WO2002010429A1 - PROCEDIMIENTO DE PRODUCCION DE β-CAROTENO - Google Patents

PROCEDIMIENTO DE PRODUCCION DE β-CAROTENO Download PDF

Info

Publication number
WO2002010429A1
WO2002010429A1 PCT/ES2001/000284 ES0100284W WO0210429A1 WO 2002010429 A1 WO2002010429 A1 WO 2002010429A1 ES 0100284 W ES0100284 W ES 0100284W WO 0210429 A1 WO0210429 A1 WO 0210429A1
Authority
WO
WIPO (PCT)
Prior art keywords
carotene
biomass
fermentation
carotenoids
alcohol
Prior art date
Application number
PCT/ES2001/000284
Other languages
English (en)
French (fr)
Inventor
Javier Costa Perez
Antonio Estrella Castro
Ana Teresa Marcos Rodriguez
J. Emiliano Gonzalez De Prado
Enrique E. Peiro Cezon
Alfonso Collados De La Vieja
Manuel Esteban Morales
Original Assignee
Vitatene, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitatene, S.A. filed Critical Vitatene, S.A.
Priority to SI200130198T priority Critical patent/SI1306444T1/xx
Priority to DE60105435T priority patent/DE60105435T2/de
Priority to US10/333,331 priority patent/US8859228B2/en
Priority to AT01951706T priority patent/ATE275635T1/de
Priority to AU2001272562A priority patent/AU2001272562A1/en
Priority to JP2002516345A priority patent/JP4287142B2/ja
Priority to EP01951706A priority patent/EP1306444B1/en
Publication of WO2002010429A1 publication Critical patent/WO2002010429A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/43Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives
    • A23L5/44Addition of dyes or pigments, e.g. in combination with optical brighteners using naturally occurring organic dyes or pigments, their artificial duplicates or their derivatives using carotenoids or xanthophylls
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B61/00Dyes of natural origin prepared from natural sources, e.g. vegetable sources
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/8215Microorganisms
    • Y10S435/911Microorganisms using fungi
    • Y10S435/931Mucor

