WO2002008786A1 - Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung - Google Patents

Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung Download PDF

Info

Publication number
WO2002008786A1
WO2002008786A1 PCT/DE2000/002414 DE0002414W WO0208786A1 WO 2002008786 A1 WO2002008786 A1 WO 2002008786A1 DE 0002414 W DE0002414 W DE 0002414W WO 0208786 A1 WO0208786 A1 WO 0208786A1
Authority
WO
WIPO (PCT)
Prior art keywords
sea
swell
parameters
field
signal
Prior art date
Application number
PCT/DE2000/002414
Other languages
English (en)
French (fr)
Inventor
Jörg Seemann
Christian M. Senet
Friedwart Ziemer
Original Assignee
Gkss-Forschungszentrum Geesthacht Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkss-Forschungszentrum Geesthacht Gmbh filed Critical Gkss-Forschungszentrum Geesthacht Gmbh
Priority to PCT/DE2000/002414 priority Critical patent/WO2002008786A1/de
Publication of WO2002008786A1 publication Critical patent/WO2002008786A1/de
Priority to US10/348,607 priority patent/US6775617B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the invention relates to a method for determining hydrographic parameters describing an in situ swell field, in particular the swell, the current and the water depth, by means of a radar device, from the supplied analog signal sequences of which a sequence of digitized signals is provided in spatial coordinates, digitized from the sequence Signals in spatial coordinates is determined by means of a Fourier transformation, a three-dimensional complex-valued frequency-wavenumber spectrum, subsequently the frequency-wavenumber spectrum of a filtering according to the principle of the dispersion relation, which links wave numbers and frequencies of the sea state with one another, to localize the sea state-specific parameters by separating the Signals from the noise contained in the signal sequence supplied by the radar device is subjected to the fact that the wave height is subsequently determined from the signal-to-noise ratio obtained and the parameters describing the near-surface flow of the sea field and the water depth by localizing the signal coordinates in the area defined by the dispersion relation in the three-dimensional spectral space.
  • a radar device that is linked to devices that delivers a sequence of digitized signals in polar coordinates from the analog signal sequences supplied by the radar device, which correspond to images of the sea state, is known (DE-OS 43 02 122).
  • Mechanical and optical in situ flow sensors determine a value of a flow which is representative of a small measuring volume of the typical dimension 10 cm x 10 cm (point measurement).
  • Vertical flow profiles can be created with ADCPs (Acoustic Doppier Current Profiler).
  • Horizontal flow profiles, i.e. Flow maps can previously be calculated from measurements using HF radar devices. The field of application of this remote sensing sensor is, however, limited to salt water. Areas measuring up to 20 km x 20 km can be measured, but with a spatial resolution of the flow map of only 500 x 500 m.
  • flow maps with spatial resolution improved by an order of magnitude can be created from image sequences of a nautical radar, the method also being usable in fresh water. Because of the high spatial resolution, even small-scale inhomogeneities in the flow field, such as eddies, can be measured become.
  • the area covered by measurement technology typically has a dimension of 2 km x 2 km.
  • Depth maps in coastal waters can be created using echo sounding. This process is complex and expensive (ship times). Echo soundings can therefore only be carried out sporadically.
  • Depth maps can be continuously created from the image sequences of a nautical radar with a relatively low financial and logistical effort using the local analysis method.
  • Algorithms have already been developed on an experimental basis which, under certain hydrographic conditions, allow a map of the water depth to be created using the analysis of radar image sequences of inhomogeneous water surfaces if the flow near the surface is known.
  • the Bell [1998] method additionally presupposes that the wave field locally consists of a single wave, with the wavelength and direction of rotation varying spatially due to the variable water depth.
  • the wave field was first frequency-decomposed before the water depth was determined pixel by pixel from the individual frequency components using the dispersion relation. This method can be used if the directional scatter of the analyzed sea state is small, since otherwise partial waves coming from different directions lead to interference.
  • Another method that is used to determine parameters that describe an in situ swell field is the measurement of one-dimensional frequency spectra and possibly also the moments of the directional distribution of the swell at individual locations using so-called swell buoys.
  • sea buoys are not suitable for use in shallow waters, especially in Surf area, and it is only an essentially selective detection of the sea field possible.
  • a very significant disadvantage of the known method for determining the hydrographic parameters of a swell field by means of the swell buoy is its insufficient directional characterization of the swell field or swell per se.
  • Another method is sogn. global radar image sequence analysis.
  • the global analysis procedure determines the values of hydrographic parameters that represent the entire analysis area.
  • the method is used in homogeneous swell fields, i.e. if the hydrographic parameters are spatially constant over the analysis area.
  • the signal sequences (radar image sequences) interpolated onto a Cartesian grid are converted with a three-dimensional Fast Fourier Transform (3D FFT) into a three-dimensional multiplicative frequency wavenumber spectrum.
  • 3D FFT three-dimensional Fast Fourier Transform
  • the variance spectrum calculated by forming the square of the amount is evaluated.
  • the water depth d and the components of the horizontal flow vector u and u are adjusted by adapting the swell signal coordinates selected with a threshold value of the variance of the image spectrum to the theoretical dispersion relation of the swell waves [Senet, 1996; Outzen, 1998].
  • the method for calculating the water depth and current is preferably the so-called "least squares method".
  • the flow and depth values obtained by means of the method and representative of the entire analysis bit are output variables of the global method.
  • the dispersion relation defines a surface called "dispersion shell" in the spectral space, the shape of which is influenced by the value of the current and the depth of the water.
  • the localization of the swell signal on the dispersion shell enables it to be used as a spectral filter for separating the signal and noise components of the image spectrum after the flow and the water depth have been calculated.
  • the sea spectrum i.e. the variance spectrum of the surface deflection is linearly linked to the signal-to-noise ratio of the image spectrum, the gray value variance spectrum, via an image transfer function.
  • the image transfer function can be parameterized using a power law with the amount of the wave number as the basis.
  • the significant wave height is proportional to the root of the signal-to-noise ratio of the image spectrum [Nieto et al. , 1999].
  • the calibration parameters are determined at the beginning of a measurement phase by comparison with an in situ sensor of the wave height, the already mentioned sea buoy. After the calibration phase, the image sequence analysis can be carried out independently of other in situ sea measurements [Ziemer, 1995]. Further output variables of the global procedure are a 180 ° directional clear sea spectrum as well as a value of the significant wave height representing the entire analysis area.
  • WaMoS method has so far not brought any really satisfactory results, since the three-dimensional spectrum of variance on which this method is based does not allow a complete description of the spatio-temporal correlation of the sea field due to an inhomogeneity of the sea field.
  • a lot of- This method only provides parameters that are weighted globally over the measurement area and is therefore only sufficient to a limited extent on the open sea, where a homogeneity of the swell field can be assumed due to sufficiently large water depths.
  • the possibility should be created are to create highly accurate horizontal flow maps and to obtain statements about the behavior of the sea field for shipping and / or exploration and / or funding facilities on the sea, the determination of the spatial distribution of the hydrographic parameters using the method according to the invention quasi in real time , ie over a period of time during which the values of the parameters do not change significantly.
  • the object is achieved according to the invention in that the phase information contained in the frequency wave number spectrum of the detected waves of the sea field is used to determine the parameters in a sea field.
  • the method according to the invention takes advantage of the effect which is exerted by the wind, which influences the sea state in a sea field observed by means of the radar device, on the surface of the sea.
  • the small-scale roughness of the sea surface generated by a local wind field in the observed swell field leads to radar backscattering that is modulated by the waves in the observed swell field.
  • the sea state is therefore imaged by a radar device, which in principle can be a usually nautical radar device, as soon as a predetermined threshold value of the wind speed, typically 2 to 3 ms ⁇ , is exceeded and the wavelengths are long enough, for example> 40 m, from which Radar device to be resolved.
  • the advantage of the method according to the invention essentially consists in the fact that it is possible for the first time with this method, quasi in real time, to make statements about the Generate or provide spatial distribution of hydrographic parameters of an observed inhomogeneous swell field, i.e. statements about the spatial-temporal correlation of the observed wave field, statements about the local swell spectrum with complete directional resolution and statements about the field of the near-surface current and the water depth receive. From these obtained parameters, maps of the determined near-surface current, the water depths and the local wavelength and directional distribution of the energy at the location of the observed swell field can then advantageously be created, so that excellent navigation aids can also be made available for shipping.
  • sea waves in the open sea are normally quasi homogeneous with regard to the wave number k, the frequency ⁇ , the wavelength ⁇ and the period ⁇ .
  • the hydrographic parameters are determined by analyzing the spectrum of variance
  • the phase information is additionally used, namely the information about the local image structure contains. It is assumed that the wave field locally consists of individual, completely ex-sine waves. This condition is ensured after the frequency and directional decomposition of the imaged wave field before the local analysis by the dispersion relation of the linear sea state, as is assumed for an inhomogeneous sea field on a local spatial scale.
  • a maximum of two amounts of the wave number fulfill the dispersion relation, whereby when observing the sea field by means of the radar device from a non-moving location, only the smaller of the two solutions is actually relevant.
  • the complex three-dimensional frequency wave number signal spectra u image spectrum
  • the complex three-dimensional frequency wave number signal spectra u image spectrum
  • the selected spectral intervals are transformed back into the spatial frequency range with a two-dimensional Fourier transformation.
  • FIG. 1 shows an overall view of the analog signal sequences supplied by a radar device, which are output in a sequence of digital signals and are then subjected to a treatment according to the method to determine the spatial distribution of hydrographic parameters of the observed inhomogeneous sea field,
  • FIG. 3 shows a radar image of a signal sequence acquired by means of the radar device, taken during a storm surge on 04.02.1999, 8 p.m. UTC, List / Sylt, Federal Republic of Germany,
  • FIG. 4 shows the optical representation of the dispersion relation of surface waves in the wavenumber frequency range
  • FIG. 4a representing the dispersion relation without a Doppler shift caused by a flow near the surface
  • 4b shows the dispersion relation with a Doppler shift caused by a flow near the surface
  • FIG. 4c shows the dispersion relation with a shallow water depth in relation to the wavelengths of the sea
  • 5a shows a global three-dimensional frequency wavenumber spectrum of a radar signal sequence in the form of a frequency wave number cut in the west-east direction
  • FIG. 6 shows a schematic illustration of a dispersion-direction-frequency separation, the image spectrum being broken down into so-called DDF intervals by using dispersion-direction and frequency separation,
  • FIG. 11 shows a local image spectrum, derived from an area of the sea surface measuring 100 x 100 m, which is located west of the radar device installed at the List / West lighthouse, Sylt, Federal Republic of Germany.
  • the global method which is already in operational use and the local method according to the invention for determining hydrographic parameters or parameter fields describing an in-situ swell field, such as the swell, the current and the water depth, use a radar device which is connected downstream from electronic devices are, from the analog signal sequences supplied by the radar device deliver a sequence of digital signals, which is present, for example, in polar coordinates. These digitized signals are the output variables for the global and local analysis of the recorded in situ sea field.
  • the methods take advantage of the fact that the observed surface of the water, which is subject to a swell, generates a small-scale roughness of the sea surface there due to the prevailing local wind field, which leads to radar backscattering, which is modulated by the swell at the location of the observation ,
