-13 2008-11-11 Point Six Wireless, Llc Pulsed wireless directional object counter
US20080077015A1 (en) * 2006-05-17 2008-03-27 Olga Boric-Lubecke Determining presence and/or physiological motion of one or more subjects with multiple receiver Doppler radar systems
DE102008016516B3 (de) * 2008-01-24 2009-05-20 Kaba Gallenschütz GmbH Zugangskontrollvorrichtung
FR2934520A1 (fr) * 2008-08-04 2010-02-05 Adhetec Procede d'incrustation d'inserts dans un revetement de sol et revetement de sol comportant de telles incrustations.
US8295545B2 (en) * 2008-11-17 2012-10-23 International Business Machines Corporation System and method for model based people counting
US20100207805A1 (en) * 2009-02-19 2010-08-19 Agd Systems Limited Obtaining an indication of a number of moving objects passing speed detection apparatus
WO2012082756A1 (en) * 2010-12-14 2012-06-21 Scenetap, Llc Apparatus and method to monitor customer demographics in a venue or similar facility
WO2012101468A1 (es) * 2011-01-27 2012-08-02 Sistemas Virtuales De Colombia S.A.S Contador direccional de personas por reflexion difusa
WO2014135738A1 (en) * 2013-03-05 2014-09-12 Kone Corporation Doorway of an elevator
KR101445244B1 (ko) * 2013-07-03 2014-09-29 한국공항공사 자동 경사로 조절 장치
US20160259980A1 (en) * 2015-03-03 2016-09-08 Umm Al-Qura University Systems and methodologies for performing intelligent perception based real-time counting
US10850588B2 (en) 2015-08-31 2020-12-01 Regents Of The University Of Minnesota Automated passenger counter systems and methods
US10181653B2 (en) 2016-07-21 2019-01-15 Infineon Technologies Ag Radio frequency system for wearable device
US10218407B2 (en) 2016-08-08 2019-02-26 Infineon Technologies Ag Radio frequency system and method for wearable device
US10466772B2 (en) 2017-01-09 2019-11-05 Infineon Technologies Ag System and method of gesture detection for a remote device
US10810481B2 (en) * 2017-01-11 2020-10-20 Thomas Danaher Harvey Method and system to count movements of persons from vibrations in a floor
US10282656B2 (en) * 2017-01-11 2019-05-07 Thomas Danaher Harvey Method and device for detecting unauthorized tranfer between persons
US10505255B2 (en) 2017-01-30 2019-12-10 Infineon Technologies Ag Radio frequency device packages and methods of formation thereof
GB2550286B (en) 2017-04-21 2018-04-25 Integrated Design Ltd Optical system for monitoring the movement of people through a passageway
US10602548B2 (en) 2017-06-22 2020-03-24 Infineon Technologies Ag System and method for gesture sensing
US10677905B2 (en) 2017-09-26 2020-06-09 Infineon Technologies Ag System and method for occupancy detection using a millimeter-wave radar sensor
US10746625B2 (en) 2017-12-22 2020-08-18 Infineon Technologies Ag System and method of monitoring a structural object using a millimeter-wave radar sensor
US11278241B2 (en) 2018-01-16 2022-03-22 Infineon Technologies Ag System and method for vital signal sensing using a millimeter-wave radar sensor
US11346936B2 (en) 2018-01-16 2022-05-31 Infineon Technologies Ag System and method for vital signal sensing using a millimeter-wave radar sensor
US10795012B2 (en) 2018-01-22 2020-10-06 Infineon Technologies Ag System and method for human behavior modelling and power control using a millimeter-wave radar sensor
US10576328B2 (en) 2018-02-06 2020-03-03 Infineon Technologies Ag System and method for contactless sensing on a treadmill
US10705198B2 (en) 2018-03-27 2020-07-07 Infineon Technologies Ag System and method of monitoring an air flow using a millimeter-wave radar sensor
US10761187B2 (en) 2018-04-11 2020-09-01 Infineon Technologies Ag Liquid detection using millimeter-wave radar sensor
US10775482B2 (en) 2018-04-11 2020-09-15 Infineon Technologies Ag Human detection and identification in a setting using millimeter-wave radar
US10794841B2 (en) 2018-05-07 2020-10-06 Infineon Technologies Ag Composite material structure monitoring system
US10399393B1 (en) 2018-05-29 2019-09-03 Infineon Technologies Ag Radar sensor system for tire monitoring
US10903567B2 (en) 2018-06-04 2021-01-26 Infineon Technologies Ag Calibrating a phased array system
US11416077B2 (en) 2018-07-19 2022-08-16 Infineon Technologies Ag Gesture detection system and method using a radar sensor
US10928501B2 (en) 2018-08-28 2021-02-23 Infineon Technologies Ag Target detection in rainfall and snowfall conditions using mmWave radar
US11183772B2 (en) 2018-09-13 2021-11-23 Infineon Technologies Ag Embedded downlight and radar system
US11125869B2 (en) 2018-10-16 2021-09-21 Infineon Technologies Ag Estimating angle of human target using mmWave radar