Definitions

  • the present invention relates to a new process for obtaining carotenoids, especially ⁇ -carotene, from submerged cultures of mucoral fungi of the genus Blakeslea.
  • a fermentation method is described that allows an increase in the production of ⁇ -carotene and in the relative concentration of this compared to other carotenoids, based on the incorporation into the soybean lecithin culture medium as well as a defined strategy. pH control during fermentation.
  • the present invention describes an optimized process, for the purification and isolation of crystalline ⁇ -expensive high purity, from the fermentation broth obtained above, by simplifying the purification process and increasing recovery performance using solvents considered as "natural” and / or those included in class 3 of the ICH (International Conference of Harmonization).
  • Carotenoids are abundant compounds in vegetables, the first source from which they were obtained, and have been the subject of numerous studies due to their properties as antioxidants and as vitamin A precursors. They represent the most widespread group of natural pigments in the nature. They are used in the industry as a supplement and food coloring in margarines, oils, sauces, soups, etc. (Ninet L. and Renaut J. 1979. In: Peppler HJ., Perlman D. (eds.) Microbial Technology, 2 n edn, vol. 1 Academic Press, NY, pp. 529-544). Carotenoids are isoprenoids that contain a characteristic conjugated double bond pollenic chain, derived from a condensation of two geranylgeranyl precursors (Pfander (1992). Meth. Enzimol.). There are two groups of pigments: carotenes and their oxygenated derivatives, xanthophylls.
  • ⁇ -carotene has an empirical formula C 40 H S6 , with a molecular weight of 536.85 and the following developed molecular formula:
  • Carotenoids and other terpenic components derived in general and ⁇ -carotene in particular can be obtained from natural sources, be it vegetable products: tomato, carrot, in which it is found in very small percentages or starting from algal, fungal cultures , etc., selected, in which the proportion of these components may increase.
  • Procedures for obtaining oleoresins rich in carotenoids and ⁇ -carotene from vegetables, oils or algae are described in various patents.
  • the use of supercritical C02 is limited by the poor solubility found in ⁇ -carotene. It has been contemplated the use of other solvents under pressure in supercritical conditions or as liquefied gases, such as propane or ethylene in which the solubility is greater. However, the use of these hydrocarbon solvents would make it difficult to use ⁇ -carotene in the food industry.
  • the ⁇ -carotene can be obtained alternatively from fermentation broths of certain mucoral fungi such as Phycomyces, Blakeslea, etc., which have the high concentration of this compound as an advantage over the natural sources described above.
  • Lecithins are compounds with a glycerophosphatidylcholine structure, being present in all living organisms (plants and animals), being significant constituents of nerve and brain tissue. They are colorless substances, unctuous to the touch, that melt around 60 ° C and decompose by heating shortly after exceeding 100 ° C.
  • the lecithin molecule is a mixture of stearic, palmitic and oleic acid diglycerides, linked to the phosphoric acid choline ester.
  • lecithin has also been used for the improvement of the culture medium of the fungus Lagenidium giganteum, allowing greater growth and also a greater effectiveness as a biocontrol agent against mosquitoes of the fungus incubated under such conditions [WO 98 / 58049].
  • the object of the present invention is to increase the production of ⁇ -carotene, in a process of fermentation with mucoral fungi (Blakeslea, Phycomyces, etc.), more specifically Blakeslea trispora by culturing the fungus in a fermentation medium containing varying amounts of soy lecithin, applying a crop to defined pH control strategy during fermentation.
  • mucoral fungi Blakeslea, Phycomyces, etc.
  • this invention describes the production of crystalline ⁇ -carotene of high purity from a fermentation broth, using solvents considered natural. Natural solvents would be those that, on the one hand, are toxicologically safe and / or those that are included in class 3 of the ICH (International Conference of Harmonization). In its general consideration the process includes the following stages:
  • the method described here allows us to recover crystalline ⁇ -carotene with a purity greater than 90%, preferably greater than 95% and more preferably greater than Detailed Description of the Invention
  • the present invention describes a process for increasing the production of ⁇ -carotene, in a fermentation process with mucoral fungi (Blakeslea, Choanephora or Phycomyces, more specifically Blakeslea trispora.
  • the invention consists in cultivating the fungus B. trispora in a fermentation medium It contains by-products derived from the manipulation of citrus fruits, in particular citrus flours, which have been obtained through a process of removing pectins by treatment with calcium hydroxide and subsequent treatments of pH change and washing to concentrate certain components that induce production of ⁇ -carotene
  • citrus flours from, for example orange, grapefruit, tangerine, etc. can be used and within each of them the different varieties of each of them such as Navel, Navelina , Clementina Wasinghton, Valencia-late etc.
  • the invention consists on the one hand in that the culture medium also contains soy lecithin and on the other hand in applying a defined pH control strategy during fermentation.
  • the joint effect of these variables allows an increase in the production of beta-carotene and its relative concentration compared to other minor carotenoids.
  • the organisms used for fermentation can be isolated (+) or (-) strains or a mixture of the (+) and (-) strains of mucoral fungi, more specifically B. trispora or mutants of B. trispora superproducers of ⁇ -carotene.
  • Several mixtures of (+) and (-) line of the fungus can be used in the fermentation process of this invention.
  • the fermentation process can be carried out in any culture medium that contains one or more sources of carbon, one or more sources of nitrogen, mineral salts, thiamine and variable proportions of citrus flours from a single citrus and a single variety or mixtures of Citrus flours of different fruits and / or varieties and soy lecithin in varying proportions ranging from 0.1% to 10% and preferably from 0.5% to 5% and more preferably between 0.5% to 1.5%.
  • Carbon sources that can be used as simple or complex nutrients include carbohydrates or fats, such as dextrins, starches, glucose, sucrose, fructose, animal or vegetable oils.
  • organic and inorganic sources such as soybean meal, cornmeal, soluble distillates, yeast extract, cotton flour, peptones, casein or ammonium sulfate can be used.
  • mineral salts that can be added to the culture medium are phosphates, sulfates, chlorides of monovalent cations such as sodium, potassium or ammonium or divalents such as calcium or magnesium. Nutrient ratios are determined based on the growth needs of the microorganism and production levels.
  • the fermentation takes place in aerobic conditions and in submerged culture.
  • the fermentation temperature may range between 20 ° C and 32 ° C although it is preferred between 25 ° C and 28 ° C.
  • the pH of the culture evolves freely in the first hours, in which the initial growth of the fungus in the Krutator takes place, and is subsequently controlled by means of the addition of acid and / or alkali in the range 6.5 - 7.2, although preferably 6.7-6.9.
  • the beginning of the pH control depends on the evolution of the growth, but in general it takes place between 12 and 50 hours of fermentation, preferably between 24 and 36 hours.
  • the incorporation of lecithin in the medium due to the unfriendly nature of said molecule, favors the emulsion of oils in culture media in which they are in high concentration, as is often the case in beta fermentation media -carotene.
  • This action on the one hand favors the use of the oil by the microorganism and on the other hand it has been found that surprisingly activates the path of carotenogenesis favoring the transformation of gamma-carotene into beta-carotene, increasing the production of the latter and its concentration relative to other carotenoids, especially gamma-carotene, which significantly reduces its presence in the final product, increasing its purity in all-trans-beta-carotene.
  • This effect of reducing the gamma-carotene content of the fermentation broths of Blakeslea trispora result of the present invention has significance in that it allows to meet the specifications of final product that both at the level of Pharmacopoeia and food legislation establish the need for a minimum of 96% purity of beta-carotene in the final product.
  • the recovery procedure from the culture broth, prepared according to the procedures to use implies the separation of the biomass from the broth, with the purpose of eliminating or reducing losses in the stock without biomass.
  • This separation can be done by the established procedures of A) Filtration, using the technologies to use filters, be they bands, rotary, presses, etc., in which a barrier constituted by the filter cloth separates the biomass and allows to pass the liquid phase without biomass, or B) Centrifugation, in which making use of the density difference between the broth and the biomass (normally larger) a machine of the type of a centrifugal separator, decanter or the like is used, in which the heavy phase is concentrated and separated from the liquid phase with the least possible amount of biomass. Reducing losses and optimizing the characteristics of each respective phase, achieving the greatest amount of biomass with the highest dry residue content and eliminating the greatest amount of fermentation broth, with the least amount of active material is one of the objectives of this invention.
  • the resulting wet mycelium contains more than 95% of the carotenoids produced in the fermentation, preferably more than 97% and more preferably more than 99%.
  • the carotenoid content of the aqueous phase is therefore less than 5%, preferably less than 3% and more preferably less than 1%.
  • This moist solid of the mycelium would be able to allow, through the subsequent stages, the separation of beta-carotene, but the verification that, related to Fermentation, maintains a relatively high percentage of lipophilic components, between 15 and 20% ( fatty acids and oils) and that in later stages pose problems of purification, lead to introduce, at this point, a stage of purification of the biomass.
  • This purification stage implies a resuspension of the biomass with an amount of alcohol: methanol, ethanol, propanol, isopropanol, or any other alcohol in which the solubility of ⁇ -carotene is very low, in adequate proportion to achieve maximum purification of the lipid components, namely the wet mycelium is re - suspended with a quantity of alcohol ranging from 1 role / g and 1 m l / g of wet mycelium.
  • the resuspension temperature ranges between room temperature and boiling temperature of alcohol.
  • the contact time ranges from 5 minutes to 24 hours.
  • the alcoholic resuspension thus prepared is filtered or centrifuged, so that the content in solids in the filtrate or clarified is practically null.
  • the resulting wet mycelium which will contain alcohol plus water in varying proportions, contains more than 93% of the carotenoids produced during fermentation, preferably more than 95% and more preferably more than 97%.
  • the carotenoid content is less than 2%, preferably less than 1%.
  • carotenoid product is intracellular implies that the purified biomass requires conditioning well by drying more grinding, drying more disintegration or only disintegration of the biomass, which favors the mixing with solvents and facilitates their extraction.
  • Dehydrated / purified mycelium is dried. Drying can be done by the usual batch procedures (batch) or continuous.
  • the drying temperature ranges from room temperature to 150 ° C, preferably it should not exceed 60 ° C and more preferably be below 50 ° C.
  • the drying time is a function of the temperature used, ranging from 1 hour to 72 hours. Due to the possible decomposition of these carotenoids by oxidation with atmospheric oxygen, it is convenient to carry out this drying operation in the absence of oxygen, either under a nitrogen atmosphere or at least under vacuum. In order to achieve a good accessibility of the solvent to the carotenoid to be extracted, a previous mycelium rupture operation is necessary, so that the contact surface is maximum.
  • the optimum particle size of the dried and broken mycelium should be less than 3 mm, preferably less than 1 mm and more preferably less than 0.5 mm.
  • the grinding can be done on the dry product, by means of mechanical systems with rotating or fixed parts: mallets, sieves, etc., by passing through rotating cylinders by pressing on each other or by means of the flash drying system (instantaneous) in the jet mili equipment (jet mill) where the wet product is fed to a stream of a recirculating gas and at an elevated temperature, so that the residence time is the minimum to be able to vaporize the content of liquid components, and it is transported , when varying the densities the product, until a cyclone where it is recovered.
  • the flash drying system instantaneous
  • the extraction temperature ranges between ambient and boiling temperature of the solvent, preferably between 50 ° C and 80 ° C.
  • the extraction time will be the minimum necessary to achieve solubilization, between 1 second and 1 hour, preferably between 1 minute and 15 minutes.
  • the amount of solvent used depends on the temperature and the richness of the mycelium in carotenoids, ranging between 5 ml / g and 20 ml / g.
  • the number of extractions varies from 1 to 3.
  • the amount of carotenoids extracted is greater than 85%, preferably greater than 90% and more preferably greater than 95%.
  • the final concentration of carotenoids in the solvent after concentrating preferably ranges from 10 to 40 g / 1.
  • the concentration temperature should be below 80 ° C, preferably below 70 ° C and more preferably below 50 ° C.
  • the concentration time should be less than 1 hour, preferably less than 30 min. , and more preferably less than 15 min.
  • an insolubilizer of the carotenoids specifically an alcohol and more specifically methanol, ethanol, isopropanol, anhydrous, or any other alcohol in which the solubility of ⁇ -carotene is very low , in proportions between 1 / l and 6/1 with respect to the volume of the solvent after concentration, whereby the yield in crystalline ⁇ -carotene increases considerably.
  • the addition of alcohol also has a purifying effect, re- covering a purer product than when it is not added.
  • the crystallization time ranges from 15 min. and 24 hours, preferably between 1 h and 12 h and more preferably between 3 and 8 hours.
  • the crystallization temperature should be below 25 ° C, preferably below 5 ° C.
  • the separation of the crystals from the crystallization waters can be done by filtration or centrifugation, displacing the crystallization waters that bathe the crystals by washing with the same alcohol used to insolubilize.
  • the crystals obtained are dried under vacuum and at room temperature for at least 1 h. until a residual solvent content is obtained in accordance with the maximum concentration specifications established by the legislation, and which, in the case of ⁇ -carotene, is established at a drying loss ⁇ 0.2%.
  • the crystalline product obtained can be handled and marketed as such or as part of formulations in which the proportion of ⁇ -carotene varies between 1 and 85%, mixed with various excipients or compounds, such as soy oils, corn, olive, etc.
  • An object of the present invention is to provide a water dispersible carotenoid formulation, containing approximately 1 to 25 parts by weight of dry carotenoid powder encapsulated in a food grade starch matrix that provides Na-carotene included in the powder encapsulated in a stable condition.
  • the products of the present invention are solid, water dispersible ⁇ -carotene formulations.
  • the starches used are a modified food grade corn starch of high molecular weight, which allows a simple emulsification of the organic phase in water. After removing the solvent, the dispersion satisfies the color range of ⁇ -carotene.
  • This modified food starch does not produce sufficient redispersibility of dry powder. Therefore, another starch is also added.
  • the second variety is a mixture of food grade starches of different molecular weights in a range of 1,000-700,000; This second type of starch provides good dispersibility of the final product.
  • antioxidants can be dissolved in the solvent containing ⁇ -carotene to enhance stability against deterioration.
  • any antioxidant authorized in foods can be used, including, among others, natural or synthetic ⁇ -tocopherol.
  • the antioxidant level will be sufficient to protect ⁇ -carotene. This will have to be 0.1 to 0.3 times the amount of ⁇ -carotene.
  • Ascorbyl palmitate can also be added to the formulation due to the synergistic antioxidant effect of the association of both antioxidants.
  • the method of this invention is especially applicable for the recovery of crystalline ⁇ -carotene from a microbial source, preferably algae, fungi or yeasts, more preferably from fungi of the order of the Mucorales, and more preferably B. trispora.
  • a microbial source preferably algae, fungi or yeasts, more preferably from fungi of the order of the Mucorales, and more preferably B. trispora.
  • soy lecithin to the culture medium decreases the gamma-carotene content when fermented in a flask.
  • An inoculum medium is prepared containing per liter: soybean meal, 23 g; cornmeal, 47 g; 0.5 g mono-potassium phosphate; Thiamine hydrochloride, 0.002 g. Its initial pH is 6.3. The medium is distributed in 500 ml Erlenmeyer flasks at a rate of 67 or 100 ml. After sterilization, strains B. trispora line (+) and B. trispora line (-) are seeded from spore suspensions in separate flasks and incubated at 25 ° C for 48 hours.
  • a base fermentation medium is prepared containing per liter: soy flour, 44 g; cornmeal, 19 g; orange flour, 10 g; monopotassium dibasic phosphate 0.5 g; isoniazid, 0.28 g; thiamine hydrochloride, 0.002 g; vegetable oil 100 g.
  • the culture medium containing soy lecithin is prepared according to the above description and is supplemented with 1% lecithin.
  • the pH is adjusted to 6.3.
  • the medium is distributed in 250 ml Erlenmeyer flasks at a rate of 20 ml.
  • flasks containing fermentation medium with 10% of a mixed culture of the B. trispora (+) and B. trispora (-) lines are inoculated. All flasks are incubated at 25 ° C on an orbital shaker at 250 rpm. At 48 hours fermentation is added ⁇ -ionone corresponding flasks at the rate of 1 ml per liter of culture medium and the mycelium is collected on day 6 or fermentation.
  • ⁇ -carotene is performed by any described method of cell rupture that allows release the intracellular content, it is solubilized in any solvent in which it is soluble such as acetone. Its concentration can be determined by spectrophotometric measurement, but the use of liquid chromatography (HPLC) is preferred, by any of the methods described in the literature.
  • An inoculum medium is prepared containing per liter: soybean meal, 23 g; cornmeal, 47 g; 0.5 g single-phase phosphate; Thiamine hydrochloride, 0.002 g. Its initial pH is 6.3. The medium is distributed in 2000 mL Erlenmeyer flasks at a rate of 500 mL. After sterilization, they are seeded from spore suspensions B. trispora lineage (+) and B. trispora lineage (-) in separate flasks and incubate at 25 ° C for 48 hours, with orbital shaking at 250 rpm and 5 cm . of eccentricity.
  • Each of the strains is sterile transferred to an intermediate growth tank with a culture medium whose composition per liter is: Pharmamedia, 29 g; cornmeal, 47 g; 0.5 g monopotassium phosphate; thiamine hydrochloride, 0.002 g; antifoam, 1 g. Its initial pH is 6.0.
  • the mixture of the strains (+) and (-) is carried out and the base medium of fermentation is sown with 10% of the mixture, whose composition per liter is as follows: soy flour, 50 g; cornmeal, 25 g; orange flour, 15 g; monopotassium dibasic phosphate 0.5 g; isoniazid, 0.28 g; thiamine hydrochloride, 0.002 g; vegetable oil 80 g; antifoam, 0.175 g.
  • This culture medium is supplemented with 1% soy lecithin.
  • the fermentation is verified at a temperature of 25-28 ° C with variable stirring between 150 and 250 rpm and an aeration of 1-1.5 v / v / m.
  • the pH control is carried out with ammonia or sulfuric acid, maintaining two different conditions depending on the test: without pH control with a range between 6.5 and 7.5, or with control at 6.8 ⁇ 0.1 from 36 fermentation hours
  • 10 g / L of a 10% solution of ⁇ -ionone in vegetable oil are added.
  • 10 g / L of a 2.5% ethoxyquin solution in vegetable oil are added.
  • the fermentation is prolonged for 100-140 hours, after which the production of ⁇ -carotene is evaluated: the extraction of ⁇ -carotene is carried out by any described method of cell rupture that allows the release of intracellular content, it is solubilized in any solvent in which it is soluble such as acetone. Its concentration can be determined by spectro-photometric measurement, but the use of liquid chromatography (HPLC) is preferred, by any of the methods described in the literature.
  • HPLC liquid chromatography
  • 3 1 of fermentation broth are harvested.
  • the broth titer is 6 g of ⁇ -carotene per liter.
  • the biomass of this broth is recovered by Buchner filtration, obtaining 1000 g of wet biomass.
  • the wet biomass is suspended in 3 1 of isopropanol azeotrope 85/15 and stirred for 30 minutes.
  • the purified biomass is recovered again by Buchner.
  • This biomass is dried in an oven under vacuum at a temperature below 45 ° C and in a time of 18 hours, until The content of residual solvents is of the order 1-2%. 270 g of dry and purified biomass are obtained with a content of ⁇ -carotene equivalent to a richness of 6.5%.
  • the dried biomass is ground in a hammer mill and 1 mm sieve, obtaining a solid with the same specific richness and conditioning to allow the extraction with the solvent.
  • the extraction is carried out by mixing the 270 g of ground biomass with 4500 ml of isobutyl acetate at 70 ° C, while stirring for 5 minutes.
  • the spent biomass is separated from the rich solvent by filtering by filter plate.
  • the spent biomass is washed with 500 ml of hot isobutyl acetate on the filter itself, mixing the two solvents.
  • the total of rich isobutyl acetate is concentrated under vacuum and the temperature is maintained below 45 ° C until the volume is reduced to 700 ml, thereby partially crystallizing the ⁇ -carotene.
  • 2100 ml of isopropanol are added.
  • the mixture is kept under stirring between 0-5 ° C and under nitrogen for 3 hours. Filter through Buchner, washing the crystals with 25 ml of isopropanol over the Buchner. The crystals are collected and dried, obtaining 14 g of ⁇ -carotene crystals with a purity of 96% measured by spectrophotometer.
  • a quantity of fermentation broth of the order of 500 1 is harvested, with a ⁇ -carotene titer of 5.5 g / 1. It is mixed directly with 1500 1 of isopropanol azeotrope with water 85-15 and the mixture is heated to 40 ° C. After stirring for 30 min. the biomass is separated from the liquid by centrifugation with a decant dor. They are collected in the order of 180 kg of purified wet biomass.
  • This biomass is dried in a rotary dryer under vacuum until a residual solvent content of the order of 1-2% is achieved.
  • the temperature must be below 45 ° C and the time of the order of 12-24 h. 45 kg are obtained. of dry biomass with a ⁇ -carotene content equivalent to a specific richness of 5.9%, slightly lower purity.
  • the dried biomass is milled in a mill with hammers and 1 mm sieve, obtaining a solid with the same specific richness and conditioning to allow the extraction with the solvent.
  • the wet biomass is dried in a turbo flash dryer (jet mill type) in which case grinding is not necessary.
  • the extraction is carried out by mixing the 45 kg of ground solid with 800 1 of Isobutyl Acetate at 70 ° C and kept under stirring for 15 min.
  • the spent biomass is separated from the rich solvent by centrifugation with decanter.
  • the total of Isobutyl Acetate is concentrated under vacuum and keeping the temperature below 45 ° C until the volume is reduced to 110 1, thereby partially crystallizing the ⁇ -carotene.
  • 330 1 of isopropanol are added.
  • the mixture is kept under stirring while cooling, for 3 h at 0-5 ° C. Filter by a Buchner collecting the crystals of beta-carotene that are dried. 2.1 kg of product are obtained with a purity of 96% by spectrometry.
  • A Production percentage of ⁇ -carotene with lecithin (right column) or without it (left).
  • B Percentage of production of ⁇ -carotene with lecithin (right column) or without it (left).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Cephalosporin Compounds (AREA)