  • the swell is therefore imaged by a nautical radar device as soon as a certain threshold value of the wind speed, typically 2 to 3 ms " , is exceeded and the wavelengths of the swell field are long enough, for example> 40, to be resolved by the radar device
  • a certain threshold value of the wind speed typically 2 to 3 ms "
  • FIGS. 1 and 2 for a description of the local analysis of the signal sequences of the detected sea state field, which are detected by means of the radar device and are present, for example, in polar coordinates, for determining the spatial distribution of the hydrographic parameters.
  • the signal sequences provided by the method can be used as the basis for a global sequence analysis or local sequence analysis according to the invention. This subdivision makes sense for the following reasons.
  • the global sequence analysis is suitable for swell surfaces that meet the conditions of homogeneity and stationary, which means that the waves detected by the radar direction do not change their properties (wavelength, direction, period and amplitude) spatially and temporally.
  • hydrographic parameters are determined weighted averaged over the spatial extent of the area recorded with the radar device and the acquisition duration.
  • the local sequence analysis is used, i.e. spatial fields of hydrographic parameters are calculated using these.
  • Input variables for the local analysis method are the signal sequences (radar image sequences) supplied by the radar device, which are interpolated onto a Cartesian grid, and, if necessary, in situ comparison measurements required for calibration. Comparative measurements are, for example, a plurality of recorded over time Deflections of the sea surface, recorded for example with buoys.
  • the signal sequences detected by the radar device contain the spatio-temporal information for the detected wave field, in the form g (x, y, t), compare FIG. 3, which recorded the image of a sequence from a radar installation near the List / West lighthouse, Sylt Island, on 04.02.1999, 8:00 p.m. UTC, during a storm surge.
  • the swell shown consists of an overlay of different wavelengths and running directions.
  • This three-dimensional information is converted with a three-dimensional Fast Fourier Transform (3D FFT) into a three-dimensional, completely extraordinar frequency-wavenumber spectrum G (k, k, ⁇ ).
  • the amount of the wave number k and the angular frequency ⁇ are reciprocal to the wavelength ⁇ and the period ⁇ .
  • the Fourier transformation over the time coordinate includes the separation of the frequency components.
  • the direction of the wave number vector indicates the direction of the waves.
  • the complete image spectrum G (k, k, ⁇ ) contains both the information of the gray value variance G and the phase ⁇ of the partial waves of the sea imaged with the radar device.
  • the water depth d and the flow u ⁇ , u are calculated in the local analysis by adapting the swell signal coordinates of the variance spectrum calculated by forming the square of the amount to the theoretical dispersion relation of the swell waves, see FIG. 4.
  • the method for calculating the water depth and current is preferably the so-called "least squares method".
  • the flow and water depth parameters obtained by the method are the desired starting major global analysis.
  • the determined values represent the entire analysis area.
  • these values represent weighted average values of the spatial distribution of the hydrographic parameters.
  • the values of the flow and the water depth determined from the spectrum of variance do not represent any initial variables of the method in the local analysis, but become, as further below, closer is used to specify the dispersion filter.
  • the global frequency-wavenumber spectrum calculated with a three-dimensional Fourier transformation has the following structure, which is shown in FIG. 5 on the basis of a measurement:
  • the wavelength ⁇ or the wavenumber k of a sea wave are in a linear approximation with the wave period or the wave frequency over the linear dispersion relation of sea waves linked.
  • the dispersion relation in the three-dimensional wave frequency space is shown in FIG. 4a.
  • Current and water depth change the shape of the dispersion relation. This deformation of the dispersion relation is shown as an example for the flow in FIG. 4b and for the water depth in FIG. 4c.
  • the dispersion relation After determining the shape of the dispersion relation with the flow depth regression in the spectral wavenumber-frequency space, the dispersion relation is used as a signal filter in order to separate the spectral component of the sea state from the noise.
  • the image spectrum contains nonlinear signals which, however, only provide a small amount for the overall variance of the image spectrum.
  • spekle denotes interference that occurs when the radar interacts with one another. Occur with the rough sea surface, and lead to a background noise in the image spectrum. The localization of the sea signal on the dispersion shell enables the signal to be separated from the noise background (dispersion relation).
  • the wave height is derived from the signal-to-noise ratio of the image spectrum.
  • the signal-to-noise ratio is expanded only after a transformation back into the spatial frequency range by means of a two-dimensional Fourier transformation to determine the spatial distribution of the wave height.
  • the dispersion relation defines a spectral filter.
  • a beautification of the dispersion shell caused by the spatial variability of the flow and the water depth is taken into account by increasing the wave width (widening) of the filter.
  • the wave number cut planes of the three-dimensional complex image spectrum are spectrally broken down by means of a dispersion and a directional filter.
  • the dispersion filter is spanned for the specified signal and noise components.
  • the principle of dispersion-direction-frequency separation (D_i spersion-D_irection-£ requency separation, DDFS) used in the local analysis method is shown in FIG. 6.
  • wave number cut planes of constant frequency with an inverse two-dimensional Fast Fourier Transform (2D INV FFT) are complex-valued images of the signal and noise components in spatial frequency frequency range calculated.
  • 2D INV FFT inverse two-dimensional Fast Fourier Transform
  • the phase information of the image spectrum enables the reconstruction of the local image structure.
  • a maximum of two amounts of the wave number satisfy the dispersion relation, with practically only the smaller of the two solutions being relevant when measuring from a non-moving location of the radar device.
  • the sea signal lies as sogn.
  • One-component images which locally have only a single partial wave in the form of a complex-value sine wave.
  • the information of the complex-valued images can be presented in the form of phase and variance images.
  • the x and y components of the gradient image of the signal component are also required, which are also derived from the separated image spectrum using an inverse two-dimensional Fast Fourier transform.
  • phase and variance images of the dispersion frequency and dispersion frequency directional decomposition of the sea signal as an example.
  • the pattern of the phase of the di spersiqns-frequenzgefi 1 tered image indicates the change in local wavelengths and running directions, due to depth and flow refraction. Interferences of partial waves of different wave directions are visible, ie that it is a multi-component image.
  • Directional decomposition can only be dispensed with in a sea state with a low directional bandwidth, for example a swell. In general this only results Combination with a directional decomposition of the swell signal in a one-component image, in which the variance and the wavelength of the inhomogeneous swell vary spatially.
  • the complex single-component images can be measured as follows:
  • the images are proportional to the x and y components of the gradient images, with the two proportionality factors apart from the imaginary unit i, the x and the y -Component of a complex-valued local wave number vector.
  • the real part which is equal to the phase gradient of the image, gives the local wavenumber.
  • the local wavenumber bandwidth of the filtered sea signal which indicates the inhomogeneity of the local image amplitude, is calculated from the imaginary part of the complex wave number.
  • the noise background caused by the "speckle”, see above, which is also within the wavenumber bandwidth of the dispersion filter, is found as the noise source in the frequency and directionally decomposed ones after the transformation back into the spatial frequency range Pictures again.
  • the complex-valued local wavenumber is determined block by block using a regression method instead of pixel by pixel from the filtered images and gradient images.
  • the block-wise image analysis is based on the assumptions that the noise is spatially uncorrected and that the sea state is homogeneous on the spatial scale of the analysis window.
  • the absolute error in determining the local wave number is all the more so lower, the higher the correlation of the image with the components of the derivative image.
  • the wavelengths and running directions determined with the method are entered in the phase image of the dispersion direction-frequency-decomposed sea signal.
  • the least squares method which has already been developed for global analysis, is used to determine flow and depth maps, in which the dispersion relation is adapted to the spectral coordinates of the sea signal (see above).
  • the signal coordinates are taken from the global frequency wavenumber spectrum.
  • a flow and water depth value representative of the entire analysis area is determined.
  • the method was modified according to the invention for local analysis as follows: The signal coordinates are now taken from the maps of local wave numbers determined using the regression method described in the preceding paragraph, and the dispersion relation is assumed to be location-dependent based on the variable flow and water depth.
  • the spatial resolution of the flow and depth map corresponds to the block size for the local number of waves determined using the regression method.
  • FIG. 9 shows the field of flow rejectors of the tidal current determined with the regression method, as was determined in the example presented here, and the depth map.
  • the methodically calculated bathymetry was compared with echo soundings, which were carried out on a ship by means of standardized echo sounding devices, based on normal zero, compare FIG. 10.
  • the tidal current was during the Measurement in progress (last flood: 3:27 p.m. UTC and next low tide: 9:45 p.m. UTC).
  • the local image spectra are determined as follows:
  • the gray value variances of the local image spectra are taken from the gray value variance images averaged in blocks of the dispersion-direction-frequency-decomposed swell spectrum.
  • the wave number support points of the two-dimensional 180 ° direction-unambiguous image spectrum are derived by reversing the dispersion relation using the local flow and depth information developed with the regression method.
  • 11 shows a local image spectrum, determined in an analysis window of dimensions 100 ⁇ 100 located west of the location of the radar device.
  • the swell spectrum ie the variance spectrum of the surface deflection, is linearly linked to the signal-to-noise ratio of the image spectrum, the gray value variance spectrum, via an image transfer function, see above.
  • the image transfer function can be parameterized using a power law with the magnitude of the wave number as a basis.
  • the calibration parameters are determined at the beginning of a measurement phase by comparison with an in situ sensor of the wave height, the already mentioned sea buoy.
  • the swell spectra can, however, basically be determined directly from the signal-to-noise ratio of the radar image sequences. In particular, the significant wave height is proportional to the root of the signal-to-noise ratio.
  • the global calibration method based on the listed principles is adapted to the local analysis method as follows:
  • the signal-to-noise ratio becomes, instead of as with the global method determined in the frequency-wavenumber range, in the spatial frequency range. That means you get fields of the signal-to-noise ratio with which you calibrate the local image spectra and maps of the significant wave height first! lt.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Es wird ein Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydrographischen Parametern, insbesondere des Seeganges, der Strömung und der Wassertiefe, mittels einer Radareinrichtung vorgeschlagen, aus deren gelieferten analogen Signalsequenzen eine Sequenz digitalisierter Signale in Raumkoordinaten geliefert wird. Aus der Sequenz digitalisierter Signale in Raumkoordinaten wird mittels einer Fourier Transformation ein dreidimensionales komplexwertiges Frequenz-Wellenzahlspektrum ermittelt, nachfolgend wird das Frequenz-Wellenzahlspektrum einer Filterung nach dem Prinzip der Dispersionsrelation, die Wellenzahlen und Frequenzen des Seeganges miteinander verknüpft, zur Lokalisierung der seegangsspezifischen Parameter durch Trennung der Signale vom in der von der Radareinrichtung gelieferten Signalsequenz enthaltenen Rauschen unterworfen, wobei nachfolgend die Wellenhöhe aus dem erhaltenen Signal-zu-Rauschverhältnis ermittelt wird und dass schliesslich der die oberflächennahe Strömung des Seegangsfeldes beschreibenden Parameter sowie der Wassertiefe durch Lokalisierung der Signalkoordinaten in der durch die Dispersionsrelation definierten Fläche im dreidimensionalen Spektralraum ermittelt wird. Schliesslich wird die im Frequenz-Wellenzahlspektrum enthaltene Phaseninformation der erfassten Wellen des Seegangsfeldes zur Ermittlung der Parameter bei einem Seegangsfeld herangezogen.