US11360185B2 (en) 2018-10-24 2022-06-14 Infineon Technologies Ag Phase coded FMCW radar
US11397239B2 (en) 2018-10-24 2022-07-26 Infineon Technologies Ag Radar sensor FSM low power mode
EP3654053A1 (de) 2018-11-14 2020-05-20 Infineon Technologies AG Verpackung mit akustischen sensorvorrichtungen und millimeterwellenabtastelementen
KR20210103463A (ko) * 2018-12-21 2021-08-23 인벤티오 아게 승객 운송 시스템의 사용자들의 검출
US11087115B2 (en) 2019-01-22 2021-08-10 Infineon Technologies Ag User authentication using mm-Wave sensor for automotive radar systems
US11355838B2 (en) 2019-03-18 2022-06-07 Infineon Technologies Ag Integration of EBG structures (single layer/multi-layer) for isolation enhancement in multilayer embedded packaging technology at mmWave
US11126885B2 (en) 2019-03-21 2021-09-21 Infineon Technologies Ag Character recognition in air-writing based on network of radars
US11454696B2 (en) 2019-04-05 2022-09-27 Infineon Technologies Ag FMCW radar integration with communication system
WO2021025842A1 (en) * 2019-08-05 2021-02-11 Tellus You Care, Inc. Non-contact identification of multi-person presence for elderly care
US11327167B2 (en) 2019-09-13 2022-05-10 Infineon Technologies Ag Human target tracking system and method
US11774592B2 (en) 2019-09-18 2023-10-03 Infineon Technologies Ag Multimode communication and radar system resource allocation
US11435443B2 (en) 2019-10-22 2022-09-06 Infineon Technologies Ag Integration of tracking with classifier in mmwave radar
US11808883B2 (en) 2020-01-31 2023-11-07 Infineon Technologies Ag Synchronization of multiple mmWave devices
US11614516B2 (en) 2020-02-19 2023-03-28 Infineon Technologies Ag Radar vital signal tracking using a Kalman filter
DE202020001414U1 (de) 2020-04-07 2020-04-27 Ecosoph Gmbh Energiesparende Vorrichtung zur Detektion und bidirektionalen Zählung von Personen
US11585891B2 (en) 2020-04-20 2023-02-21 Infineon Technologies Ag Radar-based vital sign estimation
US11567185B2 (en) 2020-05-05 2023-01-31 Infineon Technologies Ag Radar-based target tracking using motion detection
US11774553B2 (en) 2020-06-18 2023-10-03 Infineon Technologies Ag Parametric CNN for radar processing
US11704917B2 (en) 2020-07-09 2023-07-18 Infineon Technologies Ag Multi-sensor analysis of food
US11614511B2 (en) 2020-09-17 2023-03-28 Infineon Technologies Ag Radar interference mitigation
US11719787B2 (en) 2020-10-30 2023-08-08 Infineon Technologies Ag Radar-based target set generation
US11719805B2 (en) 2020-11-18 2023-08-08 Infineon Technologies Ag Radar based tracker using empirical mode decomposition (EMD) and invariant feature transform (IFT)
US11662430B2 (en) 2021-03-17 2023-05-30 Infineon Technologies Ag MmWave radar testing
US11950895B2 (en) 2021-05-28 2024-04-09 Infineon Technologies Ag Radar sensor system for blood pressure sensing, and associated method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997866A (en) 1975-03-31 1976-12-14 Automation Industries, Inc. Acoustic bus passenger counter
US4111419A (en) 1976-07-26 1978-09-05 Pellegrino Peter P Practice hockey puck
DE3301763A1 (de) 1983-01-20 1984-07-26 REDAR Nah- Ortungstechnik GmbH, 6100 Darmstadt Einrichtung zur exakten automatischen zaehlung von eine tor- oder schleusenanordnung passierenden zaehlobjekten
US4528679A (en) 1983-03-14 1985-07-09 General Signal Corporation Automatic counting system for passages
CH670905A5 (en) * 1986-02-17 1989-07-14 Karlheinz Paglotke Vehicle or pedestrian traffic counting device - uses movement sensor for indexing counter indicating passing at traffic level
US4870663A (en) * 1987-02-17 1989-09-26 Kone Elevator Gmbh Method for selecting the mode of operation of an object counting means
US4993049A (en) * 1988-09-28 1991-02-12 Cupps Halbert D Electronic management system employing radar type infrared emitter and sensor combined with counter
US5073706A (en) * 1987-12-18 1991-12-17 Kone Elevator Gmbh Procedure and apparatus for detecting objects moving at varying speeds within a certain area
US5138638A (en) 1991-01-11 1992-08-11 Tytronix Corporation System for determining the number of shoppers in a retail store and for processing that information to produce data for store management
US5187688A (en) 1991-05-02 1993-02-16 Ncr Corporation Method of counting the number of passers-by
EP0718806A2 (de) 1994-12-23 1996-06-26 Hans-Theo Wienand Vorrichtung zum Zählen von Personen
EP0828233A2 (de) * 1996-09-04 1998-03-11 Matsushita Electric Industrial Co., Ltd. Gerät zum Feststellen der Zahl der Passanten