Abstract

Procedimiento de obtención de β-caroteno. La presente invención se refiere a un nuevo procedimiento para la producción de β-caroteno a partir de cultivos sumergidos de hongos mucorales como Blakeslea, Choanephora o Phycomyces mediante la adición al medio de cultivo de lecitina conjuntamente con un control de pH una vez comenzada la fermentación, procedimiento que incluye un paso de recuperación de β-caroteno que permite obtener una simplificación en el proceso, una optimización en el rendimiento, junto con un incremento en la purificación del producto.

Description

PROCEDIMIENTO DE PRODUCCIÓN DE 3-CAROTENO
Campo de la invención
La presente invención se refiere a un nuevo procedi- miento para la obtención de carotenoides, especialmente β- caroteno, a partir de cultivos sumergidos de hongos mucora- les del género Blakeslea. Se describe un método de fermentación que permite obtener un incremento en la producción de β-caroteno y en la concentración relativa de éste res- pecto de otros carotenoides, basado en la incorporación al medio de cultivo de lecitina de soja así como a una estrategia definida de control de pH durante la fermentación.
Asimismo, la presente invención describe un proceso optimizado, para la purificación y aislamiento de β-caro- teño cristalino de elevada pureza, a partir del caldo de fermentación obtenido anteriormente, mediante una simplificación del proceso de purificación e incremento de rendimiento de recuperación utilizando disolventes considerados como "naturales" y/o aquellos incluidos en la clase 3 de la ICH (International Conference of Harmonization) .
Estado de la técnica
Los carotenoides son compuestos abundantes en los ve- getales, primera fuente de la que se obtuvieron, y han sido objeto de numerosos estudios debido a sus propiedades como antioxidantes y como precursores de vitamina A. Representan el más extendido grupo de pigmentos naturales existente en la naturaleza. Se utilizan en la industria como suplemento y colorante alimenticio en margarinas, aceites, salsas, sopas, etc. (Ninet L. y Renaut J. 1979. En: Peppler HJ., Perlman D. (eds) . Microbial Technology, 2n edn, vol .1 Academic Press, NY, pp. 529-544) . Los carotenoides son isoprenoides que contienen una cadena poliénica de dobles enlaces conjugados característica, procedente de una condensación de dos precursores gera- nilgeranil (Pfander (1992) . Meth. Enzimol . ) . Existen dos grupos de pigmentos: los carotenos y sus derivados oxigenados, las xantofilas.
El β-caroteno posee una fórmula empírica C40HS6, con un peso molecular de 536.85 y la siguiente formula molecular desarrollada :
Figure imgf000003_0001
Trans Beta Caroteno
La obtención de β-caroteno como compuesto de alta pureza ha estado ligada a la reacción de síntesis química clásica, en procesos que hoy en día son objeto de polémica al considerarse que vías alternativas partiendo de fuentes de origen natural vía fermentación o productos naturales unidos a procesos de extracción empleando solventes y condiciones de reacción menos drásticas, resultan más ventajosas . Los carotenoides y demás componentes terpénicos derivados en general y el β-caroteno en particular pueden obtenerse a partir de fuentes naturales, bien sea productos vegetales: tomate, zanahoria, en los que se encuentra en porcentajes muy pequeños o partiendo de cultivos de algas, hongos, etc., seleccionados, en los que la proporción de estos componentes puede aumentar. Procedimientos de obtención de oleorresinas ricas en carotenoides y en β-caroteno a partir de vegetales, aceites o algas se describen en diversas patentes.
En la mayoría de los casos los procedimientos de ex- tracción descritos requieren una etapa de molienda/extrusión del fruto para facilitar la extracción del solvente y liberar el contenido intracelular rico en β-caroteno.
El procedimiento de extracción de estos componentes debe hacer frente a la relativa baja concentración y a la particular disposición de los mismos en agrupaciones almacenadas intracelularmente. En consecuencia la extracción del β-caroteno requiere métodos adecuados que permitan so- lubilizar el producto, previa preparación, para el acceso del agente solubilizante, bien mediante penetración de las paredes celulares o mediante rotura previa de las paredes celulares, liberando el contenido intracelular.
Los procedimientos descritos en US 3268606, US 2959522 utilizan disolventes halogenados como diclorometano, cloroformo etc., o del tipo de hidrocarburos aromáticos: bence- no, tolueno, etc., se encuentran con las dificultades de toxicidad inherentes a este tipo de disolventes, y que se traducen en su inclusión dentro de los grupos I y II de la Guía para disolventes residuales de uso en aplicaciones farmacéuticas o alimentarias y según la cual los recomen- dables son los integrantes del grupo Clase III.
La mayoría de los métodos de extracción de β-caroteno a partir de algas emplean aceites. Estos métodos no son los mas adecuados para obtener β-caroteno en forma cristalina, sino para obtener extractos oleosos, como se describen en las patentes US 4680314; US4713398; US 5019668; US 5378369 en los que se solubiliza el β-caroteno y se comercializa como tal .
El uso de C02 supercrítico se ve limitado por la escasa solubilidad encontrada en el para el β-caroteno. Se ha contemplado el empleo de otros solventes a presión en condiciones supercríticas o como gases licuados, tales como propano o etileno en los cuales la solubilidad es mayor. No obstante el uso de estos disolventes hidrocarbonados difi- cuitaría el uso del β-caroteno en la industria alimentaria. El β-caroteno puede ser obtenido de forma alternativa a partir de caldos de fermentación de determinados hongos mucorales como Phycomyces, Blakeslea, etc., los cuales presentan como ventaja frente a las fuentes naturales ante- riormente descritas, la elevada concentración de este compuesto en relación a la cantidad de biomasa seca así como el posible incremento de producción utilizando cepas super- productoras obtenidas por técnicas de mutagénesis clásica o biología molecular o bien mediante la optimización del pro- ceso de fermentación utilizando materias primas complejas, determinados inductores de la producción o inhibidores de la producción de otros carotenoides estructuralmente relacionados que eviten la producción de los mismos.
En cualquiera de los métodos de producción de β-caro- teño con el hongo B. trispora se utilizan cultivos mixtos, debido a que se obtienen rendimientos de β-caroteno muy superiores a los encontrados en las estirpes (+) y (-) por separado (Ciegler, A. 1965). Advan. Appl . Microbiol . 7: 19) . Las harinas de cítricos han sido añadidas al medio de fermentación de β-caroteno como sustituto de la β-ionona, un estimulador químico de la ruta biosintética [Ciegler,A. 1965. Adv. Appl. Microbiol. 7, 1-34]. La adición de derivados de cítricos, previamente tratados con álcali, permitie- ron incrementar el contenido de β-caroteno hasta 1.7 g/1
[Upjohn Co., 1965. Dutch Patent 65/00,788].
Un estudio analítico encaminado a identificar el o los factores estimulantes de la producción de β-caroteno, contenidos en las harinas de cítricos, reveló que el ácido cítrico es el principal componente además de una pequeña cantidad de ácido málico, así como un tercer ácido no identificado, cuyo Rf es similar al ácido glucónico o al ácido 2-ketoglucónico. Este estudio concluye que la función del ácido cítrico en el incremento de la producción es no específica y podría actuar como un precursor de metabolitos tempranos de la ruta biosintética. Adicionalmente se encontraron un 42% de carbohidratos, de ellos el 50% sacarosa y el resto azúcares reductores (glucosa y fructosa) [Pazola, Z., Ciegler, A., Hall, H.H. 1966. Nature 5043:1367-1368].
Las lecitinas son compuestos con una estructura de glicerofosfatidilcolina, estando presentes en todos los organismos vivos (plantas y animales) , siendo constituyentes significativos del tejido nervioso y del cerebro. Son sustancias incoloras, untuosas al tacto, que funden alrededor de 60 °C y se descomponen por calentamiento a poco de rebasar los 100 °C. La molécula de lecitina la constituye una mezcla de diglicéridos de ácido esteárico, palmítico y oleico, ligados al éster de colina del ácido fosfórico. Como la molécula tiene carácter dipolar, se emplean profusamente como surfactante y emulsificante comestible, de origen natural, con aplicación en la industria alimentaria general (chocolate, margarina, etc.), dietética, farmacéutica y cosmética [Furia, T.E. (ed.). CRC Handbook of Food Additives. 2nd ed. Cleveland: The Chemical Rubber Co., 1972. 879]. La lecitina comercial procede fundamentalmente de la soja, obtenida como un subproducto de la fabricación del aceite de soja, aunque también puede obtenerse del maíz y otras semillas vegetales [Hawley,G.G. The condensed Chemical Dictionary.9th ed. New York: Van Nostrand Reinhold Co., 1977.509]. La lecitina de soja contiene ác . Palmítico 11.7%, esteárico 4%, palmitoleico 8 . 6% , oleico 9.8%, linoleico 55%, linolénico 4%, ácidos C20-C22 (incluyendo araquidónico) 5.5% [The Merck Index. 9th ed. Rahway, New Yersey:Merck & Co., Inc ., 1976.712] . El efecto de la lecitina de soja sobre la fermentación ha sido estudiado fundamentalmente en relación con su utilización en piensos como suplemento fosfolipídico y el efecto sobre la fermentación del rumen, con incidencia so- bre la digestibilidad de las grasas y el nivel sérico de triglicéridos y colesterol de terneros y ovejas (Jenkins TC, Jiménez T, y Cross DL (1989) "Influence of phospho- lipids on ruminal fermentation in vitro and on nutrient digestión and serum lipids in sheep" J Ani Sci 67(2) :529- 537; Jenkins TC y Fotouhi, N (1990) "Effects of lecithin and corn oil on site of digestión, ruminal fermentation and microbial protein síntesis in sheep" J Anim Sci 68(2):460- 466; Jenkins TC (1990) "Nutrient digestión, ruminal fermentation and plasma lipids in steers fed combinations of hydrogenated fat and lecithin" J" Dairy Sci 73(10) :2934- 2939) así como sobre la producción de leche en vacas (Abel- Caines SF, Grant RJ y Morrison M (1998) "Effect of soybean hulls, soy lecithin, and soapstock mixtures on ruminal fermentation and milk composition in dairy cows" J Dairy Sci 81(2) :462-470) .
En la producción de mildiomicina mediante fermentación por Actinomycetes, se encontró en algunos casos un incremento importante de producción por la incorporación al medio de cultivo de componentes de naturaleza N-metilo (especialmente grupos trimetil-amonio) , entre ellos colina, betaína, lecitina, tetrametilamonio, etc., ó sustancias naturales ricas en dichos compuestos, ó incluso una combinación de ambos, para evitar una posible sobredosificación de otros componentes de la sustancia natural en cuestión [US 4.334.022] .