Description

Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydrographischen Parametern mittels einer Radareinrichtung
Beschrei bung
Die Erfindung betrifft ein Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydrographischen Parametern, insbesondere des Seeganges, der Strömung und der Wassertiefe, mittels einer Radareinrichtung, aus deren gelieferten analogen Signal Sequenzen eine Sequenz digitalisierter Signale in Raumkoordinaten geliefert wird, wobei aus der Sequenz digitalisierter Signale in Raumkoordinaten mittels einer Fourier Transformation ein dreidimensionales komplexwertiges Frequenz-Wellenzahlspektrum ermittelt wird, nachfolgend das Frequenz-Wellenzahlspektrum einer Filterung nach dem Prinzip der Dispersionsrelation, die Wellenzahlen und Frequenzen des Seeganges miteinander verknüpft, zur Lokalisierung der seegangsspezifischen Parameter durch Trennung der Signale vom in der von der Radareinrichtung gelieferten Signal sequenz enthaltenen Rauschen unterworfen wird, daß nachfolgend die Wellenhöhe aus dem erhaltenen Signal- zu-Rauschverhäl tni s ermittelt wird und die in die oberflächennahe Strömung des Seegangsfeldes beschreibenden Parameter sowie die Wassertiefe durch Lokalisierung der Signal koordinaten in der durch die Dispersionsrelation definierten Fläche im dreidimensionalen Spektralraum ermittelt werden.
Eine Radareinrichtung, die mit Einrichtungen verknüpft ist, die aus den von der Radareinrichtung gelieferten analogen Signal Sequenzen eine Sequenz digitalisierter Signale, die Bildern des Seegangs entsprechen, in Polarkoordinaten liefert, ist bekannt (DE-OS 43 02 122).
Die Ermittlung von ein in situ Seegangsfeld flächendeckend beschreibenden hydrographischen Parametern ist seit Jahrzehnten ein die ozeanographi sehe Wissenschaft beherrschendes Thema. Auskunft über das Verhalten eines in situ Seegangsfeldes auf dem offenen Meer, im Bereich von Küstengewässern, in tidenabhängigen Flußläufen und - - ündungen sowie für Küstenschutzmaßnahmen und Hafenbauten zu erhalten, würde die damit jeweils befaßte Fachwelt einschließlich der Schiffahrt und den Bereich der Expl orations- und Fördertechnik von meergestützen Anlagen in die Lage versetzen, Maßnahmen zur Prävention kurzfristig auftretender Seegangsfelder und des langjährigen Verhaltens der Seegangsfelder zu schaffen. Alle größeren Nationen, die geographisch bedingt einen Zugang zum Meer haben bzw. Küstenformationen aufweisen, die dem Seegang ausgesetzt sind, betreiben eine intensive Forschung auf diesem Gebiet, um nicht nur kurzfristige Auskunft über das Verhalten von Seegangsfeldern zu erhalten, sondern auch aus dem Verhalten Aufschluß über langfristige Veränderungen zu erhalten, die wiederum Grundlage für beispielsweise schutzfördernde bzw. landerhaltende Maßnahmen sein können. Allgemein gilt, daß der Seegang- und Gezeitenstrom, insbesondere in Küstennähe, inhomogen ist, da dort die Wassertiefen unterschiedlich sind. Man spricht in diesem Zusammenhang auch von Strömungs- und Tiefenrefraktion. Diese Prozesse bewirken 1 ängerfri stig Veränderungen der Morphologie. Nahe von wasserbaulichen Befestigungen und in Hafeneinfahrt tritt zusätzlich eine Diffraktion des Seegangsfeldes bzw. Wellenfeldes auf, das darauf auftrifft, wodurch ebenfalls Inhomogenitäten des Seegangs herbeigeführt wird.
Mechanische und optische in situ Strömungssensoren ermitteln einen Wert einer Strömung, der für ein kleines Meßvolumen der typischen Abmessung 10 cm x 10 cm repräsentativ ist (Punktmessung). Vertikale Strömungsprofile lassen sich mit ADCPs (Acoustic Doppier Current Profiler) erstellen. Horizontale Strömungsprofile, d.h. Strömungskarten, können bisher aus Messungen mittels HF-Radargeräten berechnet werden. Das Anwendungsgebiet dieses Fernerkundungssensors ist allerdings auf Salzwasser beschränkt. Es können Gebiete der Abmessung von bis zum 20 km x 20 km meßtechnisch erfassen, allerdings bei einer räumlichen Auflösung der Strömungskarte von nur 500 x 500 m.
Aus Bildsequenzen eines nautischen Radars lassen sich mit dem lokalen Analyseverfahren Strömungskarten mit einer um eine Größenordnung verbesserten räumlichen Auflösung erstellen, wobei das Verfahren auch im Süßwasser einsetzbar ist. Aufgrund der hohen räumlichen Auflösung können auch kleinskalige Inhomogenitäten des Strömungsfeldes, wie beispielsweise Wirbel, vermessen werden. Das meßtechnisch erfaßte Gebiet hat typischerweise eine Abmessung von 2 km x 2 km.
Tiefenkarten in küstennahen Gewässern lassen sich mittels Echolotungen erstellen. Dieses Verfahren ist aufwendig und teuer (Schiffszeiten). Echolotungen können daher nur sporadisch durchgeführt werden. Aus Bildsequenzen eines nautischen Radars lassen sich mit einem verhältnismäßig geringen finanziellen und logistischen Aufwand mit dem lokalen Analyseverfahren kontinuierlich Tiefenkarten erstellen. Auf einer experimentellen Basis wurden bereits Algorithmen entwickelt, die es unter bestimmten hydrographischen Bedingungen gestatten, bei Kenntnis der oberflächennahen Strömung eine Karte der Wassertiefe mittels der Analyse von Radar-Bildsequenzen inhomogener Wasseroberflächen zu erstellen. Die Methode von Bell [1998] setzt zusätzlich voraus, daß das Wellenfeld lokal aus einer einzelnen Welle besteht, wobei die Wellenlänge und Laufrichtung, bedingt durch die variable Wassertiefe, räumlich variiert. Von Hessner et al . [1999] wurde das Wellenfeld zuerst frequenzzerlegt, bevor aus den einzelnen Frequenzkomponenten mittels der Dispersionsrelation die Wassertiefe pixelweise bestimmt wurde. Diese Methode ist anwendbar, falls die Richtungsstreuung des analysierten Seegangszustands gering ist, da ansonsten aus unterschiedlichen Richtungen einlaufende Parti al wel 1 en zu Interferenzen führen.
Ein anderes Verfahren, das zur Ermittlung von Parametern, die ein in situ Seegangsfeld beschreiben, verwendet wird, ist die Messung eindimensionaler Frequenzspektren und ggf. auch der Momente der Richtungsverteilung des Seeganges an einzelnen Orten mittels sogenannter Seegangsbojen. Seegangsbojen eignen sich aber nicht zum Einsatz in flachen Gewässern, insbesondere im Brandungsbereich, und es ist nur eine im wesentlichen punktuelle Erfassung des Seegangsfeldes möglich. Ein sehr wesentlicher Nachteil des bekannten Verfahrens zur Ermittlung der hydrographischen Parameter eines Seegangsfeldes mittels der Seegangsboje ist dessen unzureichende Richtungscharakterisierung des Seegangsfeldes bzw. Seeganges schlechthin.
Eine weitere Methode ist die sogn. globale Radar-Bildsequenzanalyse. Mit dem globalen Analyseverfahren werden Werte hydrographischer Parameter bestimmt, die das gesamte Analysegebiet repräsentieren. Das Verfahren findet seine Anwendung bei homogenen Seegangsfeldern, d.h. bei räumlicher Konstanz der hydrographischen Parameter über das Analysegebiet.
Die auf ein kartesisches Gitter interpolierten Signalsequenzen (Radar-Bildsequenzen) werden mit einer dreidimensionalen Fast-Fourier-Transformation (3D FFT) in ein dreidimensionales ko pl exwertiges Frequenz-Wellenzahlspektrum überführt. Bei der globalen Sequenzanalyse wird das durch Bildung des Betragsquadrats berechnete Varianzspektrum ausgewertet.
Nachfolgend werden die Wassertiefe d und die Komponenten des horizontalen Strömungsvektors u und u durch Anpassung der mit einem Schwellwert der Varianz selektierten Seegangs-Signal koordi naten des Bildspektrums an die theoretische Dispersionsrelation der Seegangswell en [Senet, 1996; Outzen, 1998] bestimmt. Das Verfahren zur Berechnung der Wassertiefe und Strömung ist vorzugsweise das sogenannte "Least-Squares-Verfahren" . Die mittels des Verfahrens erhaltenen, für das gesamte Analysegebit repräsentativen Strömungs- und Tiefenwerte sind Ausgangsgrößen des globalen Verfahrens. Die Dispersionsrelation definiert eine "Dispersionsschale" genannte Fläche im Spektral räum, deren Form vom Wert der Strömung und der Wassertiefe beeinflußt wird. Die Lokalisierung des Seegangssignals auf der Dispersionsschale ermöglicht es, diese nach Berechnung der Strömung und der Wassertiefe als spektraler Filter zur Trennung der Signal- und Rauschkomponente des Bildspektrums zu verwenden.
Das Seegangsspektrum, d.h. das Varianzspektrum der Oberflächen-Auslenkung, ist über eine Bildübertragungsfunktion linear mit dem Signal-zu-Rausch-Verhältnis des Bildspektrums, dem Grauwert-Varianzspektrum, verknüpft. Die Bildübertragungsfunktion kann mit einem Potenzgesetz mit dem Betrag der Wellenzahl als Basis parametrisiert werden. Die signifikante Wellenhöhe ist zur Wurzel des Signal-zu-Rausch-Verhäl tni sses des Bildspektrums proportional [Nieto et al . , 1999], Die Kai i brationsparame- ter werden zu Beginn einer Meßphase durch Vergleich mit einem in situ Sensor der Wellenhöhe, der schon erwähnten Seegangsboje, bestimmt. Nach der Kai i brationsphase kann die Bild-Sequenzanalyse unabhängig von weiteren in in situ Seegangsmessungen durchgeführt werden [Ziemer, 1995]. Weitere Ausgangsgrößen des globalen Verfahrens sind ein 180° richtungseindeutiges Seegangspektrum sowie ein das gesamte Analysegebiet repräsentierender Wert der signifikanten Wellenhöhe.