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4112419A (en) * 1975-03-28 1978-09-05 Hitachi, Ltd. Apparatus for detecting the number of objects
DE19548778A1 (de) * 1995-12-23 1996-08-14 Jan Goernemann Verfahren zur Fahrgastabfertigung ohne Zeitverlust mit gleichzeitiger Kontrolle der Gültigkeit und der Erfassung von Fahrgaststatistiken
US5748085A (en) * 1996-04-15 1998-05-05 Davis; Dennis W. Electronic article surveillance event monitoring system
US5784336A (en) * 1996-11-18 1998-07-21 Furuno Diagnostics America, Inc. Delay scheme and apparatus for focussing the transmission and reception of a summed ultrasonic beam
GB9825918D0 (en) * 1998-11-27 1999-01-20 Footfall Limited Monitoring systems
US6307473B1 (en) * 1999-08-24 2001-10-23 Sensormatic Electronics Corporation Electronic article surveillance transmitter control using target range

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3997866A (en) 1975-03-31 1976-12-14 Automation Industries, Inc. Acoustic bus passenger counter
US4111419A (en) 1976-07-26 1978-09-05 Pellegrino Peter P Practice hockey puck
DE3301763A1 (de) 1983-01-20 1984-07-26 REDAR Nah- Ortungstechnik GmbH, 6100 Darmstadt Einrichtung zur exakten automatischen zaehlung von eine tor- oder schleusenanordnung passierenden zaehlobjekten
US4528679A (en) 1983-03-14 1985-07-09 General Signal Corporation Automatic counting system for passages
CH670905A5 (en) * 1986-02-17 1989-07-14 Karlheinz Paglotke Vehicle or pedestrian traffic counting device - uses movement sensor for indexing counter indicating passing at traffic level
US4870663A (en) * 1987-02-17 1989-09-26 Kone Elevator Gmbh Method for selecting the mode of operation of an object counting means
US5073706A (en) * 1987-12-18 1991-12-17 Kone Elevator Gmbh Procedure and apparatus for detecting objects moving at varying speeds within a certain area
US4993049A (en) * 1988-09-28 1991-02-12 Cupps Halbert D Electronic management system employing radar type infrared emitter and sensor combined with counter
US5138638A (en) 1991-01-11 1992-08-11 Tytronix Corporation System for determining the number of shoppers in a retail store and for processing that information to produce data for store management
US5187688A (en) 1991-05-02 1993-02-16 Ncr Corporation Method of counting the number of passers-by
EP0718806A2 (de) 1994-12-23 1996-06-26 Hans-Theo Wienand Vorrichtung zum Zählen von Personen
EP0828233A2 (de) * 1996-09-04 1998-03-11 Matsushita Electric Industrial Co., Ltd. Gerät zum Feststellen der Zahl der Passanten