Otras patentes desarrolladas en los años 80 se refieren a la incorporación de la lecitina para favorecer el proceso fermentativo en la harina de soja desgrasada con el fin de mejorar su procesabilidad y digestibilidad [JP 58116648] así como a su efecto activador sobre el cultivo de microorganismos utilizados en el procesamiento de alimentos [DE 3546511; EP 0223161] . Por otra parte, el carácter emulsionante de este compuesto ha sido tenido en cuenta en aplicaciones de eliminación de aceites por vía microbiana [DE 149056] ó en el tratamiento por enzimas de efluentes orgánicos de desecho [EP 0421223] y en la formación de compost a partir de residuos de alto contenido en grasas [JP 7033570] .
En una aplicación reciente, la lecitina se ha empleado también para la mejora del medio de cultivo del hongo Lagenidium giganteum, permitiendo un mayor crecimiento y además una mayor efectividad como agente de biocontrol frente a los mosquitos del hongo incubado en tales condiciones [WO 98/58049] . En la producción de beta-caroteno por fermentación de Blakeslea trispora se ha descrito la utilización de algunos agentes surfactantes (como el Span 20, monolaurato de Sor- bitán, SIGMA) para incrementar la producción, gracias a que permiten un crecimiento disperso del micelio (Seon-Won Kim, Weon-Taek Seo y Young-Hoon Park (1997) "Enhanced production of β-carotene from Blakeslea trispora with Span 20" Bio- technology Letters 19 (6) : 561-562) . Sin embargo, no se describe efecto alguno sobre la relación del contenido en β- caroteno producido respecto a otros carotenoides también presentes en los cultivos de Blakeslea trispora (γ-caroteno, β-zea-caroteno, etc.).
Los procesos para obtener el β-caroteno a partir de caldos de fermentación, descritos hasta el momento, implican generalmente una etapa de extracción y sucesivas cris- talizaciones y recristalizaciones e incluso etapas de purificación cromatográfica, lo que debido a la naturaleza de estas sustancias, exige un consumo elevado de disolventes debido a la baja solubilidad de los mismos (US 5310554; EP 0242148; US 3369974, Biochemistry and Molecular Biology International, 39, 1077-1084 (1996) y a menudo las purezas alcanzadas en el producto son excesivamente bajas.
Además, los disolventes habitualmente empleados, di- clorometano, cloroformo, hexano, benceno o tolueno, difi- cuitan el uso del β-caroteno obtenido en la industria alimentaria por su toxicidad.
Cuando los cristales de β-caroteno son obtenidos directamente por cristalización del extracto orgánico a partir de un caldo de fermentación mediante evaporación direc- ta del disolvente, los cristales obtenidos no poseen la pureza necesaria comparados con el β-caroteno sintético, siendo necesarias diversas etapas de recristalización y/o purificación con el consiguiente consumo de disolvente, complej idad del proceso y pérdidas de producto que originan unos bajos rendimientos de recuperación del mismo.
Recientemente se ha descrito la preparación de cristales de β-caroteno en la patente PCT WO 98/03480, por sucesivos lavados con agua o alcoholes de bajo peso molecular, partiendo de un extracto de acetato de etilo obtenido por extracción de la biomasa procedente de un caldo de fermentación, que aun obteniendo una alta pureza en cristales de β-caroteno, exige un consumo elevado de solventes como acetato de etilo y etanol, sucesivas etapas de lavado y cristalización que dan lugar a que los rendimientos de recuperación del producto sean bajos.
Resumen del invento
El objeto de la presente invención es el incremento de la producción de β-caroteno, en un proceso de fermentación con hongos mucorales (Blakeslea, Phycomyces, etc.), más específicamente Blakeslea trispora mediante el cultivo del hongo en un medio de fermentación que contiene cantidades variables de lecitina de soja, aplicándose al cultivo una estrategia definida de control de pH durante la fermentación.
Asimismo, en esta invención se describe la obtención de β-caroteno cristalino de elevada pureza a partir de un caldo de fermentación, empleando disolventes considerados como naturales. Disolventes naturales serían aquellos que, por una parte sean toxicológicamente inocuos y/o los que estén incluidos en la clase 3 de la ICH (International Conference of Harmonization) . En su consideración general el proceso comprende las siguientes etapas:
0) Fermentación en un medio de cultivo con lecitina y en condiciones de control de pH predeterminadas
1) Separación de la Biomasa húmeda desde la fuente natural de biosíntesis (el caldo de Fermentación por ejemplo)
2) Purificación de la Biomasa húmeda por tratamiento con alcohol
3) Separación de la Biomasa purificada del alcohol
4) Acondicionamiento de la Biomasa purificada mediante se- cado mas disgregación o ruptura de la misma
5) Extracción sólido-líquido del β-caroteno con un disolvente orgánico
6) Concentración del extracto rico
7) Precipitación/cristalización por adición de alcohol 8) Filtración
9) Secado
El método aquí descrito nos permite recuperar β-caroteno cristalino con una pureza superior al 90%, preferiblemente superior al 95% y más preferiblemente superior al Descripción detallada del invento
La presente invención describe un procedimiento para incrementar la producción de β-caroteno, en un proceso de fermentación con hongos mucorales (Blakeslea, Choanephora o Phycomyces, más específicamente Blakeslea trispora. La invención consiste en cultivar el hongo B. trispora en un medio de fermentación que contiene subproductos derivados de la manipulación de cítricos, en particular harinas de cítricos, los cuales han sido obtenidos mediante un proceso de eliminación de pectinas por tratamiento con hidróxido calcico y sucesivos tratamientos de cambio de pH y lavados para concentrar determinados componentes que inducen la producción de β-caroteno. Dentro de las harinas de cítricos, pueden ser utilizadas harinas procedentes de, por ejemplo naranja, pomelo, mandarina, etc. y dentro de cada una de ellas las diferentes variedades de cada uno de ellos como por ejemplo Navel, Navelina, Clementina Wasinghton, Valencia-late etc.
La invención consiste por una parte en que el medio de cultivo contiene también lecitina de soja y por otra parte en aplicar una estrategia definida de control de pH durante la fermentación. El efecto conjunto de estas variables permite un incremento en la producción de beta-caroteno y en la concentración relativa de éste respecto de otros carotenoides minoritarios.
Los organismos utilizados para la fermentación pueden ser estirpes aisladas (+) o (-) o una mezcla de las estir- pes (+) y (-) de hongos mucorales, más específicamente B. trispora o bien mutantes de B. trispora superproductores de β-caroteno. Varias mezclas de estirpe (+) y (-) del hongo pueden ser utilizadas en el proceso de fermentación de esta invención. El proceso de fermentación puede realizarse en cualquier medio de cultivo que contenga una o más fuentes de carbono, una o más fuentes de nitrógeno, sales minerales, tiamina y proporciones variables de harinas de cítricos procedentes de un único cítrico y una única variedad o mezclas de harinas de cítricos de diferentes frutos y/o variedades y lecitina de soja en proporciones variables que van desde un 0.1 % al 10 % y preferiblemente del 0.5 % al 5 % y más preferiblemente entre el 0.5 % al 1.5 % . Las fuentes de carbono que se pueden utilizar como nutrientes sencillos o complejos incluyen carbohidratos o grasas, como por ejemplo dextrinas, almidones, glucosa, sacarosa, fructosa, aceites animales o vegetales. Dentro de las fuentes de nitrógeno pueden utilizarse fuentes orgáni- cas e inorgánicas como por ejemplo harina de soja, harina de maíz, destilados solubles, extracto de levadura, harina de algodón, peptonas, caseína o sulfato amónico. Entre las sales minerales que pueden adicionarse al medio de cultivo se encuentran fosfatos, sulfatos, cloruros de cationes monovalentes como sodio, potasio o amonio o divalentes como calcio o magnesio. Las proporciones de los nutrientes se determinan en base a las necesidades de crecimiento del microorganismo y a los niveles de producción.
La fermentación se lleva a cabo en condiciones aeróbi- cas y en cultivo sumergido. La temperatura de fermentación puede oscilar entre 20°C y 32 °C aunque se prefiere entre 25°C y 28°C.
El pH del cultivo evoluciona libremente en las primeras horas, en que tiene lugar el crecimiento inicial del hongo en el termentador, y se controla posteriormente por medio de adición de ácido y/o álcali en el rango 6,5 - 7,2, aunque preferiblemente 6,7 - 6,9. El inicio del control de pH depende de la evolución del crecimiento, pero en general tiene lugar entre las 12 y las 50 horas de fermentación, preferiblemente entre 24 y 36 horas. La incorporación de la lecitina en el medio, debido al carácter antipático de dicha molécula, favorece la emulsión de los aceites en medios de cultivo en que éstos se encuentran en elevada concentración, como es el caso fre- cuentemente en los medios de fermentación de beta-caroteno. Esta acción por una parte favorece la utilización del aceite por parte del microorganismo y por otra parte se ha encontrado que activa sorprendentemente la ruta de la carotenogénesis favoreciendo la transformación del gamma- caroteno en beta-caroteno, aumentando la producción de este último y su concentración relativa respecto a otros carotenoides, en especial el gamma-caroteno, con lo que se reduce de forma importante la presencia de éste en el producto final, incrementando su pureza en all-trans-beta- caroteno.
Este efecto, además, se ve potenciado cuando se efectúa un adecuado control de pH durante la fermentación, de forma que el ajuste de pH a partir de las 24-36 horas de fermentación favorece la reducción del gamma-caroteno de forma aún más acusada, incrementando la concentración relativa de la forma beta.
La presencia de gamma-caroteno en los caldos de fermentación de hongos mucorales en cultivos en fase estacionaria ha sido anteriormente descrita (Murillo FJ, Torres- Martínez S, Aragón CM y Cerda-Olmedo E (1981) " Substrate transfer in carotene biosíntesis in Phycomyces" Eur J Biochem 119 (3) : 511-516; Candau R, Bejarano ER, Cerda-Olmedo E (1991) In vivo chanelling of substrates in an enzyme agrégate for beta-carotene biosíntesis" Proc Nati Acad Sci USA 88(11) :4936-4940; Fraser PD, Ruiz-Hidalgo MJ, Lopez- Matas MA, Alvarez MI, Eslava AP y Bramley PM (1996) xCarotenoid biosíntesis in wild type and mutant strains of Mucor circinelloides" Biochim Biophys Acta 1289(2) :203- 208) . Esta presencia se ha descrito también en Blakeslea trispora (Mehta BJ y Cerda-Olmedo E (1999) " Lycopene cyclization in Blakeslea trispora" Mycoscience 40(3)307- 310) . En ambos casos se describen efectos inhibitorios por parte de algunas sustancias como la nicotina, 2- (4-cloro- feniltio) -trietilamina, alfa-picolina e imidazol sobre la producción de beta-caroteno, favoreciendo sin embargo la acumulación de licopeno y gamma-caroteno debido al bloqueo de la licopeno-ciclasa. Sin embargo, no se han descrito anteriormente procedimientos encaminados a reducir el contenido en gamma-caroteno de las fermentaciones de B. tris- pora incrementando la producción de beta-caroteno y por tanto la pureza del producto final obtenido.
Este efecto de reducción del contenido en gamma- caroteno de los caldos de fermentación de Blakeslea tris- pora resultado de la presente invención tiene trascendencia en el sentido de que permite cumplir las especificaciones de producto final que tanto a nivel de Farmacopea como de legislación alimentaria establecen la necesidad de un mínimo del 96% de pureza de beta-caroteno en el producto final .
Dada la característica del componente carotenoide bio- sintetizado en la fermentación, de ser intracelular, el procedimiento de recuperación a partir del caldo de culti- vo, preparado de acuerdo con los procedimientos al uso, implica la separación de la biomasa del caldo, con el propósito de eliminar o reducir las pérdidas en el caldo sin biomasa.
Esta separación puede hacerse por los procedimientos establecidos de A) Filtración, empleando las tecnologías al uso de filtros, bien sean de bandas, rotatorios, prensas, etc., en los que una barrera constituida por la tela filtrante separa la biomasa y permite pasar la fase líquida sin biomasa, o B) Centrifugación, en la que haciendo uso de la diferencia de densidades entre el caldo y la biomasa (normalmente mayor) se emplea una máquina del tipo de un separador centrífugo, decantador o similar, en el que la fase pesada se concentra y se separa de la fase líquida con la menor cantidad posible de biomasa. El reducir pérdidas y optimizar las características de cada fase respectiva consiguiendo la mayor cantidad de biomasa con el mayor contenido de residuo seco y eliminar la mayor cantidad de caldo de fermentación, con la menor cantidad de materia activa es una de los objetivos de esta invención. El micelio húmedo resultante contiene más del 95% de los carotenoides producidos en la fermentación, preferiblemente más del 97% y más preferiblemente más del 99%. El contenido en carotenoides de la fase acuosa es, por tanto, inferior al 5%, preferiblemente inferior al 3% y más prefe- riblemente inferior al 1%.
Este sólido húmedo del micelio, estaría en disposición de permitir, mediante las etapas ulteriores, la separación de beta-caroteno, pero la comprobación de que, relacionado con la Fermentación, mantiene un porcentaje relativamente elevado de componentes lipofílicos, entre 15 y 20 % (ácidos grasos y aceites) y que en etapas ulteriores plantean problemas de purificación, conducen a introducir, en este punto, una etapa de purificación de la biomasa.
Esta etapa de purificación implica una resuspensión de la biomasa con una cantidad de alcohol: metanol, etanol, propanol, isopropanol, o cualquier otro alcohol en el que la solubilidad del β-caroteno sea muy baja, en proporción adecuada para conseguir la máxima purificación de los componentes lipidíeos, es decir el micelio húmedo se re- suspende con una cantidad de alcohol que oscila entre 1 rol/g Y 1° ml/g de micelio húmedo. La temperatura de resuspensión oscila entre la temperatura ambiente y la de ebullición del alcohol. El tiempo de contacto oscila entre 5 minutos y 24 horas. La resuspensión alcohólica así pre- parada se filtra o centrifuga, de modo que el contenido en sólidos en el filtrado o clarificado sea prácticamente nulo. El micelio húmedo resultante, que contendrá alcohol más agua en diversa proporción, contiene más del 93% de los carotenoides producidos en la fermentación, preferiblemente más del 95% y más preferiblemente más del 97%.
En la mezcla resultante de restos de caldo con alcohol el contenido en carotenoides es inferior al 2%, preferiblemente inferior al 1%. Mediante este tratamiento con alcohol se consigue eliminar una serie de sustancias lipofí- licas solubles en alcohol, en cantidad variable en función de las características del caldo utilizado, efectuando una purificación previa extremadamente importante y que nos va a permitir obtener un producto final cristalino de elevada pureza. Además, al eliminar una proporción variable de agua del micelio húmedo inicial, se facilita considerablemente el proceso de secado.
Alternativamente al conjunto de estas dos etapas de separación de la Biomasa y de purificación por resuspensión, se plantea el hecho de que mezclando directamente el caldo de cosecha con el alcohol en proporciones de volumen entre 1:0,5 y 1:5 (caldo/alcohol) y a temperaturas entre la temperatura ambiente y la de ebullición de la mezcla, preferentemente entre temperatura ambiente y 50 °C, manteniendo el tiempo mínimo de contacto se consigue un efecto de purificación equivalente al descrito, con lo que se simplifica el proceso al eliminar una operación de separación sólido/liquido .
El hecho de que el producto carotenoide sea intracelular implica que la biomasa purificada requiere un acondi- cionamiento bien mediante secado más molienda, secado más disgregación o solo disgregación de la biomasa, que favorezca la mezcla con disolventes y facilite la extracción de éstos .
El micelio deshidratado/purificado se seca. El secado puede hacerse por los procedimientos habituales en lotes (batch) o en continuo. La temperatura de secado oscila entre la temperatura ambiente y 150 °C, preferiblemente no debe sobrepasar los 60 °C y más preferiblemente estar por debajo de 50 °C. El tiempo de secado es función de la temperatura empleada, oscilando entre 1 hora y 72 horas. Debido a la posible descomposición de estos carotenoides por oxidación con el oxígeno atmosférico, es conveniente efectuar esta operación de secado en ausencia de oxígeno, bien bajo atmósfera de nitrógeno o al menos a vacío. Para conseguir una buena accesibilidad del disolvente al carotenoide a extractar es necesaria una operación de ruptura previa del micelio, de modo que la superficie de contacto sea máxima. El tamaño de partícula óptimo del micelio seco y roto debe ser inferior a 3 mm, preferiblemente inferior de 1 mm y más preferiblemente inferior a 0.5 mm.
La molienda puede hacerse sobre el producto seco, mediante los sistemas mecánicos con partes giratorias o fijas: mazas, tamices, etc., por el paso a través de cilindros giratorios presionando uno sobre el otro o mediante el sistema de secado tipo flash (instantáneo) en el equipo jet mili (molino de chorro) donde el producto húmedo se alimenta a una corriente de un gas en recirculación y a temperatura elevada, de manera que el tiempo de residencia sea el mínimo para conseguir vaporizar el contenido de componentes líquidos, y se transporta, al variar las densidades el producto, hasta un ciclón donde se recupera.
Durante el tiempo de secado y en el trayecto tiene lugar asimismo un efecto de homogeneización al chocar las partículas con las paredes. Para la extracción del β-caroteno a partir de un micelio acondicionado tal y como se ha descrito, se pueden emplear diversos disolvente orgánicos. Esta invención se referirá al uso de disolventes de grado alimentario considerados como naturales, tales como los steres de acilo, preferiblemente acetatos de etilo, propilo, isopropilo, butilo, isobutilo, que conjugan la solubilidad razonablemente elevada para los componentes carotenoides con su compatibilidad como disolventes incluidos en el Grupo de Clase 3 de la ICH. Estos disolventes son admisibles tanto a nivel español como comunitario, en los ámbitos tanto farmacéutico como alimentario (RDL 12/04/96 y RDL 16/10/96) .
La temperatura de extracción oscila entre la temperatura ambiente y la de ebullición del disolvente, preferiblemente entre 50°C y 80°C. El tiempo de extracción será el mínimo necesario para conseguir la solubilización, entre 1 segundo y 1 hora, preferiblemente entre 1 minuto y 15 minutos. La cantidad de disolvente empleada depende de la temperatura y de la riqueza del micelio en carotenoides, oscilando entre 5 ml/g y 20 ml/g. El número de extracciones varía desde 1 hasta 3. La cantidad de carotenoides extractados es superior al 85%, preferiblemente superior al 90% y más preferiblemente superior al 95%.
Una vez obtenido el extracto rico en carotenoides es necesario concentrarlo hasta un determinado volumen. La concentración final de carotenoides en el disolvente tras concentrar oscila preferentemente entre 10 y 40 g/1. La temperatura de concentración debe ser inferior a 80°C, preferiblemente inferior a 70 °C y más preferiblemente inferior a 50 °C. El tiempo de concentración debe ser inferior a 1 hora, preferiblemente inferior a 30 min. , y más preferiblemente inferior a 15 min.
Una vez concentrado el extracto al volumen requerido se hace necesario adicionar un insolubilizante de los carotenoides, concretamente un alcohol y más concretamente me- tanol, etanol, isopropanol, anhidros, o cualquier otro alcohol en el que la solubilidad del β-caroteno sea muy baja, en proporciones entre l/l y 6/1 respecto al volumen del disolvente tras la concentración, con lo cual el rendimiento en β-caroteno cristalino aumenta considerablemente. La adi- ción del alcohol ejerce también un efecto purificante, re- cuperándose un producto más puro que cuando no se adiciona. El tiempo de cristalización oscila entre 15 min. y 24 horas, preferiblemente entre 1 h y 12 h y más preferiblemente entre 3 y 8 horas. La temperatura de cristalización debe ser inferior a 25°C, preferiblemente inferior a 5°C.
La separación de los cristales de las aguas de cristalización se puede efectuar por filtración o centrifugación, desplazando las aguas de cristalización que bañan los cristales lavando con el mismo alcohol empleado para insolubi- lizar.
Los cristales obtenidos se secan a vacío y temperatura ambiente durante al menos 1 h. hasta obtener un contenido de disolventes residuales acorde con las especificaciones de concentración máxima establecidas por la legislación, y que, en el caso del β-caroteno, se establece en una pérdida por secado < 0,2%.
La pureza en beta-caroteno de los cristales obtenidos, corresponde a un Título - determinado por espectrofoto- metría mediante lectura de la Absorción a 455 nm disuelto en ciclohexano (El% lem = 2500) según método espectrofo- tométrico de la USP, EP, BP, superior a 90%, preferentemente superior al 95% y más preferentemente superior al 98% con un contenido en otros carotenoides inferior al 4%, preferiblemente inferior a 2%. Asimismo el producto cristalino obtenido puede manejarse y comercializarse como tal o formando parte de formulaciones en las que la proporción de β-caroteno varíe entre el 1 y el 85%, mezclado con diversos excipientes o compuestos, como es el caso de aceites de soja, maíz, oliva, etc. con diversos grados de pureza y acompañado de antioxidantes tipo tocoferol . Un objeto de la presente invención es proporcionar una formulación de carotenoides dis- persable en agua, que contiene aproximadamente 1 a 25 partes en peso de polvo seco de carotenoide encapsulado en una matriz de almidón de calidad alimentaria que proporcio- na β-caroteno incluido en el polvo encapsulado en una condición estable.
Los productos de la presente invención son formulaciones sólidas de β-caroteno, dispersables en agua. Los almidones utilizados son un almidón modificado de maíz de calidad alimentaria de elevado peso molecular, que permite un sencillo emulsionamiento de la fase orgánica en agua. Después de separar el disolvente, la dispersión satisface la gama de colores del β-caroteno. Este almidón alimentario modificado no produce suficiente redispersabi- lidad del polvo seco. Por ello, se añade también otro almidón. La segunda variedad es una mezcla de almidones de calidad alimentaria de diferentes pesos moleculares en un rango de 1.000-700.000; este segundo tipo de almidón pro- porciona una buena dispersabilidad del producto final .
Como el β-caroteno es sensible a la oxidación, se pueden disolver antioxidantes en el disolvente que contiene el β-caroteno para intensificar la estabilidad contra el deterioro. En la presente invención se puede utilizar cual- quier antioxidante autorizado en alimentos, incluido entre otros el α-tocoferol de origen natural o sintético. El nivel de antioxidante será el suficiente para proteger al β-caroteno. Este tendrá que ser 0,1 a 0,3 veces la cantidad de β-caroteno. También se puede añadir palmitato de ascor- bilo a la formulación debido al efecto antioxidativo sinér- gico de la asociación de ambos antioxidantes .
El método de esta invención es especialmente aplicable para la recuperación de β-caroteno cristalino de una fuente microbiana, preferiblemente algas, hongos o levaduras, más preferiblemente de hongos del orden de los Mucorales, y más preferiblemente B. trispora.
La extrema pureza conseguida en los cristales obtenidos por la presente metodología y el empleo de disolventes considerados como naturales hace que estos cristales sean aplicables en la industria alimentaria, farmacéutica o de cosméticos .
Ejemplo 1.
La adición de lecitina de soja al medio de cultivo disminuye el contenido en gamma-caroteno cuando se fermenta en matraz .
Se prepara un medio de inoculo que contiene por litro: harina de soja, 23 g; harina de maíz, 47 g; fosfato mono- potásico 0,5 g; clorhidrato de tiamina, 0,002 g. Su pH inicial es de 6,3. El medio se reparte en matraces Erlenmeyer de 500 mi a razón de 67 ó 100 mi. Después de esterilizar, se siembran a partir de suspensiones de esporas las estirpes B. trispora estirpe (+) y B. trispora estirpe (-) en matraces separados y se incuban a 25 °C durante 48 horas.
Se prepara un medio base de fermentación que contiene por litro: harina de soja, 44 g; harina de maíz, 19 g; harina de naranja, 10 g; fosfato monopotásico dibásico 0,5 g; isoniazida, 0,28 g; clorhidrato de tiamina, 0,002 g; aceite vegetal 100 g. El medio de cultivo que contiene lecitina de soja se prepara según la descripción anterior y se suplementa con un 1% de lecitina. El pH se ajusta a 6,3. El medio se reparte en matraces Erlenmeyer de 250 mi a razón de 20 mi.
Para la fermentación de β-caroteno se inoculan matraces que contienen medio de fermentación con un 10% de un cultivo mixto de las estirpes de B. trispora (+) y B. trispora (-) . Todos los matraces se incuban a 25 °C en un agitador orbital a 250 rpm. A las 48 horas de fermentación se adiciona β-ionona en los matraces que corresponde, a razón de 1 mi por litro de medio de cultivo y se recoge el micelio al 6o día de fermentación.
La extracción de β-caroteno se realiza mediante cualquier método descrito de rotura celular que permita liberar el contenido intracelular, se solubiliza en cualquier solvente en el que resulte soluble como por ejemplo acetona. Su concentración se puede determinar mediante medida espectrofotométrica, pero se prefiere el uso de cromatografía líquida (HPLC) , mediante de cualquiera de los métodos descritos en la bibliografía.
La adición de lecitina de soja incrementa la producción de β-caroteno en un 5% y disminuye la producción de γ-caroteno en un 60%. (ver Figura 1). Este experimento demuestra que la lecitina permite incrementar la producción de β-caroteno y además obtener un producto más puro.
Ejemplo 2
La incorporación de lecitina al medio de cultivo incrementa la producción de beta-caroteno y reduce el nivel relativo de gamma-caroteno en termentador piloto. Cuando se combina con el control de pH, el efecto sobre la producción de gamma-caroteno es aún mayor. Se prepara un medio de inoculo que contiene por litro: harina de soja, 23 g; harina de maíz, 47 g; fosfato monopo- tásico 0,5 g; clorhidrato de tiamina, 0,002 g. Su pH inicial es de 6,3. El medio se reparte en matraces Erlenmeyer de 2000 mL a razón de 500 mL. Después de esterilizar, se siembran a partir de suspensiones de esporas B. trispora estirpe (+) y B. trispora estirpe (-) en matraces separados y se incuban a 25 °C durante 48 horas, con agitación orbital a 250 rpm y 5 cm. de excentricidad.
Se transfiere estérilmente cada una de las cepas a un tanque intermedio de crecimiento con un medio de cultivo cuya composición por litro es: Pharmamedia, 29 g; harina de maíz, 47 g; fosfato monopotásico 0,5 g; clorhidrato de tiamina, 0,002 g; antiespuma, 1 g. Su pH inicial es de 6,0. Después de incubar 36-48 h, se realiza la mezcla de las cepas (+) y (-) y se siembra con un 10% de la mezcla el medio base de fermentación , cuya composición por litro es la siguiente: harina de soja, 50 g; harina de maíz, 25 g; harina de naranja, 15 g; fosfato monopotásico dibásico 0,5 g; isoniazida, 0,28 g; clorhidrato de tiamina, 0,002 g; aceite vegetal 80 g; antiespuma, 0,175 g. Este medio de cultivo se suplementa con un 1% de lecitina de soja.
La fermentación se verifica a una temperatura de 25- 28 °C con agitación variable entre 150 y 250 rpm y una aireación de 1-1,5 v/v/m. El control de pH se realiza con amoniaco ó ácido sulfúrico, manteniéndose dos condiciones diferentes dependiendo del ensayo: sin control de pH con un rango entre 6,5 y 7,5, ó con control a 6,8 ± 0,1 desde las 36 horas de fermentación. Entre las 40 y 50 horas de fermentación se adicionan 10 g/L de una solución de β- ionona al 10% en aceite vegetal. Entre las 50 y 60 horas se adicionan 10 g/L de una solución de etoxiquina al 2,5% en aceite vegetal . La fermentación se prolonga durante 100-140 horas, al cabo de las cuales se valora la producción de β-caroteno : la extracción de β-caroteno se realiza mediante cualquier método descrito de rotura celular que permita liberar el contenido intracelular, se solubiliza en cualquier solvente en el que resulte soluble como por ejemplo acetona. Su concentración se puede determinar mediante medida espectro- fotométrica, pero se prefiere el uso de cromatografía líquida (HPLC) , mediante cualquiera de los métodos descritos en la bibliografía. Los resultados de las pruebas realizadas con medio de cultivo con y sin lecitina y las dos condiciones de control de pH anteriormente citadas se recogen en la tabla siguiente:
Figure imgf000024_0001
Estos datos indican de forma clara que la incorporación de lecitina al medio de cultivo incrementa la produc- ción de beta-caroteno (5% de incremento) y reduce el nivel relativo de gamma-caroteno (en un 43%) . Cuando se combina con el control de pH, el efecto sobre la producción de gamma-caroteno es aún mayor (63%) .
Ejemplo 3
Se cosechan 3 1 de caldo fermentación. El título del caldo es de 6 g de β-caroteno por litro. La biomasa de este caldo se recupera mediante filtración por Buchner, obte- niendo 1000 g de biomasa húmeda. La biomasa húmeda se re- suspende en 3 1 de isopropanol azeótropo 85/15 y se agita durante 30 minutos. La biomasa purificada se vuelve a recuperar mediante Buchner.
Esta biomasa se seca en estufa bajo vacío a tempera- tura inferior a 45° C y en un tiempo de 18 horas, hasta que el contenido en disolventes residuales es del orden 1-2%. Se obtienen 270 g de biomasa seca y purificada con un contenido de β-caroteno equivalente a una riqueza del 6,5%.
La biomasa seca se muele en molino de martillos y tamiz de 1 mm obteniéndose un sólido con la misma riqueza específica y acondicionado para permitir la extracción con el disolvente.
La extracción se efectúa mezclando los 270 g de biomasa molida con 4500 mi de acetato de isobutilo a 70 °C, manteniéndose en agitación durante 5 minutos. Se separa la biomasa agotada del disolvente rico filtrando por placa filtrante. La biomasa agotada se lava con 500 mi de acetato de isobutilo caliente sobre el propio filtro, mezclando los dos disolventes. El total de acetato de isobutilo rico se concentra bajo vacío y manteniéndose la temperatura por debajo de 45°C hasta reducir el volumen a 700 mi, con lo que ha cristalizado en parte el β-caroteno. Para completar la cristalización y obtener un β-caroteno más puro, se añaden 2100 mi de isopropanol. La mezcla se mantiene en agitación entre 0-5 °C y bajo nitrógeno durante 3 horas. Se filtra por Buchner, lavando los cristales con 25 mi de isopropanol sobre el Buchner. Se recogen los cristales y se secan, obteniéndose 14 g de cristales de β-caroteno con una pureza del 96% medida en espectrofotómetro .
Ejemplo 4
Se cosecha una cantidad de caldo de fermentación del orden de 500 1, con un título en β-caroteno de 5,5 g/1. Se mezcla directamente con 1500 1 de isopropanol azeótropo con agua 85-15 y se calienta la mezcla a 40 °C. Después de mantener en agitación durante 30 min. se procede a separar la biomasa del líquido por centrifugación con un decanta- dor. Se recogen del orden de 180 Kg. de biomasa húmeda purificada.
Esta biomasa se seca en secadero rotativo bajo vacío hasta conseguir un contenido en disolventes residuales del orden de 1-2%. La temperatura ha de ser inferior a 45 °C y el tiempo del orden de 12-24 h. Se obtienen 45 Kg . de biomasa seca con un contenido β-caroteno equivalente a una riqueza específica del 5,9 %, pureza ligeramente inferior.
La biomasa seca se muele en molino con martillos y tamiz de 1 mm obteniéndose un sólido con la misma riqueza específica y acondicionado para permitir la extracción con el disolvente.
Como alternativa la biomasa húmeda se seca en un turbo secador flash (tipo jet mili) en cuyo caso no es necesaria la molienda.
La extracción se efectúa mezclando los 45 Kg. de sólido molido con 800 1 de Acetato de Isobutilo a 70 °C y se mantiene en agitación durante 15 min. Se separa la biomasa agotada del disolvente rico por centrifugación con decan- tador. El total de Acetato de Isobutilo se concentra bajo vacío y manteniendo la temperatura por debajo de 45 °C hasta reducir el volumen a 110 1, con lo que se ha cristalizado en parte el β-caroteno. Para completar la cristalización del β-caroteno se añaden 330 1 de isopropanol. Se mantiene la mezcla en agitación mientras se enfría, durante 3 h a 0- 5°C. Se filtra por un Buchner recogiendo los cristales de beta-caroteno que se secan. Se obtienen 2,1 Kg de producto con una pureza de 96 % por espectrometría.
Descripción de la figura 1
A: Porcentaje de producción de β-caroteno con lecitina (columna de la derecha) o sin ella (izquierda) . B: Porcentaje de producción de γ-caroteno con lecitina (columna de la derecha) o sin ella (izquierda) .

Claims

REIVINDICACIONES
1. Procedimiento de producción de carotenoides que comprende las etapas de :
(1) Fermentación de una biomasa a base de hongos mucorales en cultivo sumergido
(2) Separación de la biomasa (3) Secado de la biomasa y disgregación de la misma
(4) Extracción sólido/líquido de los carotenoides contenidos en la biomasa, con disolventes orgánicos
(5) Concentración de un extracto rico en carotenoides
(6) Precipitación-cristalización de los carotenoides me- diante adición de alcohol
(7) Filtración y secado final,
caracterizado por añadir al medio de cultivo en la etapa
(1) , lecitina, purificar la biomasa de producción de caro- tenoides, eliminando de la misma sustancias lipofílicas, y utilizar en la etapa de extracción (4) , disolventes de baja toxicidad incluidos en la clase III de la ICH.
2. Procedimiento según la reivindicación 1, caracterizado porque el cultivo sumergido se lleva a cabo en condi- ciones aerobias, el hongo mucoral es del género Blakeslea, particularmente B. trispora y el carotenoide obtenido es el β-caroteno.
3. Procedimiento según las reivindicaciones 1 o 2, caracterizado porque se añade lecitina de soja en un por- centaje del 0.1-10, preferentemente del 0.5-5% y más preferiblemente del 0.5-1.5%.
4. Procedimiento según la reivindicación 2, caracterizado porque se cultivan estirpes (+) y/o (-) , o bien imitantes seleccionados de B. trispora, superproductores de β- caroteno.
5. Procedimiento según cualquiera de las reivindicaciones 1 a 4, en que la temperatura durante la fermentación oscila entre 20-32°.
6. Procedimiento según cualquiera de las reivindica- ciones 1 a 5, caracterizado porque el paso de purificación de la biomasa para eliminar sustancias lipofílicas consiste en la suspensión de la misma en un alcohol en que la solubilidad de los carotenoides es baja.
7. Procedimiento según la reivindicación 1, caracteri- zado porque la purificación de la biomasa se lleva a cabo en el propio medio de cultivo o, alternativamente, una vez separada de dicho medio.
8. Procedimiento según cualquiera de las reivindicaciones 1, 6 y 7, caracterizado la cantidad de alcohol a añadir se encuentra entre 1 ml/g y 10 ml/g, la temperatura durante la suspensión oscila entre la temperatura ambiente y la de ebullición del alcohol añadido, siendo el tiempo de contacto de 5 a 24 h.
9. Procedimiento según la reivindicación 7, caracteri- zado porque cuando la purificación de la biomasa se produce directamente sobre el caldo de cultivo las proporciones caldo: alcohol, oscilan entre 1:0,5 - 1:5.
10. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque la etapa de secado- disgregación (3) de la biomasa se puede llevar a cabo en lotes o en continuo, en ausencia de oxígeno, a una temperatura que oscila entre la ambiente y 150 °C y durante un tiempo que va de 1 h a 72 h.
11. Procedimiento según la reivindicación 10, caracte- rizado porque la disgregación de la biomasa se produce por medios convencionales hasta alcanzar un tamaño de partícula inferior a 3 mm.
12. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el alcohol empleado en la purificación de la biomasa se selecciona entre metanol, etanol, propanol o isopropanol, o mezclas de los mismos .
13. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque la etapa de extrac- ción (4) se repite entre 1 y 3 veces y consiste en el lavado de la biomasa seca y disgregada con disolventes orgánicos de baja toxicidad, a una temperatura comprendida entre la ambiente y la de ebullición del disolvente, durante un tiempo que oscila entre 1 s y 1 h, en una cantidad que oscila entre los 5 ml/g y 20 ml/g, obteniéndose un extracto rico en carotenoides con un contenido de los mismos superior al 85%, preferentemente del 90% y más preferentemente superior al 95%.
14. Procedimiento según la reivindicación 13, caracte- rizado porque el disolvente empleado en la etapa de extracción (4) consiste en un éster de acilo, preferentemente un acetato de etilo, propilo, isopropilo, butilo o isobutilo, o mezclas de los mismos.
15. Procedimiento según cualquiera de las reivindi- caciones anteriores, caracterizado porque el extracto rico en carotenoides se somete a una etapa de concentración (5) por medios convencionales, a una temperatura inferior a los 80 °C, durante un tiempo inferior a 1 h, hasta alcanzar una concentración de carotenoides del orden de entre 10 y 40 g/1.
16. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque el extracto enriquecido en carotenoides se somete a una etapa (6) de precipitación-cristalización mediante la adición de un alcohol, en proporción l/l a 1/6 respecto al volumen del disolvente empleado en la etapa (4) de extracción, a una temperatura de cristalización inferior a los 25 °C y durante un tiempo de cristalización que oscila entre 15 min y 24 h.
17. Procedimiento según cualquiera de las reivindicaciones anteriores, caracterizado porque una vez iniciada la fermentación se prosigue la misma, con control de pH.
18. Procedimiento según la reivindicación 17, caracte- rizado porque el control de pH se lleva a cabo entre las
12-50 h de iniciada la fermentación.
19. Procedimiento según la reivindicación 18, caracterizado porque el pH se controla entre las 24-36 h de iniciada la fermentación y se fija en un rango de 6.7-6.9.
20. Procedimiento según cualquiera de las reivindicaciones 1-19, caracterizado porque el efecto de la adición de lecitina al medio es una reducción en la producción de γ- caroteno superior al 40% incrementándose esta reducción a más del 60% si además se lleva a cabo un control de pH una vez iniciada la fermentación.
21. β-caroteno obtenible según el procedimiento de las reivindicaciones 1 a 19, caracterizado por ser un producto cristalino con un grado de pureza superior al 90%, preferentemente superior al 95% y más preferentemente superior al 98%, con un contenido en otros carotenoides inferior al 4%, preferiblemente inferior al 2%.
22. Uso del β-caroteno de la reivindicación 20 en proporciones que oscilen entre el 1-85%, como colorante, particularmente en la industria alimentaria.
23. Uso según la reivindicación 21 en que el β-caroteno es mezclado con excipientes y/o compuestos tales como, entre otros, diferentes tipos de almidón, aceites de soja, maíz u oliva y acompañado de antioxidantes tipo tocoferol y/o palmitato de ascorbilo.
PCT/ES2001/000284 2000-07-19 2001-07-18 PROCEDIMIENTO DE PRODUCCION DE β-CAROTENO WO2002010429A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SI200130198T SI1306444T1 (en) 2000-07-19 2001-07-18 Method for the production of beta-carotene
DE60105435T DE60105435T2 (de) 2000-07-19 2001-07-18 Verfahren zur herstellung von beta-karotin
US10/333,331 US8859228B2 (en) 2000-07-19 2001-07-18 Method for the production of beta-carotene
AT01951706T ATE275635T1 (de) 2000-07-19 2001-07-18 Verfahren zur herstellung von beta-karotin
AU2001272562A AU2001272562A1 (en) 2000-07-19 2001-07-18 Method for the production of beta-carotene
JP2002516345A JP4287142B2 (ja) 2000-07-19 2001-07-18 β−カロテンの製造方法
EP01951706A EP1306444B1 (en) 2000-07-19 2001-07-18 Method for the production of beta-carotene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200001792 2000-07-19
ES200001792A ES2168971B1 (es) 2000-07-19 2000-07-19 Procedimiento de produccion de beta-caroteno.

Publications (1)

Publication Number Publication Date
WO2002010429A1 true WO2002010429A1 (es) 2002-02-07

Family

ID=8494321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000284 WO2002010429A1 (es) 2000-07-19 2001-07-18 PROCEDIMIENTO DE PRODUCCION DE β-CAROTENO

Country Status (10)

Country Link
US (1) US8859228B2 (es)
EP (1) EP1306444B1 (es)
JP (1) JP4287142B2 (es)
AT (1) ATE275635T1 (es)
AU (1) AU2001272562A1 (es)
DE (1) DE60105435T2 (es)
ES (2) ES2168971B1 (es)
PT (1) PT1306444E (es)
TR (1) TR200402687T4 (es)
WO (1) WO2002010429A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208876A1 (de) 2014-05-12 2015-11-12 Hochschule Anhalt Verfahren zur Herstellung von Carotinoiden durch Submersfermentation mit Mischkulturen von (+) und (-)-Stämmen des Pilzes Blakeslea trispora
WO2021019101A1 (en) 2019-08-01 2021-02-04 Dsm Ip Assets B.V. Beta-carotene fermentation method
WO2022090547A1 (en) 2020-10-30 2022-05-05 Dsm Ip Assets B.V. Production of carotenoids by fermentation

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2195766B1 (es) * 2002-01-29 2005-04-01 Antibioticos, S.A.U. Procedimiento de produccion de beta-caroteno por fermentacion en cultivo mixto utilizando cepas (+) 4 (-) de blakeslea trispora.
EP2371967B1 (en) 2005-03-18 2015-06-03 DSM IP Assets B.V. Production of carotenoids in oleaginous yeast and fungi
AU2007275036A1 (en) 2006-07-21 2008-01-24 Xyleco, Inc. Conversion systems for biomass
EP2078092A2 (en) 2006-09-28 2009-07-15 Microbia, Inc. Production of carotenoids in oleaginous yeast and fungi
AU2007348340A1 (en) 2007-03-08 2008-09-12 Biotrend - Inovacao E Engenharia Em Biotecnologia, Sa Production of high-purity carotenoids by fermenting selected bacterial strains
BRPI1014661B1 (pt) 2009-07-29 2020-12-15 Ajinomoto Co., Inc. Método para produzir um l-aminoácido
US9682932B2 (en) 2010-05-17 2017-06-20 Dynadis Biotech India Private Limited Process for production of high purity beta-carotene and lycopene crystals from fungal biomass
CN102787158B (zh) 2011-05-20 2015-01-21 浙江医药股份有限公司新昌制药厂 一种发酵法生产天然β-胡萝卜素的方法和应用
CN104557648A (zh) * 2014-12-23 2015-04-29 嘉必优生物工程(武汉)有限公司 制备β-胡萝卜素的方法
CN109280685B (zh) * 2017-07-21 2021-11-23 浙江医药股份有限公司新昌制药厂 通过增加天然类胡萝卜素发酵过程中溶氧生产天然类胡萝卜素的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959521A (en) * 1959-01-12 1960-11-08 Grain Processing Corp Process for preparing beta-carotene
US3268606A (en) * 1963-09-27 1966-08-23 Upjohn Co Beta-carotene process
US5422247A (en) * 1992-03-27 1995-06-06 Universal Foods Corporation Blakeslea trispora mated culture capable of increased beta-carotene production
WO1998003480A1 (en) * 1996-07-19 1998-01-29 Gist-Brocade B.V. PROCESS FOR THE RECOVERY OF CRYSTALLINE β-CAROTENE FROM A NATURAL SOURCE
US5714658A (en) * 1995-08-25 1998-02-03 Skw Trostberg Aktiengesellschaft Process for the extraction of carotenes from natural sources
WO1998050574A1 (en) * 1997-05-02 1998-11-12 Dsm N.V. Isolation of carotenoid crystals from microbial biomass

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130242A (en) * 1988-09-07 1992-07-14 Phycotech, Inc. Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
EP0410236B1 (de) * 1989-07-25 1993-10-27 F. Hoffmann-La Roche Ag Verfahren zur Herstellung von Carotinoidpräparaten
ES2139577T3 (es) * 1990-05-15 2000-02-16 Archer Daniels Midland Co Procedimiento de fermentacion continua de alta productividad para microorganismos productores de carotenoides.
US5466599A (en) * 1993-04-19 1995-11-14 Universal Foods Corporation Astaxanthin over-producing strains of phaffia rhodozyma
DE4429506B4 (de) * 1994-08-19 2007-09-13 Degussa Gmbh Verfahren zur Extraktion natürlicher Carotinoid-Farbstoffe
US6048846A (en) * 1998-02-26 2000-04-11 Cochran; Timothy M. Compositions used in human treatment
US6309677B1 (en) * 1998-03-24 2001-10-30 Amway Corporation Multi-carotenoid product
US6262284B1 (en) * 1998-10-21 2001-07-17 University Of Maryland Process for extraction and purification of lutein, zeaxanthin and rare carotenoids from marigold flowers and plants
EP1300394B1 (en) * 2000-07-13 2004-02-11 Vitatene, S.A. Method for the production of a water-dispersible formulation containing carotenoids

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959521A (en) * 1959-01-12 1960-11-08 Grain Processing Corp Process for preparing beta-carotene
US3268606A (en) * 1963-09-27 1966-08-23 Upjohn Co Beta-carotene process
US5422247A (en) * 1992-03-27 1995-06-06 Universal Foods Corporation Blakeslea trispora mated culture capable of increased beta-carotene production
US5714658A (en) * 1995-08-25 1998-02-03 Skw Trostberg Aktiengesellschaft Process for the extraction of carotenes from natural sources
WO1998003480A1 (en) * 1996-07-19 1998-01-29 Gist-Brocade B.V. PROCESS FOR THE RECOVERY OF CRYSTALLINE β-CAROTENE FROM A NATURAL SOURCE
WO1998050574A1 (en) * 1997-05-02 1998-11-12 Dsm N.V. Isolation of carotenoid crystals from microbial biomass

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014208876A1 (de) 2014-05-12 2015-11-12 Hochschule Anhalt Verfahren zur Herstellung von Carotinoiden durch Submersfermentation mit Mischkulturen von (+) und (-)-Stämmen des Pilzes Blakeslea trispora
DE102014208876B4 (de) 2014-05-12 2018-10-31 Jäckering Research GmbH Verfahren zur Herstellung von Carotinoiden durch Submersfermentation mit Mischkulturen von (+) und (-)-Stämmen des Pilzes Blakeslea trispora
WO2021019101A1 (en) 2019-08-01 2021-02-04 Dsm Ip Assets B.V. Beta-carotene fermentation method
WO2022090547A1 (en) 2020-10-30 2022-05-05 Dsm Ip Assets B.V. Production of carotenoids by fermentation

Also Published As

Publication number Publication date
TR200402687T4 (tr) 2004-11-22
ES2168971A1 (es) 2002-06-16
PT1306444E (pt) 2004-11-30
JP2004504853A (ja) 2004-02-19
EP1306444B1 (en) 2004-09-08
US20040067550A1 (en) 2004-04-08
JP4287142B2 (ja) 2009-07-01
ATE275635T1 (de) 2004-09-15
ES2223894T3 (es) 2005-03-01
EP1306444A1 (en) 2003-05-02
DE60105435T2 (de) 2005-09-22
AU2001272562A1 (en) 2002-02-13
DE60105435D1 (de) 2004-10-14
ES2168971B1 (es) 2003-11-01
US8859228B2 (en) 2014-10-14

Similar Documents

Publication Publication Date Title
JP4960982B2 (ja) ブラケスレアトリスポラの選択された菌株の発酵による改善されたリコペン産生方法、このようにして得たリコペンの調合物及び使用
KR830002801B1 (ko) 고(高) 콜레스테롤혈증치료제, 모나콜린 k의 제조방법
DK0957173T3 (da) Fremgangsmåde til fremstilling af fedt eller olie indeholdende umættet fedtsyre
EP1306444B1 (en) Method for the production of beta-carotene
JP2009171973A6 (ja) ブラケスレアトリスポラの選択された菌株の発酵による改善されたリコペン産生方法、このようにして得たリコペンの調合物及び使用
WO2012159446A1 (zh) 一种发酵法生产天然β-胡萝卜素的方法和应用
ES2237439T3 (es) Procedimiento para producir licopeno.
RU2102416C1 (ru) Способ получения ликопина
EP1118617B1 (en) Compounds with an antioxidant acitivity, compositions useful as food integrators containing them and process for their preparation
RU2270868C1 (ru) СПОСОБ ПОЛУЧЕНИЯ ЛИКОПИНА, ФОСФОЛИПИДОВ, ЖИРНЫХ КИСЛОТ И ЭРГОСТЕРИНА ПУТЕМ СОВМЕСТНОГО КУЛЬТИВИРОВАНИЯ (+) И (-) ШТАММОВ ГРИБА Blakeslea trispora
KR20080019902A (ko) 이소플라본 제조방법과 제니스틴 제조방법 및 이를 이용한모나콜린 케이를 함유하는 제니스테인을 갖는 홍국균 배양방법과 이를 이용한 분말, 겔, 쌀 제조방법
Kutsal et al. Microbial production of vitamin B2 (riboflavin)
AU2011253728B2 (en) Improved method of producing lycopene through the fermentation of selected strains of Blakeslea Trispora, formulations and uses of the lycopene thus obtained
RU2166868C1 (ru) Способ получения биологически активного средства
KUTSAL et al. MICROBIAL PRODUCTION OF VITAMIN B₂ (RIBOFLAVIN)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001951706

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001951706

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10333331

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001951706

Country of ref document: EP