Auch die vorangehend beschriebene globale Bildsequenz- Analyse nach dem sogenannten WaMoS-Verfahren brachte bisher keine wirklich zufriedenstellenden Ergebnisse, da das dreidimensionale Varianzspektrum, auf das dieses Verfahren abstellt, bei einer Inhomogenität des Seegangsfeldes keine vollständige Beschreibung der raumzeitlichen Korrelation des Seegangsfeldes zuläßt. Viel- mehr liefert dieses Verfahren nur global über das Meßgebiet gewichtete Parameter und ist somit nur auf dem freien Meer, wo eine Homogenität des Seegangsfeldes aufgrund ausreichend großer Wassertiefen angenommen werden kann, in Grenzen hinreichend.
Außer den vorangehend erwähnten Verfahren zur Bestimmung einer Tiefenkarte wurde bisher eine Analyse von inhomogenen Seegangsfeldern bzw. inhomogener Wasseroberflächen schlechthin dadurch durchzuführen versucht, daß man sich auf eine dazu herangezogene Rechenmethode stützte, die der Fachwelt als MUSIC (Multiple Signal Cl assification) bekannt ist. Dieses Verfahren wurde aber von der Fachwelt verworfen, da die Laufzeit einer MUSIC-gestützten Analyse eines Seegangsfeldes keine operative Analyse zuläßt, da das Verfahren sehr langsam ist.
Es ist somit Aufgabe der vorliegenden Erfindung, ein Verfahren der eingangs genannten Art zu schaffen, mit der inhomogene Seegangsfelder beschreibenden räumlichen Verteilung hydrographischer Parameter, die mittels einer Radareinrichtung zunächst als analoge Signal Sequenzen geliefert werden, eine exakte Aussage über das Verhalten von Seegangsfeldern sowohl auf dem offenen Meer als insbesondere auch im küstennahen Bereich zu machen, wobei das Verfahren derart gestaltet sein soll, daß auch eine kontinuierliche Erfassung des Seegangsfeldes möglich ist, um aufgrund der ermittelten Parameter einerseits Entscheidungsgrundlagen für die Notwendigkeit von Maßnahmen des Küstenschutzes zu bekommen sowie andererseits Aussagen über die Effektivität schon bisher durchgeführter Maßnahmen zu erhalten und Aussagen über den Einfluß von Diffraktionen durch das Seegangsfeld zu erhalten, die durch Wasserbaumaßnahmen selbst hervorgerufen werden. Zudem soll die Möglichkeit geschaffen werden, hochgenaue horizontale Strömungskarten zu erstellen und Aussagen über das Verhalten des Seegangsfeldes für die Schiffahrt und/oder von Expl orations- und/oder Fördereinrichtungen auf dem Meer zu erhalten, wobei die Ermittlung der räumlichen Verteilung der hydrographischen Parameter mittels des erfindungsgemäßen Verfahrens quasi in Echtzeit, d.h. im Laufe einer Zeitdauer, während derer sich die Werte der Parameter nicht signifikant ändern, erfolgen soll.
Gelöst wird die Aufgabe gemäß der Erfindung dadurch, daß die im Frequenz-Wellenzahlspektrum enthaltene Phaseninformation der erfaßten Wellen des Seegangsfeldes zur Ermittlung der Parameter bei einem Seegangsfeld herangezogen wird.
Das erfindungsgemäße Verfahren nutzt den Effekt aus, der durch den Wind, der den Seegang in einem mittels der Radareinriehtung beobachteten Seegangsfeld auf die Meeresoberfläche beeinflußt, ausgeübt wird. Die durch ein lokales Windfeld im beobachteten Seegangsfeld erzeugte kleinskalige Rauhigkeit der Meeresoberfläche führt zu einer Radarrückstreuung, die durch die Wellen des beobachteten Seegangsfeldes moduliert wird. Der Seegang wird daher von einer Radareinrichtung, die prinzipiell eine gewöhnlich nautische Radareinrichtung sein kann, abgebildet, sobald ein vorbestimmter Schwellenwert der Windgeschwindigkeit, typischerweise 2 bis 3 ms~ , überschritten wird und die Wellenlängen groß genug sind, beispielsweise > 40 m, um von der Radareinrichtung aufgelöst werden zu können.
Der Vorteil des erfindungsgemäßen Verfahrens besteht im wesentlichen darin, daß es mit diesem Verfahren erstmals möglich ist, quasi in Echtzeit, Aussagen über die räumliche Verteilung hydrographischer Parameter eines beobachteten inhomogenen Seegangsfeldes zu erzeugen bzw. bereitzustellen, d.h. Aussagen über die raum-zei tl iche Korrelation des beobachteten Wellenfeldes, Aussagen über das lokale Seegangsspektrum mit vollständiger Richtungsauflösung zu machen und Aussagen über das Feld der oberflächennahen Strömung und der Wassertiefe zu erhalten. Aus diesen erhaltenen Parametern können vorteilhafterweise dann auch Karten der ermittelten oberflächennahen Strömung, der Wassertiefen und der lokalen Wellenlängen- und Richtungsverteilung der Energie am Ort des beobachteten Seegangsfeldes erstellt werden, so daß ausgezeichnete Navigationshilfen auch für die Schiffahrt zur Verfügung gestellt werden können. Mit den Ergebnissen des Verfahrens kann faktisch eine fortlaufende Überwachung der Bathymetrie erreicht werden, die eine Variation eines Tidenstroms in küstennahen Gewässern bedingt, und es können aufgrund der verfahrensmäßig möglichen kontinuierlichen Ermittlung der hydrographischen Parameter des beobachteten Seegangsfeldes auch Maßnahmen zur Verbesserung des Küstenschutzes, beispielsweise durch Sandvorspülungen, ergriffen werden, um Landverluste zu vermeiden. Auch ist eine fortwährende Überwachung der aufgrund der ermittelten Parameter ergriffenen Maßnahmen in bezug auf ihre tatsächliche Effektivität in bezug auf das angestrebte Ziel möglich.
Seegangsfelder auf dem offenen Meer verhalten sich normalerweise aufgrund der großen Wassertiefen auf dem offenen Meer in bezug auf die Wellenzahl k, die Frequenz ω, die Wellenlänge λ und zur Periode τ quasi homogen. Man spricht deshalb in diesem Zusammenhang von Seegangsfeldern im offenen Meer von homogenen Seegangsfeldern bzw. homogenem Seegang. Um das erfindungsgemäße Verfahren auch dazu heranziehen zu können, sogenannte inhomogene Wasseroberflächen zu analysieren, insbesondere auch die inhomogenen Wasseroberflächen, wie man sie in flachen Küstengewässern antrifft, werden Verfahrensschritte des globalen Analyseverfahrens dahingehend angepaßt sowie spezielle Verfahrensmaßnahmen zur lokalen Analyse vorteilhafterweise dahingehend neu entwickelt, daß die im kompl exwertigen Frequenzwellenspektrum enthaltenen Phaseninformationen der erfaßten Wellen des Seegangsfeldes zur Ermittlung der Parameter bei einem inhomogenen Seegangsfeld herangezogen werden.
Während bei der Analyse homogener Seegangsfelder, wie sie vorangehend erläutert wurde, die hydrographischen Parameter durch Analyse des Varianzspektrums bestimmt werden, wird bei dem erfindungsgemäßen Verfahren zur lokalen Analyse von Radar-Bildsequenzen des Seegangs zusätzlich die Phaseninformation herangezogen, die nämlich die Information über die lokale Bildstruktur enthält. Dabei wird angenommen, daß das Wellenfeld lokal aus einzelnen kompl exwertigen Sinuswellen besteht. Diese Bedingung wird nach der Frequenz- und Richtungszerlegung des abgebildeten Wellenfeldes vor der lokalen Analyse durch die Dispersionsrelation des linearen Seegangs, wie er bei einem inhomogenen Seegangsfeld auf einer lokalen räumlichen Skala angenommen wird, sichergestellt. Bei einer festen Frequenz und Wellenlaufrichtung einer Partialwelle erfüllen maximal zwei Beträge der Wellenzahl die Dispersionsrelation, wobei bei einer Beobachtung des Seegangsfeldes mittels der Radareinrichtung von einem nicht bewegten Ort aus faktisch nur die kleinere der beiden Lösungen relevant ist. Das komplexwertige dreidimensionale Frequenz-Wel lenzahl -Signal spekt u (Bildspektrum), welches bereits mittels der Fourier Transformation in einzelne Frequenz-Stützstellen zerlegt vorliegt, wird mit einem Richtungsfilter und mit dem durch die Dispersionsrelation definierten Filter spektralgefiltert. Anschließend werden die selektierten spektralen Intervalle mit einer zweidi ensionalen Fourier-Transfor ation in den Orts-Frequenzbereich rücktransformiert.
Die Erfindung wird nun unter Bezugnahme auf die beiliegenden Darstellungen und Abbildungen im einzelnen anhand eines Beispieles beschrieben. Darin zeigen:
Fig. 1 eine Gesamtübersicht über die von einer Radareinrichtung gelieferten analogen Signalsequenzen, die in eine Sequenz digitaler Signale ausgegeben werden und danach zur Ermittlung der räumlichen Verteilung hydrographischer Parameter des beobachteten inhomogenen Seegangsfeldes einer Behandlung gemäß dem Verfahren unterworfen werden,
Fig. 2 schematisch den Verfahrensablauf zur Analyse von Bildsequenzen inhomogener Wasseroberflächen eines Seegangsfeldes, wie man sie insbesondere in küstennahen Gewässern vorfindet,
Fig. 3 ein mittels der Radareinrichtung erfaßtes Radarbild einer Signal sequenz, aufgenommen während einer Sturmflut am 04.02.1999, 20 Uhr UTC, List/Sylt, Bundesrepublik Deutschland,
Fig. 4 die optische Darstellung der Dispersionsrelation von Oberfl ächenwellen im Wellenzahl-Fre- quenzraum, wobei Fig. 4a die Dispersionsrelation ohne durch eine oberflächennahe Strömung hervorgerufene Dopplerverschiebung darstellt, Fig. 4b die Dispersionsrelation mit durch eine oberflächennahe Strömung hervorgerufene Dopplerverschiebung darstellt und Fig. 4c die Dispersionsrelation bei einer im Verhältnis zu den Wellenlängen des Seegangs geringen Wassertiefe darstellt,
Fig. 5a ein globales dreidimensionales Frequenz-Wellenzahlspektrum einer Radarsignal sequenz in Form eines Frequenz-Wel 1 enzahl Schnittes in West-Ost-Richtung,
Fig. 5b ein globales dreidimensionales Frequenz-Wellenzahlspektrum einer Radarsignal sequenz im Well enzahl schnitt bei einer Frequenz-Stützstelle ω = 0,55 rad/s entsprechend einer Periode von τ = 11,4 s, wobei die Dispersionsrelation linearer Schwerewellen als durchgezogene Linie und die Dispersionsrelation der 1. Harmonischen als gestrichelte Linie dargestellt ist und wobei das Seegangssignal im Spektralraum verschmiert ist, da die Wassertiefe und die Strömung im Analysegebiet varier- ten,
Fig. 6 eine schematische Darstellung einer Dispersi- ons-Richtungs-Frequenzseparation, wobei das Bildspektrum durch Anwendung von Dispersions- Richtungs- und Frequenzseparation in sogenannte DDF-Intervalle zerlegt ist,
Fig. 7 Phasen- (oben) und Varianzb lder (unten) des di spersions-frequenz- (links) und des disper- sions-frequenz-richtungszerlegten (rechts) Seegangssignals, wobei die selektierte Frequenz und Wellenlaufrichtung ω = 0,55 rad/s entsprechend einer Periode von τ = 11,4 s und Φ = 258° ist,
Fig. 8 die lokalen Wellenlängen und Laufrichtungen, eintragen in das Phasenbild der dispersions- richtungsgefilterten Seegangssignal sequenz (Krei sfrequenz ω = 0,5 rad/s und Filterrichtung Φ= 258°), wobei die Analyseergebnisse für diejenigen Gebiete dargestellt sind, bei denen die Korrelation des Bildes mit den beiden Komponenten des Gradientenbildes hoch ist,
Fig. 9 eine anhand der verfahrensmäßig ermittelten Parameter erzeugte Karte der Strömung und der Wassertiefe am 04.02.1999, 20 Uhr UTC, List/- Sylt, Bundesrepublik Deutschland, ermittelt unter Heranziehung des Regressionsverfahrens,
Fig. 10 Vergleich der für den 04.02.1999, 20 Uhr UTC, List/Sylt, Bundesrepublik Deutschland, mittels des Verfahrens ermittelte Wassertiefe (Grauwertskala) mit einer mit standardmäßigen, konventionellen Echolotungen erzeugten Bathyme- trie des betreffenden Gebiets, bezogen auf Normal nul 1 , und
Fig. 11 ein lokales Bildspektrum, hergeleitet aus einem Gebiet der Meeresoberfläche der Abmessung 100 x 100 m, das sich westlich der Radareinrichtung, die am Leuchtturm List/West, Sylt, Bundesrepublik Deutschland, installiert ist, befindet. Das sich bereits im operati onell en Einsatz befindliche globale Verfahren und das erfindungsgemäße lokale Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydrographischen Parametern bzw. Parameter-Feldern wie beispielsweise des Seeganges, der Strömung und der Wassertiefe bedient sich einer Radareinrichtung, der elektronische Einrichtungen nachgeschaltet sind, die aus den von der Radareinrichtung gelieferten analogen Signal Sequenzen eine Sequenz digitaler Signale, die beispielsweise in Polarkoordinaten vorliegt, liefern. Diese digitalisierten Signale sind die Ausgangsgrößen für die globale und die lokale Analyse des erfaßten in situ Seegangsfeld.
Die Verfahren nutzen den Effekt aus, daß bei der beobachteten Wasseroberfläche, die einem Seegang unterworfen ist, durch das dort herrschende lokale Windfeld eine kleinskalige Rauhigkeit der dortigen Meeresoberfläche erzeugt wird, die zu einer Radarrückstreuung führt, die durch den Seegang am Ort der Beobachtung moduliert wird. Der Seegang wird daher von einer nautischen Radareinrichtung abgebildet, sobald ein gewisser Schwellwert der Windgeschwindigkeit, typischerweise 2 bis 3 ms" , überschritten wird und die Wellenlängen des Seegangsfeldes groß genug sind, beispielsweise > 40 , um von der Radareinrichtung aufgelöst zu werden. Diese von der Radareinrichtung ermittelten, gespeicherten und beispielsweise in Polarkoordinaten gelieferten Signalsequenzen ermöglichen die verfahrensmäßige Analyse der räumlichen und zeitlichen Entwicklung des Seeganges, wobei die Analyseschritte des lokalen Verfahrens (die Analyseschritte des globalen Verfahrens sind im Zusammenhang mit der Schilderung des Standes der Technik eingangs schon dargestellt worden) nachfolgend im einzelnen beschrieben werden. Zur Beschreibung der lokalen Analyse der mittels der Radareinrichtung erfaßten und beispielsweise in Polarkoordinaten vorliegenden Signal Sequenzen des erfaßten Seegangsfeldes zur Bestimmung der räumlichen Verteilung der hydrographischen Parameter wird auf die Fig. 1 und 2 verwiesen. Die mittels des Verfahrens gelieferten Signal Sequenzen (Radarbildsequenzen) können nach dem Stand der Technik einer globalen Sequenzanalyse oder erfindungsgemäßen lokalen Sequenzanalyse zugrundegelegt werden. Diese Unterteilung ist aus folgenden Gründen sinnvoll. Die globale Sequenzanalyse ist für Seegangsoberflächen geeignet, welche die Bedingungen der Homogenität und der Stationäri tat erfüllt, was bedeutet, daß die von der Radarei richtung erfaßten Wellen ihre Eigenschaften (Wellenlänge, Laufrichtung, Periode und Amplitude) räumlich und zeitlich nicht ändern. Mit der globalen Analyse werden über die räumliche Ausdehnung des mit der Radareinrichtung erfaßten Gebietes und die Erfassungsdauer gewichtet gemittelt hydrographische Parameter bestimmt.
Treten im interessierenden Seegangsfeld hingegen Inhomogenitäten, beispielsweise durch Seegangsdiffraktion oder -refraktion, auf, wird die lokale Sequenzanalyse angewendet, d.h. mittels dieser werden räumliche Felder hydrographischer Parameter berechnet.
Lokales Analyseverfahren
Eingangsgrößen für das lokale Analyseverfahren sind die von der Radareinrichtung gelieferten Signal Sequenzen (Radar-Bildsequenzen), die auf ein kartesisches Gitter interpoliert werden, und ggf. zur Kalibrierung benötigte in situ Vergleichsmessungen. Vergleichsmessungen sind beispielsweise eine Mehrzahl über die Zeit erfaßter Auslenkungen der Meeresoberfläche, aufgenommen beispielsweise mit Bojen. Die von der Radareinrichtung erfaßten Signal Sequenzen enthalten nach der Interpolation auf das kartesische Gitter die raum-zeitl iche Information für das erfaßte Wellenfeld, in der Form g (x, y, t), vergleiche Fig. 3, die das Bild einer Sequenz, aufgenommen von einer Radarinstallation nahe dem Leuchtturm List/West, Insel Sylt, am 04.02.1999, 20:00 Uhr UTC, während einer Sturmflut zeigt. Der abgebildete Seegang besteht aus einer Überlagerung unterschiedlicher Wellenlängen und Laufrichtungen. Diese dreidimensionale Information wird mit einer dreidimensionalen Fast- Fourier-Transformation (3D FFT) in ein dreidimensionales kompl exwertiges Frequenz-Wellenzahlspektrum G (k , k ,ω) überführt. Der Betrag der Wellenzahl k und die Kreisfrequenz ω sind zur Wellenlänge λ und der Periode τ reziprok. Die Fourier-Transfor ation über die Zeitkoordinate beinhaltet hierbei die Separation der Frequenzkomponenten. Die Richtung des Wellenzahl vektors gibt die Laufrichtung der Wellen an. Das kompl exwertige Bildspek- trum G (k , k , ω) enthält sowohl die Information der Grauwert-Varianz G als auch der Phase Φ der mit der Radareinrichtung abgebildeten Parti alwellen des Seeganges.
Ebenso wie bei der globalen Analyse werden bei der lokalen Analyse die Wassertiefe d und die Strömung u Λ , u durch Anpassung der Seegangs-Signal koordinaten des durch Bildung des Betragsquadrats berechneten Varianzspektrums an die theoretische Dispersionsrelation der Seegangswellen, vergleiche die Fig. 4, berechnet. Das Verfahren zur Berechnung der Wassertiefe und Strömung ist vorzugsweise das sogenannte "Least-Squares-Verfah- ren". Die mittels des Verfahrens erhaltenen Strömungsund Wassertiefenparameter sind die gewünschten Ausgangs- großen der globalen Analyse. Bei der globalen Analyse eines homogenen Seegangsfeldes repräsentieren die ermittelten Werte das gesamte Analysegebiet. Bei der lokalen Analyse eines inhomogenen Seegangsfeldes stellen diese Werte gewichtete Mittelwerte der räumlichen Verteilung der hydrographischen Parameter dar. Die aus dem Varianzspektrum ermittelten Werte der Strömung und der Wassertiefe stellen bei der lokalen Analyse keine Ausgangsgrößen des Verfahrens dar, sondern werden, wie weiter unten noch näher ausgeführt wird, zur Spezifizierung des Dispersionsfilters verwendet.
Das mit einer dreidimensionalen Fourier-Transformation berechnete globale Frequenz-Wellenzahlspektrum weist die folgende, in Fig. 5 anhand einer Messung dargestellte Struktur auf: Die Wellenlänge λ bzw. die Wellenzahl k einer Seegangswelle sind in linearer Näherung mit der Wellenperiode bzw. der Wellenfrequenz über die lineare Dispersionsrelation von Seegangswell en verknüpft. Die Dispersionsrelation im dreidimensionalen Wellen-Fre- quenzraum ist in Fig. 4a dargestellt. Strömung und Wassertiefe verändern jedoch die Form der Dispersionsrelation. Diese Verformung der Dispersionsrelation ist für die Strömung in Fig. 4b und für die Wassertiefe in Fig. 4c exemplarisch dargestellt. Nach Bestimmung der Form der Dispersionsrelation mit der Strömungs-Tiefen- regression im spektralen Wellenzahl-Frequenz-Raum wird die Dispersionsrelation als Signalfilter verwendet, um den spektralen Anteil des Seegangs vom Rauschen zu trennen. Außer dem auf der Dispersionsschale lokalisierten linearen Seegangssignal enthält das Bildspektrum nichtlineare Signal Strukturen, die aber nur einen geringen Betrag zur gesamten Varianz des Bildspektrums liefern. Mit dem Ausdruck "Speckle" bezeichnet man Interferenzen, die bei der Wechselwirkung des Radar- Strahls mit der rauhen Meeresoberfläche auftreten, und führen zu einem Rauschuntergrund im Bildspektrum. Die Lokalisierung des Seegangssignals auf der Dispersionsschale ermöglicht die Trennung des Signals vom Rauschuntergrund (Dispersionsrelation). Aus dem Signal-zuRausch-Verhältnis des Bildspektrums wird bei der globalen Analyse die Wellenhöhe abgeleitet. Bei der lokalen Analyse wird das Signal-zu-Rausch-Verhäl tni s erst nach einer Rücktransformation in den Orts-Frequenzbereich mittels einer zweidimensional en Fouri er-Transformati on zur Bestimmung der räumlichen Verteilung der Wellenhöhe ausgewei tet .
Nach Bestimmung der oberflächennahen Strömung und der Wassertiefe durch Anpassung der Dispersionsschale an die Signal koordinaten des Bildspektrums, wie oben ausgeführt, definiert die Dispersionsrelation einen spektralen Filter. Einer durch die räumliche Variabilität der Strömung und der Wassertiefe bedingten Verschönerung der Dispersionsschale wird mit der Erhöhung der Wellen- zahl Bandbreite (Aufweitung) des Filters Rechnung getragen. Die Wellenzahl-Schnittebenen des dreidimensionalen komplexwertigen Bildspektrums werden mittels eines Dispersions- und eines Richtungsfilters spektral zerlegt. Der Dispersionsfilter wird hierbei für die bezeichnete Signal- und Rauschkomponente aufgespannt.
Das beim lokalen Analyseverfahren Verwendung findende Prinzip der Di spersions-Richtungs-Frequenzseparation (D_i spersion-D_irection-£requency Separation, DDFS) ist in Fig. 6 dargestellt. Aus dem separierten komplexwertigen Bildspektrum werden Wellenzahl-Schnittebenen konstanter Frequenz mit einer inversen zweidimensionalen Fast- Fourier-Transformation (2D INV FFT) ko plexwertige Bilder der Signal- und Rauschkomponente in Orts-Fre- quenzbereich berechnet. Die Phaseninformation des Bildspektrums ermöglicht hierbei die Rekonstruktion der lokalen Bildstruktur. Bei einer festen Frequenz- und Well enl aufrichtung erfüllen maximal zwei Beträge der Wellenzahl die Dispersionsrelation, wobei bei der Messung von einem nichtbewegten Standort der Radareinrichtung praktisch nur die kleinere der beiden Lösungen relevant ist. D.h., das Seegangssignal liegt nach der DDFS und der darauffolgenden Rücktransformation in den Orts-Frequenzbereich als sogn. Ein-Komponentenbi lder vor, die lokal nur eine einzige Partialwelle in Form einer komplexwertigen Sinuswelle aufweisen. Die Information der komplexwertigen Bilder kann in Form von Phasen- und Varianzbildern dargestellt werden. Zur Vermessung der Parti al wel 1 en werden zusätzlich die x- und y-Komponente des Gradientenbildes der Signalkomponente benötigt, die ebenfalls aus dem separierten Bildspektrum unter Verwendung einer inversen zweidimen- sionalen Fast-Fourier-Transfor ation hergeleitet werden.
In Fig. 7 sind Phasen- und Varianzbilder der Dispersions-Frequenz- und Dispersions-Frequenz-Richtungszerlegung des Seegangssignals beispielhaft dargestellt. Hierbei wurde beispielhaft die Frequenz ω = 0,55 rad/s, entsprechend einer Periode von τ = 11,4 s, und der Well enl aufrichtung Φ = 258° ausgewählt. Das Muster der Phase des di spersiqns-frequenzgefi 1 terten Bildes gibt die Änderung der lokalen Wellenlängen und Laufrichtungen, bedingt durch Tiefen- und Strömungsrefraktion, an. Sichtbar sind Interferenzen von Partialwellen unterschiedlicher Wellenlaufrichtungen, d.h., daß es sich um ein Mul ti-Ko ponentenbild handelt. Nur bei einem Seegangszustand mit geringer Richtungs-Bandbreite, beispielsweise einer Dünung, kann auf Richtungszerlegung verzichtet werden. Im allgemeinen resultiert erst die Kombination mit einer Richtungszerlegung des Seegangssignals in einem Ein-Komponentenbild, bei dem die Varianz und die Wellenlänge des inhomogenen Seeganges räumlich variiert.
Nach Havlicek et al . [1996, 1998] lassen sich die komplexwertigen Ein-Komponentenbilder wie folgt vermessen: Die Bilder sind zu der x- und der y-Komponente der Gradientenbilder proportional, wobei die beiden Proportionalitätsfaktoren, bis auf die imaginäre Einheit i, der x- und der y-Komponente eines komplexwertigen lokalen Wel lenzahl vektors entsprechen. Der Realteil, der gleich dem Phasengradienten des Bildes ist, ergibt die lokale Wellenzahl. Aus dem Imaginärteil der komplexwertigen Wellenzahl, berechnet sich die lokale Wellenzahl-Bandbreite des gefilterten Seegangssignals, die die Inhomogenität der lokalen Bildamplitude angibt.
Bei der Analyse von Radar-Bildsequenzen findet sich der durch den "Speckle", siehe oben, bedingte Rauschuntergrund, der sich ebenfalls innerhalb der Wellenzahl- Bandbreite des Dispersionsfilters befindet, nach der Rücktransformation in den Orts-Frequenzbereich als Rauschquelle in den frequenz- und richtungszerlegten Bildern wieder.
Um die Robustheit des Verfahrens gegenüber dem Rauschen zu erhöhen, wird die komplexwertige lokale Wellenzahl blockweise mit einem Regressionsverfahren anstatt pixelweise aus den gefilterten Bildern und Gradientenbildern bestimmt. Der blockweisen Bildanalyse liegen die Annahmen zugrunde, daß das Rauschen räumlich unkorre- liert ist, und daß der Seegang auf der räumlichen Skala der Analysefenster homogen ist. Dabei ist der absolute Fehler bei der Bestimmung der lokalen Wellenzahl um so geringer, je höher die Korrelation des Bildes mit den Komponenten des Ableitungsbildes ist. In Fig. 8 sind die mit dem Verfahren ermittelten Wellenlängen und Laufrichtungen in das Phasenbild des di spersions-rich- tungs-frequenzzerlegten Seegangssignals eingetragen.
Zur Bestimmung von Strömungs- und Tiefenkarten findet das bereits zur globalen Analyse entwickelte Least- Squares Verfahren Anwendung, bei dem die Dispersionsrelation an die spektralen Koordinaten des Seegangssignals angepaßt wird (siehe oben). Bei der globalen Analyse werden die Signal oordinaten dem globalen Frequenz-Wellenzahlspektrum entnommen. Es wird ein das gesamte Analysegebiet repräsentativer Wert der Strömung und der Wassertiefe ermittelt. Das Verfahren wurde erfindungsgemäß wie folgt zur lokalen Analyse modifiziert: Die Signal koordinaten werden jetzt den, mit dem im voranstehenden Absatz beschriebenen Regressionsverfahren bestimmten, Karten lokaler Wellenzahlen entnommen, und die Dispersionsrelation wird aufrund der variablen Strömung und Wassertiefe ortsabhängig angenommen. Die räumliche Auflösung der Strömungs- und Tiefenkarte entspricht hierbei der Blockgröße bei der lokalen Wel lenzahl besti - mung mittels des Regressionsverfahrens.
In Fig. 9 ist das mit der Regressionsmethode bestimmte Feld von Strömungsrektoren des Tidestroms, wie es in dem hier vorgestellten Beispiel ermittelt wurde, sowie die Tiefenkarte dargestellt. Die verfahrensmäßig berechnete Bathymetrie wurde mit Echolotungen, die mittels standardisierter Echoloteinrichtungen auf einem Schiff ausgeführt wurden, bezogen auf Normalnull, verglichen, vergleiche Fig. 10. Der Gezeitenstrom war während der Messung ablaufend (letztes Hochwasser: 15.27 Uhr UTC und nächstes Niedrigwasser: 21.45 Uhr UTC).
Die lokalen Bildspektren werden wie folgt bestimmt: Die Grauwert-Varianzen der lokalen Bildspektren werden aus den blockweise gemittelten Grauwert-Varianzbildern des dispersions-richtungs-frequenzzerlegten Seegangsspektrums entnommen. Die Well enzahl-Stützstell en des zwei- dimensional en 180°-ri chtungseindeutigen Bildspektrums werden durch Umkehrung der Dispersionsrelation unter Verwendung der mit der Regressionsmethode entwickelten lokalen Strömungs- und Tiefeninformation abgeleitet.
Fig. 11 zeigt ein lokales Bildspektrum, ermittelt in einem westlich des Standortes der Radareinrichtung gelegenen Analysefensters der Abmessungen 100 x 100 .
Das Seegangsspektrum, d.h. das Varianzspektrum der Oberflächen-Auslenkung, ist über eine Bildübertragungsfunktion linear mit dem Signal-zu-Rausch-Verhäl tni s des Bildspektrums, dem Grauwert-Varianzspektrum, verknüpft, siehe oben. Die Bildübertragungsfunktion kann mit einem Potenzgesetz mit dem Betrag der Wellenzahl als Basis parametri si ert werden. Die Kalibrierungsparameter werden zu Beginn einer Meßphase durch Vergleich mit einem in situ Sensor der Wellenhöhe, der schon erwähnten Seegangsboje, bestimmt. Die Seegangsspektren können alle)— dings grundsätzlich direkt aus dem Signal-zu-Rausch- Verhältnis der Radar-Bildsequenzen bestimmt werden. Insbesondere ist die signifikante Wellenhöhe zur Wurzel des Signal-zu-Rausch Verhältnisses proportional. Die auf den aufgeführten Prinzipien beruhende globale Kalibra- tionsmethode wird erfindungsgemäß wie folgt an das lokale Analyseverfahren angepaßt: Das Signal-zu-Rausch Verhältnis wird, anstatt wie bei der globalen Methode im Frequenz-Wellenzahlbereich, im Orts-Frequenzbereich bestimmt. D.h. man erhält Felder des Signal-zu-Rausch Verhältnisses, mit denen man die lokalen Bildspektren kalibriert und Karten der signifikanten Wellenhöhe erste! lt.

Claims

Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydrographischen Parametern mittels einer RadareinrichtungPatentansprüche
1. Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydrographischen Parametern, insbesondere des Seeganges, der Strömung und der Wassertiefe, mittels einer Radareinrichtung, aus deren gelieferten analogen Signal Sequenzen eine Sequenz digitalisierter Signale in Raumkoordinaten geliefert wird, wobei aus der Sequenz digitalisierter Signale in Raumkoordinaten mittels einer Fourier Transformation ein dreidimensionales komplex- wertiges Frequenz-Wellenzahlspektrum ermittelt wird, nachfolgend das Frequenz-Wellenzahlspektrum einer Filterung nach dem Prinzip der Dispersionsrelation, die Wellenzahlen und Frequenzen des Seeganges miteinander verknüpft, zur Lokalisierung der seegangsspezifischen Parameter durch Trennung der Signale vom in der von der Radareinrichtung gelieferten Signal sequenz enthaltenen Rauschen unterworfen wird, daß nachfolgend die Wellenhöhe aus dem erhaltenen Signal-zu-Rauschverhäl tni s gemäß Merkmal b. ermittelt wird und die die oberflächennahe Strömung des Seegangsfeldes beschreibenden Parameter sowie die Wassertiefe durch Lokalisierung der Signalkoordinaten in der durch die Dispersionsrelation definierten Fläche im dreidimensionalen Spektral räum, dadurch gekennzeichnet, daß die im Frequenz-Wellenzahlspektrum enthaltene Phaseninformation der erfaßten Wellen des Seegangsfeldes zur Ermittlung der Parameter bei einem Seegangsfeld herangezogen wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die in Frequenz-Wellenzahlspektrum enthaltene Amplitudeninformation der erfaßten Wellen des Seegangsfeldes zur Ermittlung der Parameter bei einem Seegangsfeld herangezogen wird.
3. Verfahren nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß das dreidimensionale Spektrum in bezug auf Dispersion, Richtung und Frequenz zum Erhalt einer Menge vermeßbarer Bilder (Phase, Varianz) einzelner Wellen separiert wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die räumliche Verteilung der Wellenlänge einer jeweiligen einzelnen Welle der Menge aller Bilder (Phase, Varianz) zu jedem Punkt eines lokal begrenzten Gebietes des Beobachtungsgebietes gesammelt wird, woraus die räumliche Verteilung der hydrographischen Parameter wie Wassertiefe und Strömung berechnet werden kann.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß aus der räumlichen Verteilung des Signal-zu-Rauschverhäl tnisses die räumliche Verteilung der Wellenhöhen ermittelt wird.
sd
PCT/DE2000/002414 2000-07-21 2000-07-21 Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung WO2002008786A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/DE2000/002414 WO2002008786A1 (de) 2000-07-21 2000-07-21 Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung
US10/348,607 US6775617B2 (en) 2000-07-21 2003-01-21 Method for determining hydrographic parameters which describe a sea swell field in situ using a radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2000/002414 WO2002008786A1 (de) 2000-07-21 2000-07-21 Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/348,607 Continuation-In-Part US6775617B2 (en) 2000-07-21 2003-01-21 Method for determining hydrographic parameters which describe a sea swell field in situ using a radar device

Publications (1)

Publication Number Publication Date
WO2002008786A1 true WO2002008786A1 (de) 2002-01-31

Family

ID=5647763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002414 WO2002008786A1 (de) 2000-07-21 2000-07-21 Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung

Country Status (2)

Country Link
US (1) US6775617B2 (de)
WO (1) WO2002008786A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097452A1 (en) * 2003-04-30 2004-11-11 Qinetiq Limited Detection of small objects in bodies of water
CN103969643A (zh) * 2014-05-09 2014-08-06 哈尔滨工程大学 一种基于新型海浪色散关系带通滤波器进行x波段导航雷达反演海浪参数方法
CN111624599A (zh) * 2020-05-27 2020-09-04 哈尔滨工程大学 一种航海雷达反演海浪有效波高计算方法
CN112014839A (zh) * 2020-08-06 2020-12-01 南京信息工程大学 一种消除噪声对相参x波段雷达观测海浪的影响的方法
CN112254802A (zh) * 2020-10-13 2021-01-22 中国人民解放军国防科技大学 基于毫米波雷达相位测距的语音重构方法
CN113297810A (zh) * 2021-05-13 2021-08-24 中国海洋大学 一种检验海面高度的现场观测设备布放方法和系统
CN113640800A (zh) * 2021-08-25 2021-11-12 中国人民解放军海军潜艇学院 一种用于反演海洋内孤立波数据的反演方法
CN114167076A (zh) * 2021-11-10 2022-03-11 中国地质大学(武汉) 海面风速风向反演模型的建立方法及风速风向的反演方法
CN115017711A (zh) * 2022-06-10 2022-09-06 西安电子科技大学杭州研究院 基于海浪谱的三维非线性海浪模拟方法
CN117058532A (zh) * 2023-10-08 2023-11-14 自然资源部第一海洋研究所 基于海浪与太阳耀斑信号反演水深、波高的方法和系统

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8229766B2 (en) 2004-07-30 2012-07-24 Risk Management Solutions, Inc. System and method for producing a flexible geographical grid
US7707050B2 (en) 2004-03-11 2010-04-27 Risk Management Solutions, Inc. Systems and methods for determining concentrations of exposure
US7349806B2 (en) * 2004-09-15 2008-03-25 United States Of America As Represented By The Secretary Of The Navy System and method for extracting optical properties from environmental parameters in water
NL1031761C2 (nl) * 2006-05-08 2007-11-13 Thales Nederland Bv Werkwijze voor het filteren van zee-clutter in een radarecho door gebruik te maken van een hydrografisch model.
US8305257B2 (en) * 2009-09-02 2012-11-06 Trizna Dennis B Method and apparatus for coherent marine radar measurements of properties of ocean waves and currents
US8423487B1 (en) * 2010-08-11 2013-04-16 The United States Of America As Represented By The Secretary Of The Navy Machine learning approach to wave height prediction
US8543342B1 (en) * 2010-09-30 2013-09-24 The United States Of America As Represented By The Secretary Of The Navy Towed array flow noise test apparatus
US8797386B2 (en) * 2011-04-22 2014-08-05 Microsoft Corporation Augmented auditory perception for the visually impaired
CN103383455B (zh) * 2013-07-03 2015-04-01 南京信息工程大学 基于阴影恢复形状技术的海浪参数提取方法
CN104062635B (zh) * 2014-07-04 2017-01-04 哈尔滨工程大学 一种海杂波图像下基于最小区间思想的海浪主波周期反演方法
WO2017179342A1 (ja) * 2016-04-11 2017-10-19 古野電気株式会社 信号処理装置、レーダ装置、および、信号処理方法
US10436893B2 (en) * 2016-04-28 2019-10-08 Electronics And Telecommunications Research Institute Apparatus and method for extracting ocean wave information
US10977924B2 (en) * 2018-12-06 2021-04-13 Electronics And Telecommunications Research Institute Intelligent river inundation alarming system and method of controlling the same
CN110555236B (zh) * 2019-07-31 2023-04-18 浙江省水利河口研究院 一种大尺寸固定式海工平台波浪垂向力计算方法
CN111222531B (zh) * 2019-10-21 2023-05-26 中国地质大学(武汉) 一种海浪场时空演化信息提取方法及系统
CN110673128B (zh) * 2019-11-11 2022-04-15 南京信息工程大学 一种基于间断上下调频波的x波段岸基雷达测流方法
CN111796283B (zh) * 2020-07-13 2022-10-18 江苏恒澄交科信息科技股份有限公司 一种基于航线的毫米波雷达降噪方法
CN111830506B (zh) * 2020-07-22 2022-02-08 江苏科技大学 一种基于K-means聚类算法的海面风速方法
CN111856590B (zh) * 2020-08-05 2023-03-17 中国海洋大学 海洋大地电磁探测的海浪磁干扰压制方法
CN111951204B (zh) * 2020-08-10 2021-07-20 中国人民解放军国防科技大学 一种基于深度学习的天宫二号探测数据海面风速反演方法
CN112507553A (zh) * 2020-12-08 2021-03-16 中国人民解放军空军工程大学 一种复杂分区域环境建模方法
CN113156393B (zh) * 2021-03-29 2022-05-27 山东科技大学 一种机载激光测深破碎风浪海面模型构建方法
CN113126068A (zh) * 2021-04-22 2021-07-16 浙江大学 一种基于波数域滤波的水下航行器自噪声抑制方法
CN113466821B (zh) * 2021-07-20 2022-04-15 武汉大学 一种用于船载相干微波雷达的浪向反演方法
US11917337B2 (en) * 2021-08-31 2024-02-27 Xerox Corporation System and method for selective image capture on sensor floating on the open sea
CN114595718B (zh) * 2022-03-04 2023-05-30 中国船舶科学研究中心 一种自适应波浪谱形参数化方法
CN115659131B (zh) * 2022-09-27 2023-07-04 中国海洋大学 一种海工结构近场波浪传播方向识别方法
CN115755043B (zh) * 2022-10-19 2023-07-04 华中科技大学 一种基于x波段非相参雷达的波浪场重构及预测方法
CN116090248B (zh) * 2023-02-24 2024-01-23 自然资源部第一海洋研究所 海浪谱保存、重构方法、系统及新的海浪嵌套模拟方法
CN117033910B (zh) * 2023-09-27 2023-12-19 宁波麦思捷科技有限公司武汉分公司 一种海面高精度信号的处理方法及系统
CN117077554B (zh) * 2023-10-18 2024-01-30 珠江水利委员会珠江水利科学研究院 一种基于ConvGRU的三维咸潮预报方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302122A1 (de) * 1993-01-27 1994-08-11 Geesthacht Gkss Forschung Vorrichtung zur Ermittlung und Darstellung eines dreidimensionalen Wellenspektrums aus mittels einer Radaranlage erfaßter Wellenparameter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4302122A1 (de) * 1993-01-27 1994-08-11 Geesthacht Gkss Forschung Vorrichtung zur Ermittlung und Darstellung eines dreidimensionalen Wellenspektrums aus mittels einer Radaranlage erfaßter Wellenparameter

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEEMANN J ET AL: "A method for computing calibrated ocean wave spectra from measurements with a nautical X-band radar", OCEANS '97. MTS/IEEE. CONFERENCE PROCEEDINGS (CAT. NO.97CH36105), OCEANS '97. MTS/IEEE CONFERENCE PROCEEDINGS, HALIFAX, NS, CANADA, 6-9 OCT. 1997, 1997, New York, NY, USA, IEEE, USA, pages 1148 - 1154 vol.2, XP002163156, ISBN: 0-7803-4108-2 *
SEEMANN J ET AL: "Radar image sequence analysis of inhomogeneous water surfaces", APPLICATIONS OF DIGITAL IMAGE PROCESSING XXII, DENVER, CO, USA, 20-23 JULY 1999, vol. 3808, Proceedings of the SPIE - The International Society for Optical Engineering, 1999, SPIE-Int. Soc. Opt. Eng, USA, pages 536 - 546, XP000992163, ISSN: 0277-786X *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004097452A1 (en) * 2003-04-30 2004-11-11 Qinetiq Limited Detection of small objects in bodies of water
CN103969643A (zh) * 2014-05-09 2014-08-06 哈尔滨工程大学 一种基于新型海浪色散关系带通滤波器进行x波段导航雷达反演海浪参数方法
CN111624599A (zh) * 2020-05-27 2020-09-04 哈尔滨工程大学 一种航海雷达反演海浪有效波高计算方法
CN111624599B (zh) * 2020-05-27 2022-12-13 哈尔滨工程大学 一种航海雷达反演海浪有效波高计算方法
CN112014839B (zh) * 2020-08-06 2022-03-18 南京信息工程大学 一种消除噪声对相参x波段雷达观测海浪的影响的方法
CN112014839A (zh) * 2020-08-06 2020-12-01 南京信息工程大学 一种消除噪声对相参x波段雷达观测海浪的影响的方法
CN112254802A (zh) * 2020-10-13 2021-01-22 中国人民解放军国防科技大学 基于毫米波雷达相位测距的语音重构方法
CN112254802B (zh) * 2020-10-13 2022-05-17 中国人民解放军国防科技大学 基于毫米波雷达相位测距的语音重构方法
CN113297810A (zh) * 2021-05-13 2021-08-24 中国海洋大学 一种检验海面高度的现场观测设备布放方法和系统
CN113297810B (zh) * 2021-05-13 2022-10-11 中国海洋大学 一种检验海面高度的现场观测设备布放方法和系统
CN113640800A (zh) * 2021-08-25 2021-11-12 中国人民解放军海军潜艇学院 一种用于反演海洋内孤立波数据的反演方法
CN113640800B (zh) * 2021-08-25 2023-07-28 中国人民解放军海军潜艇学院 一种用于反演海洋内孤立波数据的反演方法
CN114167076A (zh) * 2021-11-10 2022-03-11 中国地质大学(武汉) 海面风速风向反演模型的建立方法及风速风向的反演方法
CN115017711A (zh) * 2022-06-10 2022-09-06 西安电子科技大学杭州研究院 基于海浪谱的三维非线性海浪模拟方法
CN115017711B (zh) * 2022-06-10 2023-06-20 西安电子科技大学杭州研究院 基于海浪谱的三维非线性海浪模拟方法
CN117058532A (zh) * 2023-10-08 2023-11-14 自然资源部第一海洋研究所 基于海浪与太阳耀斑信号反演水深、波高的方法和系统
CN117058532B (zh) * 2023-10-08 2023-12-19 自然资源部第一海洋研究所 基于海浪与太阳耀斑信号反演水深、波高的方法和系统

Also Published As

Publication number Publication date
US6775617B2 (en) 2004-08-10
US20030167125A1 (en) 2003-09-04

Similar Documents

Publication Publication Date Title
WO2002008786A1 (de) Verfahren zur ermittlung von ein in situ seegangsfeld beschreibenden hydrographischen parametern mittels einer radareinrichtung
Huang et al. Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery
Bell Shallow water bathymetry derived from an analysis of X-band marine radar images of waves
Choe et al. Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data
CN102621531B (zh) 一种基于x波段雷达图像的降雨干扰抑制方法
DE10231661A1 (de) Abbildung von Meeresoberflächenströmungen mit bistatischem HF-Radar
DE19706576A1 (de) Vorrichtung und Verfahren zur umgebungsadaptiven Klassifikation von Objekten
Marzahn et al. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling
Karvonen Virtual radar ice buoys–a method for measuring fine-scale sea ice drift
CN109283495B (zh) 一种基于交叉谱分析的x波段雷达海流反演方法
DE10213566A1 (de) Verfahren zum Bestimmen der Oberflächenrauhigkeit mit einem Mehrstrahlecholot
Watts et al. Producing accurate maps of the Gulf Stream thermal front using objective analysis
DE112010002676T5 (de) Verfahren zur messung der wasserqualität, vorrichtung zur messung der wasserqualität und programm zur messung der wasserqualität für meeresoberflächenschichten
DE10035921B4 (de) Verfahren zur Ermittlung von ein in situ Seegangsfeld beschreibenden hydropraphischen Parametern mittels einer Radareinrichtung
Anderson Adaptive remote sensing with HF skywave radar
DE3322500A1 (de) Verfahren zum passiven bestimmen von zieldaten eines fahrzeugs
CN102073037A (zh) 基于自适应阈值选取技术的迭代海流反演方法
Hennings et al. Island connected sea bed signatures observed by multi-frequency synthetic aperture radar
EP0412248B1 (de) Verfahren zum passiven Bestimmen von Zieldaten
Kotovirta et al. Ships as a sensor network to observe ice field properties
Zabeline et al. RADARSAT application in ocean wind measurements
Doong et al. Determination of the spatial pattern of wave directions in the inhomogeneous coastal ocean by marine radar image sequences
Senet et al. Dispersive surface classification: Local analysis of optical image sequences of the water surface to determine hydrographic parameter maps
DE3322500C1 (de)
Ludeno et al. Integration between X-band radar and buoy sea state monitoring

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10348607

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2003134239

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F