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042043A1 (de) 2010-10-01 2012-04-05 Fastcom Technology Sa System und verfahren zur individualisierung von personen
WO2013151679A1 (en) * 2012-04-04 2013-10-10 3M Innovative Properties Company Virtual gate and alarm system
EP3629307A1 (de) 2018-09-27 2020-04-01 Aereco Personenzählvorrichtung und -verfahren
FR3086782A1 (fr) 2018-09-27 2020-04-03 Aereco Dispositif et procede de comptage de personnes

Also Published As

Publication number Publication date
EP1305777A1 (de) 2003-05-02
US20030179127A1 (en) 2003-09-25
AU2001291702A1 (en) 2002-02-13
DE10037099A1 (de) 2002-02-07

Similar Documents

Publication Publication Date Title
WO2002011075A1 (de) Personenzählvorrichtung
DE69636999T2 (de) Antennenanordnung für warenüberwachungssystem mit verbesserter abfragefeldverteilung
DE69918048T2 (de) Tor für Kraftfahrzeug mit System zur Objekterfassung
DE19931907C2 (de) Antenne
DE102004035722A1 (de) Kompaktes Sicherheits-Sensor-System
WO2009047292A1 (de) Vorrichtung zur erfassung eines fahrzeuges auf einem rollweg eines flughafens
EP3452847B1 (de) Kraftfahrzeug mit wenigstens zwei radarsensoren
DE2837637A1 (de) Elektronisches diebstahl-sicherungssystem zur ueberwachung breiter durchgaenge
DE102004036322A1 (de) Sensorintegriertes Kabel zur Entfernungsmessung
EP2082260B1 (de) Verfahren und radaranordnung zur überwachung eines überwachungsbereichs
WO2004017093A1 (de) Sensor zum aussenden und empfangen von elektromagnetischen signalen
DE112017001763T5 (de) Antennenvorrichtung
EP1508818A1 (de) Verfahren zum Betreiben eines Radarsensors
AT399239B (de) Passives infrarot-überwachungssystem
DE3825474A1 (de) Naeherungsschalter
DE60125776T2 (de) Einrichtung zur überwachung eines bereichs
EP0718806B1 (de) Vorrichtung zum Zählen von Personen
DE102016222474A1 (de) Radarsensoranordnung an einem Kraftfahrzeug
DE202013000437U1 (de) Sensorvorrichtung für ein Fahrzeug
DE202012008852U1 (de) Antennenvorrichtung
DE3129841C2 (de) "Vorrichtung zum Alarmgeben bei unbefugtem Betreten einer Schutzzone entlang einer Grenzlinie"
EP3206044B1 (de) Vorrichtung zum erkennen eines objekts und entsprechendes verfahren
DE102017220734A1 (de) Verfahren zur Radarpolarimetrie sowie polarimetrisches Radarsystem
DE3239173C2 (de) Mikrowellen-Einbruchmeldesystem
EP0158731B1 (de) Mikrowellen-Einbruchmeldesystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2001971816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10333736

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001971816

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP